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ABSTRACT. We prove the Haagerup property (= Gromov’s a-T-menability) for finitely
generated groups defined by infinite presentations satisfying the C′(1/6)–small cancella-
tion condition. We deduce that these groups are coarsely embeddable into a Hilbert space
and that the strong Baum-Connes conjecture holds for them. The result is a first non-trivial
advancement in understanding groups with such properties among infinitely presented non-
amenable direct limits of hyperbolic groups. The proof uses the structure of a space with
walls introduced by Wise. As the main step we show that C′(1/6)–complexes satisfy the
linear separation property.

1. INTRODUCTION

A second countable, locally compact group G has the Haagerup property (or G is a-
T-menable in the sense of Gromov) if it possesses a proper continuous affine isometric
action on a Hilbert space. The concept first appeared in the seminal paper of Haagerup
[Haa78], where this property was proved for finitely generated free groups. Regarded as
a weakening of von Neumann’s amenability and a strong negation of Kazhdan’s property
(T), the Haagerup property has been revealed independently in harmonic analysis, non-
commutative geometry, and ergodic theory [AW81, Cho83, BJS88, BR88], [Gro88, 4.5.C],
[Gro93, 7.A and 7.E]. A major breakthrough was a spectacular result of Higson and Kas-
parov [HK97] establishing the strong Baum-Connes conjecture (and, hence, the Baum-
Connes conjecture with coefficients) for groups with the Haagerup property. It follows that
the Novikov higher signature conjecture and, for discrete torsion-free groups, the Kadison-
Kaplansky idempotents conjecture hold for these groups. Nowadays, many groups have
been shown to have the Haagerup property and several significant applications in K-theory
and topology have been discovered [CCJ+01, MV03], making groups with the Haagerup
property increasingly fundamental to study.

Finitely presented groups defined by a presentation with the classical small cancellation
condition C ′(λ) for λ 6 1/6 (see [LS01] for the definition) satisfy the Haagerup property
by a result of Wise [Wis04].

The appearance of infinitely presented small cancellation groups can be traced back to
numerous embedding results (the idea is attributed to Britton [MS71, p.172]): the small
cancellation condition over free products was systematically used to get an embedding of
a countable group into a finitely generated group with required properties [LS01, Ch.V]. A
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more recent example is the Thomas-Velickovic construction of a group with two distinct
asymptotic cones [TV00]. However, the general theory of infinitely presented small can-
cellation groups is much less developed than the one for the finitely presented counterpart
(see e.g. [LS01, Wis04, Wis11] for results and further references). This is related to the
fact that such infinitely presented groups form a kind of a borderline for many geometric
or analytic properties. For instance, Gromov’s monster groups1 [Gro03, AD08] do not sat-
isfy the Baum-Connes conjecture with coefficients [HLS02] while they are direct limits of
finitely presented graphical small cancellation groups. The latter groups may not have the
Haagerup property (see e.g. [OW07, Proposition 3.1]), but they are Gromov hyperbolic.
Therefore, they satisfy the Baum-Connes conjecture with coefficients by a recent deep
work of Lafforgue [Laf12]. Also, Gromov’s monster groups admit no coarse embeddings
into a Hilbert space and, hence, are not coarsely amenable [Gro03,AD08]. Again, Gromov
hyperbolic groups are known to possess both properties [Yu00].

Even for the simplest case of classical small cancellation infinitely presented groups (as
considered in [TV00]) the questions about various Baum-Connes conjectures (see [Val02]
for diverse variants of the conjecture) and the coarse embeddability into a Hilbert space
have remained open.

The coarse embeddability into a Hilbert space is implied by the finiteness of the asymp-
totic dimension [Yu00]. Although we do expect that classical small cancellation infinitely
presented groups have finite asymptotic dimension2, this cannot be used to obtain deepest
possible analytic results such as the strong Baum-Connes conjecture [MN06] (which is
strictly stronger than the Baum-Connes conjecture with coefficients). Indeed, a discrete
subgroup of finite covolume in Sp(n, 1) is a group with finite asymptotic dimension which
does not satisfy the strong Baum-Connes conjecture [Ska88].

In this paper, we answer the questions concerning Baum-Connes conjectures and the
coarse embeddability into a Hilbert space by proving the following stronger result.

Main Theorem. Finitely generated groups defined by infinite C ′(1/6)–small cancellation
presentations have the Haagerup property.

As an immediate consequence we obtain the following.

Corollary 1. Finitely generated groups defined by infinite C ′(1/6)–small cancellation
presentations are coarsely embeddable into a Hilbert space.

Moreover, using results of [HK01], we have:

Corollary 2. The strong Baum-Connes conjecture holds for finitely generated groups de-
fined by infinite C ′(1/6)–small cancellation presentations.

Our approach to proving Main Theorem is to show a stronger result: A group acting
properly on a simply connected C ′(1/6)–complex, acts properly on a space with walls.
The concept of a space with walls was introduced by Haglund-Paulin [HP98] (cf. Sec-
tion 3). It is an observation by Bożejko-Januszkiewicz-Spatzier [BJS88] (implicitly, with-
out the notion of a “space with walls” yet) and later, independently, by Haglund-Paulin-
Valette (unpublished — compare [CMV04, Introduction]), that a finitely generated group
admitting a proper action on a space with walls has the Haagerup property. We define walls
on the 0–skeleton of the corresponding C ′(1/6)–complex, using the construction of Wise

1These are finitely generated groups which contain an expander family of graphs in their Cayley graphs.
2See [Dra08, Problem 3.16], [Osi08, Problem 6.1], [Dus10, Question 4.2] for specifications of the question.
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[Wis04] (cf. Section 3). The main difficulty is to show the properness. To do this we prove
the following general result about complexes (see Theorem 4.3 for the precise statement).
Recall that the linear separation property says that the wall pseudo-metric and the path
metric, both considered on the 0–skeleton of the complex, are bi-Lipschitz equivalent.

Theorem 1. Simply connected C ′(1/6)–complexes satisfy the linear separation property.

This result is of independent interest. Note that for complexes satisfying the B(6)–
condition, introduced and extensively explored by Wise [Wis04, Wis11], the linear sepa-
ration property does not hold in general. Moreover, such complexes might not admit any
proper separation property — see Section 6 (where we also explain that our results are not
immediate consequences of Wise’s work).

From Theorem 1 it follows that groups acting properly on simply connected C ′(1/6)–
complexes act properly on spaces with walls (Theorem 5.1). This implies immediately
Main Theorem. This also extends a result of Wise [Wis04, Theorem 14.2] on non-satis-
fiability of Kazhdan’s property (T) for such infinite groups — see Corollary 3 in Section 5.
In addition, the linear separation property yields results on the affine isometric group ac-
tions on Lp spaces — see Corollary 4.

Our main result holds as well for certain groups with more general graphical small
cancellation presentations. Note however that some graphical small cancellation groups
satisfy Kazhdan’s property (T), and thus do not have the Haagerup property — cf. e.g.
[Gro03, OW07]. Therefore, besides providing new results, the current paper plays also
the role of an initial step in a wider program for distinguishing groups with the Haagerup
property among infinitely presented non-amenable direct limits of hyperbolic groups.

Acknowledgment. We thank Dominik Gruber, Yves Cornulier and Alain Valette for valu-
able remarks improving the manuscript. We thank the anonymous referee for useful com-
ments and for pointing out to us Corollary 4.

2. PRELIMINARIES

A standard reference for the classical small cancellation theory considered in this paper
is the book [LS01]. In what follows however we will mostly deal with an equivalent
approach, focusing on CW complexes, following the notations from [Wis04, Wis11].

All complexes in this paper are simply connected combinatorial 2–dimensional CW
complexes, i.e. restrictions of attaching maps to open edges are homeomorphisms onto
open cells. We assume that if in such a complex X two cells are attached along a common
boundary then they are equal, i.e. e.g. that 2–cells are determined uniquely by images
of their attaching maps. Thus, we do not distinguish usually between a 2–cell and its
boundary, being a cycle — we denote both by r and call them relators. Note that an
attaching map r → X need not to be injective. However, the injectivity indeed holds in
the case we consider below. Moreover, we assume that relators have even length. This is
not a major restriction since one can always pass to a complex whose edges are subdivided
in two. Throughout the article, if not specified otherwise, we consider the path metric,
denoted d(·, ·), defined on the 0–skeleton X(0) of X by (combinatorial) paths in X(1).
Geodesics are the shortest paths in X(1) for this metric. By a (generalized) path we mean
a cellular map p→ X , from a subdivision of an interval to X .

A path p→ X is a piece if there are 2–cells r, r′ such that p→ X factors as p→ r →
X and as p → r′ → X , but there is no isomorphism r → r′ that makes the following
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diagram commutative.
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This means that p occurs in r and r′ in two essentially distinct ways.
Let λ ∈ (0, 1). We say that the complex X satisfies the C ′(λ)–small cancellation

condition (or, shortly, the C ′(λ)–condition; or we say that X is a C ′(λ)–complex) if every
piece p → X factorizing through p → r → X has length |p| < λ|r| (where |s| is the
number of edges in the path s). We say that X satisfies the B(6)–condition if every path
factorizing through r and being a concatenation of at most 3 pieces has length at most |r|/2.
Note (cf. [Wis04, Section 2.1]) that the C ′(1/6)–condition implies the B(6)–condition.
Under the B(6)–condition, the attaching maps r → X for relators are injective — see e.g.
[Wis04, Corollary 2.9]. Thanks to this, we may view relators as embedded cycles in the
1–skeleton X(1) of X .

In this paper, we work with a group G defined by an infinite presentation

G = 〈S | r1, r2, r3, . . .〉,(1)

with a finite symmetric generating set S and (freely) cyclically reduced relators ri. There
is a combinatorial 2–dimensional CW complex, the Cayley complexX , associated with the
presentation (1). It is defined as follows. The 1–skeleton X(1) of X is the Cayley graph
(with respect to the generating set S) of G. The 2–cells of X have boundary cycles labeled
by relators ri and are attached to the 1–skeleton by maps preserving labeling (of the Cayley
graph). We say that the presentation (1) is a C ′(λ)–small cancellation presentation when
the corresponding Cayley complex X satisfies the C ′(λ)–condition.

Examples. Here are a few concrete examples of infinite small cancellation presentations
defining groups with various unusual properties.

(i) (Pride) For each positive integer n, let un, vn be words in an and bn, and let

G = 〈a, b | au1, bv1, au2, bv2, au3, bv3, . . .〉.
An appropriate choice of un, vn gives an infinite C ′(1/6)–small cancellation pre-
sentation of a non-trivial groupG. For instance, one can take un = (anbn)10, vn =
(anb2n)10 for n > 1. By construction, G has no proper subgroups of finite index.
Indeed, such a subgroup has to contain a normal closure of an and bn for some n,
which coincides with G due to the chosen relators. In particular, G is not resid-
ually finite [Pri89]. Every finite C ′(1/6)–small cancellation presentation defines
a residually finite group [Wis11]. Whether or not there exists a non residually fi-
nite Gromov hyperbolic group is a major open question in geometric group theory.

(ii) (Thomas–Velickovic) The following infinite presentations satisfy
the C ′(1/6)–small cancellation condition:

GI,k = 〈a, b | (anbn)k, n ∈ I〉,
where I ⊆ N is a given infinite subset and k > 7 is a fixed integer. These are first
examples of finitely generated groups with two distinct asymptotic cones [TV00]
(which arise with respect to two appropriately chosen, depending on I, distinct
ultrafilters on N). We refer the reader to [DS05, EO05] for more results in this
direction using infinitely presented small cancellation groups in a crucial way.
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(iii) (Rips) Given a finitely generated group Q = 〈a1, . . . , am | r1, r2, r3, . . .〉 there is
a C ′(1/6)-small cancellation group G and a 2-generated subgroup N of G so that
G/N ∼= Q. Indeed, let G be given by generators a1, . . . , am, x, y and relators

Aj = (xy)80j+1xy2(xy)80j+2xy2 . . . (xy)80(j+1)xy2, j = 1, 2, . . . ,

where A1, A2, . . . is the sequence of words:

a±1i xa∓1i (i = 1, . . .m), a±1i ya∓1i (i = 1, . . .m), r1, r2, r3, . . . .

This presentation of G satisfies the C ′(1/6)–small cancellation condition, the re-
quired N is the subgroup of G generated by x, y, and G is finitely presented if
and only if Q is. A specific choice of Q produces (finitely presented) small can-
cellation groups with exotic algebraic and algorithmic properties of certain sub-
groups [Rip82], see also [BMS94], and [Wis03,BO08,OW07] for variants of Rips
construction (which provide G and/or N with additional properties).

Observe that a given infinite small cancellation presentation G = 〈a, b | r1, r2, r3, . . .〉
yields many distinct small cancellation groups: For I ⊆ N define GI = 〈a, b | ri, i ∈ I〉.
Then the family {GI}I⊆N contains continuum many non-isomorphic small cancellation
groups (use the small cancellation condition to show that there is no group isomorphism
mapping a 7→ a, b 7→ b and the cardinality argument to conclude as there are at most
countably many other possible generators).

2.1. Local-to-global density principle. Here we provide a simple trick that will allow us
to deal with different sizes of relators in Section 4.

Let γ be a simple path in X(1). For a subcomplex B of γ, by E(B) we denote the set
of edges of B. Let U be a family of nontrivial subpaths of γ, and let A be a subcomplex of⋃U (that is, of the union

⋃
U∈U U ).

Lemma 2.1 (Local-to-global density principle). Assume that there exists C > 0, such that

|E(A) ∩ E(U)|
|E(U)| > C,

for every U ∈ U . Then |E(A)| > (C/2)|E(
⋃U)|.

Proof. Let U ′ ⊆ U be a minimal cover of
⋃U . Then there are two subfamilies U ′1,U ′2 of

U ′ with the following properties:

(1) U ′i consists of pairwise disjoint paths, i = 1, 2;
(2) U ′1 ∪ U ′2 = U ′.

Without loss of generality we may assume that |E(
⋃U ′1)| > |E(

⋃U ′)|/2. Then

|E(A)| > |E(A) ∩ E(
⋃
U ′1)| =

∑
U∈U ′

1

|E(A) ∩ E(U)| >

>
∑
U∈U ′

1

C|E(U)| = C|E(
⋃
U ′1)| > C|E(

⋃
U ′)|/2 =

C

2
|E(
⋃
U)|.

�
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3. WALLS

Let X be a complex satisfying the B(6)–condition. In this section, we equip the 0–
skeleton X(0) of X with the structure of a space with walls (X(0),W). We use the walls
defined by Wise [Wis04].

Remark. Many considerations in [Wis04] concern finitely presented groups. Nevertheless,
all the results about walls stated below are provided there under no further assumptions on
the complex X .

Let W be a family of partitions (called walls) of a set Y into two classes. The pair
(Y,W) is called a space with walls (cf. e.g. [CMV04]) if the following holds. For every
two distinct points x, y ∈ Y , the number of walls separating x from y (called the wall
pseudo-metric), denoted by dW(x, y), is finite.

Now we define walls for X(0). For a tentative abuse of notation we denote by “walls”
some sets of edges of X(1). Then we show that they indeed define walls. Following
Wise [Wis04], we say that two edges are related if they are opposite in some 2–cell. The
equivalence class of the transitive closure of such relation is called a wall.

Lemma 3.1 ([Wis04, Lemma 3.13]). Removing all open edges from a given wall discon-
nects X(1) into exactly two components.

Thus, we define the familyW for X(0) as the partitions of X(0) into sets of vertices in
the components described by the lemma above.

Proposition 3.2. With the system of walls defined as above, (X(0),W) becomes a space
with walls.

Proof. Since, for any two vertices, there exists a path in X(1) connecting them, we get that
the number of walls separating those two vertices is finite. �

We recall two further results on walls that will be used in Section 4. The hypercarrier
of a wall w is the 1–skeleton of the subcomplex of X consisting of all closed 2–cells
containing edges in w or of a single edge e if w = {e}.
Theorem 3.3 ([Wis04, Theorem 3.18]). Each hypercarrier is a convex subcomplex of
X(1), that is, any geodesic connecting vertices of a hypercarrier is contained in this hy-
percarrier.

For a wall w, its hypergraph Γw is a graph defined as follows. Vertices of Γw are edges
in w, and edges correspond to 2–cells containing opposite edges in w.

Lemma 3.4 ([Wis04, Corollary 3.12]). Each hypergraph is a tree.

4. LINEAR SEPARATION PROPERTY

From now on, unless stated otherwise, each complex X considered in this paper, satisfies
the C ′(λ)–condition, for some λ ∈ (0, 16 ], and its 0–skeleton is equipped with the structure
of a space with walls (X(0),W) described in Section 3.

In this section, we show that complexes satisfying C ′(1/6)–condition satisfy the linear
separation property (Theorem 1 in Introduction, and Theorem 4.3 below) stating that the
wall pseudo-metric on X(0) is bi-Lipschitz equivalent to the path metric (cf. e.g. [Wis11,
Section 5.11]). Note that the linear separation property does not hold in general for B(6)–
complexes — see Section 6.
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Let p, q be two distinct vertices in X . It is clear that

dW(p, q) 6 d(p, q).

For the rest of this section our aim is to prove an opposite (up to a scaling constant) in-
equality.

Let γ be a geodesic in X (that is, in its 1–skeleton X(1)) with endpoints p, q. Let A(γ)
denote the set of edges in γ whose walls meet γ in only one edge (in particular such walls
separate p from q). Clearly dW(p, q) > |A(γ)|. We thus estimate dW(p, q) by closely
studying the set A(γ). The estimate is first provided locally, and then we use the local-to-
global density principle (Lemma 2.1) to obtain a global bound.

4.1. Local estimate on |A(γ)|. For a local estimate we need to define neighborhoods
Ne — relator neighborhoods in γ — one for every edge e in γ, for which the number
|E(Ne) ∩A(γ)| can be bounded from below.

For a given edge e of γ we define a corresponding relator neighborhood Ne as follows.
If e ∈ A(γ) then Ne = {e}. Otherwise, we proceed in the following way.

Since e is not in A(γ), its wall w crosses γ in at least one more edge. In the wall w,
choose an edge e′ ⊆ γ being closest to e 6= e′. The hypergraph Γw of the wall w is a tree
by Lemma 3.4. Consider the geodesic between vertices e and e′ in Γw. Let r be the relator
corresponding to an edge in Γw lying on this geodesic and containing e. Two edges in a
wall contained in a single relator (that is, opposite in that relator) do not lie on a geodesic
in X(1) (by Theorem 3.3). Since γ is a geodesic, we have that e′ is not in r. Thus, let e′′ be
a vertex (edge in X) on the geodesic in Γw contained in r (considered as an edge in Γw).
Consequently, let r′ be the other relator containing e′′ and corresponding to an edge in the
geodesic in Γw.

We define Ne as the intersection r ∩ γ, that is, as the maximal subpath of γ contained
in the relator r. Observe that the choice of Ne is not unique. In the rest of this section we
estimate the number of edges in Ne belonging to A(γ).

Denote by p′, q′ the endpoints of Ne, such that p′ is closer to p. We begin with an
auxiliary lemma.

p

e

p′ q′

w

r

y

e′′

x

r′

e′

q

γ

Ne

FIGURE 1. The situation in Lemma 4.1.
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Lemma 4.1. Assume that q′ lies (on γ) between e and e′. Then we have:

d(p′, q′) > d(e, q′) >

(
1

2
− λ
)
|r|,(2)

d(e, p′) < 2λd(p′, q′)− 1.(3)

Proof. Let x = d(e′′, q′) and y = d(e, q′) — see Figure 1. By definition of the wall w, we
have

y + x+ 1 =
|r|
2
.(4)

Since Ne is a geodesic we obtain

d(p′, q′) 6
|r|
2
.(5)

The relator r′ belongs to a hypercarrier of w, and q′, e′ are endpoints of a geodesic lying
both in the hypercarrier. By the convexity (Theorem 3.3) and by the tree-like structure of
hypercarriers (Lemma 3.4) we obtain that q′ ∈ r′. Thus, the path in r joining q′ and e′′,
including e′′, is contained in r′. It follows that this path, of length x + 1, is a piece and
hence, by the C ′(λ)–small cancellation condition, we have

x+ 1 < λ|r|.(6)

Combining (4) and (6) we obtain

d(p′, q′) > y =
|r|
2
− (x+ 1) >

|r|
2
− λ|r|,

that proves (2). Combining this with (5) we obtain

y

d(p′, q′)
>
|r|/2− λ|r|
|r|/2 = 1− 2λ.

Thus,

d(e, p′) = d(p′, q′)− y − 1 < 2λd(p′, q′)− 1,

that finishes the proof. �

Lemma 4.2 (Local density of A(γ)). The number of edges in Ne, whose walls separate p
from q is estimated as follows:

|E(Ne) ∩A(γ)| > 1− 6λ+ 4λ2

1− 2λ
· |E(Ne)|.

Proof. If e ∈ A(γ), then Ne = {e} and the lemma is trivially true. Thus, for the rest of
the proof we assume that this is not the case and we use the notations introduced above,
that is: e′′, p′, q′, r, r′. To estimate the number of edges in Ne that belong to A(γ), that is,
|E(Ne) ∩A(γ)| we explore the set of edges f in Ne not belonging to A(γ).

For such an f , let f ′ ⊆ γ be a closest edge in the same wall wf as f . Again, there
is a relator rf containing f , whose corresponding edge in the hypergraph Γwf

lies on the
geodesic between f and f ′. Let p′′ and q′′ denote the endpoints of the subpath rf ∩γ, with
p′′ closer to p. There are two cases for such an rf , that we treat separately.

Case “Up”: In this case, we have rf = r. Then, by Lemma 4.1(3), we have

d(f, q′) < 2λd(p′, q′)− 1,(7)
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or

d(f, p′) < 2λd(p′, q′)− 1.(8)

Case “Down”: In this case, we have that rf 6= r. Without loss of generality we may
assume that q′′ lies (on γ) between f and f ′ — see Figures 2 & 3.

p

e

p′ q′

r

q

γ p′′ q′′

rf

wf

f f ′

FIGURE 2. The impossible case “Down”.

First, suppose that q′′ ∈ Ne — see Figure 2. Then the subpath of γ between f and
q′′, including f , is a piece. Thus, by the C ′(λ)–small cancellation condition, we have that
d(f, q′′) < λ|rf |. However, by Lemma 4.1(2) we have that d(f, q′′) > (1/2 − λ)|rf |,
leading to a contradiction for λ 6 1/4.

p

e

p′ q′

r

q

γ p′′ q′′

rf

wf

f f ′

FIGURE 3. The possible case “Down”.

Thus, q′′ lies (on γ) between q′ and q — see Figure 3. It follows that the subpath of γ
between f and q′, including f , is a piece. By the C ′(λ)–small cancellation condition we
have

d(f, q′) + 1 < λ|r|.
Thus, by Lemma 4.1(2), we obtain

d(f, q′) + 1 <
λ

1/2− λd(p′, q′) =
2λ

1− 2λ
d(p′, q′).(9)
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Finally, combining the two cases (“Up” and “Down”) above, that is, combining (7), (8)
and (9), we have that every edge f ∈ E(Ne) \ A(γ) is contained in the neighborhood of
radius

2λ

1− 2λ
· d(p′, q′)

around the set {p′, q′} of endpoints of Ne. Thus, we obtain

|E(Ne) ∩A(γ)| > d(p′, q′)− 2 · 2λ

1− 2λ
d(p′, q′) =

1− 6λ

1− 2λ
|E(Ne)|.(10)

The formula above is perfectly satisfactory in the case λ < 1/6. However for λ = 1/6
we need to provide a more precise bound, studying in more details the case “Down”.

Case “Down+”: As in the case “Down” we have that rf 6= r. Again, we may assume that
q′′ lies (on γ) between f and f ′ — see Figure 3. Moreover, we consider now only one of
the vertices p′, q′, assuming that q′ lies (on γ) between e and e′, as in Lemma 4.1 — see
Figures 4 & 5. Let s be furthest from q′ vertex in r′ ∩ γ \ r. By considerations from the
case “Down” we have that q′′ lies between q′ and q. We consider separately two subcases.

Subcase 1: q′′ lies between q′ and s — see Figure 4. In this case the path between f and

p

e

p′ q′

w

r

e′′

r′

e′

q

γ

Ne

p′′ q′′

s

rf

f

FIGURE 4. Subcase 1 of Case “Down+”.

q′, including f , and the path between q′ and q′′ are pieces, so that, by the C ′(λ)–condition
we have:

1 + d(f, q′′) = 1 + d(f, q′) + d(q′, q′′) < 2λ|rf |.
However, by Lemma 4.1(2) we have d(f, q′′) > (1/2− λ)|rf |. This leads to contradic-

tion for λ 6 1/6.

Subcase 2: s lies between q′ and q′′ — see Figure 5. Let e′′′ be the vertex in Γw adjacent
to e′′ and on the geodesic (in Γw) between e and e′. Observe that we may have e′′′ = e′

or e′′′ 6= e′, however both cases can be treated at once. The path in r ∩ r′ between e′′

and q′, including e′′, is a piece. Similarly, the path in r′ between e′′′ and s, including
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p

e

p′ q′

w

r

e′′

r′

e′

q

γ

Ne

p′′

s

rf

q′′

e′′′

f

FIGURE 5. Subcase 2 of Case “Down+”.

e′′′ and omitting e′′, is a piece. Since also the path between q′ and s is a piece, by the
C ′(λ)–condition we have

|r′|
2

+ 1 = 1 + d(e′′, q′) + d(q′, s) + d(s, e′′′) + 1 < 3λ|r′|,

that leads to contradiction for λ 6 1/6.

Combining the two subcases we have that there are no edges like f in the neighborhood
of one of points p′, q′.

Now we combine all the cases: “Up”, “Down” and “Down+”, i.e. the formulas: (7),
(8), (9). We conclude that any edge f ∈ E(Ne) \ A(γ) is contained in the [2λd(p′, q′)]–
neighborhood around one of vertices p′, q′ or in the {[(2λ)/(1−2λ)] ·d(p′, q′)}–neighbor-
hood around the other vertex. Thus, similarly as in (10), we obtain

|E(Ne) ∩A(γ)| > d(p′, q′)− 2λ

1− 2λ
d(p′, q′)− 2λd(p′, q′) =

1− 6λ+ 4λ2

1− 2λ
|E(Ne)|.

�

4.2. Linear separation property. In this subsection we estimate the overall density of
edges with walls separating p and q, thus obtaining the linear separation property. We use
the local estimate on the density of A(γ) (see Lemma 4.2) and the local-to-global density
principle (Lemma 2.1).

Theorem 4.3 (Linear separation property). For any two vertices p, q in X we have

d(p, q) > dW(p, q) >
1− 6λ+ 4λ2

2− 4λ
· d(p, q),

i.e., the path metric and the wall pseudo-metric are bi-Lipschitz equivalent.

Proof. The left inequality is clear. Now we prove the right one. Let γ be a geodesic joining
p and q. The number |E(γ)| of edges in γ is equal to d(p, q). On the other hand, the number
|A(γ)| of edges in γ whose walls meet γ in only one edge is at most dW(p, q). We will
thus bound |A(γ)| from below.
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For any edge e of γ, let Ne be its relator neighborhood. The collection U = {Ne | e ∈
E(γ)} forms a covering family of subpaths of γ. By the local estimate (Lemma 4.2) we
have that

|A(γ) ∩ E(Ne)|
|E(Ne)|

>
1− 6λ+ 4λ2

1− 2λ
.

Thus, by the local-to-global density principle (Lemma 2.1), we have

|A(γ)| > 1

2
· 1− 6λ+ 4λ2

1− 2λ
· |E(γ)|,

that finishes the proof. �

Remark. A detailed description of the geometry of infinitely presented groups satisfying
the stronger small cancelation condition C ′(1/8) is provided in a recent work of Druţu
and the first author [AD12]. This yields many analytic and geometric properties of such
groups. In particular, an alternative proof of the bi-Lipschitz equivalence between the wall
pseudo-metric and the word length metric is given for such groups. This uses the standard
decomposition of the group elements developed in that paper (a powerful technical tool of
independent interest).

5. HAAGERUP PROPERTY

A consequence of the linear separation property (Theorem 4.3) is the following.

Theorem 5.1. Let G be a group acting properly on a simply connected C ′(1/6)–complex
X . Then G acts properly on a space with walls. In particular, G has the Haagerup
property.

Proof. The group G acts properly on the set of vertices X(0) of X equipped with the path
metric d(·, ·). By Proposition 3.2, this action gives rise to the action by automorphisms
on the space with walls (X(0),W). By the linear separation property (Theorem 4.3), for
λ 6 1/6, we conclude that G acts properly on (X(0),W). By an observation of Bożejko-
Januszkiewicz-Spatzier [BJS88] and Haglund-Paulin-Valette (cf. [CMV04]), the group G
has the Haagerup property. �

Observe that Main Theorem follows immediately from the above, since the group G
given by the presentation (1) acts properly on its Cayley complex X , as described in Sec-
tion 2.

Since infinite groups with the Haagerup property do not satisfy Kazhdan’s property (T),
we obtain the following strengthening of [Wis04, Theorem 14.2] (which was actually
proved under weaker B(6)–condition) in the C ′(1/6)–condition case.

Corollary 3. Let an infinite groupG act properly on a simply connectedC ′(1/6)–complex.
Then G does not have Kazhdan’s property (T).

Another application of the linear separation property concerns orbits of group actions
on classical normed spaces. If G acts properly on a space with walls (X(0),W), then it
has a proper affine isometric action on the space Lp, for every 1 6 p <∞, of p-summable
functions on the family of half-spaces determined by wallsW , cf. [dCTV08, Proposition
3.1] and [CDH10, Corollary 1.5]. If b : G → Lp denotes the 1-cocycle of such an action,
then ‖b(g)‖p = dW(gx0, x0)1/p, where x0 ∈ X(0) is a base point. The set b(G) is the
orbit of 0 ∈ Lp. Therefore, Theorem 4.3 immediately implies the following.
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Corollary 4. Let an infinite groupG act properly on a simply connectedC ′(1/6)–complex.
Then G acts properly by affine isometries on the space Lp, for every 1 6 p < ∞, with
orbit growth bi-Lipschitzly equivalent to |g|1/p, where |g| = d(gx0, x0).

In particular, G acts properly by affine isometries on the space L1 with bi-Lipschitzly
embedded orbits. If G is non-amenable, then the above orbit growth in L2 is the best
possible. Indeed, by a result of Guentner-Kaminker [GK04, Theorem 5.3], the orbit growth
strictly larger than |g|1/2 implies the amenability of the group.

6. FINAL REMARKS — RELATIONS TO WORK OF D. WISE

The main tool used in this paper is the system of walls for a simply connected complex
satisfying the C ′(1/6)–condition, introduced by D. Wise in [Wis04], and then developed
further e.g. in [Wis11]. In fact, Wise uses this tool usually to treat more general complexes
— complexes satisfying the B(6)–condition. One might be tempted to claim that the
results provided in this paper follow immediately from Wise’s work. We show here that
this is not the case. Nevertheless, we follow of course many of the ideas presented in
[Wis04, Wis11].

First, although many results in [Wis04] concern the general case of B(6)–complexes
(compare e.g. Section 3 above), eventually some finiteness conditions appear when dealing
with proper group actions. For example, in [Wis04, Theorem 14.1 and Theorem 14.2] non-
satisfiability of the Kazhdan’s property (T) is proved under additional assumptions about
cocompactness or freeness of the action. Our Corollary 3 does not require such assump-
tions. Under our assumptions (stronger than B(6)–condition) — i.e. with the C ′(1/6)–
condition — we may use the linear separation property (Theorem 4.3) to omit additional
restrictions. However, the linear separation property does not hold for all simply connected
B(6)–complexes. Moreover, for such complexes there is, in general, no lower bound on
the wall pseudo-metric in terms of the path metric, as the following example shows.

Example 1. Let X(1) be constructed using an infinite union of graphs Θn, for n =

an

bn

cn

dn

en

fn

an−1

bn−1

cn−1
dn−1

en−1

fn−1
rn r′n

rn−1 r′n−1

γn

Θn

Θn−1

w1

w2

FIGURE 6. Example 1.

1, 2, 3, . . ., depicted in Figure 6. There is an edge joining en with an+1, for every n mak-
ing X(1) connected. For each Θn, there are two 2–cells: rn, r′n attached to the shortest
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simple cycles in Θ, respectively: to the cycle passing through an, bn, cn, fn, and through
cn, dn, en, fn. The obtained 2–complex X is simply connected. We assign the lengths (in
the path metric) of segments in Θn as follows:

d(bn, cn) = d(cn, dn) = 3,

d(cn, fn) = 2n,

d(an, bn) = d(dn, en) = n,

d(an, fn) = d(fn, en) = n+ 3.

It is easy to check that this turns X into a B(6)–complex. Now, consider the standard
structure of the space with walls (X(0),W), as defined in Section 3. The only walls sep-
arating an from en are the walls containing the edges in the segments bncn and cndn,
each of length 3 — see Figure 6 (two other edges w1, w2 double intersecting the geo-
desic γ between an and en, thus not separating them are depicted). Hence we obtain
dW(an, en) = 6, while d(an, en) = 2n+ 6→∞, as n→∞.

We do not know whether a group acting properly on a B(6)–complex acts properly on
the corresponding space with walls.

On the other hand the linear separation property is proved in [Wis11, Theorem 5.45] for
complexes satisfying a condition being some strengthening of the B(6)–condition (in the
context of a more general small cancellation theory). The proof goes roughly as follows.
For a geodesic γ and for its edge e1, whose wall does not separate endpoints of γ (compare
our proof in Section 4) “there is (an edge) e2 within a uniformly distance of e1” whose wall
separates the endpoints of γ. This works clearly only in the case of finitely many types of
2–cells as the following example shows.

Example 2. Let X be a complex consisting of two 2–cells r, r′, meeting along a (piece)
segment a, q′. We set the following lengths (in the path metric) on X:

p′ q′ p′′

a

a′ a′′

r r′

x

x
2

x
2

w
w′

γ

FIGURE 7. Example 2.

x = d(a, q′) = 2d(a′, p′) = 2d(a′′, p′′),

d(q′, a′) = d(q′, a′′) =
|r|
2
− x =

|r′|
2
− x.

Making the ratio x/|r| small we can turn X into a C ′(λ)–complex for arbitrarily small
λ > 0. On the other hand, all the (standard) walls containing edges in the segment p′a′ do
not separate p′ from p′′, double crossing the geodesic γ between those two points (two such
walls w,w′ are depicted in Figure 6). Thus, with x growing (which can happen if there
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is infinitely many types of 2–cells in a complex), for an edge in p′a′ its big neighborhood
may consist of edges whose walls do not separate γ.
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[DS05] C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005),

no. 5, 959–1058. With an appendix by Denis Osin and Sapir.
[Dus10] K. Duszenko, Generalized small cancellation groups and asymptotic cones (2010), preprint,

available at http://ssdnm.mimuw.edu.pl/pliki/prace-studentow/st/pliki/
kamil-duszenko-1.pdf.

[EO05] A. Erschler and D. Osin, Fundamental groups of asymptotic cones, Topology 44 (2005), no. 4, 827–
843.
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[OW07] Y. Ollivier and D. T. Wise, Kazhdan groups with infinite outer automorphism group, Trans. Amer.

Math. Soc. 359 (2007), no. 5, 1959–1976 (electronic).
[Osi08] D. Osin, Questions on relatively hyperbolic groups and related classes (2008), preprint, available at

https://docs.google.com/file/d/0B-tup63120-GM25QeV83SDZnMFU/edit.
[Pri89] S. J. Pride, Some problems in combinatorial group theory, Groups—Korea 1988 (Pusan, 1988), 1989,

pp. 146–155.
[Rip82] E. Rips, Subgroups of small cancellation groups, Bull. London Math. Soc. 14 (1982), no. 1, 45–47.
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