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Abstract
We show that if a group G acts geometrically by type-preserving automorphisms on a

building, then G satisfies the weak Tits alternative, namely, that G is either virtually abelian
or contains a non-abelian free group.

1 Introduction
Buildings were introduced by Jacques Tits in the 1950s as a tool to study semisimple algebraic
groups. Since their inception, buildings have found diverse applications throughout mathematics,
well beyond their roots in the theory of algebraic groups; see for instance the survey article [10].

An ongoing area of interest has been in the study of algebraic properties of groups acting on
buildings. Buildings might be equipped with a structure of a nonpositively curved metric space (see
e.g. [8, Chapter 18]), so it is believed that groups acting on them in a nice enough manner exhibit a
property shared by many ‘non-positively curved’ groups: the Tits alternative. The Tits alternative
is a dichotomy for groups and their subgroups, first studied by Tits in [15], where it was shown
that every finitely generated linear group is either virtually solvable or contains the free group F2
as a subgroup. We will consider a weaker version of the Tits alternative: we will say that a group
satisfies the weak Tits alternative if it is either virtually abelian or contains F2 as a subgroup. The
weak Tits alternative has been shown to be satisfied for groups acting properly and cocompactly on
Euclidean buildings in [2, Theorem 8.10]. Sageev and Wise show in [14] that groups acting properly
on finite-dimensional CAT(0) cube complexes with a bound on the cardinality of finite subgroups
satisfy the Tits alternative. In particular, this implies the Tits alternative for such groups acting
properly on right-angled buildings. The Tits alternative was proved for groups acting properly with
a bound on the cardinality of finite subgroups on 2-dimensional complexes with some ‘non-positive
curvature’ features in [11, 12]. This covers the case of all 2-dimensional buildings.

In this paper, we extend the above results obtained for Euclidean, right-angled, and 2-dimensional
buildings to actions on arbitrary finite rank buildings. Our main theorem is the following:

Theorem. Let G be a group acting properly and cocompactly (i.e. geometrically) by type-preserving
automorphisms on a finite rank building. Then G is either virtually abelian or contains a non-abelian
free subgroup.

Proof outline. Our proof consists of first removing a possible finite factor of the underlying
Coxeter group W of the building (Lemma 3.4) and then splitting into the cases of whether or not
the building is thin. In the case of the building being thin, the weak Tits alternative for G follows
quickly by purely algebraic arguments from the classical Tits alternative for linear groups.

In the non-thin case, our proof relies on the construction of a tree of chambers in the building
and group elements g, g′ ∈ G acting on this tree. Our construction relies on probabilistic arguments
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adapted from the proof of [11, Lemma 2.10], originally stemming from arguments in [2]. More
precisely, basic idea of the proof in the non-thin case is the following.

We begin with a branching panel in some wall Ω in an apartment Σ of a building ∆. By Lemma
3.3, there exists a wall Ω′ in Σ which is parallel to Ω. We then connect Ω to Ω′ via a minimum
length gallery γ between pairs of panels on these walls. Let σ be the panel in Ω containing the initial
chamber of γ. By Lemma 4.1, we have that every panel in Ω branches, so that σ branches. Using
Proposition 4.4 applied to pairs of three chambers in σ, we produce a “dumbbell graph” and group
elements g, g′ ∈ G which act on the universal cover of this dumbbell graph. Using the universal
cover of the dumbbell graph, we show that g, g′ generate a free subgroup of G by examining the
orbit of σ under ⟨g, g′⟩. This yields the desired F2 subgroup of G.

Acknowledgements: We thank Marcin Sabok for providing helpful corrections and suggestions to
previous drafts of this article. DO and PP were partially supported by (Polish) Narodowe Centrum
Nauki, UMO-2018/30/M/ST1/00668.

2 Preliminaries

2.1 Chamber systems
The following definitions are from [13].

Definition 2.1. A chamber system is a set C together with a set I such that each element i of
I determines a partition of C. Two elements in the same part of C determined by i ∈ I are called
i-adjacent, and we will call two elements of C adjacent if they are i-adjacent for some i ∈ I.
The elements of C are called chambers and we refer to I as the index set.

A gallery is a finite sequence of chambers (c0, . . . , ck) such that each cj−1 is adjacent to cj

and cj−1 ̸= cj. A subgallery of a gallery (c0, . . . , ck) is a subsequence of (c0, . . . , ck) of the form
(ci, ci+1, . . . , cj) for some 0 ≤ i ≤ j ≤ k. Given a gallery γ = (c0, . . . , ck), the inverse gallery is the
gallery γ−1 := (ck, ck−1, . . . , c0). The gallery (c0, . . . , ck) has type i1 · · · ik ∈ I∗ (where I∗ denotes
the set of all finite length words in elements of I) if cj−1 is ij-adjacent to cj. The length of a gallery
γ, denoted ℓ(γ), is the length of its type as a word in I∗. A geodesic gallery is a gallery that has
minimal length among all galleries with the same initial and terminal chambers. If each ij belongs
to a fixed subset J ⊆ I, then we call the gallery (c0, . . . , ck) a J-gallery.

A chamber system C over a set I is called connected (resp. J-connected) if any pair of
chambers can be joined by a gallery (resp. J-gallery). The J-connected components are called
J-residues. For i ∈ I, an {i}-residue is called a panel, whose type is i. If σ is a panel, we will
say that each chamber c ∈ σ has σ as a panel. By a gallery between panels α, σ, we mean a gallery
between a chamber in α and a chamber in σ. The rank of a chamber system over a set I is the
cardinality of I.

2.2 Coxeter groups
Definition 2.2. A Coxeter group is a group W having a Coxeter presentation, that is, a
presentation of the form:

W = ⟨S|s2 = 1 = (rs)mrs for all r ̸= s in S, mrs ∈ {2, 3, . . . , ∞} and mrs = msr⟩
where mrs = ∞ means that there is no relation between r, s.
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Given a Coxeter presentation as above, we say that S is a Coxeter generating set of W
and that (W, S) is a Coxeter system. The rank of a Coxeter system (W, S) is |S|. A conjugate
sw := wsw−1 for w ∈ W and s ∈ S is called a reflection.

Given a Coxeter system (W, S), we denote by | · |S the word length of an element of W with
respect to S (i.e. for w ∈ W , |w|S represents the length of the shortest word over S representing w
in W ) and we denote dS the word metric on W with respect to S (i.e. dS(u, v) = |u−1v|S for each
u, v ∈ W ). A standard Coxeter subgroup of a Coxeter group W with Coxeter generating set S
is a subgroup generated by some T ⊆ S.

A key example of a chamber system is a Coxeter system (W, S). Here, the set of chambers is
W and the index set is S. Two chambers w1, w2 ∈ W are s-adjacent for s ∈ S if w2 = w1s in W .

2.3 Buildings
For the background on buildings, we follow the books [1] and [13].

Definition 2.3. A building of type (W, S) is a chamber system ∆ over S such that each panel
contains at least two chambers, equipped with a map δ : ∆ × ∆ → W such that if f is a geodesic
word over S, then δ(x, y) = f ∈ W if and only if x, y can be joined by a gallery of type f . The map
δ is called a W -metric on ∆.

Note that in a building ∆, two adjacent chambers x, y are s-adjacent for a unique s ∈ S
(s = δ(x, y)). We also have a metric d on ∆ defined by d(x, y) = |δ(x, y)|S for each x, y ∈ ∆. We
will refer to d as the gallery metric (note that the triangle inequality for d follows from [1, Lemma
5.28], so d is indeed a metric). We will use the notation (∆, δ) to denote a building ∆ with its
associated W -metric δ.

A type-preserving automorphism ϕ of a building (∆, δ) is a bijective map ϕ : ∆ → ∆ that
preserves the W -metric δ, i.e. δ(x, y) = δ(ϕ(x), ϕ(y)) for each x, y ∈ ∆.

Given a panel σ in a building, the degree of σ, denoted deg σ, is the number of chambers in
the building having σ as a panel. A panel is branching if it has degree at least 3. A building is
called thin if it has no branching panels, i.e. each panel has degree 2 and hence is a panel of exactly
two chambers.

Given a building ∆ of type (W, S) with W -metric δ, a subset ∆2 ⊆ ∆ is a subbuilding if
(∆2, δ|∆2) is a building (of possibly different type than ∆). A subset ∆2 ⊆ ∆ is convex if for any
x, y ∈ ∆2 and any geodesic gallery γ in ∆ joining x to y, we have γ ⊆ ∆2.

Note that a Coxeter group W is an example of a building, where we take W as the set of
chambers and a Coxeter generating set S as the index set, and equip W with W -metric δW defined
by δW (x, y) = x−1y for each x, y ∈ W . The corresponding gallery metric is the word metric dS on
W .

A Coxeter group W admits a type-preserving action on its associated building induced from
the action on itself by left multiplication. When viewing a Coxeter group W as a building, we
have the notion of walls that separate W into two connected components. Given a reflection
r = su ∈ W (for s ∈ S and u ∈ W ), the wall associated to r is the set Mr = {{c1, c2} :
c1, c2 ∈ W are adjacent and rc1 = c2}. Thus, a wall is the set of all panels fixed by r. The sets
α+

r = {w ∈ W : dS(w, u) < dS(w, us)} and α−
r = {w ∈ W : dS(w, u) > dS(w, us)} are called the

roots of r. Two walls Mr and Ms are parallel if ⟨r, s⟩ ∼= D∞.
Buildings contain special subspaces, called apartments. Let (W, S) be a Coxeter system and

let ∆ be a building of type (W, S). For a subset X ⊆ W , a map α : X → ∆ is an isometry if it
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preserves W -distance: δ∆(α(x), α(y)) = δW (x, y) for each x, y ∈ X. An apartment in a building
∆ of type (W, S) is an image α(W ) for an isometry α : W → ∆.

By the characterization in [1, Section 5.5.2], the apartments of a building ∆ are precisely the
thin subbuildings of ∆. Every panel in an apartment is contained in a panel in the building. For a
panel σ in an apartment, we say that σ is branching if the panel in the building containing σ is
branching.

A wall (resp. root) in an apartment of ∆ is an isometric image of a wall (resp. root) in W . A
gallery α crosses a wall Ω if α passes through both chambers in a panel of Ω.

3 Proof of the main theorem
Recall that an action of a group G on a metric space (X, d) is called geometric if it is proper
(i.e. for each x ∈ X, r ≥ 0, we have |{g ∈ G : d(x, gx) ≤ r}| < ∞) and cocompact (i.e. there
is a compact fundamental domain for the action G ↷ X). We fix a group G acting geometrically
by type-preserving automorphisms on (∆, d), where (∆, δ) is a finite rank building of type (W, S),
with d the gallery metric. Note that since ∆ is finite rank and since G ↷ (∆, d) is geometric, we
have that the metric space (∆, d) is locally finite (i.e. closed balls of finite radius are finite).

We consider two cases on the building ∆: the case of ∆ being thin (equivalently, consisting of a
single apartment) and the complementary case of ∆ not being thin, hence consisting of more than
one apartment.

Proposition 3.1. Let (∆, δ) be a thin, finite rank building and let G act geometrically on ∆ by
type-preserving automorphisms. Then G is either virtually abelian or contains F2 as a subgroup.

Proof. Since ∆ is thin, it consists of a single apartment. Since G acts by type-preserving automor-
phisms of ∆ and since W is isomorphic to the group of all type-preserving automorphisms of ∆ (by
[1, Proposition 3.32]), we have a group homomorphism ρ : G → W , given by fixing a chamber c
and putting g 7→ δ(c, gc). Since the action of G on ∆ is proper, we have that the stabilizer Stab(c)
is finite and hence that ker ρ is finite. Also, since the action of G on ∆ is cocompact, we have that
ρ(G) is of finite index in W .

Since W is linear over R (see, for instance, [1, Section 2.5]), we have that W satisfies the classical
Tits alternative: every subgroup of W is either virtually solvable or contains F2. Therefore, ρ(G)
is either virtually solvable or contains F2.

If ρ(G) contains a subgroup H ∼= F2, then ρ−1(H) ≤ G surjects onto H ∼= F2, and hence
contains F2, so G contains F2.

If ρ(G) is virtually solvable, then ρ(G) is virtually abelian, since Coxeter groups are CAT(0)
(since they act geometrically on their Davis complex, which is a CAT(0) space; see Chapters 7
and 12 of [8]), and solvable subgroups of CAT(0) groups are virtually abelian by [3, Theorem
III.Γ.1.1(3)].

We show that G is also virtually abelian using that ker ρ is finite. Let H ≤ ρ(G) be finite index
and abelian. Then H̃ := ρ−1(H) > ker ρ has finite index in G. Since ker ρ is finite, it follows that
H̃ has finite commutator subgroup. We show that Z(H̃) has finite index in H̃.

Since H̃ has finite commutator subgroup, we have that every conjugacy class in H̃ is finite,
since every conjugacy class is contained in a coset of the commutator subgroup. We have that
H̃ is finitely generated, since H is finitely generated (being of finite index in W , which is finitely
generated) and H̃ surjects onto H with finite kernel. Let {h1, . . . , hn} be a set of generators for H̃.
For each i, denote by C

H̃
(hi) the centralizer of hi in H̃ and by [hi]H̃ the conjugacy class of hi in H̃.

4



We have that |H̃ : C
H̃

(hi)| = |[hi]H̃ | < ∞. Thus, Z(H̃) = ⋂n
i=1 C

H̃
(hi) has finite index in H̃, and

hence in G. Since Z(H̃) is abelian, we conclude that G is virtually abelian.

We now move on to the case where ∆ is not thin.

Proposition 3.2. Let (∆, δ) be a finite rank building of type (W, S) that is not thin and such that
W does not decompose as W ∼= W1 × W2 for W1, W2 standard Coxeter subgroups of W , with W1
finite and non-trivial. Let G act geometrically on ∆ by type-preserving automorphisms. Then G
contains F2 as a subgroup.

In the proof of Proposition 3.2, we will need the following lemma. It was first stated in [7,
Lemma 4.1], and later in [6], where a different proof was given. The proof in [6] relies on [5, Lemma
8.2] and the parallel wall theorem ([4, Theorem 2.8]).

Lemma 3.3. If (W, S) is a Coxeter system such that W does not decompose as the direct product of
standard Coxeter subgroups W1, W2, where W1 is a finite non-trivial Coxeter group, then for each
wall Ω in W , there exists a wall Ω′ in W which is parallel to Ω.

The following lemma and Lemma 3.3 allow us to reduce to the case where we can find a wall
disjoint from any given wall.

Lemma 3.4. If G acts geometrically by type-preserving automorphisms on a building (∆, δ) of type
(W, S) and W ∼= W1 × W2, where W1 = ⟨S1⟩ and W2 = ⟨S2⟩ are standard Coxeter subgroups of W
with S1

∐
S2 = S and with W1 finite, then there exists a building ∆2 of type (W2, S2) on which G

acts geometrically by type-preserving automorphisms.

Proof. We form ∆2 by identifying chambers in ∆ that are in the same S1-residue i.e. for x, y ∈ ∆,
we put x ∼ y if δ(x, y) ∈ W1. Let q be the associated quotient map. Note that ∆2 is a chamber
system over S2, where for each s ∈ S2, we define a, b ∈ ∆2 to be s-adjacent if there exist lifts x, y
of a, b, respectively, such that δ(x, y) ∈ W1s, i.e. such that x, y are in the same S1 ∪ {s}-residue.

We show that ∆2 is a building of type (W2, S2), and we show that G acts geometrically on ∆2.
We have already noted above that ∆2 is a chamber system over S2. Every panel in ∆2 contains
at least two chambers, since if a ∈ ∆2 and s ∈ S2, then if x ∈ ∆ is any lift of a, choosing
any y that is s-adjacent to x yields q(y) ̸= a and q(y) s-adjacent to a. We define a function
δ2 : ∆2 × ∆2 → W2 by δ2(q(x), q(y)) = projW2(δ(x, y)) for any x, y ∈ ∆, where projW2 denotes the
projection W ∼= W1 × W2 → W2. We show that δ2 is a W2-metric. We begin by showing that δ2
is well-defined. Let x′, y′ be such that q(x) = q(x′) and q(y) = q(y′), so that δ(x, x′) ∈ W1 and
δ(y, y′) ∈ W1. By [1, Lemma 5.28(1)], we have δ(x, y) = sx,x′δ(x′, y), where sx,x′ is a word consisting
of a subset of letters from δ(x, x′) (hence sx,x′ ∈ W1) and by [1, Lemma 5.28(2)], we have that
δ(x′, y) = δ(x′, y′)sy′,y, where sy′,y is a word consisting of a subset of letters from δ(y′, y) (hence
sy′,y ∈ W1). Therefore, we have δ(x, y) ∈ W1δ(x′, y′)W1, so that projW2(δ(x, y)) = projW2(δ(x′, y′)).
Thus, δ2 is well-defined.

Next, we show that δ2 satisfies the required property on galleries. Let f = s1 · · · sn ∈ (S2)∗ be
a geodesic word over S2. We need to show that for each a, b ∈ ∆2, we have δ2(a, b) = f if and
only if there exists a gallery from a to b of type f . Suppose δ2(a, b) = f . Choose any lifts x, y
of a, b, respectively. Then by definition of δ2, we have δ(x, y) = w1f for some w1 ∈ W1. Writing
w1 = u1 · · · um as a geodesic word over S1, we then have that u1 · · · ums1 · · · sn is a geodesic word
over S representing w1f . Thus, by definition of a W -metric, there exists a gallery γ = (c0, c1, . . . , ck)
from x to y with type u1 · · · ums1 · · · sn. Then γ̃ := (q(cm), q(cm+1), . . . , q(ck)) is a gallery of type f
joining a = q(x) = q(c0) = q(cm) to b = q(y) = q(ck).
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Suppose there exists a gallery γ = (c0, . . . , cn) of type f joining a to b. For each i, let c̃i be a
lift of ci. We show by induction that δ(c̃0, c̃i) ∈ W1s1 · · · si for each i = 0, . . . , n. For i = 0, we have
that δ(c̃0, c̃0) = 1W ∈ W1.

Suppose δ(c̃0, c̃i) = w1s1 · · · si for some word w1 over S1. Since δ2(ci, ci+1) = si+1, we have
δ(c̃i, c̃i+1) = w′

1si+1 for some word w′
1 over S1. Therefore, there exists a gallery of type w1s1 · · · siw

′
1si+1

from c0 to ci+1, hence also a gallery of type w1w
′
1s1 · · · sisi+1 from c0 to ci+1 (since the reduced words

s1 · · · siw
′
1 and w′

1s1 · · · si are equal in W ). By [1, Lemma 5.28(2)], since w′
1s1 · · · si+1 is a geodesic

word over S, and since w1 can only cancel letters in w′
1, we have that δ(c̃0, c̃i+1) ∈ W1s1 · · · si+1.

Thus, we conclude by induction on i that δ(c̃0, c̃n) ∈ W1s1 · · · sn = W1f . By definition of δ2,
we conclude that δ2(a, b) = f . Hence, δ2 is a W2-metric on ∆2. Therefore, ∆2 is a building of type
(W2, S2).

We now define a type-preserving action of G on ∆2 and show that this action is geometric.
We define gq(x) := q(gx) for every x ∈ ∆ and g ∈ G. We immediately have that this action is
well-defined and type-preserving since the action of G on ∆ is type-preserving.

Next, we show that the action of G is geometric. The action of G on ∆2 is cocompact since by
the definition of the action of G on ∆2, if F is a finite fundamental domain for the action of G on
∆, then the image F ′ := q(F ) of F is a finite fundamental domain for the action G ↷ ∆2.

For properness of the action of G on ∆2, note first that the quotient map q satisfies d∆(a, b) ≤
M + d∆2(q(a), q(b)) for each a, b ∈ ∆, where M = max{|w1|S1 : w1 ∈ W1} and where d∆ (resp. d∆2)
is the gallery metric on ∆ (resp. ∆2). Indeed, given two chambers a, b in ∆, if δ2(q(a), q(b)) = w2,
then δ(a, b) = w1w2 for some w1 ∈ W1, so

d∆(a, b) ≤ |w1w2|S ≤ |w1|S + |w2|S ≤ M + |w2|S2 = M + d∆2(q(a), q(b))
Now if g ∈ G and a′ = q(a) ∈ ∆2 (for a ∈ ∆), then we have d∆(ga, a) ≤ M + d∆2(ga′, a′), so for

any R ≥ 0, we have {g ∈ G : d∆2(ga′, a′) ≤ R} ⊆ {g ∈ G : d∆(ga, a) ≤ M + R}, and the latter set
is finite by properness of the action of G on ∆.

Therefore, the action G ↷ ∆2 is geometric.

Combining the results of Proposition 3.1, Proposition 3.2 and Lemma 3.4, we conclude the proof
of the main theorem. It remains to prove Proposition 3.2.

4 Proof of Proposition 3.2
In the proof of Proposition 3.2, we will need the following lemma.

Lemma 4.1. Let Ω be a wall in an apartment Σ of a building (∆, δ). Suppose that Ω has a branching
panel. Then every panel of Ω branches.

Proof. Let α be a panel with type s in Ω ⊆ Σ that branches and let a, a be a pair of chambers in Σ
having α as a panel. Denote by Ωa the root of Σ containing a and Ωa the root containing a. Let β
be any other panel in Ω, containing chambers b, b in Σ. Suppose that b ∈ Ωa. We will proceed by
induction on d(a, b) to show that β also branches.

For the base case d(a, b) = 0, we have that a = b and so α = β. Hence, β branches.
Now for the induction step, we will show that there exists a branching panel in Ω consisting

of chambers a′′, a′′ in Σ such that d(a′′, b) < d(a, b). Fix a geodesic gallery η between a and b. By
convexity of roots (c.f. [13, Proposition 2.6(i)]), we have that η ⊆ Ωa.

6



s

aa a′

a′′a′′

bb

tt
α

α′

β

η

Ω

Figure 1: An illustration of the setup for the induction step.

Let a′ be the second chamber of η and let t be the type of the panel of a and a′ (see Figure 1).
Since a′ is on the geodesic gallery η from a to b, we have that d(a′, b) < d(a, b), and hence d(a′, b) =
d(a′, b) + 1 < d(a, b) + 1 = d(a, b). Also, reflecting the geodesic gallery η across the wall Ω, we
have that d(a, b) = d(a, b) = d(a, b) − 1 < d(a, b). Thus, we have that d(a, b) < d(a, b) and
d(a′, b) < d(a, b). Letting R denote the {s, t}-residue of ∆ containing a, by [13, Theorem 2.16], we
obtain that the {s, t}-residue RΣ := R∩Σ containing a in Σ is finite, and there is a unique chamber
a′′ in RΣ at minimal distance to b and opposite to a (i.e. at distance diam(RΣ) from a).

We have that a′′ ∈ Ωa since if not then d(a, a′′) = d(a, a′′) + 1 > d(a, a′′) = diam(RΣ), a
contradiction. Furthermore, a′′ has a panel α′ in Ω, since a′′ is adjacent to a chamber a′′ ∈ RΣ
opposite to a, and a′′ must be in Ωa by the same argument for why a′′ ∈ Ωa.

We show that α′ branches and that d(a′′, b) < d(a, b). We will first show that α′ branches.
Denote D = ⟨s, t⟩. By [13, Theorem 3.5], we have that R is a subbuilding of ∆ of type (D, {s, t}).
Let δR be the D-metric on R. Note that δR equals the restriction of δ to R, since R is convex. By
[1, Proposition 1.77(1)], there exists a unique longest element wR in D (with respect to the word
metric on D induced from the generating set {s, t}) which has word length equal to diam(R).

Let f be a chamber not in Σ having α as a panel. Then δ(f, a′′) = δ(f, a′′) = wR, since
concatenating the geodesic gallery from a to a′′ in R with f yields a gallery from f to a′′ with type
sδ(a, a′′) = wR (which is a geodesic word), and similarly concatenating the geodesic gallery from a
to a′′ in R with f yields a gallery of type sδ(a, a′′) = wR.

Since δ(f, a′′) = δ(f, a′′) = wR, we have that f is opposite to both a′′ and a′′, and so f and
a′′, a′′ cannot be contained in a common apartment in R since opposite chambers are unique in
apartments (c.f. [13, Theorem 2.15(iii)]). Let B1 be an apartment of R containing a′′ and f . Then
a′′ is not in B1, hence there exists a chamber e different from a′′ and a′′ having the panel α′. Thus,
α′ is a branching panel.
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We lastly show that d(a′′, b) < d(a, b). By [13, Theorem 2.9], there exists a geodesic gallery γ in Σ
from a to b containing a′′. By convexity of residues (c.f. [13, Lemma 2.10]), we have that the portion
of γ from a to a′′ is contained in RΣ, and so we can assume that γ passes through the chambers a′′, a′′

(since there are two geodesics in RΣ from a to a′′: one through a and the other through a′′). Thus,
we obtain that d(a′′, b) ≤ d(a, b)−1 = d(a, b), and hence d(a′′, b) = d(a′′, b)−1 ≤ d(a, b)−1 < d(a, b).

Since α′ branches and d(a′′, b) < d(a, b), we conclude by induction that β branches.

For the remainder of this section, we fix an apartment Σ containing a branching panel. Let
Ω ⊆ Σ be any wall containing this branching panel. Invoking Lemma 3.3, there exists a wall Ω′

which is parallel to Ω and in the same apartment Σ as Ω. Fix a geodesic gallery γ which has
minimal length among all galleries joining a chamber inside a panel of Ω and a chamber inside a
panel of Ω′. Let s0 be the type of the panel in Ω containing the first chamber of γ and let sk be the
type of the panel in Ω′ containing the last chamber of γ. Let s1 · · · sk−1 be the type of γ for si ∈ S.
For j = 1, . . . , k − 1, put sk+j = sk−j.

Lemma 4.2. Let w = s0 · · · s2k−1 ∈ W . Then for any n ∈ N, we have that
s0w

n = s1s2 · · · s2k−1(s0s1 · · · s2k−1)n−1 is a geodesic word in W (by convention, s0 cancels the first
letter s0 of wn).

Proof. Let s, r ∈ W be such that Ω = Mr, Ω′ = Ms. Let γ be the above minimal length
geodesic gallery between panels in the walls Ω and Ω′ having type s0w = s1 · · · sk−1. Then
s0w

n = s1s2 · · · s2k−1(s0s1 · · · s2k−1)n−1 is the type of the gallery γn := ⋃n−1
i=0 (sr)i(γ ∪ sγ) (see Fig-

ure 2).

Ω Ω′ srΩ srΩ′ (sr)2Ω (sr)n−1Ω (sr)n−1Ω′ (sr)nΩ

γ sγ srγ srsγ (sr)n−1γ (sr)n−1sγ
· · ·

Figure 2: The concatenation of geodesics in the definition of γn.

We claim that γn is a geodesic gallery. Indeed, if α were a gallery with the same starting and
ending chambers as γn, then by [13, Lemma 2.5(ii)], we must have that α crosses each such wall
(sr)iΩ. Let αi denote the segment of α between the successive parallel walls (sr)iΩ and (sr)i+1Ω.
Then (sr)−iαi is a gallery between the walls Ω and (sr)Ω = sΩ. Since the chambers contained in
Ω and sΩ are in different roots of s, by [13, Lemma 2.5(ii)] we have that (sr)−iαi crosses Ω′. Since
γ is a minimum length geodesic gallery between panels in the walls Ω and Ω′, we have that sγ is
a minimum length gallery between panels in Ω′ and sΩ. Therefore, the length of the subgallery of
(sr)−iαi between Ω and Ω′ is at least ℓ(γ) and similarly the length of the subgallery of (sr)−iαi

between Ω′ and sΩ is at least ℓ(sγ). Therefore, ℓ((sr)−iαi) ≥ ℓ(γ ∪ sγ). Translating by (sr)i, we
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obtain ℓ(αi) ≥ ℓ((sr)i(γ∪sγ)). As this holds for all i = 0, 1, . . . n−1, we conclude that ℓ(α) ≥ ℓ(γn),
and therefore that γn is a geodesic gallery. Therefore, since s0w

n is the type of γ1 · · · γ2n, it follows
that s0w

n is a geodesic word.

Using ideas from the work of Ballmann and Brin in [2], we construct the following Markov
chain. The set A of states will consist of pairs (c, j), where c is a chamber of ∆ and j ∈ Z is
an index taken modulo 2k (recall that k is the length of the minimum length gallery γ between
the walls Ω and Ω′). We define the transition probability p(a → a′) from a = (c, j) ∈ A to
a′ = (c′, i) ∈ A to be positive if i = j + 1 and c and c′ share a panel σ with type sj, in which case
we set p(a → a′) = 1

deg σ−1 , otherwise we put p(a → a′) = 0. We have an action of G on A via
g(c, j) = (gc, j) for each chamber c of ∆ and j = 0, 1 . . . , 2k − 1.

Given a sequence of states a0, . . . , an, we put pn(a0, . . . , an) = ∏n−1
i=0 p(ai → ai+1). Given a

finite sequence (a0, . . . , an) of states, denote the cylinder set [a0 · · · an](N,N+n) := {(bi)i∈Z : bi =
ai−N for all i = N, . . . , N + n} ⊆ AZ.

Lemma 4.3. There exists a shift-invariant measure µ on AZ such that µ([a0 · · · an](N,N+n)) =
pn(a0, . . . , an) for each a0, . . . , an ∈ A (n ≥ 0).

Proof. By [16, Example (8)], we need to check that the following properties of p are satisfied:

(i) For any a ∈ A, ∑
a′∈A p(a → a′) = 1

(ii) For any a ∈ A, ∑
a′∈A p(a′ → a) = 1

For (i), given a = (c, j) ∈ A, we have p(a → a′) ̸= 0 only if the chambers of a′ and a share a
panel σ of type sj. In this case, we then have p(a → a′) = 1

deg σ−1 . Since there are exactly deg σ − 1
chambers other than the chamber of a having σ as a panel, we obtain:

∑
a′∈A

p(a → a′) = (deg σ − 1) · 1
deg σ − 1 = 1

For (ii), given a = (c, j) ∈ A, we have p(a′ → a) ̸= 0 only if the chambers of a′ and a share a
panel σ of type sj−1, and in this case we have p(a′ → a) = 1

deg σ−1 . We then have:

∑
a′∈A

p(a′ → a) = (deg σ − 1) · 1
deg σ − 1 = 1

Therefore, p induces a shift invariant measure µ on AZ with the desired value on cylinder
sets.

The measure µ is G-invariant, since the action of G on ∆ is type-preserving and hence preserves
adjacency. Therefore, µ descends to a measure µ̄ on AZ/G by putting µ̄(S̄) = µ(S) where S̄ ⊆ AZ/G
is (Borel) measurable and S ⊆ AZ is a (Borel) measurable set of lifts to AZ of each element of S̄
(where the Borel structure on AZ comes from putting the discrete topology on A and equipping
AZ with the product topology). Note that every measurable S̄ ⊆ AZ/G admits a measurable set
S ⊆ AZ of lifts. Indeed, by [9, Theorem 6.4.4] and the fact that G is countable (since G ↷ (∆, d) is
proper and ∆ is countable), it suffices to show that the orbit equivalence relation EG of G ↷ AZ is a
closed subset of AZ×AZ. Let ((an)n, (gnan)n) be a sequence in EG converging to (a∞, b∞) ∈ AZ×AZ.
Then the sequence (an

0 )n is eventually equal to a∞
0 and the sequence (gnan

0 )n is eventually equal to
b∞

0 . Thus, we have that gna∞
0 = b∞

0 for all sufficiently large n. By properness of the action of G
on ∆, there are only finitely many g ∈ G with ga∞

0 = b∞
0 , so passing to a subsequence, we may
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assume that the sequence (gn)n is constant, with all gn equal to some g ∈ G. We then have that
b∞ = limn→∞(gan)n = ga∞, so we conclude that (a∞, b∞) ∈ EG and hence that EG is closed.

Since µ is invariant under the forward shift map T : AZ → AZ given by T ((ai)i∈Z) = (ai+1)i∈Z,
so is µ̄.

Since the action of G on ∆ is cocompact, we have that A/G is finite, and so the measure µ̄ is
finite (and non-zero).

To produce an F2 subgroup inside G, we will construct a tree of chambers in ∆ and a subgroup
of G acting freely on this tree using the Poincaré recurrence lemma. The next proposition is the
key ingredient involved in this construction.

Proposition 4.4. Given a pair of states (d, 0) and (d′, 1) with p((d, 0) → (d′, 1)) > 0, there exists
a sequence (a1, . . . , an) of elements of A with the following properties:

• a1 = (d′, 1) and an = g(d, 0) for some g ∈ G.

• p(ai → ai+1) > 0 for each i = 0, 1, . . . , n − 1.

Proof. Denoting a = (d, 0) and a′ = (d′, 1), consider the cylinder set [aa′](0,1) = {(ai)i∈Z : a0 =
a, a1 = a′} ⊂ AZ and consider the image of this cylinder set under the quotient map to AZ/G:
[aa′](0,1) = {(hbi)i∈Z : b0 = a, b1 = a′, h ∈ G} ⊂ AZ/G. We have µ̄([aa′](0,1)) > 0. Indeed, let
G′ = Stab(a) ∩ Stab(a′). Then G′ ↷ [aa′](0,1) and G′ is finite by properness of the action of G on
∆. Since G′ is finite, we have a measurable fundamental domain F for the action of G′ on [aa′](0,1)

([9, Exercise 7.1.1] and [9, Exercise 7.1.6]). We have that F is a set of lifts of elements of [aa′](0,1)

and µ(F ) = 1
|G′|µ([aa′](0,1)) > 0. Thus, µ̄([aa′](0,1)) = µ(F ) > 0.

Let Y = [aa′](0,1) \ {(hbi)i∈Z : h ∈ G and p(bj → bj+1) = 0 for some j ∈ G}. Since A is
countable (since ∆ is countable), we have that µ̄(Y ) = µ̄([aa′](0,1)). Note that all elements of Y are
then of the form (hbi)i∈Z, where for each j, we have that p(bj → bj+1) > 0, so that bj = (c, ℓ) and
bj+1 = (c′, ℓ + 1), and c, c′ share a panel of type sℓ.

By Poincaré recurrence (see, e.g. [16, Thm 1.4]) applied to the set Y and the shift map
T ↷ AZ/G, we have that there exist n > 0 and some (hbi)i∈Z ∈ Y such that T n((hbi)i∈Z) ∈ Y .
Lifting back up to AZ, we obtain a sequence (ai)i∈Z ∈ [aa′](0,1) such that p(aj → aj+1) > 0 for all j
and such that an = ga for some g ∈ G.

Note that in the proof of Proposition 4.4, we have that n = 0 modulo 2k since p(aj → aj+1) > 0
for all j.

Conclusion of the proof of Proposition 3.2:

Let c1 be the first chamber of the minimal length geodesic gallery γ between Ω and Ω′ and let
σ be the panel of type s0 in Ω containing c1. By Lemma 4.1, since Ω has a branching panel, every
panel in Ω branches, so σ branches. Let c2, c3 be two other distinct chambers in σ.

Apply Proposition 4.4 to produce a sequence of states ((d1, 1), . . . , (dn, 0)) whose chambers di

form a gallery ω from c2 to gc1 for some g ∈ G. Similarly, produce a sequence of states whose
chambers form a gallery ω′′ from c3 to g′′c1 for some g′′ ∈ G and a sequence of states whose
chambers form a gallery ω′ from g′′c3 to g′g′′c2 for some g′ ∈ G; see Figure 3. Note that in the
sequences produced by Proposition 4.4, adjacent states have positive transition probability, hence
each of ω, ω′, ω′′ has type of the form s0(s0 · · · s2k−1)m for some m ∈ N, and hence is a geodesic
gallery by Lemma 4.2.
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c2c3

g′′c1 g′′c3

gc1

g′g′′c2

ω

ω′

ω′′

Figure 3: The “dumbbell graph” produced from the branching panel σ.

Claim: Let σ be the initial branching panel above in the wall Ω. Then for any non-trivial freely
reduced word u in g, g′, we have uσ ̸= σ in ∆.

Proof of claim. Write u as a word u = u1u2 · · · um, where the ui are alternating powers of g and g′.
Denote u(i) = u1u2 · · · ui for each 1 ≤ i ≤ m and let u(0) = 1. We show that for each i, we can
connect u(i − 1)σ to u(i)σ with a gallery ωi satisfying the following:

(a) ωi is a concatenation of ⟨g, g′⟩-translates of ω, ω′ and ω′′,

(b) ωi has type of the form s0w
ni for some ni ∈ N, (recall that w = s0 · · · s2k−1),

(c) the ending chamber of ωi is different from the starting chamber of ωi+1.

We first show that each ωi satisfies (a) and (b). We consider the following cases:

(i) ui = gn for some n ∈ Z \ {0}. Then u(i)σ = u(i − 1)gnσ. We can connect σ to gnσ by⋃n−1
j=0 gjω if n > 0 or ⋃−n

j=1 g−jω−1 if n < 0. Therefore, we set ωi = u(i − 1) ⋃n−1
j=0 gjω if n > 0

and ωi = u(i − 1) ⋃−n
j=1 g−jω−1 if n < 0. Thus, in this case we have that the type of ωi is of

the form s0w
ni , since the type of ω is of this form and the starting and ending chambers of

ω are different. See Figure 4 for an illustration of an example. Note that the type of σ (and
hence all of its translates) is s0.

2 1 2 1 2 1σ
ω gω g2ω

g3σ

Figure 4: An example of a gallery joining σ and g3σ. The numbers on the chambers indicate of
which ci they are translates.

(ii) ui = (g′)n for some n ∈ Z \ {0}. Then u(i)σ = u(i − 1)(g′)nσ. For n > 0, we can connect σ
to (g′)nσ by the concatenation ω′′ ∪ (⋃n−1

j=0 (g′)jω′) ∪ (g′)n(ω′′)−1 and if n < 0, we can connect
σ to (g′)nσ by the concatenation ω′′ ∪ (⋃−n

j=1(g′)−j(ω′)−1) ∪ (g′)n(ω′′)−1, which has type of the
form s0w

ni for some ni ∈ N since each of ω′′, ω′ has type of this form and the starting and
ending chambers of ω′ and ω′′ are distinct. Thus, u(i − 1)σ and u(i)σ are connected by

ωi = u(i − 1)(ω′′ ∪ (
n−1⋃
j=0

(g′)jω′) ∪ (g′)n(ω′′)−1) if n > 0, or
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ωi = u(i − 1)(ω′′ ∪ (
−n⋃
j=1

(g′)−j(ω′)−1) ∪ (g′)n(ω′′)−1) if n < 0,

which therefore have labels of the desired form s0w
ni for some ni ∈ N. See Figure 5 for an

illustration of an example.

3

123231

3

ω′′

(g′)−1(ω′)−1(g′)−2(ω′)−1

(g′)−2(ω′′)−1

σ(g′)−2σ

Figure 5: An example of a gallery joining σ and (g′)−2σ. The numbers on the chambers indicate of
which ci they are translates.

Now we show that the ending chamber of ωi is different from the starting chamber of ωi+1.
By the cases (i) and (ii) above, either for some h ∈ G, the ending chamber of ωi is of the form

hc1 or hc2 and the starting chamber of ωi+1 is of the form hc3 (when ui is a power of g and ui+1
is a power of g′), or for some h ∈ G, the ending chamber of ωi is of the form hc3 and the starting
chamber of ωi+1 is of the form hc1 or hc2 (when ui is a power of g′ and ui+1 is a power of g).
Therefore, the ωi satisfy (c).

Thus, the type of each ωi is of the form s0w
n and the starting and ending chamber of ωi and

ωi+1 are distinct. Therefore, letting γ = ⋃n
i=1 ωi be the concatenation of the ωi galleries, we have

that γ has type of the form s0w
n1+n2+···+nm . By Lemma 4.2, s0w

n1+n2+···+nm is a geodesic word, and
so we have that γ is a geodesic gallery in ∆. Therefore, γ has distinct endpoints, and so σ ̸= uσ.
In Figure 6, see an example of the gallery γ for u = (g′)−2g−1g′.

By the above claim, we obtain that ⟨g, g′⟩ ∼= F2. Therefore, we have that G contains F2 as a
subgroup, concluding the proof of Proposition 3.2.
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σ

(g′)−2g−1g′σ

3

123231

3213

1 3 2 1

3

(g′)−1(ω′)−1(g′)−2(ω′)−1

ω′′(g′)−2(ω′′)−1

(g′)−2g−1ω−1

(g′)−2g−1ω′′

(g′)−2g−1ω′

(g′)−2g−1g′(ω′′)−1

Figure 6: An example of a gallery joining σ and (g′)−2g−1g′σ. The numbers on the chambers
indicate of which ci they are translates.
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