Grupy i kompleksy

Damian Osajda damian.osajda@uwr.edu.pl http://www.math.uni.wroc.pl/~dosaj/ Ćwiczenia 8

Conjecture (Kaplansky's Zero Divisor Conjecture). Let K be a field and let G be a torsion-free group. Then the group ring K[G] contains no non-trivial zero divisors.

A proof of the Zero Divisor Conjecture for some hyperbolic groups by T. Delzant:

Let G be a torsion free group acting geometrically on a δ -hyperbolic graph Γ . Suppose that for every $g \in G \setminus \{1\}$, the minimal displacement $|g| = \min\{d(gv, v) \mid v \in V(\Gamma)\} > 22\delta$.

- (1) Let $g, h \in G$. Show that for every vertex $v \in V(\Gamma)$ we have either d(ghv, v) > d(gv, v) or $d(gh^{-1}v, v) > d(gv, v)$.
 - Hint: Proceed by a contradiction:
 - (a) Consider a vertex q on a geodesic [v, hv] at distance $\lfloor d(hv, v)/2 \rfloor$ from v. Show that q is at distance at most 8δ from $\lfloor g^{-1}v, v \rfloor$.
 - (b) Consider a vertex q' on a geodesic $[v, h^{-1}v]$ at distance $\lfloor d(h^{-1}v, v)/2 \rfloor$ from v. Show that q' is at distance at most 8δ from $\lfloor g^{-1}v, v \rfloor$.
 - (c) Show that $d(q, q') \leq 20\delta$.
 - (d) Conclude that there exists a vertex w such that $d(w, hw) \leq 22\delta$.
- (2) Prove that G satisfies the Unique Product Property: Let $A, B \subset G$ be two finite non-singletons, and let $C = AB := \{ab \mid a \in A, b \in B\}$. Then there exists an element $c \in C$, which can be written uniquely as a product c = ab. Hint: Consider an "extremal" element in C and use (1).
- (3) Show that K[G] has no non-trivial zero divisors.