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Aksjomaty incydencji

Dla dowolnych dwéch réznych punktéw istnieje doktadnie jedna prosta
przez nie przechodzaca.

Na kazdej prostej leza dwa punkty.
Istnieja trzy punkty niewspoétliniowe.
Aksjomaty porzadku

Dla punktéw dowolnej prostej p relacja <, jest liniowym porzadkiem, tzn.:
(a) jesli A <, B to A +# B;
(b) jedli A # B to zachodzi dokladnie jedna z relacji A <, B, B <, 4;
(c) jeSliA<, BiB<,CtoA<,C.

(Aksjomat Moritza Pascha.) Dla dowolnych niewspo6lliniowych punktéw
A, B, C oraz dowolnej prostej p nie przechodzacej przez zaden z tych punk-
tow, jesli p przecina odcinek AB to przecina tez doktadnie jeden sposréd
odcinkéow BC' i AC.

Aksjomaty miary odcinkéw
Miara kazdego odcinka jest liczba dodatnia.

Dla kazdej pélprostej r o poczatku w A i dla dowolnej liczby dodatniej d
istnieje punkt B € r taki, ze m(AB) = d.

Jesli A <, B <, C to m(AB) + m(BC) = m(AC).
Aksjomaty miary katow

Dla kazdego kata rs (utworzonego z pélprostych r i s o wspdlnym po-
czatku) miara p(rs) jest liczba z otwartego przedziatu (0, 7).

Dla dowolnej prostej p, dowolnej péiplaszczyzny W ograniczonej przez p,
dowolnej pélprostej r zawartej w p i dowolnej liczby a € (0, ), istnieje
pélprosta s zawarta w W tworzaca wraz z r kat rs taki, ze u(rs) = a.



(K3) Niech r, s,t beda pélprostymi o wspélnym poczatku takimi, ze s lezy we-
wnatrz kata rt. Wtedy pu(rs) + p(st) = p(re).

(K4) Niech A, B,C'i A’, B’,C' beda dwoma tréjkami niewsp6tiniowych punk-
tow. Jesli m(AB) = m(A'B’), m(AC) = m(A'C") i n(BAC) = u(B'A'C")
to u(ABC) = u(A'’B'C").

Aksjomat réwnoleglosci

(R) Jedli punkt A nie lezy na prostej p, to istnieje dokladnie jedna prosta
przechodzaca przez A i nie przecinajaca p.



