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Abstract. We introduce and investigate bucolic complexes, a common generalization of systolic complexes

and of CAT(0) cubical complexes. They are defined as simply connected prism complexes satisfying some

local combinatorial conditions. We study various approaches to bucolic complexes: from graph-theoretic

and topological perspective, as well as from the point of view of geometric group theory. In particular,

we characterize bucolic complexes by some properties of their 2–skeleta and 1–skeleta (that we call bucolic

graphs), by which several known results are generalized. We also show that locally-finite bucolic complexes

are contractible, and satisfy some nonpositive-curvature-like properties.

1. Introduction

CAT(0) cubical complexes and systolic (simplicial) complexes constitute two classes of

polyhedral complexes that have been intensively explored over last decades. Both CAT(0)

cubical and systolic complexes exhibit various properties typical for spaces with different

types of nonpositive curvature. Hence groups of isomorphisms of such complexes provide

numerous examples of groups with interesting properties. Both CAT(0) cubical complexes

and systolic complexes can be nicely characterized via their 1- and 2-skeleta. It turns out

that their 1-skeleta — median graphs and bridged graphs — are intensively studied in various

areas of discrete mathematics (see Section 3 for related results and references).

In this article we introduce a notion of bucolic complexes — polyhedral complexes being

a common generalization of CAT(0) cubical [25, 38], systolic [20, 26, 30], and weakly sys-

tolic [33] complexes, and we initiate a regular study of them. Analogously to CAT(0) cubical



and systolic complexes, bucolic complexes are defined as simply connected prism complexes

satisfying some local combinatorial conditions (see Subsection 2.4 for details). Our main

result on bucolic complexes is the following characterization via their 1- and 2-skeleta (see

Section 2 for explanations of all the notions involved).

Theorem 1. For a prism complex X, the following conditions are equivalent:

(i) X is a bucolic complex;

(ii) the 2-skeleton X(2) of X is a connected and simply connected triangle-square flag

complex satisfying the wheel, the 3-cube, and the 3-prism conditions;

(iii) the 1-skeleton G(X) of X is a connected weakly modular graph that does not contain

induced subgraphs of the form K2,3, W4, and W −

4 , i.e., G(X) is a bucolic graph not

containing infinite hypercubes.

Moreover, if X is a connected flag prism complex satisfying the wheel, the cube, and the prism

conditions, then the universal cover X̃ of X is bucolic.

As an immediate corollary we obtain an analogous characterization (Corollary 3 in Sec-

tion 5) of strongly bucolic complexes — the subclass of bucolic complexes containing products

of systolic complexes but not all weakly systolic complexes (see Subsection 2.4 for details).

The condition (iii) in the above characterization is a global condition — weak modularity

concerns balls of arbitrary radius; cf. Section 2. Thus the theorem — and in particular the

last assertion — may be seen as a local-to-global result concerning polyhedral complexes.

It is an analogue of the Cartan-Hadamard theorem appearing in various contexts of non-

positive-curvature: CAT(0) spaces [7], Gromov hyperbolic spaces [25], systolic and weakly

systolic complexes [30,33].

The 1–skeleta of CAT(0) cubical complexes are exactly the median graphs [20, 37] which

constitute a central graph class in metric graph theory (see [6] and the references therein).

In the literature there are numerous structural and other characterizations of median graphs.

In particular, median graphs are the retracts of hypercubes [2], and can be obtained via

so-called iterated gated amalgamations from cubes [29, 40]. The general framework of fiber-

complemented graphs was introduced in [14,15] and allows to prove such decomposition and

retraction results. From this perspective, bucolic graphs are exactly the fiber-complemented

graphs whose elementary gated subgraphs are weakly-bridged; more precisely, the 1–skeleta

of bucolic complexes admit the following characterization.

Theorem 2. For a graph G = (V,E) not containing infinite cliques, the following conditions

are equivalent:

(i) G is a retract of the (weak) Cartesian product of weakly bridged (respectively, bridged)

graphs;

(ii) G is a weakly modular graph not containing induced K2,3, W4, and W −

4 (respectively,

K2,3, W −

4 , W4, and W5), i.e., G is a bucolic (respectively, strongly bucolic) graph;

(iii) G is a weakly modular graph not containing K2,3 and W −

4 in which all elementary (or

prime) gated subgraphs are edges or 2-connected weakly bridged (respectively, bridged)

graphs.
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Moreover, if G is finite, then the conditions (i)-(iii) are equivalent to the following condition:

(iv) G can be obtained by successive applications of gated amalgamations from Cartesian

products of 2-connected weakly bridged (respectively, bridged) graphs.

Theorem 2 allows us to show further non-positive-curvature-like properties of bucolic com-

plexes. The first one completes the analogy with the Cartan-Hadamard theorem.

Theorem 3. Locally-finite bucolic complexes are contractible.

In particular, the above theorem provides local conditions (the ones appearing in the

definition of bucolic complexes) for a prism complex implying asphericity. Note that this is

one of not so many local asphericity criterions known — most of them appears in the case of

some nonpositive curvature.

Similarly to the case of CAT(0) cubical groups and weakly systolic groups, we think that

groups acting on bucolic complexes form an important class and deserve further studies. We

believe that they have similar properties as groups acting on nonpositively curved spaces,

and that they may provide many interesting examples. In the current paper we indicate two

basic results on such groups.

Theorem 4. If X is a locally-finite bucolic complex and F is a finite group acting by cell

automorphisms on X, then there exists a prism π of X which is invariant under the action

of F. The center of the prism π is a point fixed by F .

A standard argument gives the following immediate consequence of Theorem 4.

Corollary 1. Let F be a group acting geometrically by automorphisms on a locally-finite

bucolic complex X. Then F contains only finitely many conjugacy classes of finite subgroups.

We prove Theorems 3 and 4 only for locally-finite bucolic complexes. We do not know

whether these theorems hold for non-locally-finite bucolic complexes and we leave this as an

open question.

Article’s structure. In the following Section 2 we introduce all the notions used later on.

In Section 3, we review the related work on which our paper is based or which is generalized

in our paper. In Section 4, we provide the characterization of bucolic graphs (Theorem 2). A

proof of the main characterization of bucolic complexes (Theorem 1) is presented in Section 5.

In Section 6, we prove the contractibility and the fixed point result for locally-finite bucolic

complexes (Theorems 3 and 4). In Section 7, we complete the proof of Theorem 2 in the

non-locally-finite case.
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Figure 1. K2,3, the wheel W4, the almost-wheel W −

4 , and the wheel W5.
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2. Preliminaries

2.1. Graphs. All graphs G = (V,E) occurring in this paper are undirected, connected, with-

out loops or multiple edges, but not necessarily finite or locally-finite. For two vertices u

and v of a graph G, we will write u ∼ v if u and v are adjacent and u ≁ v, otherwise. We

will use the notation v ∼ A to note that a vertex v is adjacent to all vertices of a set A and

the notation v ≁ A if v is not adjacent to any of the vertices of A. For a subset A ⊆ V, the

subgraph of G = (V,E) induced by A is the graph G(A) = (A,E′) such that uv ∈ E′ if and

only if uv ∈ E. G(A) is also called a full subgraph of G. We will say that a graph H is not an

induced subgraph of G if H is not isomorphic to any induced subgraph G(A) of G.

By an (a, b)-path in a graph G we mean a sequence of vertices P = (x0 = a, x1, . . . , xk−1, xk =
b) such that any two consecutive vertices xi and xi+1 of P are different and adjacent (notice

that in general we may have xi = xj if ∣i − j∣ ≥ 2). If k = 2, then we call P a 2-path of G. If

xi ≠ xj for ∣i−j∣ ≥ 2, then P is called a simple (a, b)-path. A graph G = (V,E) is 2-connected if

any two vertices a, b of G can be connected by two vertex-disjoint (a, b)-paths. Equivalently,

a graph G is 2-connected if G has at least 3 vertices and G(V ∖ {v}) is connected for any

vertex v ∈ V , i.e., G remains connected after removing from G any vertex v and the edges

incident to v.

The wheel Wk is a graph obtained by connecting a single vertex – the central vertex c –

to all vertices of the k-cycle (x1, x2, . . . , xk, x1); the almost wheel W −

k is the graph obtained

from Wk by deleting a spoke (i.e., an edge between the central vertex c and a vertex xi of the

k-cycle), see Figure 1. The extended 5-wheel Ŵ5 is a 5-wheel W5 plus a 3-cycle (a, x1, x2, a)
such that a ≁ c, x3, x4, x5.

The distance d(u, v) = dG(u, v) between two vertices u and v of a graph G is the length

of a shortest (u, v)-path. For a vertex v of G and an integer r ≥ 1, we will denote by

Br(v,G) the ball in G (and the subgraph induced by this ball) of radius r centered at v, i.e.,

Br(v,G) = {x ∈ V ∶ d(v, x) ≤ r}. More generally, the r-ball around a set A ⊆ V is the set (or the
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subgraph induced by) Br(A,G) = {v ∈ V ∶ d(v,A) ≤ r}, where d(v,A) = min{d(v, x) ∶ x ∈ A}.

As usual, N(v) = B1(v,G)∖{v} denotes the set of neighbors of a vertex v in G. The interval

I(u, v) between u and v consists of all vertices on shortest (u, v)-paths, that is, of all vertices

(metrically) between u and v: I(u, v) = {x ∈ V ∶ d(u,x) + d(x, v) = d(u, v)}. An induced

subgraph of G (or the corresponding vertex set A) is called convex if it includes the interval

of G between any pair of its vertices. The smallest convex subgraph containing a given

subgraph S is called the convex hull of S and is denoted by conv(S). An induced subgraph

of G (or the corresponding vertex set A) is called locally convex if it includes the interval of

G between any pair of its vertices at distance two having a common neighbor in A. A graph

G = (V,E) is isometrically embeddable into a graph H = (W,F ) if there exists a mapping

ϕ ∶ V →W such that dH(ϕ(u), ϕ(v)) = dG(u, v) for all vertices u, v ∈ V .

Definition 2.1 (Retraction). A retraction ϕ of a graph G is an idempotent nonexpansive

mapping of G into itself, that is, ϕ2 = ϕ ∶ V (G) → V (G) with d(ϕ(x), ϕ(y)) ≤ d(x, y) for all

x, y ∈W (equivalently, a retraction is a simplicial idempotent map ϕ ∶ G→ G). The subgraph

of G induced by the image of G under ϕ is referred to as a retract of G.

Definition 2.2 (Mooring). A map f ∶ V (G) → V (G) is a mooring of a graph G onto u if

the following holds:

(1) f(u) = u and for every v ≠ u, f(v) ∼ v and d(f(v), u) = d(v, u) − 1.

(2) for every edge vw of G, f(v) and f(w) coincide or are adjacent.

A graph G is moorable if, for every vertex u of G, there exists a mooring of G onto u.

Mooring can be viewed as a combing property of graphs — the notion coming from geo-

metric group theory [23]. Let u be a distinguished vertex (“base point”) of a graph G. Two

shortest paths P (x,u), P (y, u) in G connecting two adjacent vertices x, y to u are called

1-fellow travelers if d(x′, y′) ≤ 1 holds for each pair of vertices x′ ∈ P (x,u), y′ ∈ P (y, u) with

d(x,x′) = d(y, y′). A geodesic 1-combing of G with respect to the base point u comprises

shortest paths P (x,u) between u and all vertices x such that P (x,u) and P (y, u) are 1-

fellow travelers for any edge xy of G. One can select the combing paths so that their union is

a spanning tree Tu of G that is rooted at u and preserves the distances from u to all vertices.

The neighbor f(x) of x ≠ u in the unique path in Tu connecting x with the root u will be

called the father of x (set also f(u) = u). Then f is a mooring of G onto u (vice-versa, any

mooring of G onto u can be viewed as a geodesic 1-combing with respect to u). A geodesic

1-combing of G with respect to u thus amounts to a tree Tu preserving the distances to the

root u such that if x and y are adjacent in G then f(x) and f(y) either coincide or are

adjacent in G.

Definition 2.3 (Gated amalgam). An induced subgraph H of a graph G is gated [22] if for

every vertex x outside H there exists a vertex x′ in H (the gate of x) such that x′ ∈ I(x, y)
for any y of H. A graph G is a gated amalgam of two graphs G1 and G2 if G1 and G2 are

(isomorphic to) two intersecting gated subgraphs of G whose union is all of G.
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Gated sets are convex and the intersection of two gated sets is gated. By Zorn lemma

there exists a smallest gated subgraph containing a given subgraph S, called the gated hull

of S. A graph G is said to be elementary [14] if the only proper gated subgraphs of G are

singletons.

Let Gi, i ∈ I be an arbitrary family of graphs. The Cartesian product ◻i∈IGi is a graph

whose vertices are all functions x ∶ i↦ xi, xi ∈ V (Gi). Two vertices x, y are adjacent if there

exists an index j ∈ I such that xjyj ∈ E(Gj) and xi = yi for all i ≠ j. Note that Cartesian

product of infinitely many nontrivial graphs is disconnected. Therefore, in this case the

connected components of the Cartesian product are called weak Cartesian products. Since

in our paper all graphs are connected, for us a Cartesian product graph will always mean a

weak Cartesian product graph. A graph with at least two vertices is said to be prime [4, 14]

if it is neither a Cartesian product nor a gated amalgam of smaller graphs. A strong product

⊠i∈IGi is a graph whose vertices are all functions x ∶ i↦ xi, xi ∈ V (Gi). Two vertices x, y are

adjacent if for all indices i ∈ I either xi = yi or xiyi ∈ E(Gi).

Definition 2.4 (Weakly modular graphs). A graph G is weakly modular with respect to a

vertex u if its distance function d satisfies the following triangle and quadrangle conditions

(see Figure 2):

● Triangle condition TC(u): for any two vertices v,w with 1 = d(v,w) < d(u, v) = d(u,w)
there exists a common neighbor x of v and w such that d(u,x) = d(u, v) − 1.

● Quadrangle condition QC(u): for any three vertices v,w, z with d(v, z) = d(w, z) = 1

and 2 = d(v,w) ≤ d(u, v) = d(u,w) = d(u, z) − 1, there exists a common neighbor x of

v and w such that d(u,x) = d(u, v) − 1.

A graph G is weakly modular [3] if G is weakly modular with respect to any vertex u.

Median, bridged, and weakly bridged graphs constitute three important subclasses of

weakly modular graphs.

Definition 2.5 (Median graphs). A graph G is median if it is a bipartite weakly modular

graph not containing K2,3 as induced subgraphs.

Median graphs can be also defined in many other equivalent ways [27,31,41]. For example,

median graphs are exactly the graphs in which every triplet of vertices u, v,w has a unique

median, i.e., a vertex lying simultaneously in I(u, v), I(v,w), and I(w,u).

Definition 2.6 (Bridged and weakly bridged graphs). A graph G is bridged if it is weakly

modular and does not contain induced 4- and 5-cycles. A graph G is weakly bridged if G is a

weakly modular graph and does not contain 4-cycles.

There exist other equivalent definitions of bridged graphs [24, 39]. Bridged graphs are

exactly the graphs that do not contain isometric cycles of length greater than 3. Alternatively,

a graph G is bridged if and only if the balls Br(A,G) around convex sets A of G are convex.

Analogously, a graph G is weakly bridged if and only if G has convex balls Br(x,G) and does

not contain induced C4 [21].
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Figure 2. Triangle and quadrangle conditions

Median, bridged, and weakly bridged graphs are pre-median graphs: a graph G is pre-

median [14,15] if G is a weakly modular graph without induced K2,3 and W −

4 . An important

property of pre-median graphs is that within this class, a graph is elementary if and only

if it is prime [14]. Chastand [14, 15] proved that pre-median graphs are fiber-complemented

graphs (a definition follows). Any gated subset S of a graph G gives rise to a partition Fa
(a ∈ S) of the vertex-set of G; viz., the fiber Fa of a relative to S consists of all vertices x

(including a itself) having a as their gate in S. According to Chastand [14,15], a graph G is

called fiber-complemented if for any gated set S all fibers Fa (a ∈ S) are gated sets of G.

2.2. Prism complexes. In this paper, we consider a particular class of cell complexes (com-

pare e.g. [13, p. 111-115]), called prism complexes, in which all cells are prisms of finite di-

mension. Cubical and simplicial cell complexes are particular instances of prism complexes.

Although most of the notions presented below can be defined for all cell complexes and some

of them for topological spaces, we will introduce them only for prism complexes.

An abstract simplicial complex is a family X of finite subsets (of a given set) called simplices

which is closed for intersections and inclusions, i.e., σ,σ′ ∈ X and σ′′ ⊂ σ implies that σ ∩
σ′, σ′′ ∈ X. For an abstract simplicial complex X, denote by V (X) and E(X) the set of all

0-dimensional and 1-dimensional simplices of X and call the pair G(X) = (V (X),E(X)) the

1-skeleton of X. Conversely, for a graph G not containing infinite cliques, one can derive an

abstract simplicial complex Xsimpl(G) (the clique complex of G) by taking the vertex sets of

all complete subgraphs (cliques) as simplices of the complex. By a simplicial complex we will

mean the geometric realization of an abstract simplicial complex. It is a cell complex with

cells corresponding to abstract simplices, being (topologically) solid simplices.

A prism is a convex polytope which is a Cartesian product of a finite number of finite-

dimensional simplices. Faces of a prism are prisms of smaller dimensions. Particular instances

of prisms are simplices and cubes (products of intervals). A prism complex is a cell complex

X in which all cells are prisms so that the intersection of two prisms is empty or a common

face of each of them. Cubical complexes are prism complexes in which all cells are cubes

and simplicial complexes are prism complexes in which all cells are simplices. The 1-skeleton
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G(X) = X(1) of a prism complex X has the 0-dimensional cells of X as vertices and the 1-

dimensional cells of X as edges. The 1-skeleton of a prism of X is a Hamming graph, i.e., the

Cartesian product of complete subgraphs of G(X). For vertices v,w or a set of vertices A of

a prism complex X we will write v ∼ w, v ∼ A (or v ≁ w, v ≁ A) if and only if a similar relation

holds in the graph G(X). Note that a prism complex X is connected if and only G(X) = X(1)

is a connected graph. In this paper, all prism complexes we consider are connected. The

2-skeleton X(2) of X is a triangle-square complex obtained by taking the 0-dimensional, 1-

dimensional, and 2-dimensional cells of X. A prism complex X is simply connected if every

continuous map S1 → X is null-homotopic. Note that X is simply connected if and only

if X(2) is simply connected. The star St(v,X) of a vertex v in a prism complex X is the

subcomplex consisting of the union of all cells of X containing v.

For every graph G that does not contain infinite cliques or infinite hypercubes as induced

subgraphs, G gives rise to four cell complexes: to a prism complex Xprism(G), to a simpli-

cial complex Xsimpl(G), to a cubical complex Xcube(G), and to a triangle-square complex

Xtr-sq(G). The prism complex Xprism(G) spanned by G has P as a prism if and only if the

1-skeleton of P is an induced subgraph of G which is a Hamming graph. Analogously, one can

define the simplicial complex Xsimpl(G) and the cubical complex Xcube(G) of G as the com-

plexes consisting of all complete subgraphs and all induced cubes of G as cells, respectively.

In the same way, in the triangle-square complex Xtr-sq(G) of G, the triangular and square

cells are spanned by the 3-cycles and induced 4-cycles of G. The triangle-square complex

Xtr-sq(G) of G coincides with the 2-skeleton of the prism complex Xsimpl(G). Notice also

that Xsimpl(G)⋃Xcube(G) ⊆ Xprism(G). In general, these four complexes can be pairwise

distinct, but the graph G is the 1-skeleton of all these four complexes.

An abstract simplicial complex X is a flag complex (or a clique complex) if any set of vertices

is included in a simplex of X whenever each pair of its vertices is contained in a simplex of

X (in the theory of hypergraphs this condition is called conformality; see for example [6]).

A flag simplicial complex can therefore be recovered from its underlying graph G(X) by the

formula X = Xsimpl(G(X)): the complete subgraphs of G(X) are exactly the simplices of

X. Analogously, a prism (respectively, a cubical, or a triangle-square) complex X is a flag

complex if X = Xprism(G(X)) (respectively, X = Xcube(G(X)) or X = Xtr-sq(G(X))). All

complexes occurring in this paper are flag complexes.

Let X(Wk) ∶= Xtr-sq(Wk) and X(W −

k ) ∶= Xtr-sq(W −

k ) be the triangle-square (or the prism)

complexes whose underlying graphs are the graphs Wk and W −

k , respectively (the first consists

of k triangles and the second consists of k − 2 triangles and one square). Analogously, let

X(Ŵ5) = Xsimpl(Ŵ5) be the 2-dimensional simplicial complex made of 6 triangles and whose

underlying graph is the extended 5-wheel Ŵ5.

As morphisms between cell complexes we consider all cellular maps, i.e., maps sending

(linearly) cells to cells. An isomorphism is a bijective cellular map being a linear isomorphism

on each cell. A covering (map) of a cell complex X is a cellular surjection p∶ X̃→X such that

p∣St(ṽ,X̃)∶St(ṽ, X̃) → St(v,X) is an isomorphism for every vertex v in X, and every vertex

ṽ ∈ X̃ with p(ṽ) = v; compare [28, Section 1.3]. The space X̃ is then called a covering space. A
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universal cover of X is a simply connected covering space X̃. It is unique up to isomorphism;

cf. [28, page 67]. In particular, if X is simply connected, then its universal cover is X itself. A

group F acts by automorphisms on a cell complex X if there is a homomorphism F → Aut(X)
called an action of F . The action is geometric (or F acts geometrically) if it is proper (i.e.

cells stabilizers are finite) and cocompact (i.e. the quotient X/F is compact).

2.3. CAT(0) cubical complexes and systolic complexes. A geodesic triangle ∆ =
∆(x1, x2, x3) in a geodesic metric space (X,d) consists of three points in X (the ver-

tices of ∆) and a geodesic between each pair of vertices (the sides of ∆). A comparison

triangle for ∆(x1, x2, x3) is a triangle ∆(x′1, x′2, x′3) in the Euclidean plane E2 such that

dE2(x′i, x′j) = d(xi, xj) for i, j ∈ {1,2,3}.

Definition 2.7 (CAT(0) spaces). A geodesic metric space (X,d) is a CAT(0) (or a nonposi-

tively curved) space if the geodesic triangles in X are thinner than their comparison triangles

in the Euclidean plane [25], i.e, if ∆(x1, x2, x3) is a geodesic triangle of X and y is a point

on the side of ∆(x1, x2, x3) with vertices x1 and x2 and y′ is the unique point on the line

segment [x′1, x′2] of the comparison triangle ∆(x′1, x′2, x′3) such that dE2(x′i, y′) = d(xi, y) for

i = 1,2, then d(x3, y) ≤ dE2(x′3, y′).

CAT(0) spaces satisfy many nice metric and convexity properties and can be characterized

in various ways (for a full account of this theory consult the book [13]). For example, any

two points of a CAT(0) space can be joined by a unique geodesic. CAT(0) property is also

equivalent to convexity of the function f ∶ [0,1] → X given by f(t) = d(α(t), β(t)), for any

geodesics α and β (which is further equivalent to convexity of the neighborhoods of convex

sets). This implies that CAT(0) spaces are contractible.

Definition 2.8 (CAT(0) cubical complexes). A cubical complex X is a CAT(0) cubical

complex if X endowed with intrinsic `2-metric is a CAT(0) space.

Gromov [25] gave a beautiful characterization of CAT(0) cubical complexes as simply

connected cubical complexes satisfying the following combinatorial condition: if three k-

cubes pairwise intersect in a (k − 1)-cube and all three intersect in a (k − 2)-cube, then are

included in a (k + 1)-dimensional cube. This condition can be equivalently formulated as the

requirement that the links of 0-cubes are simplicial flag complexes.

Now we briefly recall the definitions of systolic and weakly systolic simplicial complexes,

which are both considered as simplicial complexes with combinatorial nonpositive curvature.

For an integer k ≥ 4, a flag simplicial complex X is locally k-large if every cycle consisting of

less than k edges in any of its links of simplices has some two consecutive edges contained in

a 2-simplex of this link, i.e., the links do not contain induced cycles of length < k.

Definition 2.9 (Systolic and weakly systolic complexes). A simplicial complex is k-systolic

if it is locally k-large, connected and simply connected. A flag simplicial complex is systolic

if it is 6-systolic [20, 26, 30]. A simplicial complex X is weakly systolic [21, 33] if X is flag,

connected and simply connected, locally 5-large, and satisfies the following local condition:
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Figure 3. The 3-cube condition (left), the 3-prism condition (middle), and

the Ŵ5-wheel condition (right).

Ŵ5-wheel condition: for each extended 5-wheel X(Ŵ5) of X, there exists a vertex v adjacent

to all vertices of this extended 5-wheel (see Fig. 3, right).

2.4. Bucolic complexes and bucolic graphs. In this subsection we define central objects

of the article: bucolic complexes and bucolic graphs1.

Definition 2.10 (Bucolic complexes). A prism complex X is bucolic if it is flag, connected

and simply connected, and satisfies the following three local conditions:

Wheel condition: the 1-skeleton X(1) of X does not contain induced W4 and satisfies the

Ŵ5-wheel condition;

Cube condition: if k ≥ 2 and three k-cubes of X pairwise intersect in a (k − 1)-cube and all

three intersect in a (k − 2)-cube, then they are included in a (k + 1)-dimensional cube of X;

Prism condition: if a cube and a simplex of X intersect in a 1-simplex, then they are included

in a prism of X.

A bucolic complex X is strongly bucolic if G(X) does not contain induced W5, i.e., a prism

complex X is strongly bucolic if it is flag, connected, simply connected, and satisfies the cube

and prism conditions, as well as the following local condition:

Strong-wheel condition: the 1-skeleton X(1) of X does not contain induced W4 and W5.

As we already noticed, subject to simple connectivity, the wheel condition characterizes

the weakly systolic complexes in the class of flag simplicial complexes. On the other hand,

the cube condition for cubical complexes is equivalent to Gromov’s condition of flagness of

links. Finally, the prism condition for prism complexes shows how simplices and cubes of X

give rise to prisms.

Now, we consider the 2-dimensional versions of the last two conditions. We introduce two

combinatorial conditions for a triangle-square complex X:

1The term bucolic is inspired by systolic, where b stands for bridged and c for cubical. See also Acknowl-

edgments for another source of our “inspiration”.
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3-Cube condition: any three squares of X, pairwise intersecting in an edge, and all three

intersecting in a vertex of X, are included in the 2-skeleton of a 3-dimensional cube (see

Fig. 3, left);

3-Prism condition: any house (i.e., a triangle and a square of X sharing an edge) is included

in the 2-skeleton of a 3-dimensional prism (see Fig. 3, middle).

We conclude this section with the definition of bucolic and strongly bucolic graphs.

Definition 2.11 (Bucolic graphs). A graph G is bucolic if it is weakly modular, does not

contain infinite cliques and does not contain induced subgraphs of the form K2,3, W4, and

W −

4 . A bucolic graph is strongly bucolic if it does not contain induced W5.

3. Related work

In his seminal paper [25], among many other results, Gromov characterized CAT(0) cubical

complexes as simply connected cubical complexes in which the links of 0-cubes are simpli-

cial flag complexes. Subsequently, Sageev [38] introduced and investigated the concept of

(combinatorial) hyperplanes of CAT(0) cubical complexes, showing in particular that each

hyperplane is itself a CAT(0) cubical complex and partitions the complex into two CAT(0)

cubical complexes. These two results identify CAT(0) cubical complexes as the basic objects

in a “high-dimensional Bass-Serre theory”, and CAT(0) and nonpositively–curved cubical

complexes have thus been studied extensively in geometric group theory. For instance, many

well-known classes of groups are known to act nicely on CAT(0) cubical complexes.

It was shown in [20,37] that the 1-skeleta of CAT(0) cubical complexes are exactly the me-

dian graphs. This result establishes a bridge between two seemingly different mathematical

structures and two different areas of mathematics. Median graphs and related structures (me-

dian algebras, event structures, copair Helly hypergraphs) occur in different areas of discrete

mathematics, universal algebra, and theoretical computer science. Median graphs, median

algebras, and CAT(0) cubical complexes have many nice properties and admit numerous char-

acterizations. All median structures are intimately related to hypercubes: median graphs are

isometric subgraphs of hypercubes; in fact, by a classical result of Bandelt [2] they are the

retracts of hypercubes into which they embed isometrically. This isometric embedding of

each median graph into a hypercube canonically defines on the associated CAT(0) cubical

complex a space with walls “à la Haglund-Paulin” and Sageev’s hyperplanes. It was also

shown by Isbell [29] and van de Vel [40] that every finite median graph G can be obtained

by gated amalgams from hypercubes, thus showing that K2 is the only prime median graph.

Median graphs also have a remarkable algebraic structure, which is induced by the ternary

operation on the vertex set that assigns to each triplet of vertices the unique median vertex,

and their algebra can be characterized using four natural axioms [7, 29] among all discrete

ternary algebras. For more detailed information about median structures, the interested

reader can consult the survey [6] and the books [27,31,41].

Bridged graphs are the graphs in which all isometric cycles have length 3. It was shown

in [24, 39] that the bridged graphs are exactly the graphs in which the metric convexity
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satisfies one of the basic properties of the CAT(0) geometry: neighborhoods of convex sets

are convex. Combinatorial and structural aspects of bridged graphs have been investigated

in [1, 16, 35]. In particular, it was shown in [1] that finite bridged graphs are dismantlable.

Similarly to the local-to-global characterization of CAT(0) cubical complexes of [25], it was

shown in [20] that the clique complexes of bridged graphs are exactly the simply connected

simplicial flag complexes in which the links of vertices do not contain induced 4- and 5-cycles.

These complexes have been rediscovered and investigated in depth by Januszkiewicz and

Swiatkowski [30], and, independently by Haglund [26], who called them “systolic complexes”

and considered them as simplicial complexes satisfying combinatorial nonpositive curvature

property. In general, these complexes are not CAT(0). More recently, Osajda [33] proposed

a generalization of systolic complexes still preserving most of the structural properties of

systolic complexes: the resulting weakly systolic complexes and their 1-skeleta – the weakly

bridged graphs – have been investigated and characterized in [21].

The structure theory of graphs based on Cartesian multiplication and gated amalgamation

was further elaborated for more general classes of graphs. Some of the results for median

graphs have been extended to quasi-median graphs introduced by Mulder [31] and further

studied in [8]: quasi-median graphs are the weakly modular graphs not containing induced

K2,3 and K4 − e and they can be characterized as the retracts of Hamming graphs (finite

quasi-median graphs can be obtained from complete graphs by Cartesian products and gated

amalgamations). More recently, Bandelt and Chepoi [4] presented a similar decomposition

scheme of weakly median graphs (the weakly modular graphs in which the vertex x in the

triangle and quadrangle conditions is unique) and characterized the prime graphs with respect

to this decomposition: the hyperoctahedra and their subgraphs, the 5-wheel W5, and the 2-

connected plane bridged graphs. Generalizing the proof of the decomposition theorem of [4],

Chastand [14, 15] presented a general framework of fiber-complemented graphs allowing to

establish many general properties, previously proved only for particular classes of graphs. An

important subclass of fiber-complemented graphs is the class of pre-median graphs [14,15]. It

is an open problem to characterize all prime (elementary) fiber-complemented or pre-median

graphs (see [14, p. 121]).

Since CAT(0) cubical complexes and systolic simplicial complexes can be both character-

ized via their 1-skeleta and via simple connectivity and local conditions, a natural question

is to find a common generalization of such complexes which still obey the combinatorial non-

positive curvature properties. The prism complexes derived from fiber-complemented graphs

is a potential source of such cell complexes. In [11], answering a question from [12], the first

step in this direction was taken, and the 1-skeleta of prism complexes resulting from clique

complexes of chordal graphs by applying Cartesian products and gated amalgams have been

characterized. It was also shown that, endowed with the l2-metric, such prism complexes are

CAT(0) spaces.

In this paper, we continue this line of research and characterize the graphs G which are re-

tracts of Cartesian products of weakly bridged and bridged graphs. We show (cf. Theorem 2)

that these graphs are exactly the bucolic and strongly bucolic graphs. We also establish that
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the finite bucolic (respectively, strongly bucolic) graphs are exactly the graphs obtained by

gated amalgamations of Cartesian products of weakly bridged (respectively, bridged) graphs,

thus answering Question 1 from [11]. This also provides a partial answer to Chastand’s

problem mentioned above (by showing that the weakly bridged graphs are exactly the prime

graphs of pre-median graphs without W4 and that the bridged graphs are the prime graphs of

pre-median graphs without W4 and W5) and extends the analogous results on finite median,

quasi-median, and weakly median graphs. Our previous result can be viewed as a characteri-

zation of 1-skeleta of bucolic complexes. We also characterize (Theorem 1) bucolic complexes

via their 2-skeleta by showing that they are exactly the simply connected triangle-square

complexes satisfying the 3-cube and 3-prism conditions and not containing W4, W5, and W −

5

(this answers Question 2 from [11]) and, together with the first result, generalizes the char-

acterizations of CAT(0) cubical complexes, systolic and weakly systolic complexes via theirs

1- and 2-skeleta.

Then we prove that the locally-finite bucolic complexes are contractible (Theorem 3).

Thus the three results constitute a version of the Cartan-Hadamard theorem, saying that

under some local conditions the complex is aspherical, i.e. its universal covering space is

contractible. Only limited number of such local characterizations of asphericity is known, and

most of them refer to the notion of nonpositive curvature; cf. e.g. [13, 23, 25, 30, 33]. In fact

bucolic complexes exhibit many nonpositive-curvature-like properties. Besides the Cartan-

Hadamard theorem we prove the fixed point theorem for finite groups acting on locally-

finite bucolic complexes (Theorem 4), and we conclude that groups acting geometrically

on such complexes have finitely many conjugacy classes of finite subgroups (Corollary 1).

Counterparts of such results are known for other nonpositively curved spaces; cf. e.g. [13,

21,30,33]. Thus our classes of complexes and groups acting on them geometrically form new

classes of combinatorially nonpositively curved complexes and groups (see e.g. [21, 25, 30,

33] for more background) containing the CAT(0) cubical and systolic classes of objects. A

question of studying such unification theories was raised often by various researchers, e.g. by

Januszkiewicz and Świa̧tkowski (personal communication). Due to our knowledge, bucolism

is the first generalization of the CAT(0) cubical and systolic worlds studied up to now.

The class of bucolic complexes is closed under taking finite Cartesian products and gated

amalgamations. Thus the class of groups acting geometrically on them is also closed under

similar operations. It should be noticed that both systolic and CAT(0) cubical groups satisfy

some strong (various for different classes) restrictions; cf. e.g. [33] and references therein.

It implies that there are groups that are neither systolic nor CAT(0) cubical but which

act geometrically on our complexes. In particular, in view of Theorem 4 and the fixed

point theorems for systolic and CAT(0) complexes (compare [13, 21]), the free product of

a systolic group with a CAT(0) cubical group amalgamated over a finite subgroup always

acts geometrically on a complex from our class. Note however that such a product is often

not systolic neither CAT(0) cubical. Another example with these properties is the Cartesian

product of two systolic but not CAT(0) cubical groups.
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4. Bucolic graphs

In this section, we prove the following characterization of bucolic graphs:

Theorem 2. For a graph G = (V,E) not containing infinite cliques, the following conditions

are equivalent:

(i) G is a retract of the (weak) Cartesian product of weakly bridged (respectively, bridged)

graphs;

(ii) G is a weakly modular graph not containing induced K2,3, W4, and W −

4 (respectively,

K2,3, W −

4 , W4, and W5), i.e., G is a bucolic (respectively, strongly bucolic) graph;

(iii) G is a weakly modular graph not containing K2,3 and W −

4 in which all elementary (or

prime) gated subgraphs are edges or 2-connected weakly bridged (respectively, bridged)

graphs.

Moreover, if G is finite, then the conditions (i)-(iii) are equivalent to the following condition:

(iv) G can be obtained by successive applications of gated amalgamations from Cartesian

products of 2-connected weakly bridged (respectively, bridged) graphs.

The most difficult part of the proof of the theorem are the implications (ii)⇒(iii) and

(iii)⇒(i). The main step in the proof of (ii)⇒(iii) is showing that all primes of weakly

modular graphs not containing induced W4 and W −

4 are 2-connected weakly bridged graphs

or K2. To prove (iii)⇒(i), we need to show that weakly bridged graphs are moorable. For

locally-finite graphs this was proven in [21]. The mooring of non-locally-finite weakly bridged

graphs is established in Section 7. Then, we deduce the theorem from the results of [5,14,15].

4.1. Gated closures of triangles. In this section, we prove that if G is a weakly modular

graph not containing induced 4-wheels W4 and almost 4-wheels W −

4 , then the gated hull of

any triangle of G is a weakly bridged graph. Additionally, if G does not contain induced

5-wheels W5, then the gated hull of a triangle is a bridged graph.

Lemma 4.1. Let G be a graph without induced W4,W
−

4 and satisfying the triangle condition.

Then G does not contain an induced W −

n for n > 4.

Proof. Suppose by way of contradiction that W −

n is an induced subgraph of G and suppose

that G does not contain induced W −

k for any 3 < k < n. Let (x1, x2, . . . , xn, x1) be the outer

cycle C of W −

n and consider a vertex c adjacent to all vertices of C except x1. We apply the

triangle condition to the triple x1, x2, xn−1 and find a vertex a ∈ N(x1) ∩N(x2) ∩N(xn−1).
Note that if a ∼ c, then x1, x2, c, xn, a induce W4 if a is adjacent to xn or W −

4 otherwise.

Thus a ≁ c. If n = 5, then the vertices x4, a, x2, c, x3 induce either a W4 if x3 is adjacent to

a, or a W −

4 otherwise. Now, if n ≥ 6 and if a is not adjacent to x3, x4, . . . , xn−3 or xn−2, the

subgraph induced by the vertices a, x2, x3, . . . , xn−1, c has an induced subgraph isomorphic to

one of the forbidden induced subgraphs W −

k , where k < n. Thus a is adjacent to all vertices

of C except maybe xn. The vertices a, x3, c, xn−1, x4 induce W4, if n = 6, or W −

4 otherwise, a

contradiction. �
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Let H be an induced subgraph of a graph G. A 2-path P = (a, v, b) of G is H-fanned if

a, v, b ∈ V (H) and if there exists an (a, b)-path P ′ in H not passing via v and such that v is

adjacent to all vertices of P ′, i.e., v ∼ P ′. Notice that P ′ can be chosen to be an induced path

of G. A path P = (x0, x1, . . . , xk−1, xk) of G with k > 2 is H-fanned if every three consecutive

vertices (xi, xi+1, xi+2) of P form an H-fanned 2-path. When H is clear from the context

(typically when H = G), we say that P is fanned. If the endvertices of a 2-path P = (a, v, b)
coincide or are adjacent, then P is fanned. Here is a simple generalization of this remark

(whose immediate proof is left to the reader).

Lemma 4.2. If P = (x0, x1, . . . , xk) is a fanned path and the vertices xi−1 and xi+1 coincide

or are adjacent, then the paths P ′ = (x0, . . . , xi−2, xi+1, xi+2, . . . , xk) in the first case and

P ′′ = (x0, . . . , xi−1, xi+1, . . . , xk) in the second case are also fanned.

In the remaining auxiliary results of this section, G is a weakly modular graph without

induced W4 and W −

4 . By Lemma 4.1, G does not contain W −

k with k > 3.

Lemma 4.3. If C = (x,u, y, v, x) is an induced 4-cycle of G, then no simple 2-path of C is

fanned.

Proof. Suppose that the simple 2-path P = (u, y, v) is fanned. Let R = (u, t1, . . . , tm, tm+1 = v)
be a shortest (u, v)-path such that y ∼ R (such a path exists because P is fanned). Necessarily,

R is an induced path of G. Since C is induced, m ≥ 1 and ti ≠ x for all i ∈ {1, . . . ,m}. If t1 is

adjacent to x, then the vertices x,u, y, v, t1 induce W4 if t1 is adjacent to v, or W −

4 otherwise.

Suppose now that t1 is not adjacent to x and let i ≥ 2 be the smallest index such that ti is

adjacent to x. Since R is a shortest path, the cycle (x,u, t1, . . . , ti, x) is induced. Thus the

vertices x,u, t1, . . . , ti, y induce a forbidden W −

i+2. �

Let v be a common neighbor of vertices a and b of G. For an (a, b)-path P , we denote by

Dv(P ) the distance sum Dv(P ) ∶= ∑x∈P d(x, v).

Lemma 4.4. Let P = (a = x0, x1, . . . , xm = b) be a fanned (a, b)-path not containing v, let

k = max{d(xi, v) ∶ xi ∈ P} and j be the smallest index so that d(xj , v) = k. If k ≥ 2, and

j ∉ {0,m} then

(1) either xj−1 = xj+1 and the path P ′ = (x0, . . . , xj−2, xj+1, xj+2, . . . , xm) is fanned,

(2) either xj−1 ∼ xj+1 and the path P ′′ = (x0, . . . , xj−1, xj+1, . . . , xm) is fanned,

(3) or there exists a vertex y such that d(y, v) = k − 1 and the path P ′′′ =
(x0, . . . , xj−1, y, xj+1, . . . , xm) is fanned.

Proof. If xj−1 = xj+1 or xj−1 ∼ xj+1, then Lemma 4.2 implies that the paths P ′ and P ′′ are

fanned. So, suppose that xj−1 and xj+1 are different and non-adjacent. Note that d(xj−1, v) =
k−1 and k−1 ≤ d(xj+1, v) ≤ k. If d(xj+1, v) = k−1, then we can use the quadrangle condition

for vertices v, xj−1, xj and xj+1 and find a vertex z ∈ N(xj−1)∩N(xj+1) such that d(v, z) = k−2

(z = v if k = 2). Since z and xj are not adjacent, the 4-cycle (z, xj−1, xj , xj+1, z) is induced.

Since P is fanned, the 2-path (xj−1, xj , xj+1) is fanned as well, contradicting Lemma 4.3.
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Thus d(xj+1, v) = k. Applying the triangle condition to the triple v, xj , xj+1, we can

find a common neighbor y of xj and xj+1 with d(v, y) = k − 1. Note that y ≠ xj−1 since

xj−1 ≁ xj+1. Assume first xj−1 ≁ y. Then we can apply the quadrangle condition to the

vertices xj−1, xj , y, v, and find a vertex z ∈ N(xj−1) ∩ N(y) with d(z, v) = k − 2 (z = v if

k = 2). Clearly, z is not adjacent to xj and xj+1. Hence, the cycle (xj−1, xj , y, z, xj−1) is

induced. Since the 2-path (xj−1, xj , xj+1) is fanned, there exists a (xj−1, xj+1)-path Q0 not

containing xj such that xj ∼ Q0. As a consequence, (Q0, y) is a (xj−1, y)-path of G not

passing via xj whose all vertices are adjacent to xj . Therefore the 2-path (xj−1, xj , y) of

the induced 4-cycle (xj−1, xj , y, z, xj−1) is fanned, contradicting Lemma 4.3. This implies

that xj−1 must be adjacent to y. Then P ′′′ = (x0, . . . , xj−1, y, xj+1, . . . , xm) is a path of

G. We claim that P ′′′ is fanned. Indeed, all 2-paths of P ′′′, except the three consecutive

2-paths (xj−2, xj−1, y), (y, xj+1, xj+2), (xj−1, y, xj+1), are also 2-paths of P , hence they are

fanned. The 2-path (xj−1, y, xj+1) is fanned because y is adjacent to all vertices of the path

(xj−1, xj , xj+1). Since the 2-path (xj , xj+1, xj+2) is fanned, there is an (xj , xj+2)-path R such

that xj+1 ∼ R. Then all vertices of the (y, xj+2)-path (y,R) are adjacent to xj+1, whence the

2-path (y, xj+1, xj+2) is fanned. Analogously, one can show that the 2-path (xj−2, xj−1, y) is

fanned, showing that P ′′′ is fanned. �

From the proof of Lemma 4.4, since each of Dv(P ′),Dv(P ′′),Dv(P ′′′) is smaller than

Dv(P ), we conclude that if v ∼ a, b and P is a fanned (a, b)-path not containing v with

minimal distance sum Dv(P ), then k = 1. Therefore, we obtain the following result:

Corollary 2. If v ∼ a, b and if P is a fanned (a, b)-path avoiding v with minimal distance

sum Dv(P ), then v ∼ P .

Let ◁ be a well-order on V (G). Let T = {a0, b0, c0} be a triangle inG. We define a subgraph

K of G by (possibly transfinite) induction as follows. Let H0,H1,H2 be the subgraphs

respectively induced by {a0},{a0, b0} and {a0, b0, c0}. Given an ordinal α, assume that for

every β < α, we have defined Hβ, and let H<α be the subgraph induced by ⋃β<α V (Hβ). Let

X = {v ∈ V (G) ∖ V (H<α) ∶ there exist x, y ∈ V (H<α) such that v ∼ x, y}.

If X is nonempty, then let v be the least element of (X,◁) and define Hα to be the subgraph

of G induced by V (H<α ∪ {v}). Otherwise, if X is empty, then set K ∶=H<α.

Lemma 4.5. For any ordinal α, Hα is 2-connected and any 2-path of Hα is K-fanned.

Moreover, K is 2-connected and any 2-path of K is K-fanned.

Proof. We proceed by induction on α. Clearly, H0,H1,H2 = T fulfil these properties. Assume

by induction hypothesis that for every β < α, Hβ is 2-connected and that any 2-path of Hβ

is K-fanned.

We first show that H<α is 2-connected and that any 2-path of H<α is K-fanned. Consider

any three vertices a, b, u ∈ V (H<α). There exists β < α such that a, b, u ∈ V (Hβ). By the

induction hypothesis, there exists a path from a to b in Hβ∖{u}. Since Hβ∖{u} is a subgraph

of H<α ∖ {u}, a is not disconnected from b in H<α ∖ {u}, and thus H<α is 2-connected. For
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every 2-path (a, b, c) in H<α, there exists β < α such that a, b, c ∈ V (Hβ). By the induction

hypothesis, the 2-path (a, b, c) is K-fanned.

If K = H<α, we are done. Otherwise, let v be the unique vertex of V (G) such that

V (Hα) = V (H<α) ∪ {v}. By the definition of Hα, v has at least two neighbors x, y in H<α.

Suppose that Hα is not 2-connected. Consider three distinct vertices a, b, u ∈ V (Hα). If

a, b ∈ V (H<α), we know there exists a path from a to b in H<α∖{u}. Without loss of generality,

assume now that b = v and u ≠ x. We know that there exists a path from a to x in H<α ∖ {u}
and consequently, there exists a path from a to b = v in Hα ∖ {u} since x ∼ v. Consequently,

for every a, b, u ∈ V (Hα), u does not disconnect a from b, i.e., Hα is 2-connected.

We will prove that any 2-path of Hα is K-fanned. It suffices to consider the 2-paths Q of

Hα that contain v, since all other 2-paths lie in H<α and are K-fanned.

Case 1. Q = (a, v, c).
Since H<α is connected and a, c ∈ V (H<α), there exists an (a, c)-path R in H<α. Since

any 2-path of H<α is K-fanned by induction hypothesis, R itself is K-fanned. As H<α is

a subgraph of K, R belongs to K. Among all K-fanned (a, c)-paths belonging to K and

avoiding v, let P = (a = x0, x1, . . . , xm = c) be chosen in such a way that the distance sum

Dv(P ) = ∑xi∈P d(v, xi) is minimized (note that P does not necessarily belong to Hα). By

Corollary 2, v ∼ P and thus the 2-path Q is K-fanned.

Case 2. Q = (c, b, v).
If c and v coincide or are adjacent, then Q is trivially fanned. Thus we may assume that

c ≠ v, and c ≁ v. Since v has at least two neighbors in H<α, there exists a vertex a ∈ H<α

adjacent to v and different from b. Since H<α is 2-connected and a, c ∈ H<α, there exists an

(a, c)-path P0 in H<α that avoids b. The paths P0 and (P0, b) are K-fanned because all their

2-paths are fanned by the induction hypothesis. Hence, there exists at least one K-fanned

(a, b)-path (P0, b) that passes via c, avoids v, and all vertices of P0 are different from b.

Among all such (a, b)-paths (P0, b) of K (i.e., that pass c, avoid v, the vertices of P0 are

different from b, and are K-fanned), let P = (a = x0, x1, . . . , xm, xm+1 = c, b) be chosen in

such a way that Dv(P ) is minimized. Since v and xm+1 = c are different and not adjacent,

k = max{dG(xi, v) ∶ xi ∈ P} ≥ 2. Let j be the smallest index such that d(xj , v) = k.

First suppose that j ≠m+ 1. By Lemma 4.4, the vertices a and b can be connected by one

of the paths P ′, P ′′, P ′′′ derived from P . These paths are K-fanned, contain the vertex c,

avoid the vertex v, and all three have smaller distance sums than P . In case of P ′ and P ′′ we

obtain a contradiction with the minimality choice of P . Analogously, in case of P ′′′ we obtain

the same contradiction except if the vertex y coincides with b, i.e., b is adjacent to the vertices

xj−1, xj , and xj+1. In this case, d(xj , v) = 2 and xj−1 ∼ v. Consider the 2-path (c, b, xj+1). By

construction, the path R = (xm+1 = c, xm, . . . , xj+2, xj+1) is K-fanned and avoids b. Applying

Lemma 4.4 and Corollary 2 with b and R, there exists a K-fanned (c, xj+1)-path R′ avoiding

b such that b ∼ R′. Consequently, there is a path (R′, xj , xj−1, v) in K from c to v in the

neighborhood of b and thus (c, b, v) is K-fanned.

Now suppose that j =m+1, i.e., v is adjacent to all vertices of P except xm+1 = c. From the

choice of P we conclude that b ≠ xm. If b ≁ xm, then C = (v, xm, c, b, v) is an induced 4-cycle.

17



Since the 2-path (b, c, xm) is K-fanned and simple, we obtain a contradiction with Lemma

4.3. Finally, if b is adjacent to xm, then the (simple) 2-path (c, b, v) is K-fanned because c

and v are connected in K by the (simple) 2-path (c, xm, v) and xm is adjacent to b. �

Lemma 4.6. For any ordinal α, H<α and Hα do not contain induced 4-cycles.

Proof. Again we proceed by induction on α.

Suppose by induction hypothesis that for every β < α, Hβ does not contain induced 4-

cycles. If there exists a 4-cycle (a, b, c, d, a) in H<α, there exists β < α such that a, b, c, d ∈
V (Hβ). Since Hβ is an induced subgraph of H<α, (a, b, c, d, a) is an induced 4-cycle of Hβ,

contradicting the induction hypothesis.

If K = H<α, we are done. Otherwise, let v be the unique vertex of V (G) such that

V (Hα) = V (H<α) ∪ {v}. Suppose by way of contradiction that Hα contains an induced

4-cycle C. Then necessarily v belongs to C. Let C = (v, a, b, c, v). Since by Lemma 4.5

the 2-paths of Hα are K-fanned, the simple 2-path (a, b, c) of C is fanned and we obtain a

contradiction with Lemma 4.3. Consequently, Hα does not contain induced 4-cycles. �

Lemma 4.7. K is the gated hull of T in G.

Proof. Let A be the gated hull of T . First we prove that all vertices of K belong to A.

Suppose by way of contradiction that K ∖A ≠ ∅. From all vertices in K ∖A we choose v with

smallest α, such that v ∉ H<α, v ∈ Hα, i.e., all vertices from H<α are contained in A. Since

v ∈Hα, it has at least two neighbors in H<α and thus in A. Therefore there is no gate of v in

A, a contradiction.

On the other hand, since G is weakly modular, K is gated if and only if for every x, y ∈K
at distance at most 2, any common neighbor v of x and y also belongs to K [4, 18]. This is

obviously true by the definition of K. �

Summarizing, we obtain the main result of this subsection.

Proposition 1. Let G be a locally-finite weakly modular graph not containing induced W4

and W −

4 . Then the gated hull of any triangle T of G is a 2-connected weakly bridged graph.

Additionally, if G does not contain induced W5, then the gated hull of T is a 2-connected

bridged graph.

Proof. By Lemma 4.7, the gated hull of T is the 2-connected subgraph K of G constructed

by our procedure. Since K is a convex subgraph of a weakly modular graph G, K itself is a

weakly modular graph. By Lemma 4.6, the graph K does not contain induced 4-cycles, thus

K is weakly bridged by [21, Theorem 3.1(iv)]. If, additionally, G does not contain 5-wheels,

then G does not contain induced 5-cycles because in a weakly bridged graph any induced

5-cycle is included in a 5-wheel. Then K is a weakly modular graph without induced 4- and

5-cycles, thus K is bridged. �

4.2. Proof of Theorem 2. We first prove the implication (i)⇒(ii). First, bridged and

weakly bridged graphs are weakly modular. Weakly bridged graphs do not contain induced
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K2,3, W4, and W −

4 because they do not contain induced 4-cycles. Bridged graphs additionally

do not contain induced W5. Weakly modular graphs are closed by taking (weak) Cartesian

products (this holds also when there are infinite number of factors in weak Cartesian products,

since the distances between vertices in a weak Cartesian product are finite). If a (weak)

Cartesian product ◻i∈IHi contains an induced K2,3,W4,W5 or W −

4 , then necessarily this

graph occurs in one of the factors Hi. This follows from the fact that in a product, each

triangle comes from one factor, and two opposite edges of a square must come from the same

factor. As a consequence, Cartesian products H = ◻i∈IHi of weakly bridged graphs do not

contain induced K2,3,W4, and W −

4 . Analogously, Cartesian products H = ◻i∈IHi of bridged

graphs do not contain induced K2,3,W4,W
−

4 , and W5. If G is a retract of H, then G is an

isometric subgraph of H, and therefore G does not contain induced K2,3,W4,W
−

4 in the first

case and induced K2,3,W4,W
−

4 and W5 in the second case. It remains to notice that the

triangle and quadrangle conditions are preserved by retractions, thus G is a weakly modular

graph, establishing that (i)⇒(ii).

Now suppose that G is a weakly modular graph satisfying the condition (ii) of Theo-

rem 2. Then G is a pre-median graph. By [14, Theorem 4.13], any pre-median graph is

fiber-complemented. By [14, Lemma 4.8], this implies that any gated subgraph H of G is

elementary if and only if it is prime. Note that the gated hull of any edge in G is either

the edge itself, or it is included in a triangle by weak modularity, and by Proposition 1 we

find that the gated hull of this edge is a 2-connected (weakly) bridged graph. Hence every

elementary (= prime) gated subgraph is a 2-connected (weakly) bridged graph or an edge.

This establishes the implication (ii)⇒(iii).

To prove the implication (iii)⇒(i), we will use [15, Theorem 3.2.1] and [21, Theorem

5.1]. By Chastand [15, Theorem 3.2.1], any fiber-complemented graph G whose primes are

moorable graphs is a retract of the Cartesian product of its primes. Note that elemen-

tary gated subgraphs of G, enjoying (iii), are edges and 2-connected weakly bridged graphs.

In [21, Theorem 5.1], it is shown that locally-finite weakly bridged graphs are moorable.

Proposition 6 in Section 7 extends this result to non-locally-finite graphs. Thus, by [15, The-

orem 3.2.1] G is a retract of the Cartesian product of its primes, establishing the implication

(iii)⇒(i) of Theorem 2.

Now, for finite graphs we show that (iv) ⇐⇒ (ii). As noticed above, bridged and weakly

bridged graphs are weakly modular and do not contain induced K2,3, W4, and W −

4 . Bridged

graphs additionally do not contain induced W5. Weakly modular graphs are closed by Carte-

sian products and gated amalgams. Moreover, ifG is the Cartesian product or the gated amal-

gam of two graphs G1 and G2, then G contains an induced K2,3 (respectively, W4,W
−

4 ,W5)

if and only if G1 or G2 does. Therefore (iv)⇒(ii). Conversely, suppose that G is a finite bu-

colic (respectively, strongly bucolic) graph. Then G is a pre-median graph. By [14, Theorem

4.13], any pre-median graph is fiber-complemented. Then according to [14, Theorem 5.4],

G can be obtained from Cartesian products of elementary (=prime) graphs by a sequence

of gated amalgamations. By Proposition 1, any elementary graph of G is either an edge or
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a 2-connected weakly bridged graph (respectively, a 2-connected bridged graph). Thus the

implication (ii)⇒(iv) in Theorem 2 holds. This concludes the proof of Theorem 2.

5. Bucolic complexes and their skeleta

In this section, we prove the following local-to-global characterization of bucolic complexes

via properties of their 1- and 2-skeleta:

Theorem 1. For a prism complex X, the following conditions are equivalent:

(i) X is a bucolic complex;

(ii) the 2-skeleton X(2) of X is a connected and simply connected triangle-square flag

complex satisfying the wheel, the 3-cube, and the 3-prism conditions;

(iii) the 1-skeleton G(X) of X is a connected weakly modular graph that does not contain

induced subgraphs of the form K2,3, W4, and W −

4 , i.e., G(X) is a bucolic graph not

containing infinite hypercubes.

Moreover, if X is a connected flag prism complex satisfying the wheel, the cube, and the prism

conditions, then the universal cover X̃ of X is bucolic.

As an immediate corollary we obtain the following analogous characterization of strongly

bucolic complexes:

Corollary 3. For a prism complex X, the following conditions are equivalent:

(i) X is a strongly bucolic complex;

(ii) the 2-skeleton X(2) of X is a connected and simply connected triangle-square flag

complex satisfying the strong-wheel, the 3-cube, and the 3-prism conditions;

(iii) the 1-skeleton G(X) of X is a connected weakly modular graph not containing induced

subgraphs of the form K2,3, W4, W
−

4 , and W5, i.e., G(X) is a strongly bucolic graph

not containing infinite hypercubes as induced subgraphs;

Moreover, if X is a connected flag prism complex satisfying the strong-wheel, the cube, and

the prism conditions, then the universal cover X̃ of X is strongly bucolic.

5.1. Auxiliary results. We start this section with several auxiliary properties of triangle-

square flag complexes occurring in condition (ii) of Theorem 1. Throughout this and the

next subsections, we will denote such triangle-square complexes by X, assume that they are

connected, and use the shorthand G ∶= G(X) for the 1-skeleton of X. We denote by X(C3)
and X(C4) the triangle-square complex consisting of a single triangle and a single square,

respectively. Let X(H) = X(C3 + C4) be the complex consisting of a triangle and a square

sharing one edge; its graph is the house H and with some abuse of notation, we call the

complex itself a house. The twin-house X(2H) is the complex consisting of two triangles

and two squares, which can be viewed as two houses glued along two incident edges or as a

domino and a kite glued along two incident edges (for an illustration, see Fig. 4, left). Let

also X(Wk) and X(W −

k ) be the triangle-square complexes whose underlying graphs are Wk

and W −

k : the first consists of k triangles and the second consists of k − 2 triangles and one
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Figure 4. On the left, a twin-house (in black) included in a double prism

(Lemma 5.2). On the right, a double house (in black) included in a prism

(Lemma 5.3).

square. The complex X(CW3) consists of three squares sharing a vertex and pairwise sharing

edges (its graph is the cogwheel CW3). The triangular prism X(Pr) = X(C3 ×K2) consists

of the surface complex of the 3-dimensional triangular prism (two disjoint triangles and three

squares pairwise sharing an edge). The double prism X(2Pr) consists of two prisms X(Pr)
sharing a square (See Fig. 4, left). Finally, the double-house X(H + C4) = X(2C4 + C3) is

the complex consisting of two squares and a triangle, which can be viewed as a house plus a

square sharing with the house two incident edges, one from the square and another from the

triangle (see Fig. 4, right). In the following results, we use the notation G = G(X).

Lemma 5.1. If X is a triangle-square flag complex, then its 1-skeleton G does not contain

induced K2,3 and W −

4 .

Proof. If G contains K2,3 or W −

4 , then, since X is a flag complex, we will obtain two squares

intersecting in two edges, which is impossible. �

Lemma 5.2. If X satisfies the 3-prism condition, then any twin-house X(2H) of X is

included in X in a double prism X(2Pr).

Proof. Let u, v,w, x1, x2 be the vertices of one house and u, v,w, y1, y2 be the vertices of

another house, where the edge uv is common to the two squares uvx2x1 and uvy2y1, and

where the edge vw is common to the two triangles vwx2 and vwy2. By the 3-prism condition,

there exists a vertex a adjacent inG to x1, u,w that is not adjacent to x2, v. Analogously, there

exists a vertex b adjacent to u, y1,w that is not adjacent to y2, v. If a ≠ b, the graph induced

by a, b, u, v,w is either K2,3 if a ≁ b, or W −

4 otherwise; in both cases, we get a contradiction

with Lemma 5.1. Thus a = b, and since a ≁ v, x2, y2, the vertices a, u, v,w, x1, x2, y1, y2 induce

a double prism. �

Lemma 5.3. If X satisfies the 3-prism condition, then any double-house X(H +C4) in X is

included in a prism X(Pr), i.e., G does not contain an induced double-house H +C4.

Proof. Suppose by contradiction that G contains an induced double-house having

x, y, u, v,w, z as the set of vertices, where uvw is a triangle and xyvu and xuwz are two

squares of this house. By 3-prism condition, there exists a vertex a different from z (since

y ≁ z) that is adjacent to x, y,w and that is not adjacent to u, v. Thus, the vertices z, a,w, u, x

induce either K2,3 if a ≁ z or W −

4 otherwise. In both cases, we get a contradiction with

Lemma 5.1. �
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Lemma 5.4. If X satisfies the 3-prism condition and does not contain X(W4), then X does

not contain X(W −

k ) for any k ≥ 5.

Proof. Suppose by way of contradiction that X contains X(W −

k ), where k is the smallest value

for which this subcomplex exists. Since, by Lemma 5.1, G does not contain W −

4 , necessarily

k ≥ 5. Denote the vertices of X(W −

k ) by q, x1, x2, . . . , xk where x1, x2, . . . , xk induce a cycle

and where q is adjacent to x1, . . . , xk−1 but not to xk. By the 3-prism condition applied to

the house induced by q, xk−1, xk, x1, x2, there exists p in G such that p ∼ xk−1, xk, x2 and

p ≁ q, x1. If p ∼ x3, then the vertices x3, p, x2, q, xk−1 induce W4 if x3 ∼ xk−1 (i.e., if k = 5),

or W −

4 otherwise; in both cases, we get a contradiction. Thus p ≁ x3. Let j be the smallest

index greater than 3 such that p ∼ xj . Since p ∼ xk−1, j is well-defined. But then, the vertices

q, p, x2, . . . , xj induce W −

j with j < k, contradicting the choice of k. �

Lemma 5.5. Let X be a triangle-square flag complex such that G(X) satisfies the triangle

and the quadrangle conditions TC(v) and QC(v), for some basepoint v. Then X is simply

connected.

Proof. A loop in X is a sequence (w1,w2, ...,wk,w1) of vertices of X consecutively joined by

edges. To prove the lemma it is enough to show that every loop in X can be freely homotoped

to a constant loop v. By contradiction, let A be the set of loops in G(X), which are not

freely homotopic to v, and assume that A is non-empty. For a loop C ∈ A let r(C) denote

the maximal distance d(w, v) of a vertex w ∈ C to the basepoint v. Clearly r(C) ≥ 2 for any

loop C ∈ A (otherwise C would be null-homotopic). Let B ⊆ A be the set of loops C with

minimal r(C) among loops in A. Let r ∶= r(C) for some C ∈ B. Let D ⊆ B be the set of

loops having minimal number e of edges in the r-sphere around v, i.e. with both endpoints

at distance r from v. Further, let E ⊆ D be the set of loops with the minimal number m of

vertices at distance r from v.

Consider a loop C = (w1,w2, ...,wk,w1) ∈ E. We can assume without loss of generality that

d(w2, v) = r. We distinguish two cases corresponding to the triangle or quadrangle condition

that we apply to them.

Case 1: d(w1, v) = r or d(w3, v) = r. Assume without loss of generality that d(w1, v) = r.
Then, by the triangle condition TC(v), there exists a vertex w ∼ w1,w2 with d(w, v) = r − 1.

Observe that the loop C ′ = (w1,w,w2, ...,wk,w1) belongs to B – in X it is freely homotopic

to C by a homotopy going through the triangle ww1w2. The number of edges of C ′ lying on

the r-sphere around v is less than e (we removed the edge w1w2). This contradicts the choice

of the number e.

Case 2: d(w1, v) = d(w3, v) = r−1. By the quadrangle condition QC(v), there exists a vertex

w ∼ w1,w3 with d(w, v) = r−2. Again, the loop C ′ = (w1,w,w3, ...,wk,w1) is freely homotopic

to C (via the square w1w2w3w). Thus C ′ belongs to D and the number of its vertices at

distance r from v is equal to m − 1. This contradicts the choice of the number m.

In both cases above we get contradiction. It follows that the set A is empty and hence the

lemma is proved. �
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5.2. Proof of (i)⇒(ii). Since the cube condition implies the 3-cube condition and the prism

condition implies the 3-prism condition, if X is a bucolic complex, then its 2-skeleton X(2)

satisfies the condition (ii), thus (i)⇒(ii).

5.3. Proof of (ii)⇒(iii). To prove the implication (ii)⇒(iii) of Theorem 1, from now on,

we suppose that X is a connected (but not necessarily simply connected) triangle-square flag

complex satisfying the wheel, the 3-prism, and the 3-cube conditions. The most difficult part

of the proof is to show that the 1-skeleton of X is weakly modular. To show this, we closely

follow the proof method of a local-to-global characterization of weakly systolic complexes

provided by Osajda [33] using the level-by-level construction of the universal cover of X.

5.3.1. Structure of the construction. We construct the universal cover X̃ of X as an increas-

ing union ⋃i≥1 X̃i of triangle-square complexes. The complexes X̃i are in fact spanned by

concentric combinatorial balls B̃i in X̃. The covering map f is then the union ⋃i≥1 fi, where

fi ∶ X̃i →X is a locally injective cellular map such that fi∣X̃j
= fj , for every j ≤ i. We denote

by G̃i = G(X̃i) the underlying graph of X̃i. We denote by S̃i the set of vertices B̃i ∖ B̃i−1.
Pick any vertex v of X as the basepoint. Define B̃0 = {ṽ} ∶= {v}, B̃1 ∶= B1(v,G), and

f1 ∶=IdB1(v,G). Let X̃1 be the triangle-square complex spanned by B1(v,G). Assume that, for

i ≥ 1, we have constructed the vertex sets B̃1, . . . , B̃i, and we have defined the triangle-square

complexes X̃1 ⊆ ⋯ ⊆ X̃i (for any 1 ≤ j < k ≤ i we have an identification map X̃j → X̃k) and the

corresponding cellular maps f1, . . . , fi from X̃1, . . . , X̃i, respectively, to X so that the graph

G̃i = G(X̃i) and the complex X̃i satisfy the following conditions:

(Pi) Bj(ṽ, G̃i) = B̃j for any j ≤ i;
(Qi) G̃i is weakly modular with respect to ṽ (i.e., G̃i satisfies the conditions TC(ṽ) and

QC(ṽ));

(Ri) for any ũ ∈ B̃i−1, fi defines an isomorphism between the subgraph of G̃i induced by

B1(ũ, G̃i) and the subgraph of G induced by B1(fi(ũ),G);
(Si) for any w̃, w̃′ ∈ B̃i−1 such that the vertices w = fi(w̃),w′ = fi(w̃′) belong to a square

ww′uu′ of X, there exist ũ, ũ′ ∈ B̃i such that fi(ũ) = u, fi(ũ′) = u′ and w̃w̃′ũũ′ is a

square of X̃i.

(Ti) for any w̃ ∈ S̃i ∶= B̃i ∖ B̃i−1, fi defines an isomorphism between the subgraphs of G̃i and

of G induced by B1(w̃, G̃i) and fi(B1(w̃, G̃i)).
It can be easily checked that B̃1, G̃1, X̃1 and f1 satisfy the conditions (P1),(Q1),(R1),(S1),

and (T1). Now we construct the set B̃i+1, the graph G̃i+1 having B̃i+1 as the vertex-set, the

triangle-square complex X̃i+1 having G̃i+1 as its 1-skeleton, and the map fi+1 ∶ X̃i+1 →X. Let

Z = {(w̃, z) ∶ w̃ ∈ S̃i and z ∈ B1(fi(w̃),G) ∖ fi(B1(w̃, G̃i))}.

On Z we define a binary relation ≡ by setting (w̃, z) ≡ (w̃′, z′) if and only if z = z′ and one of

the following two conditions is satisfied:

(Z1) w̃ and w̃′ are the same or adjacent in G̃i and z ∈ B1(fi(w̃),G) ∩B1(fi(w̃′),G);
(Z2) there exists ũ ∈ B̃i−1 adjacent in G̃i to w̃ and w̃′ and such that fi(ũ)fi(w̃)zfi(w̃′) is

a square-cell of X.
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In what follows, the above relation will be used in the inductive step to construct X̃i+1,

fi+1 and all related objects.

5.3.2. Definition of G̃i+1. In this subsection, performing the inductive step, we define G̃i+1
and fi+1. First however we show that the relation ≡ defined in the previous subsection is an

equivalence relation. The set of vertices of the graph G̃i+1 will be then defined as the union

of the set of vertices of the previously constructed graph G̃i and the set of equivalence classes

of ≡.

Lemma 5.6. The relation ≡ is an equivalence relation on Z.

Proof. For any vertex w̃ ∈ B̃i, we will denote by w = fi(w̃) its image in X under fi. Since

the binary relation ≡ is reflexive and symmetric, it suffices to show that ≡ is transitive. Let

(w̃, z) ≡ (w̃′, z′) and (w̃′, z′) ≡ (w̃′′, z′′). We will prove that (w̃, z) ≡ (w̃′′, z′′). By definition

of ≡, we conclude that z = z′ = z′′. By definition of ≡, z ∈ B1(w,G) ∩B1(w′,G) ∩B1(w′′,G).
If w̃ ∼ w̃′′ (in G̃i), then by definition of ≡, (w̃, z) ≡ (w̃′′, z) and we are done. If w̃ ≁ w̃′′ and if

there exists ũ ∈ B̃i−1 such that ũ ∼ w̃, w̃′′, then by (Ri) applied to ũ, we obtain that u ∼ w,w′′

and w ≁ w′′. Since (w̃, z), (w̃′′, z) ∈ Z, we have z ∼ w,w′′. Moreover, if z ∼ u, then by (Ri)

applied to u, there exists z̃ ∈ B̃i, such that z̃ ∼ ũ, w̃, w̃′′ and fi(z̃) = z. Thus (w̃, z), (w̃′, z) ∉ Z,

which is a contradiction. Consequently, if w̃ ≁ w̃′′ and if there exists ũ ∈ B̃i−1 such that

ũ ∼ w̃, w̃′′ and fi(ũ) = u, then uwzw′′ is an induced square in G, and by condition (Z2), we

are done. Therefore, in the rest of the proof, we will make the following assumptions and

show that they lead to a contradiction.

(A1) w̃ ≁ w̃′′;

(A2) there is no ũ ∈ S̃i−1 such that ũ ∼ w̃, w̃′′.

Claim 1. For any couple (w̃, z) ∈ Z the following properties hold:

(A3) there is no neighbor z̃ ∈ B̃i−1 of w̃ such that fi(z̃) = z;
(A4) there is no neighbor ũ ∈ B̃i−1 of w̃ such that u ∼ z;
(A5) there are no x̃, ỹ ∈ B̃i−1 such that x̃ ∼ w̃, ỹ and y ∼ z.

Proof. If w̃ has a neighbor z̃ ∈ B̃i−1 such that fi(z̃) = z, then (w̃, z) ∉ Z, a contradiction. This

establishes (A3).
If w̃ has a neighbor ũ ∈ B̃i−1 such that u ∼ z, then by (Ri) applied to ũ, there exists z̃ ∈ B̃i

such that z̃ ∼ ũ, w̃. Thus (w̃, z) ∉ Z, a contradiction, establishing (A4).
If there exist x̃, ỹ ∈ B̃i−1 such that x̃ ∼ w̃, ỹ and y ∼ z, then yxwz is an induced square

in G. From (Si) applied to ỹ, x̃, there exists z̃ ∈ B̃i such that z̃ ∼ ỹ, w̃ and fi(z̃) = z. Thus

(w̃, z) ∉ Z, a contradiction, and therefore (A5) holds as well. �

We distinguish three cases depending on which of the conditions (Z1) or (Z2) are satisfied

by the pairs (w̃, z) ≡ (w̃′, z′) and (w̃′, z′) ≡ (w̃′′, z′′).

Case 1: w̃′ is adjacent in G̃i to both w̃ and w̃′′.
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By (Qi), the graph G̃i satisfies the triangle condition TC(ṽ), thus there exist two vertices

ũ, ũ′ ∈ S̃i−1 such that ũ is adjacent to w̃, w̃′ and ũ′ is adjacent to w̃′, w̃′′. By (A2), ũ ≁ w̃′′,

ũ′ ≁ w̃, ũ ≠ ũ′.
If ũ ∼ ũ′, then by (Ti) applied to w̃′ and by (A3)&(A4), the vertices u,u′,w,w′,w′′, z induce

W5 in G. By TC(ṽ), there exists x̃ ∈ S̃i−2 such that x̃ ∼ ũ, ũ′. By (Ri) applied to ũ and ũ′,

we get x ∉ {u,u′,w,w′,w′′} and x ∼ u,u′. From (A4)&(A5), we get x ≠ z and x ≁ z. Since G

satisfies the Ŵ5-wheel condition, there exists a vertex y of G adjacent to x,u, u′,w,w′,w′′, z.

By (Ri) applied to ũ, there exists ỹ ∼ w̃, ũ, x̃ and thus ỹ ∈ B̃i−1, contradicting the property

(A4).
Suppose now that ũ ≁ ũ′. Then i ≥ 2 and by QC(ṽ), there exists x̃ ∈ S̃i−2 such that

x̃ ∼ ũ, ũ′. From (A4)&(A5), x ≠ z and x ≁ z. Consequently, z,w,w′,w′′, u, u′, x induce a W −

6 ,

contradicting Lemma 5.4.

Case 2: w̃ and w̃′ are adjacent in G̃i, and there exists ũ′ ∈ B̃i−1 adjacent to w̃′ and w̃′′ such

that u′w′w′′z is a square-cell of X.

By (A1)&(A2), w̃ ≁ w̃′′ and ũ′ ≁ w̃. By the triangle condition TC(ṽ) for G̃i, there exists a

vertex ũ ∈ B̃i−1 different from ũ′ and adjacent to w̃ and w̃′. By (A3)&(A4), u ≠ z and u ≁ z.
By (A2), ũ ≁ w̃′′.

If ũ ∼ ũ′, by (Ti) applied to w′, z,w,w′, u, u′,w′′ induce a W −

5 , contradicting Lemma 5.4.

Thus ũ ≁ ũ′. By the quadrangle condition QC(ṽ) for G̃i, there exists a vertex x̃ ∈ S̃i−2 adjacent

to ũ and ũ′. From (A4)&(A5), x ≠ z and x ≁ z. By (Ti) applied to w̃′ and by (Ri) applied

to ũ′, we get that z,w,w′,w′′, u, u′, x induce a twin-house. By Lemma 5.2 there exists y in

G such that y ∼ w,w′′, u′, x and y ≁ u, z. By (Ri) applied to u′, there exists ỹ ∈ B̃i such that

ỹ ∼ ũ′, w̃′′, x̃. By (Si) applied to ũ, x̃ and to the square uxyw, we get ỹ ∼ w̃. Consequently,

ỹ ∈ S̃i−1, ỹ ∼ w̃, w̃′′, contradicting (A2).

Case 3: There exist ũ, ũ′ ∈ B̃i−1 such that the vertex ũ is adjacent in G̃i to w̃, w̃′, the vertex

ũ′ is adjacent to w̃′, w̃′′, and uwzw′ and u′w′zw′′ are square-cells of X.

From (A1)&(A2), w̃ ≁ w̃′′, ũ ≠ ũ′, ũ ≁ w̃′′, and ũ′ ≁ w̃. From (A3), u ≠ z ≠ u′ and z ≁ u,u′.
If ũ ∼ ũ′, by (Ti) applied to w′ and by (Ri) applied to u,u′, the vertices z,w,w′,w′′, u, u′

induce a double-house, which is impossible from Lemma 5.3. Thus ũ ≁ ũ′.
By QC(ṽ), there exists x̃ ∈ S̃i−2 such that x̃ ∼ ũ, ũ′. By (A4)&(A5), x ≠ z and x ≁ z.

By (Ti) applied to w′ and by (Ri) applied to u,u′, the vertices z,w,w′,w′′, u, u′, x induce

CW3. Thus, by the 3-cube condition, there exists a vertex y of G such that y ∼ x,w,w′′ and

y ≁ z,w′, u, u′. By (Ri) applied to x̃, there is ỹ ∈ B̃i such that ỹ ∼ x̃. By (Si) applied to ũ, x̃

and to the square uxyw, we have ỹ ∼ w̃. By (Si) applied to ũ′, x̃ and to the square u′xyw′′,

we get ỹ ∼ w̃′′. Consequently, ỹ ∈ S̃i−1, ỹ ∼ w̃, w̃′′, contradicting (A2). �

Let S̃i+1 denote the equivalence classes of ≡, i.e., S̃i+1 = Z/≡. For a couple (w̃, z) ∈ Z, we

will denote by [w̃, z] the equivalence class of ≡ containing (w̃, z). Set B̃i+1 ∶= B̃i ∪ S̃i+1. Let

G̃i+1 be the graph having B̃i+1 as the vertex set in which two vertices ã, b̃ are adjacent if and

only if one of the following conditions holds:

25



(1) ã, b̃ ∈ B̃i and ã̃b is an edge of G̃i,

(2) ã ∈ B̃i, b̃ ∈ S̃i+1 and b̃ = [ã, z],
(3) ã, b̃ ∈ S̃i+1, ã = [w̃, z], b̃ = [w̃, z′] for a vertex w̃ ∈ B̃i, and z ∼ z′ in the graph G.

Finally, we define the map fi+1 ∶ B̃i+1 → V (X) in the following way: if ã ∈ B̃i, then

fi+1(ã) = fi(ã), otherwise, if ã ∈ S̃i+1 and ã = [w̃, z], then fi+1(ã) = z. Notice that fi+1 is

well-defined because all couples representing ã have one and the same vertex z in the second

argument. In the sequel, all vertices of B̃i+1 will be denoted with a tilde and their images in

G under fi+1 will be denoted without tilde, e.g. if w̃ ∈ B̃i+1, then w = fi+1(w̃).

5.3.3. Properties of G̃i+1 and fi+1. In this subsection we check our inductive assumptions,

verifying the properties (Pi+1) through (Ti+1) for G̃i+1 and fi+1 defined above. In particular

it allows us to define the corresponding complex X̃i+1.

Lemma 5.7. G̃i+1 satisfies the property (Pi+1), i.e., Bj(v, G̃i+1) = B̃j for any j ≤ i + 1.

Proof. By definition of edges of G̃i+1, any vertex b̃ of S̃i+1 is adjacent to at least one vertex of

B̃i and all such neighbors of b̃ are vertices of the form w̃ ∈ B̃i such that b̃ = [w̃, z] for a couple

(w̃, z) of Z. By definition of Z, w̃ ∈ S̃i, whence any vertex of S̃i+1 is adjacent only to vertices

of S̃i and S̃i+1. Therefore, the distance between the basepoint ṽ and any vertex ã ∈ B̃i is the

same in the graphs G̃i and G̃i+1. On the other hand, the distance in G̃i+1 between ṽ and any

vertex b̃ of S̃i+1 is i + 1. This shows that indeed Bj(v, G̃i+1) = B̃j for any j ≤ i + 1. �

Lemma 5.8. G̃i+1 satisfies the property (Qi+1), i.e., the graph G̃i+1 is weakly modular with

respect to the basepoint ṽ.

Proof. First we show that G̃i+1 satisfies the triangle condition TC(ṽ). Pick two adjacent

vertices x̃, ỹ having in G̃i+1 the same distance to ṽ. Since by Lemma 5.7, G̃i+1 satisfies the

property (Pi+1) and the graph G̃i is weakly modular with respect to ṽ, we can suppose that

x̃, ỹ ∈ S̃i+1. From the definition of the edges of G̃i+1, there exist two couples (w̃, z), (w̃, z′) ∈ Z
such that w̃ ∈ B̃i, z is adjacent to z′ in G, and x̃ = [w̃, z], ỹ = [w̃, z′]. Since w̃ is adjacent in

G̃i+1 to both x̃ and ỹ, the triangle condition TC(ṽ) is established.

Now we show that G̃i+1 satisfies the quadrangle condition QC(ṽ). Since the properties

(Pi+1) and (Qi) hold, it suffices to consider a vertex x̃ ∈ S̃i+1 having two nonadjacent neighbors

w̃, w̃′ in S̃i. By definition of G̃i+1, there exists a vertex z of X and couples (w̃, z), (w̃′, z) ∈ Z
such that x̃ = [w̃, z] and x̃ = [w̃′, z]. Hence (w̃, z) ≡ (w̃′, z). Since w̃ and w̃′ are not adjacent,

by condition (Z2) in the definition of ≡ there exists ũ ∈ B̃i−1 adjacent to w̃ and w̃′, whence

x̃, w̃, w̃′ satisfy QC(ṽ). �

We first prove that the mapping fi+1 is a graph homomorphism (preserving edges) from

G̃i+1 to G. In particular, this implies that two adjacent vertices of G̃i+1 are mapped in G to

different vertices.

Lemma 5.9. fi+1 is a graph homomorphism from G̃i+1 to G, i.e., for any edge ã̃b of G̃i+1,

ab is an edge of G.
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Proof. Consider an edge ã̃b of G̃i+1. If ã, b̃ ∈ B̃i, the lemma holds by (Ri) or (Ti) applied

to ã. Suppose that ã ∈ S̃i+1. If b̃ ∈ B̃i, then ã = [̃b, a], and ab is an edge of G. If b̃ ∈ B̃i+1,
then the fact that ã and b̃ are adjacent implies that there exists a vertex w̃ ∈ B̃i such that

ã = [w̃, a], b̃ = [w̃, b] and such that a ∼ b in G. �

We now prove that fi+1 is locally surjective at any vertex in B̃i.

Lemma 5.10. If ã ∈ B̃i and if b ∼ a in G, then there exists a vertex b̃ of G̃i+1 adjacent to ã

such that fi+1(̃b) = b.

Proof. If ã ∈ B̃i−1, the lemma holds by (Ri). Suppose that ã ∈ S̃i and consider b ∼ a in G. If ã

has a neighbor b̃ ∈ B̃i mapped to b by fi, we are done. Otherwise (ã, b) ∈ Z, [ã, b] ∼ ã in G̃i+1
and [ã, b] is mapped to b by fi+1. �

Before proving the local injectivity of fi+1, we formulate a technical lemma.

Lemma 5.11. Let (w̃, a), (w̃′, a) ∈ Z be such that (w̃, a) ≡ (w̃′, a). If (w̃, b) ∈ Z and b ∼ w′

in G, then w̃ ∼ w̃′, (w̃′, b) ∈ Z and (w̃, b) ≡ (w̃′, b).

Proof. First suppose that w̃ ≁ w̃′. Since (w̃, a) ≡ (w̃′, a), there exists ũ ∈ S̃i−1 such that

ũ ∼ w̃, w̃′ and wuw′a is an induced square in G. In G, b ∼ w,w′, thus b,w, u, a,w′ induce K2,3

if b ≁ a, u, W4 if b ∼ a, u, or W −

4 otherwise. In any case, we get a contradiction.

Thus w̃ ∼ w̃′. If (w̃′, b) ∉ Z, then there exists b̃ ∈ B̃i such that b̃ ∼ w̃′ and fi(̃b) = b. In G,

wbw′ is a triangle, thus b̃ ∼ w̃ by condition (Ri) applied to b̃. This implies that (w̃, b) ∉ Z.

Consequently, (w̃, b), (w̃′, b) ∈ Z and (w̃, b) ≡ (w̃′, b) since w̃ ∼ w̃′. �

We can now prove that fi+1 is locally injective.

Lemma 5.12. If ã ∈ B̃i+1 and b̃, c̃ are distinct neighbors of ã in G̃i+1, then b ≠ c.

Proof. First note that if b̃ ∼ c̃, the assertion holds by Lemma 5.9; in the following we assume

that b̃ ≁ c̃. If ã, b̃, c̃ ∈ B̃i, the lemma holds by (Ri) or (Ti) applied to ã. Suppose first that

ã ∈ B̃i. If b̃, c̃ ∈ S̃i+1, then b̃ = [ã, b] and c̃ = [ã, c], and thus b ≠ c. If b̃ ∈ B̃i and c̃ = [ã, c] ∈ S̃i+1,
then (ã, b) ∉ Z, and thus c ≠ b. Thus, let ã ∈ S̃i+1.

If b̃, c̃ ∈ B̃i and ã ∈ S̃i+1, then ã = [̃b, a] = [c̃, a]. Since (̃b, a) ≡ (c̃, a) and since b̃ ≁ c̃, there

exists ũ ∈ B̃i−1 such that ũ ∼ b̃, c̃ and abuc is an induced square of G. This implies that b ≠ c.
If ã, b̃, c̃ ∈ S̃i+1, then there exist w̃, w̃′ ∈ B̃i such that b̃ = [w̃, b], c̃ = [w̃′, c], and ã = [w̃, a] =

[w̃′, a]. If b = c, then [w̃, b] = [w̃′, b] = [w̃′, c] by Lemma 5.11, and thus b̃ = c̃, which is

impossible.

If ã, b̃ ∈ S̃i+1 and c̃ ∈ S̃i, then there exists w̃ ∈ S̃i such that b̃ = [w̃, b] and ã = [w̃, a] = [c̃, a].
If w̃ ∼ c̃, then (w̃, c) ∉ Z and thus, (w̃, c) ≠ (w̃, b), i.e., b ≠ c. If w̃ ≁ c̃, since [w̃, a] = [c̃, a],
there exists ũ ∈ S̃i−1 such that ũ ∼ w̃, c̃ and such that acxu is an induced square of G. Since

w̃ and c̃ are not adjacent, by (Ri) applied to ũ, w and c are not adjacent as well. Since w ∼ b,
this implies that b ≠ c. �

Lemma 5.13. If ã ∼ b̃, c̃ in G̃i+1, then b̃ ∼ c̃ if and only if b ∼ c.
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Proof. If b̃ ∼ c̃, then b ∼ c by Lemma 5.9. Conversely, suppose that b ∼ c in G. If ã, b̃, c̃ ∈ B̃i,
then b̃ ∼ c̃ by condition (Ri) applied to ã. Therefore, further we will assume that at least one

of the vertices ã, b̃, c̃ does not belong to B̃i.

First suppose that ã ∈ B̃i. If b̃, c̃ ∈ S̃i+1, b̃ = [ã, b] and c̃ = [ã, c]. Since b ∼ c, by construction,

we have b̃ ∼ c̃ in G̃i+1. Suppose now that b̃ = [ã, b] ∈ Si+1 and c̃ ∈ B̃i. If there exists b̃′ ∼ c̃ in G̃i
such that fi(̃b′) = b, then by (Ri) applied to c̃, ã ∼ b̃′ and (ã, b) ∉ Z, which is a contradiction.

Thus (c̃, b) ∈ Z and since c̃ ∼ ã, [c̃, b] = [ã, b] = b̃, and consequently, c̃ ∼ b̃. Therefore, let

ã ∈ S̃i+1.
If b̃, c̃ ∈ B̃i and ã ∈ S̃i+1, then ã = [̃b, a] = [c̃, a] and either b̃ ∼ c̃, or there exists ũ ∈ S̃i−1 such

that ũ ∼ b̃, c̃ and ubac is an induced square in G, which is impossible because b ∼ c.
If ã, b̃ ∈ S̃i+1 and c̃ ∈ B̃i, then there exists w̃ ∈ B̃i such that b̃ = [w̃, b] and ã = [w̃, a] = [c̃, a].

By Lemma 5.11, (c̃, b) ∈ Z and b̃ = [w̃, b] = [c̃, b]. Consequently, c̃ ∼ b̃.
If ã, b̃, c̃ ∈ S̃i+1, there exist w̃, w̃′ ∈ B̃i such that b̃ = [w̃, b], c̃ = [w̃′, c] and ã = [w̃, a] = [w̃′, a].

If w̃ ∼ c̃ or w̃′ ∼ b̃, then b̃ ∼ c̃ because b ∼ c. Suppose now that w̃ ≁ c̃, w̃′ ≁ b̃. From previous case

applied to ã, b̃ ∈ S̃i+1 (respectively, ã, c̃ ∈ S̃i+1) and w̃′ ∈ B̃i (respectively, w̃ ∈ B̃i), it follows

that w ≁ c and w′ ≁ b. If w̃ ∼ w̃′, then a, b,w,w′, c induce W4 in G, which is impossible. Since

[w̃, a] = [w̃′, a], there exists ũ ∈ S̃i−1, such that ũ ∼ w̃, w̃′ and such that awuw′ is an induced

square in G. If u ∼ b, then by (Ri) applied to u, there exists b̃′ ∈ B̃i mapped to b by fi such

that b̃′ ∼ ũ, w̃ and thus (w̃, b) ∉ Z, which is a contradiction. Using the same arguments, we

have that u ≁ c and thus, a, b, c,w′, u,w induce W −

5 in G, which is impossible. �

We can now prove that the image under fi+1 of an induced triangle or square is an induced

triangle or square.

Lemma 5.14. If ã̃bc̃ is a triangle in G̃i+1, then abc is a triangle in G. If ã̃bc̃d̃ is an induced

square of G̃i+1, then abcd is an induced square in G. In particular, the graph G̃i+1 does not

contain induced K2,3 and W −

4 .

Proof. For triangles, the assertion follows directly from Lemma 5.9. Consider now a square

ã̃bc̃d̃. From Lemmas 5.9 and 5.12, the vertices a, b, c, and d are pairwise distinct and a ∼ b,
b ∼ c, c ∼ d, d ∼ a. From Lemma 5.13, a ≁ c and b ≁ d. Consequently, abcd is an induced

square in G.

Now, if G̃i+1 contains an induced K2,3 or W −

4 , from the first assertion and Lemma 5.13 we

conclude that the image under fi+1 of this subgraph will be an induced K2,3 or W −

4 in the

graph G, a contradiction. �

The second assertion of Lemma 5.14 implies that replacing all 3-cycles and all induced

4-cycles of G̃i+1 by triangle- and square-cells, we will obtain a triangle-square flag complex,

which we denote by X̃i+1. Then obviously G̃i+1 = G(X̃i+1). The first assertion of Lemma 5.14

and the flagness of X imply that fi+1 can be extended to a cellular map from X̃i+1 to X: fi+1
maps a triangle ã̃bc̃ to the triangle abc of X and a square ã̃bc̃d̃ to the square abcd of X.

Lemma 5.15. fi+1 satisfies the conditions (Ri+1) and (Ti+1).
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Proof. From Lemmas 5.12 and 5.13, we know that for any w̃ ∈ B̃i+1, fi+1 induces an isomor-

phism between the subgraph of G̃i+1 induced by B1(w̃, G̃i+1) and the subgraph of G induced

by fi+1(B1(w̃, G̃i+1)). Consequently, the condition (Ti+1) holds. From Lemma 5.10, we know

that fi+1(B1(w̃, G̃i+1)) = B1(w,G) and consequently (Ri+1) holds as well. �

Lemma 5.16. For any w̃, w̃′ ∈ B̃i such that the vertices w = fi+1(w̃),w′ = fi+1(w̃′) belong to

a square ww′u′u of X, there exist ũ, ũ′ ∈ B̃i+1 such that fi+1(ũ) = u, fi+1(ũ′) = u′ and w̃w̃′ũ′ũ

is a square of X̃i+1, i.e., X̃i+1 satisfies the property (Si+1).

Proof. By Lemma 5.15 applied to w̃ and w̃′, we know that in G̃i+1 there exist a unique ũ

(respectively, a unique ũ′) such that ũ ∼ w̃ (respectively, ũ′ ∼ w̃′) and fi+1(ũ) = u (respectively,

fi+1(ũ) = u′). By Lemma 5.15, w̃ (respectively, w̃′) is the unique neighbor of ũ (resp. ũ)

mapped to w (respectively, w′) by fi+1.

Note that if w̃, w̃′ ∈ B̃i−1, the lemma holds by condition (Si). Let us assume further that

w̃ ∈ S̃i.

Case 1. w̃′ ∈ S̃i−1.

If ũ′ ∈ B̃i−1, by (Si) applied to w̃′ and ũ′, we conclude that w̃w̃′ũ′ũ is a square in G̃i+1.

If ũ′ ∈ S̃i and ũ ∈ S̃i−1, then Lemma 5.15 applied to w̃, implies that ũ is not adjacent to w̃′.

Thus, by the quadrangle condition QC(ṽ), there exists x̃ ∈ S̃i−2 such that x̃ ∼ ũ, w̃′. Hence,

w,w′, u, u′, x induce in G a forbidden K2,3,W
−

4 , or W4, which is impossible.

Suppose now that ũ′, ũ ∈ S̃i. By TC(ṽ), there exists x̃ ∈ S̃i−1 different from w̃′ such that

x̃ ∼ ũ, w̃. Since G does not contain W −

4 or W4, x ≁ u′,w′ and the vertices u,w,w′, u′, x induce

a house. By the 3-prism condition there exists y in G such that y ∼ x,u′,w′ and y ≁ u,w.

Since x ≁ w′, by Ri applied to w̃, x̃ ≁ w̃′. Applying QC(ṽ), there exists z̃ ∈ S̃i−2 such that

z̃ ∼ x̃, w̃′ and z̃ ≁ w̃. Since z̃ ∈ S̃i−2, z̃ ≁ ũ′ and thus by Ri+1 applied to w̃′, z ≁ u′. Consequently,

z ≠ y. Thus, from Lemma 5.14, xzw′w is an induced square of G and y, x, z,w′,w induce a

K2,3 if z ≁ y and W −

4 otherwise, which is impossible. Note that if ũ′ has a neighbor ũ2 in B̃i
mapped to u , then, exchanging the roles of ũ′ and w̃, we also get a contradiction. Suppose

now that neither w̃ nor ũ′ has a neighbor in B̃i mapped to u. Thus, (w̃, u), (ũ′, u) ∈ Z and

since w̃′ ∈ S̃i−1 is adjacent to w̃ and ũ′, (w̃, u) ≡ (ũ′, u). Consequently, w̃w̃′ũ′[w̃, u] is a square

of G̃i+1 which is mapped by fi+1 to the square ww′u′u.

Case 2. w̃′ ∈ S̃i.

If ũ ∈ S̃i−1, exchanging the role of w̃′ and ũ, we are in the previous case and thus there

exists ũ′′ ∼ w̃′, ũ such that fi+1(ũ′′) = u′. By Lemma 5.15, we get that ũ′ = ũ′′ and we are

done. For the same reasons, if ũ′ ∈ S̃i−1, applying Case 1 with w̃′ in the role of w̃ and ũ′ in

the role of w̃′, we are done.

If ũ ∈ S̃i, by TC(ṽ) there exists x̃ ∈ B̃i−1 such that x̃ ∼ w̃, ũ. Thus, in G there exists x ∼ u,w
and, since G does not contain W4 or W −

4 , x ≁ u′,w′. Applying the 3-prism condition, we get

y in G such that y ∼ u′,w′, x and y ≁ u,w. Applying the previous case to w̃, x̃ and the square

wxyw′ of G, we know that there exists ỹ ∈ B̃i such that w̃x̃ỹw̃′ is an induced square in G̃i+1.

From Lemma 5.15 applied to w̃′, we deduce that ỹ ∼ ũ′. Applying (Si) to x̃, ỹ and to the
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square xyu′u, we get that ũ ∼ ũ′, thus w̃w̃′ũ′ũ is a square in G̃i+1. If ũ′ ∈ S̃i, then exchanging

the roles of w̃, w̃′, ũ, ũ′ we also get that w̃w̃′ũ′ũ is a square in G̃i+1.

Suppose now that w̃ has no neighbor in B̃i mapped to u and that w̃′ has no neighbor

in B̃i mapped to u′. Thus, there exist [w̃, u] and [w̃′, u′] in S̃i+1. By TC(ṽ), there exists

x̃ ∈ S̃i−1 such that x̃ ∼ w̃, w̃′. In G, x ∼ w,w′ and x ≁ u,u′ since G does not contain W −

4 or W4.

Applying the 3-prism condition, there is a vertex y in G such that y ∼ u,u′ and y ≁ w,w′. By

(Ri) applied to x̃, there exists ỹ in B̃i such that ỹ ∼ x̃ and ỹ ≁ w̃, w̃′. If ỹ has a neighbor in B̃i
mapped to u, then applying the previous case to w̃, x̃ and the square wxyu, we conclude that

w̃ has a neighbor in B̃i mapped to u, which is impossible. Consequently, (ỹ, u) ∈ Z, and since

there is x̃ ∈ Si−1 such that x̃ ∼ w̃, ỹ and wxyu is an induced square in G, (ỹ, u) ≡ (w̃, u). Using

the same arguments, one can show that there exists (ỹ, u′) ∈ [w̃′, u′]. Since yuu′ is a triangle

in G, and since [w̃, u] = [ỹ, u] and [w̃′, u′] = [ỹ, u′], there is an edge in G̃i+1 between [w̃, u]
and [w̃′, u′]. Consequently, w̃w̃′[w̃′, u′][w̃, u] is a square of G̃i+1 satisfying the lemma. �

5.3.4. The universal cover X̃. Let X̃v denote the triangle-square complex obtained as the

directed union ⋃i≥0 X̃i with a vertex v of X as the basepoint. Denote by G̃v the 1-skeleton of

X̃v. Since each G̃i is weakly modular with respect to ṽ, the graph G̃v is also weakly modular

with respect to ṽ. Thus the complex X̃v is simply connected by virtue of Lemma 5.5. Let

also f = ⋃i≥0 fi be the map from X̃v to X.

Lemma 5.17. For any w̃ ∈ X̃v, St(w̃, X̃v) is isomorphic to St(w,X) where w = f(w̃).

Consequently, f ∶ X̃v → X is a covering map.

Proof. Note that, since X̃v is a flag complex, a vertex x̃ of X̃v belongs to St(w̃, X̃v) if and

only if either x̃ ∈ B1(w̃, G̃v) or x̃ has two non-adjacent neighbors in B1(w̃, G̃v).
Consider a vertex w̃ of Xv. Let i be the distance between ṽ and w̃ in G̃v and consider the

set B̃i+2. Then the vertex-set of St(w̃, X̃v) is included in B̃i+2. From (Ri+2) we know that f

is an isomorphism between the graphs induced by B1(w̃, G̃v) and B1(w,G).
For any vertex x in St(w,X)∖B1(w,G) there exists an induced square wuxu′ in G. From

(Ri+2), there exist ũ, ũ′ ∼ w̃ in G̃v such that ũ ≁ ũ′. From (Si+2) applied to w̃, ũ and since

w̃ has a unique neighbor ũ′ mapped to u′, there exists a vertex x̃ in G̃v such that f(x̃) = x,

x̃ ∼ ũ, ũ′ and x̃ ≁ w̃. Consequently, f is a surjection from V (St(w̃, X̃v)) to V (St(w,X)).
Suppose by way of contradiction that there exist two distinct vertices ũ, ũ′ of St(w̃, X̃v) such

that f(ũ) = f(ũ′) = u. If ũ, ũ′ ∼ w̃, by condition (Ri+1) applied to w̃ we get a contradiction.

Suppose now that ũ ∼ w̃ and ũ′ ≁ w̃ and let z̃ ∼ w̃, ũ′. This implies that w,u, z are pairwise

adjacent in G. Since f is an isomorphism between the graphs induced by B1(w̃, G̃v) and

B1(w,G), we conclude that z̃ ∼ ũ. But then f is not locally injective around z̃, contradicting

the condition (Ri+2). Suppose now that ũ, ũ′ ≁ w̃. Let ã, b̃ ∼ ũ, w̃ and ã′, b̃′ ∼ ũ′, w̃′. If ã′ = ã
or ã′ = b̃, then applying (Ri+2) to ã′, we get that f(ũ) ≠ f(ũ′). Suppose now that ã′ ∉ {ã, b̃}.

Then the subgraph of G induced by a′,w, a, b, u is either K2,3 if a′ ≁ a, b, or W4 if a′ ∼ a, b, or

W −

4 otherwise. In all cases, we get a contradiction.

Hence f is a bijection between the vertex-sets of St(w̃, X̃v) and St(w,X). Since Xv is a

flag complex, by (Ri+2), ã ∼ b̃ in St(w̃, X̃v) if and only if a ∼ b in St(w,X). By (Ri+2) applied
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to w and since X and X̃v are flag complexes, ã̃bw̃ is a triangle in St(w̃, X̃v) if and only if

abw is a triangle in St(w,X). By (Ri+2) and since X is a flag complex, if ã̃bc̃w̃ is a square in

St(w̃, X̃), then abcw is a square in St(w,X). Conversely, by the conditions (Ri+2) and (Si+2)

and flagness of X̃v, we conclude that if abcw is a square in St(w,X), then ã̃bc̃w̃ is a square in

St(w̃, X̃v). Consequently, for any w̃ ∈ X̃v, f defines an isomorphism between St(w̃, X̃v) and

St(w,X), and thus f is a covering map. �

Lemma 5.18. X̃v satisfies the 3–prism, the 3–cube, and the Ŵ5–wheel conditions, and the

graph G̃v does not contain induced K2,3,W
−

4 , and W4. Moreover, if G is W5–free, then G̃v is

also W5–free.

Proof. If G̃v contains an induced K2,3 or W −

4 , there exists i such that G̃i contains an induced

K2,3 or W −

4 , contradicting Lemma 5.14. Let C ∈ {W4,W5} be an induced subgraph of G̃v.

By Lemma 5.17 applied to the center of the wheel, the subgraph induced by f(V (C)) is

isomorphic to C. Since G does not contain any induced W4, the graph G̃v also does not

contain any induced W4 and if G is W5–free, G̃v is also W5–free.

3–prism condition: Let ũũ′w̃′w̃x̃ be a house in X̃v where, ũũ′w̃′w̃ is a square and ũw̃x̃ is a

triangle. Consider the image of this house by f , i.e. uu′w′wx in X. If the image is not an

induced subgraph of X then, by Lemma 5.17 (applied to ũ), we have x ∼ w′ and the vertices

x,u, u′,w,w′ induce a W −

4 , a contradiction. Thus uu′w′wx is an induced house in X. By the

3–prism condition in X, there exists a vertex y ∈ G such that y ∼ u′,w′, x and y ≁ u,w. Since

f is locally bijective, there exists ỹ ∼ x̃ such that f(ỹ) = y. Since f is an isomorphism from

St(x̃, X̃v) to St(x,X), considering the squares xyu′u and xyw′w, we get that ỹ ∼ ũ′, w̃′ and

ỹ ≁ ũ, w̃. Thus, X̃v satisfies the 3–prism condition.

3–cube condition: Consider three squares x̃ã1b̃3ã2, x̃ã2b̃1ã3, x̃ã3b̃2ã1 in X̃v. By Lemma 5.17

applied to x̃, the images xa1b3a2 of x̃ã1b̃3ã2, xa2b1a3 of x̃ã2b̃1ã3 and xa3b2a1 of x̃ã3b̃2ã1 are

squares of X. By the 3–cube condition, in G there exists a vertex y such that y ∼ bi and

y ≁ x, ai, for all i. Moreover, for all distinct i, j, bi ≁ ai and bi ≁ bj . By Lemma 5.17 applied

to ã1, ã2, ã3, for all distinct i, j, b̃i ≁ ãi and b̃i ≁ b̃j . Since f is locally bijective, there exists

ỹ ∼ b̃1 such that f(ỹ) = y. Since f is an isomorphism from St(̃b1, X̃v) to St(b1,X), we get

that ỹ ∼ b̃2, b̃3 and ỹ ≁ ã2, ã3. When considering St(̃b2, X̃v), we get that ỹ ≁ ã1. If ỹ ∼ x̃, G̃v
contains an induced K2,3, a contradiction. Thus, X̃ also satisfies the 3–cube condition.

Ŵ5–wheel condition: ConsiderW5 in G̃v made of a 5–cycle (x̃1, x̃2, x̃3, x̃4, x̃5, x̃1) and a vertex c̃

adjacent to all vertices of this cycle. Suppose that there exists a vertex z̃ such that z̃ ∼ x̃1, x̃2
and z̃ ≁ x̃3, x̃4, x̃5, c̃. By Lemma 5.17, the vertices c, x1, x2, x3, x4, x5 are all distinct and

they induce W5 in G. Moreover, z ∉ {c, x1, x2, x3, x4, x5}, and z ≁ c, x3, x5. Similarly, if

z ∼ x4 then zx2x3x4 is a square and, by Lemma 5.17 (applied to x̃2), we have z̃ ∼ x̃4, a

contradiction. By the Ŵ5–wheel condition for X, there exists y ∼ c, z, x1, x2, x3, x4, x5 in G.

Consider the neighbor ỹ of c̃ such that f(ỹ) = y. Since St(c̃, X̃v) is isomorphic to St(c,X),
ỹ ∼ x̃1, x̃2, x̃3, x̃4, x̃5. Considering the star St(x̃1, X̃v), we conclude that ỹ ∼ z̃. Consequently,

X̃v satisfies the Ŵ5–wheel condition. �

31



Now, we are ready to complete the proof of the implication (ii)⇔(iii). Let X be a connected

triangle-square flag complex satisfying the local conditions of (ii). By Lemma 5.17, f ∶ X̃v →X

is a covering map. By Lemma 5.5, X̃v is simply connected, thus X̃v is the universal cover

X̃ of X. Therefore the triangle-square complexes X̃v, v ∈ V (X), are all universal covers of

X, whence they are all isomorphic. Since for each vertex v of X, the graph G̃v = G(X̃v) is

weakly modular with respect to the basepoint v, we conclude that the 1-skeleton G(X̃) of

X̃ is weakly modular with respect to each vertex, thus G(X̃) is a weakly modular graph.

Since X̃ is isomorphic to any X̃v, by Lemma 5.18, X̃ satisfies the same local conditions as

X. Thus X̃ satisfies the wheel, the 3-prism, and the 3-cube conditions. If, additionally, X is

simply connected, then the universal cover X̃ is X itself. Therefore, X coincides with X̃v for

any choice of the basepoint v ∈ V (X). Therefore, by what has been proven above, G(X) is a

bucolic graph. This establishes the implication (ii)⇒(iii) of Theorem 1.

5.4. Proof of (iii)⇒(ii). Let X be a prism flag complex such that G ∶= G(X) is a weakly

modular graph not containing induced W4. Then G does not contain induced K2,3 and W −

4

because G is the 1-skeleton of a flag triangle-square cell complex X(2) and both K2,3 and

W −

4 contain squares intersecting on two edges. From Lemma 5.5 we conclude that X(2) (and

therefore X) is simply connected. Thus, it remains to show that X satisfies the 3-prism, the

3-cube, and the Ŵ5-wheel conditions. First suppose that the triangle uvw and the square

uvxy define in X a house. Then w is at distance 2 to the adjacent vertices x and y. By the

triangle condition, there exists a vertex w′ adjacent to w,x, and y and different from u and

v. If w′ is adjacent to one or both of the vertices u, v, then we will get a forbidden W −

4 or W4

induced by u, v, x, y,w′. This establishes the 3-prism condition.

To prove the 3-cube condition, let xyuv, uvwz, and uytz be three squares of X pairwise

intersecting in edges and all three intersecting in u. If x and w are adjacent, then the vertices

v, x,w, u, y, z induce in X a double house, which is impossible by Lemma 5.3 because X

satisfies the 3-prism condition. Hence x ≁ w and analogously x ≁ t and t ≁ w. If x is adjacent

to z, then x, y, u, t, z induce in G a forbidden K2,3. Thus x ≁ z and analogously y ≁ w and

v ≁ t. First suppose that d(x, z) = 2 in G. Since d(y, z) = 2, by the triangle condition there

exists a vertex s adjacent to x, y, and z. From what has been shown before, s ≠ u, t, hence

y, u, z, t, s induce K2,3, W
−

4 , or W4 depending of whether s is adjacent to none, one or two

of the vertices u, t. Thus, d(x, z) = 3 and for the same reasons, d(y,w) = d(v, t) = 3. By the

quadrangle condition there exists a vertex s adjacent to x,w, t and distinct from previous

vertices. Since d(x, z) = d(w,y) = d(t, v) = 3, s ≁ z, y, v. If s is adjacent to u, then s, u, v,w, z

induce a forbidden K2,3. This shows that in this case the vertices s, t, u, v,w, x, y, z define a

3-cube, establishing the 3-cube condition.

Finally, we establish the Ŵ5-wheel condition. Note that X satisfies the 3-cube and the

3-prism conditions and does not contain a X(W −

5 ) by Lemma 5.4. Pick a 5-wheel defined

by a 5-cycle (x1, x2, x3, x4, x5, x1) and a vertex c adjacent to all vertices of this cycle, and

suppose that x0 is a vertex adjacent to x1 and x5 and not adjacent to remaining vertices of

this 5-wheel. If d(x0, x3) = 3, then by the quadrangle condition QC(x0), there exists a vertex
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y adjacent to x0, x2, x4 and not adjacent to x3. Then the vertices c, y, x2, x3, x4 induce a W4

if y is adjacent to c, and a W −

4 otherwise. So, suppose that d(x0, x3) = 2. By the triangle

condition TC(x0), there exists a vertex z adjacent to x0, x2, x3. Suppose that z ≁ c. If

z ∼ x1, then x2, x1, z, x3, c induce a forbidden W4. If z ∼ x5, the vertices x1, x2, c, x5, z induce

a forbidden W4 if z ∼ x1 or a W −

4 otherwise. If z ≁ x1, x5, the vertices z, x2, c, x5, x0, x1 induce

a forbidden W −

5 . Thus, z ∼ c. To avoid a forbidden W −

4 or W4 induced by z, c, x1, x0, x5, the

vertex z must be adjacent to x1 and x5. Finally, to avoid W4 induced by z, c, x3, x4, x5, the

vertex z must be adjacent to x4 as well. As a result, we conclude that z is adjacent to x0
and to all vertices of the 5-wheel, establishing the Ŵ5-wheel condition. This concludes the

proof of the implication (iii)⇒(ii).

Before proving the implication (ii)&(iii)⇒(i), we will establish the last assertion of Theorem

1. Let X be a flag prism complex satisfying the wheel, the cube, and the prism conditions.

Then its 2-skeleton Y ∶= X(2) is a triangle-square flag complex satisfying the wheel, the 3-

cube, and the 3-prism conditions. Let X̃ be the universal cover of X. Then the 2-skeleton X̃(2)

of X̃ is a covering space of Y. But at the same time X̃(2) is simply connected (because the

2-skeleton carries all the information about the fundamental group), so X̃(2) is the universal

cover of Y. Since X̃ is the prism complex of X̃(2) and X̃(2) = Ỹ satisfies the condition (ii) of

Theorem 1, we conclude that X̃ is a bucolic complex.

5.5. Proof of (ii)&(iii)⇒(i). Now, we will show that a flag prism complex X satisfying the

conditions (ii) and (iii) of Theorem 1 also satisfies the cube and the prism conditions. We

start with an auxiliary result and some conventions.

Lemma 5.19. Any prism H (and in particular, any cube) of X is convex, i.e., G(H) induces

a convex subgraph of G(X).

Proof. If the 1-skeleton G(H) of a prism H is not convex in G(X), then G(H) is not locally

convex since G(X) is weakly modular; cf. [18, Theorem 7]. Thus we can find two vertices x, y

of H at distance 2 in G(H) having a common neighbor outside H. Since x and y already have

two common (non-adjacent) neighbors in H, we will obtain in G(X) a forbidden K2,3,W
−

4 ,

or W4. �

Further we will use recurrently this result without referring to Lemma 5.19, simply saying

that the prisms and the cubes of X are convex. Furthermore, when we say that some vertex

set or some subgraph π of G(X) is a prism or a cube, we mean that π is the 0-skeleton or the

1-skeleton of a prism or a cube of X. In that case, if the meaning is clear from the context,

we will denote the resulting prism or cube also by π. Finally, the notation Qn stands for the

n-cube and Kn for the n-clique or n-simplex.

Cube condition. Let q1, q2, q3 be three k-cubes of X that share a common (k−2)-cube q and

pairwise share common (k − 1)-cubes qij . Note that the vertices of qij ∖ q span a (k − 2)-cube

and those of qi ∖ qij span a (k − 1)-cube. For a vertex x of q, let xij be the unique neighbor

of x in qij ∖ q. Let xi be the second common neighbor in qi of the vertices xij and xik; xi is

in qi ∖ (qij ∪ qik). By the 3-cube condition, there exists a vertex x∗ such that x∗ ∼ x1, x2, x3
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and x∗ ≁ x12, x13, x23, and the vertices x∗, x, x12, x13, x23, x1, x2, x3 constitute a 3-cube qx of

X. Since x2 ∈ I(x∗, x12), x2 ∉ q1, and the cube q1 is convex, x∗ ∉ q1. For similar reasons,

x∗ ∉ q2, q3. Now, for another vertex y of q we denote by y12, y13, y23, y1, y2, y3, y
∗ the vertices

defined in the same way as for x and we denote by qy the 3-cube spanned by these vertices

and y. From the definition of these vertices we conclude that all xi, xij , yi, yij are distinct

and for all distinct i, j ∈ {1,2,3}, xij ∼ yij as well as xi ∼ yi hold if and only if x ∼ y.

Lemma 5.20. For any x, y ∈ q, for any distinct i, j, k, x ≁ yi, yij, xik ≁ yi, yij , yj and xi ≁ yj.

Proof. If x (respectively, xik) is adjacent to yi or yij , then since x ∼ xij (respectively, xik ∼ xi),
either the cube qi will contain a triangle or the cube qi∖qik is not convex, which are impossible.

Since xik ∼ x and x ≁ yj , the convexity of qj ensures that xik ≁ yj . Finally, the convexity of

qi ensures that xi ≁ yj , since yj ∼ yij and xi ≁ yij . �

Lemma 5.21. For any x, y ∈ q, for any distinct i, j, x∗≁ y, yi, yij.

Proof. First suppose by way of contradiction that x∗ is adjacent to y or yij . Since x∗ ∉ qi,
x∗ ∼ xi, and since xi ≁ y, yij by Lemma 5.20, we get a contradiction with the convexity of

qi. Suppose now by way of contradiction that x∗ ∼ yi. If x ≁ y, then xi ≁ yi and since

both xi, yi ∈ qi are adjacent to x∗ ∉ qi, we obtain a contradiction with the convexity of qi.

Now, suppose that x ∼ y. Then xi ∼ yi, xij ∼ yij and the vertices xj , xij , yij , yi, xi, x
∗ define

a double-house; by Lemma 5.3, it implies that xj ∼ yij , contradicting Lemma 5.20. Thus,

x∗≁ yi. �

Lemma 5.22. The set {x∗ ∶ x ∈ q} spans a (k−2)-cube q′ of X and the vertices of q1∪q2∪q3∪q′
span a (k + 1)-cube of X.

Proof. First note that since y1 ∼ y∗ and y1 ≁ x∗ by Lemma 5.21, we have that x∗ ≠ y∗. To

prove the first assertion of the lemma, since q is a (k − 2)-cube of X, it suffices to show that

x∗∼ y∗ if and only if x ∼ y.

First suppose that x is adjacent to y. Consider the three 2-cubes induced by the 4-

cycles (x1, x∗, x2, x12, x1), (x1, y1, y12, x12, x1), and (x2, y2, y12, x12, x2) of G(X). By the 3-

cube condition, they are included in a 3-cube of X, i.e., there exists a vertex s adjacent to

x∗, y1, and y2. Since (y1, y12, y2, y∗, y1) is an induced 4-cycle in the 1-skeleton of the 3-cube

qy, it is also an induced 4-cycle of G(X). Since G(X) does not contain induced K2,3, W
−

4 or

W4, we conclude that s = y∗ or s = y12. Since x∗∼ s and x∗≁ y12 from Lemma 5.21, s = y∗ and

x∗ ∼ y∗. Conversely, suppose that x∗ ∼ y∗ and assume that x ≁ y. Then xi ≁ yi and xij ≁ yij .
Since xi, yi ∈ qi and since qi is convex, we conclude that d(xi, yi) = 2, (otherwise, (xi, x∗, y∗, yi)
would be a shortest path from xi to yi). Since qi is a cube, it implies that d(x, y) = 2. Let

z be a common neighbor of x and y in the cube q and let qz be the 3-cube spanned by the

vertices z, z12, z13, z23, z1, z2, z3, z
∗. Since z ∼ x, y, z1 ∼ x1, y1 and z∗ ∼ x∗, y∗. Consequently,

the vertices x1, z1, y1, y
∗, z∗, x∗ define a double-house, and from Lemma 5.3, it implies that

x1 ∼ y1, a contradiction. Therefore, x∗∼ y∗ if and only if x ∼ y, whence q′ is a (k − 2)-cube.

From Lemmas 5.20 and 5.21, and since q′ is a (k − 2)-cube, the vertices of q1 ∪ q2 ∪ q3 ∪ q′
span a (k + 1)-cube of X. �
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Prism condition: Let q be a k-cube intersecting a simplex σ in an edge xy. We will prove

that q ∪ σ is included in a prism of X. Let uv be the unique edge of the k-cube q that

is the farthest from xy such that d(x,u) = d(y, v) = k − 1 and d(x, v) = d(y, u) = k. Let

σ = {x, y,w1, . . . ,wm}. Since q is convex, d(wi, u) = d(wi, v) = k for any i = 1, . . . ,m.

Lemma 5.23. If q is a 2-cube (i.e., k = 1), then q and σ satisfy the prism condition.

Proof. By the 3-prism condition, the square q = xyvu together with each triangle xywi of σ

is included in a 3-prism Hi. Let ai be the common neighbor in Hi of u, v, and wi. Then

ai ≠ aj for i ≠ j, otherwise wj ∈ I(ai, y), contrary to the convexity of Hi. On the other hand,

if ai ≁ aj , by the triangle condition there exists a vertex b adjacent to ai, aj ,wj . To avoid

a forbidden W −

4 or W4 induced by ai, u, v, aj , b necessarily b ∼ u, v. But then v, b, aj , y,wj
induce a forbidden W −

4 or W4 because aj ≁ y. This shows that ai ∼ aj , i.e., the vertices of σ

together with u, v, a1, . . . am span a prism K2 ◻Km+2. �

Now let k ≥ 2 and proceed by induction on k. Denote by q′ = I(x,u) and q′′ = I(y, v) the

two disjoint (k −1)-cubes obtained from q by removing all edges parallel to xy (and uv). Let

x′ be an arbitrary neighbor of x in q′ and let y′ be the neighbor of y in q′′ such that xyy′x′

is a square of q. Finally, let u′ be the neighbor of u in q′ and v′ be the neighbor of v in q′′

such that uu′ and vv′ are parallel in q to xx′ and yy′. Then u′ ∼ v′ and uvv′u′ is a square of

q. Consider the decomposition of the k-cube q with respect to the squares xyy′x′ and uvv′u′

into four (k − 2)-cubes qx = I(x,u′), qy = I(y, v′), qy′ = I(y′, v), and qx′ = I(x′, u). Note that

qx ∪ qy and qx′ ∪ qy′ are two (k − 1)-cubes constituting q.

By the triangle condition, for each vertex wi of σ there exists a vertex w′

i adjacent to

wi, x
′, y′. Since w′

i ∈ I(wi, x′) ⊂ I(wi, u) and w′

i ∈ I(wi, y′) ⊂ I(wi, v), we conclude that

d(w′

i, u) = d(w′

i, v) = k − 1. By the triangle condition, there exists a vertex ai adjacent to u

and v at distance k − 2 from w′

i (and at distance k − 1 from wi).

Lemma 5.24. The interval I(wi, ai) spans a (k − 1)-cube qi such that qi ∪ q′ ∪ q′′ is a prism.

Proof. Since ai, u
′ ∈ I(u,wi), by the quadrangle condition there exists a vertex bi ∼ u′, ai at

distance k − 2 from wi. By the 3-prism condition, the square uu′biai and the triangle uaiv

are included into a 3-prism H. Since H is convex and v′ ∈ I(u′, v), necessarily v′ belongs to

H, whence bi ∼ v′. Applying the induction hypothesis to σ and the (k − 1)-cube qx ∪ qy, we

conclude that I(wi, bi) spans a (k − 2)-cube q′i such that q′i ∪ qx ∪ qy is a prism Qk−2 ×K3.

Analogously, applying the induction hypothesis to the 3-simplex w′

ix
′y′ and the (k − 1)-cube

qx′ ∪ qy′ , we conclude that I(w′

i, ai) spans a (k − 2)-cube q′′i such that q′′i ∪ qx′ ∪ qy′ is a prism

Qk−2 ×K3.

We show now that q′i∪q′′i is a (k−1)-cube. If q′i∩q′′i ≠ ∅, then a simple distance comparison

shows that bi ∈ I(w′

i, ai). Since ai ∈ I(w′

i, u) and u′ ∈ I(bi, u), we obtain that u′ ∈ I(w′

i, u),
contrary to the assumption that q′′i ∪ qx′ is a (k − 1)-cube. Thus q′i and q′′i are disjoint. Now,

pick any vertex z of q′i. Let xz be the unique neighbor of z in qx, x′z be the unique neighbor of

xz in qx′ , and wz be the unique neighbor of x′z in q′′i . We will prove by induction on r = d(z, bi)
that z and wz are adjacent. If r = 0, then we are done because z = bi, xz = u′, x′z = u, and

35



wz = ai. Now, let r > 0. Let s be a neighbor of z in the interval I(z, bi). Since d(s, bi) = r−1, by

the induction assumption the vertex s together with the vertices xs ∈ qx, x′s ∈ qx′ , and ws ∈ q′′i
span a square. Applying the 3-cube condition to this square and the squares zxzxss, xzx

′

zx
′

sxs,

we conclude that the vertices z, xz, x
′

z, s, xs, x
′

s,ws are included in a 3-cube. Since this cube

is convex and wz ∈ I(x′z,ws), necessarily wz belongs to this cube, whence z ∼ wz. Finally,

we show that wz is the unique neighbor of z in q′′i . Suppose by way of contradiction that z

is adjacent to yet another vertex t ∈ q′′i . Since the cube q′′i is convex, wz ∼ t. Let t′ be the

neighbor of t in qx′ . Since t ∼ wz, necessarily t′ ∼ x′z. By the 3-prism condition, the square

wztt
′x′z and the triangle ztwz are included in a convex 3-prism. Since xz ∈ I(z, x′z), necessarily

xz belongs to this prism, i.e., xz ∼ t′. But then the vertex xz of qx has two neighbors in the

cube qx′ , contrary to the fact that qx ∪ qx′ is a (k − 1)-cube. This establishes that q′i ∪ q′′i is a

(k − 1)-cube and that qi ∪ q′ ∪ q′′ is a prism Qk−1 ◻K3. �

Lemma 5.25. If i ≠ j, then qi ∪ qj is a k-cube and q′ ∪ q′′ ∪ qi ∪ qj is a prism Qk−1 ◻K4.

Proof. First we show that the cubes qi and qj are disjoint. If this is not the case and

z ∈ qi ∩ qj , then d(z,wi) = d(z,wj). By the triangle condition, there exists a vertex z0 ∈
I(z,wi) ∩ I(z,wj) ⊆ qi ∩ qj adjacent to wi and wj . Since z0 belongs to qi and qj , z0 has

a neighbor x0 ∈ q′ and a neighbor y0 ∈ q′′ such that x0 ∼ y0 and x0 ∼ x, y0 ∼ y. But then

the vertices x, y, z0, x0, y0,wi define a 3-prism, which is not convex because wj ∈ I(x, z0), a

contradiction. Hence, the (k − 1)-cubes qi and qj are disjoint.

Now, we show that ai ∼ aj . Suppose by way of contradiction that ai ≁ aj . Consider the

vertices u′ ∈ q′ and v′ ∈ q′′ defined above. Recall that u′ ∼ v′ and u′ ∼ u, v′ ∼ v. From Lemma

5.24 we know that u′ has a unique neighbor bi in qi and a unique neighbor bj in qj ; moreover,

bi ∼ ai, v
′ and bj ∼ aj , v

′. By induction assumption applied to the simplex σ and to the

(k−1)-cube qx ∪ qy spanned by the parallel edges xy and u′v′, we conclude that bi ∼ bj . Now,

applying the case k = 1 (Lemma 5.23) to the 4-simplex spanned by bi, bj , u
′, v′ and to the

2-cube spanned by u′, u, v, v′, we will obtain a contradiction. Thus ai ∼ aj .
Finally, we establish that qi ∪ qj is a k-cube. Pick two adjacent vertices z′ ∈ q′ and z′′ ∈ q′′,

and let x′ ∈ qi and y′ ∈ qj be their common neighbors. If z′ = u and z′′ = v, then x′ = ai, y′ = aj
and x′ ∼ y′ because ai ∼ aj . Otherwise, if z′ ≠ u, z′′ ≠ v, then x′ ∼ y′ follows from the induction

hypothesis applied to σ and the cube spanned by the parallel edges xy and z′z′′. This shows

that indeed qi ∪ qj is a cube.

Since by Lemma 5.24 q ∪ qi and q ∪ qj are prisms of the form Qk−1 ◻K3 and qi ∪ qj is a

k-cube, we obtain that q ∪ qi ∪ qj is a prism Qk−1 ◻K4. �

From Lemma 5.25 we immediately conclude that the vertex set of the union of q with

∪mi=1qi spans a prism Qk ◻Km+2, thus establishing the prism condition. This also concludes

the proof of the implication (ii)&(iii)⇒(i) of Theorem 1 and finishes the proof of Theorem 1.

6. Contractibility and the fixed point property

In this section, we prove contractibility and the fixed point theorem for finite group actions

for locally-finite bucolic complexes. The proofs of both results are based on the fact that in
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a locally-finite graph the convex hull of any finite set is finite (this property is no longer true

for non-locally-finite bucolic graphs).

6.1. Convex hulls of finite sets.

Proposition 2. If G = (V,E) is a locally-finite bucolic graph, then the convex hull conv(S)
in G of any finite set S ⊂ V is finite.

Proof. By Theorem 2, G is a retract of the (weak) Cartesian product H = ◻i∈IHi of weakly

bridged graphs Hi. Each Hi is locally-finite since it is isomorphic to a gated subgraph of G.

Note that G is an isometric subgraph of H. For each index i ∈ I, let Si denote the projection

of S in Hi. Since the set S is finite and the distance between any two vertices of S is finite,

for all but a finite set I ′ of indices i the set Si is a single vertex. Since each set Si is finite,

it is included in a ball of Hi, which is necessarily finite. Since the balls in weakly bridged

graphs are convex, we conclude that for each Si, the convex hull convHi(Si) of Si in Hi is

finite. The convex hull convH(S) of S in H is the Cartesian product of the convex hulls of

the sets convHi(Si): convH(S) = ◻i∈IconvHi(Si). All convHi(Si) for i ∈ I ∖ I ′ are singletons,

thus the size of convH(S) equals the size of ◻i∈I′convHi(Si), and thus is finite because I ′ is

finite and each factor convHi(Si) in this product is finite by what has been shown above.

Since A ∶= V ∩ convH(S) is convex in G and it contains the set S, the convex hull of S in

G is necessarily included in A. Thus this convex hull is finite, concluding the proof of the

proposition. �

Now, we show that Proposition 2 is false for non-locally-finite bucolic graphs. Namely, we

present an infinite bridged graph G in which all maximal cliques have size 3 (i.e., the systolic

complex whose 1-skeleton is G has dimension 3) and the convex hull of five of its vertices is

infinite.

Example. The graph G consists of a graph H of girth 6 (recall that the girth of a graph is

the length of its smallest cycle) and a vertex c not belonging to H and adjacent to all vertices

of H. Obviously G is bridged, has diameter 2, and clique-number 3. The graph H is defined

in the following way: it has a set of four pairwise nonadjacent vertices A = {a0, a1, a2, a3} and

a one-way infinite path P = {b0, b1, b2, . . . , bj , . . .} disjoint from A. In H, bj is adjacent to ai
if and only if j = i mod 4. For any distinct vertices ai, aj , dH(ai, aj) ≥ 3 and thus any cycle

containing ai and aj has length at least 6. Any shortest cycle containing only one vertex

ai, has the form (bj , bj+1, bj+2, bj+3, bj+4, aj mod 4, bj) and has also length at least 6. Thus the

girth of H is 6. Now, take the convex hull in G of the 5-point set A ∪ {b0}. For each j, note

that bj is in the interval I(bj−1, aj mod 4). Consequently, one can easily show by induction on

j that conv(A) is the whole graph G.

6.2. Contractibility.

Theorem 3. Locally-finite bucolic complexes are contractible.

Proof. Let X be a bucolic complex and let G = (V,E) be its 1-skeleton. Pick any vertex v0
of G and let Bk(v0,G) be the ball of radius k centered at v0. Since G is locally-finite, each
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ball Bk(v0,G) is finite. By Proposition 2 the convex hulls conv(Bk(v0,G)), k ≥ 1, are finite.

Hence V is an increasing union of the finite convex sets conv(Bk(v0,G)), k ≥ 1. A subgraph

G′ of G induced by a convex set of G satisfies the condition (ii) of Theorem 2, thus G′ satisfies

all other conditions of this theorem, whence G′ is bucolic. Hence each subgraph Gk induced

by conv(Bk(v0,G)) is bucolic.

The prism complex X is an increasing union of the finite bucolic complexes X(Gk) of the

graphs Gk, k ≥ 1. Thus, to show that X is contractible, by Whitehead theorem, it suffices to

show that each complex X(Gk) is contractible. By condition (iv) of Theorem 2, the graph

Gk can be obtained via Cartesian products of finite weakly bridged graphs using successive

gated amalgams. The clique complexes of weakly bridged graphs are exactly the weakly

systolic complexes, therefore they are contractible by the results [33]. Cartesian products of

contractible topological spaces are contractible, thus the prism complexes resulting from the

Cartesian products of prime graphs are contractible. Now, if a graph G′ is a gated amalgam

of two finite bucolic graphs G1,G2 with contractible prism complexes X(G1),X(G2) along a

gated subgraph G0 = G1 ∩G2 which also has a contractible prism complex X(G0), then by

the gluing lemma [9, Lemma 10.3], the prism complex X(G′) of the bucolic graph G′ is also

contractible. Therefore, for each k, the prism complex X(Gk) is contractible. This concludes

the proof of the contractibility theorem. �

6.3. Fixed prism property.

Theorem 4. If X is a locally-finite bucolic complex and F is a finite group acting by cell

automorphisms on X, then there exists a prism π of X which is invariant under the action

of F. The center of the prism π is a point fixed by F .

Proof. Let X be a bucolic complex and let G denote the 1-skeleton of X. Let F be a finite

group acting by cell automorphisms on X (i.e., any f ∈ F is a bijection and maps isometrically

prisms onto prisms). Then for an arbitrary vertex v of X, its orbit Fv = {fv ∶ f ∈ F} is

finite. Let Gv be the subgraph of G induced by the convex hull in G of the orbit Fv. Since

Fv is finite, the graph Gv is finite by Proposition 2. Moreover, as a convex subgraph of G,

Gv satisfies the conditions of Theorem 2(ii), hence Gv is bucolic. Clearly, the prism complex

X(Gv) of Gv is F -invariant. Thus there exists a minimal by inclusion finite non-empty bucolic

subgraph G of G whose prism complex is F–invariant. We assert that X(G) is a single prism,

i.e., G is the Cartesian product of complete graphs. We prove this assertion in two steps: first

we show that G is a box, (i.e., a Cartesian product of prime graphs), and then we show that

each prime graph must be a complete graph. By minimality choice of G as an F -invariant

bucolic subgraph, we conclude that each proper bucolic subgraph of G is not F -invariant.

Therefore, the first step of our proof is a direct consequence of the following result.

Proposition 3. If G is a finite bucolic graph, then there exists a box that is invariant under

every automorphism of G.
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Proof. If G is a box, then the assertion is trivially true. Suppose now that G is not a box

and assume without loss of generality that each proper bucolic subgraph of G is not Aut(G)-
invariant. By Theorem 2(iv), G is a gated amalgam of two proper nonempty gated subgraphs

G′ and G′′ along a common gated subgraph H0. Then we say that H0 is a gated separator of

G. Following [10], we will call U ′ ∶= G′ ∖H0 a peripheral subgraph of G if U ′ does not contain

any gated separator of G.

Since G is not a box, it contains at least one gated separator, and therefore G contains at

least one peripheral subgraph (indeed, among all gated separators of G it suffices to consider

a gated separator H0 so that G is the gated amalgam of G′ and G′′ along H0 and G′ has

minimum size; then G′ ∖H0 is a peripheral subgraph). Let U = {Ui ∶ i ∈ I} be the family

of all peripheral subgraphs of G, such that G is the gated amalgam of G′

i and G′′

i along

the gated separator Hi, where Ui = G′

i − Hi and G′′

i ≠ Hi. Note that any automorphism

f of G maps peripheral subgraphs to peripheral subgraphs, thus the subgraph ⋃i∈I Ui and

the subgraph H = ⋂i∈I G′′

i induced by the complement of this union are both AutovG)-
invariant subgraphs of G. As an intersection of gated subgraphs of G, the graph H is either

empty or a proper gated subgraph of G. In the second case, since gated subgraphs of G are

bucolic, we conclude that H is a proper bucolic Aut(G)-invariant subgraph of G, contrary

to minimality of G. So, H is empty. By the Helly property for gated sets of a metric space

[22], we can find two indices i, j ∈ I such that the gated subgraphs G′′

i and G′′

j are disjoint.

Since Hi ∩ Hj ⊆ G′′

i ∩ G′′

j , the gated separators Hi and Hj are disjoint. But in this case,

since Ui = G′

i ∖Hi is peripheral, we conclude that Hj is contained in G′′

i (analogously, Hi

is contained in G′′

j ). Thus Hi ∪Hj ⊆ G′′

i ∩G′′

j , contrary to the choice of G′′

i and G′′

j . This

finishes the proof of the proposition. �

Thus G is a box, and to finish the proof of Theorem 4 it is enough to show the following.

Proposition 4. The graph G is the Cartesian product of complete graphs, i.e., X(G) is a

prism.

Proof. Let G = G1 ◻⋯◻Gk, where each factor Gi, i = 1, . . . , k, is a 2-connected finite weakly

bridged graph. By [21, Theorem B] every factor Gi is dismantlable. Since dismantlable graphs

form a variety (cf. e.g. [32, Theorem 1]), it follows that the strong product G′ = G1⊠⋯⊠Gk is

dismantlable. Observe that the finite group F acts by automorphisms on G′. By the definition

of the strong product, any clique of G′ is included in a prism of X(G). By [34, Theorem A],

there exists a clique σ in G′ invariant under the action of F . Since F acts by cellular

automorphisms on X(G), it follows that F fixes the minimal prism containing all vertices of

σ (treated as vertices of G, and hence of X(G)). By the minimality choice of G it follows

that X(G) is itself a prism. �

This concludes the proof of the fixed prism theorem. �
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7. Moorability of weakly bridged graphs

In this section, we extend Theorem 5.1 of [21] and prove that non-locally-finite weakly

bridged graphs without infinite cliques are moorable. This result is established in [21] via a

LexBFS ordering of vertices, which heavily uses local-finiteness of G. Simple examples show

that not every non-locally-finite graph admits a LexBFS ordering. On the other hand, Polat

[36] showed that all graphs admit a BFS (breadth-first-search) ordering and, extending the

result of [19], he showed that this BFS order provides a mooring of non-locally-finite bridged

graphs. In order to circumvent the bottleneck of LexBFS, we refine Polat’s definition of BFS

and define a well-ordering of the vertices of a graph, which is intermediate between BFS and

LexBFS, that we call SimpLexBFS. We show that any (non-locally-finite) graph without infi-

nite cliques admits a SimpLexBFS and that for weakly bridged graphs SimpLexBFS provides

a mooring. This will complete the proof of the implication (iii)⇒(i) of Theorem 2.

Definition 7.1. A well-order ≤ on the vertex-set V (G) of a graph G is a SimpLexBFS order

if for every vertex x ∈ V (G), there exists a mapping Lx ∶ {y ∶ y > x} → 2{t∶t≤x} satisfying the

following conditions (in what follows we set L(x)(y) = ⋃t<xLt(y), for y ≥ x):

(S1) If x < y < z, then Lx(z) ⊆ Ly(z).
(S2) If x < y and L(x)(x) ≠ L(x)(y), then min≤{L(x)(x)∆L(x)(y)} ∈ L(x)(x).
(S3) For x < y, we have Lx(y) = L(x)(y) ∪ {x} if x ∼ y and x ∼ t for all t ∈ L(x)(y), and

Lx(y) = L(x)(y) otherwise.

Consider a graph G and a SimpLexBFS order ≤ on V (G). We now explain how to build a

spanning tree using ≤. Let u0 be the least element of (V (G),≤) and for every vertex v ≠ u0,
let f(v) = min≤{u ∶ u ∈ L(v)(v)}; we say that f(v) is the father of v and f ∶ V (G) → V (G) is

the father map of ≤. Note that for every v ≠ u0, f(v) = min≤{u ∶ u ∼ v}, and thus, f(v) ≤ v.

Since ≤ is a well-order, the set of edges {vf(v) ∶ v ≠ u0} constitutes a spanning tree of G.

The following lemma provides some basic properties of SimpLexBFS orders and can be

easily proved by (transfinite) induction.

Lemma 7.2. Let ≤ be a SimpLexBFS order on V (G), let u0 be the least element of (V (G),≤)
and let (Lx)x∈V (G) be the corresponding family of mappings. Then the following properties

hold:

(1) ≤ is a BFS order, i.e., if v ≤ w, then d(v, u0) ≤ d(w,u0);

(2) if v ≠ u0, then d(f(v), u0) = d(v, u0) − 1;

(3) if f(v) ≠ f(w), then v < w if and only if f(v) < f(w);

(4) if w ∼ v, then f(v) ≤ w.

(5) if v ≤ w, then L(v)(w) ∪ {w} is a clique of V (G);

Properties (2)-(4) also hold for all BFS orderings. On the other hand, (5) is the property

which distinguishes SimpLexBFS from BFS.

Proposition 5. If a graph G does not contain infinite cliques and u0 is an arbitrary vertex

of G, then there exists a SimpLexBFS order ≤ on V (G) such that u0 is the least element of

(V (G),≤).
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Proof. We proceed as in the proof of Lemma 3.6 of [36]. Consider an arbitrary well-order

◁ on V (G). We inductively construct a well-order ≤ on V (G) and a family of mappings

(Lx)x∈V (G) satisfying the conditions (S1), (S2), (S3). For every y ∈ V (G), let Lu0(y) = {u0}
if u0 ∼ y and Lu0(y) = ∅ if u0 ≁ y. Assume that for a set I ⊆ V (G) (including u0), we have

constructed a well-order ≤ and a family of mappings (Lx)x∈I such that:

(P1) If x ∈ I and y ∈ (V (G) ∖ I) ∪ I>x, then Lx(y) ⊆ I≤x, where I>x ∶= {t ∈ I ∶ t > x} and

I≤x ∶= {t ∈ I ∶ t ≤ x}.

(P2) If x, y ∈ I such that x < y and z ∈ (V (G) ∖ I) ∪ I>(y), then Lx(z) ⊆ Ly(z).
(P3) If x ∈ I, y ∈ (V (G) ∖ I) ∪ I>x, and L(x)(x) ≠ L(x)(y), then min≤{L(x)(x)∆L(x)(y)} ∈

L(x)(x).
(P4) If x ∈ I and y ∈ (V (G) ∖ I) ∪ I>x, then Lx(y) = L(x)(y) ∪ {x} if x ∼ y and x ∼ t for all

t ∈ L(x)(y); and Lx(y) = L(x)(y) otherwise.

(P5) If y ∉ I, then LI(y) ∪ {y} induces a clique of G, where LI(y) ∶= ⋃t∈I Lt(y).

If I = V (G), then ≤ is a SimpLexBFS order on V (G) and we are done. Otherwise, if

I ≠ V (G), we iteratively define a set L′ as follows. Initially, let L′ = ∅ and while there exists

y ∈ V (G) ∖ I such that L′ ⊊ LI(y), we add

min
≤

{x ∈ I ∖L′ ∶ ∃y ∈ V (G) ∖ I such that L′ ⊊ LI(y)}

to L′. Since by (P5), for each y ∈ V (G) ∖ I, LI(y) induces a clique of G, and since G does

not contain infinite cliques, after a finite number of steps the iteration stops and that there

exists y ∈ V (G) ∖ I such that LI(y) = L′.
Let w be the least element of ({y ∈ V (G) ∖ I ∶ LI(y) = L′},◁). We extend ≤ by setting

x < w for any x ∈ I. We define Lw as follows: for every y ∉ I∪{w}, we set Lw(y) ∶= LI(y)∪{w}
if w ∼ y and w ∼ t for all t ∈ LI(y); otherwise, we set Lw(y) ∶= LI(y). Let I ′ ∶= I ∪ {w}.

To complete the proof of the proposition, it remains to show that I ′ satisfies the induction

properties (P1)-(P5).

For (P1), if x < w, then the property holds by the induction hypothesis. If x = w, then for

every y ∉ I ∪ {w} we have Lw(y) ⊆ LI(y) ∪ {w} ⊆ I ′.
For (P2), if x < y < w, then the property holds by the induction hypothesis. If x < y = w,

then for every z ∉ I ′ we have Lx(z) ⊆ LI(z) ⊆ Lw(z).
For (P3), if x < w, then the property holds by the induction hypothesis. If x = w, then

for every y ∉ I ′, we have L(w)(y) = LI(y). By the definition of L′ = LI(w) = L(w)(w), either

L(w)(y) = L′ or min≤{L′∆L(w)(y)} ∈ L′.
For (P4), if x < w, then the property holds by the induction hypothesis. If x = w, the

property holds by the definition of Lw.

For (P5), if x < w, then the property holds by the induction hypothesis. If x = w, then, by

induction hypothesis, LI(y) ∪ {y} is a clique of G for every y. If w ∉ Lw(y), then Lw(y) =
LI(y) and we are done. If w ∈ Lw(y), from the definition of Lw(y) it follows that for every

t ∈ LI(y)∪ {y} we have t ∼ w; consequently, Lw(y)∪ {y} = LI(y)∪ {y}∪ {w} is a clique of G,

and we are done. �
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We can now prove the main result of this section.

Proposition 6. Any weakly bridged graph G without infinite cliques is moorable.

Proof. We proceed as in the proof of Theorem 5.1 of [21]. Let u0 be any vertex of G.

By Proposition 5, V (G) admits a SimpLexBFS order ≤, where u0 is the least element of

(V (G),≤). Let (Lx)x∈V (G) be the corresponding family of mappings. For every vertex v ≠ u0,
let f(v) = min≤{u ∶ u ∈ L(v)(v)} be the father map of ≤.

The following property of weakly bridged graphs immediately follows from the convexity

of balls.

Lemma 7.3. If u, v, v′,w are four vertices of a weakly bridged graph G such that u ∼ v, v′
and v, v′ ∈ I(u,w), then v ∼ v′.

We now prove that G satisfies the fellow-traveler property and that f is a mooring of G.

Lemma 7.4. If v ∼ w, then either f(v) = f(w) or f(v) ∼ f(w); additionally, if v ≤ w, then

either f(w) = v or f(w) ∼ v. In particular, the father map f is a mooring of G onto u0.

Proof. Let w′ = f(w) and v′ = f(v). To prove the first assertion of the lemma, we proceed

by induction on i + 1 = max{d(u0, v), d(u0,w)}.

Case 1. d(u0, v) < d(u0,w).
Since ≤ is a BFS order (Lemma 7.2(1)), we have v ≤ w. By Lemma 7.3, v and w′ either

coincide or are adjacent. In the first case we are done because v and therefore w′ are adjacent

to f(v). If v and w′ are adjacent, since i = d(u, v) = d(u,w′), the vertices v′ and f(w′) coincide

or are adjacent by the induction assumption. Again, if v′ = f(w′), we are done. Now suppose

that v′ and f(w′) are adjacent. Since w′ = f(w), we have w′ ≤ v (by Lemma 7.2(4)), and by

the induction hypothesis, v′ ∼ w′. This concludes the analysis of Case 1.

Case 2. d(u0, v) = d(u0,w) = i + 1.

Suppose, without loss of generality that v ≤ w. If the vertices v′ and w′ coincide, then we

are done. If v′ ≠ w′, then v′ ≤ w′ because v ≤ w, and thus v′ ≁ w. If v′ and w′ are adjacent,

then the vertices v,w,w′, v′ define a 4-cycle. Since G is weakly bridged, this cycle cannot

be induced and since v′ ≁ w, we have w′ ∼ v. So, assume by way of contradiction that the

vertices v′ and w′ are not adjacent in G. If v ∼ w′, then v′,w′ ∈ I(v, u0) by Lemma 7.3, and

we get v′ ∼ w′, contrary to our assumptions. Consequently, v′ ≁ w and w′ ≁ v.

Since G is weakly modular, by TC(u0), there exists s ∼ v,w such that d(u0, s) = i. Denote

by S the set of all such vertices s. For every s ∈ S, since s, v′ ∈ I(v, u0) (respectively,

s, v′ ∈ I(w,u0)) and since G is weakly bridged, s ∼ v′ (respectively, s ∼ w′). For every s ∈ S,

since f(v) = v′, v′ ≤ s and thus f(v′) ≤ f(s) and f(s) ∼ v′ by the induction hypothesis. For

the same reasons, for every s ∈ S, we have f(s) ∼ w′. For every p ∼ v′,w′ and any vertex

s ∈ S, the cycle (p, v′, s,w′, p) cannot be induced and thus p ∼ s.

Claim 2. For every s ∈ S, L(v′)(v′) ≠ L(v′)(s).
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Proof of Claim 2. Suppose L(v′)(v′) = L(v′)(s). If L(v′)(w′) = L(v′)(v′), then we obtain

Lv′(s) = L(v′)(s) ∪ {v′} = L(v′)(v′) ∪ {v′} (since L(v′)(v′) ∪ {v′} is a clique and v′ ∼ s)

and Lv′(w′) = L(v′)(v′) (since v′ ≁ w′). Consequently, v′ = min≤{Lv′(w′)∆Lv′(s)} =
min≤{L(w′)(w′)∆L(w′)(s)} and thus s < w′, a contradiction. Otherwise, if L(v′)(w′) ≠
L(v′)(v′), let p = min≤{L(v′)(w′)∆L(v′)(s)}. Since L(v′)(v′) = L(v′)(s), we conclude that

p ∈ L(v′)(s). Consequently, p = min≤{L(w′)(w′)∆L(w′)(s)} and thus s < w′, a contradic-

tion. �

Claim 3. Let s0 be the least vertex of (S,≤) and let p = min≤{L(v′)(v′)∆L(v′)(s0)}. Then

for every s ∈ S we have L(p)(v′) = L(p)(w′) = L(p)(s) and p ≁ s.

Proof of Claim 3. By the definition of p, L(p)(v′) = L(p)(s0). If L(p)(w′) ≠ L(p)(v′), then q =
min≤{L(p)(v′)∆L(p)(w′)} ∈ L(p)(v′) since v′ ≤ w′. Consequently, min≤{L(p)(s0)∆L(p)(w′)} ∈
L(p)(s0), and hence s0 ≤ w′, a contradiction.

Thus L(p)(w′) = L(p)(v′) = L(p)(s0). For every s ∈ S and p′ ∈ L(p)(v′) = L(p)(w′) we have

p′ ∼ s. Since L(p)(v′) is a clique, we get L(p)(v′) ⊆ L(p)(s). Moreover, since v′ < s, we have

L(p)(v′) = L(p)(s). Since p ∉ Lp(s0) and Lp(v) = L(p)(s0) ∪ {p} is a clique, we conclude that

p ≁ s0. If there exists s1 ∈ S such that p ∼ s1, then Lp(s1) = L(p)(s1) ∪ {p} = Lp(v). In this

case, p = min≤(Lp(s1)∆Lp(s0)) ∈ Lp(s1), and thus s1 ≤ s0, contrary to the choice of s0. �

Let s0 be the least vertex of (S,≤) and let s′ = f(s0). By the induction assumption, we

know that s′ ∼ v′,w′ because v′ < w′ < s0. Moreover, since d(s′, u0) = i − 1, we have s′ ≁ v,w.

Let p = min≤{L(v′)(v′)∆L(v′)(s0)}. From Claim 3, s0 ≁ p. Since p ≤ s0, d(u0, p) ≤ i, and

thus, if p ∼ v (respectively, p ∼ w), then s0, p ∈ I(u0, v) (respectively, s0, p ∈ I(u0,w)). By

Lemma 7.3, s0 ∼ p, a contradiction. If p ∼ w′, then p ∼ v′,w′, and thus p ∼ s0, a contradiction.

Since s0 ≁ p, we conclude that s′ = f(s0) ≠ p. If s′ < p, then f(v′) ≤ s′ < p and thus

f(v′) = min≤Lp(v′) = min≤Lp(s0) = f(s0) = s′; consequently, s′, p ∈ Lp(v′) and thus p ∼ s′. If

p < s′, then p = f(v′) and by the induction assumption, s′ ∼ p.
Consequently, v,w, v′,w′, s0, s

′ and p induce in G a Ŵ5. Thus, by the Ŵ5-condition, there

exists a vertex t ∼ v,w, v′,w′, s0, s
′, p. Hence t ∈ S, and t ∼ p, contradicting Claim 3. This

finishes the analysis of Case 2 and concludes the proof of the first assertion of the lemma.

Finally, we claim that the mapping f is a mooring of G onto u0. Indeed, for every v ≠ u0,
we have v ∼ f(v) and d(f(v), u0) = d(v, u0)−1. Moreover, for any edge vw of G, from the first

assertion it follows that either f(v) = f(w) or f(v) ∼ f(w), i.e., f is indeed a mooring. �

This concludes the proof of Proposition 6. �
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[11] Boštjan Brešar, Jeremie Chalopin, Victor Chepoi, Matjaž Kovše, Arnaud Labourel, and Yann Vaxès,
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