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Abstract. We give a simple construction of Gromov hyperbolic Coxeter groups

of arbitrarily large virtual cohomological dimension. Our construction provides

new examples of such groups. Using this one can construct e.g. new groups
having some interesting asphericity properties.

1. Introduction

The question of constructing highly dimensional Gromov hyperbolic groups was
raised several times in the past. Gromov’s loose conjecture [Gro93] (see its pre-
cise version on the Bestvina’s problem list [Bes]) stated that a construction of
such groups always involves nontrivial number theoretic tools (see also the dis-

cussion in [JŚ03]). Eventually Januszkiewicz-Świa̧tkowski [JŚ03] provided a geo-
metric construction of Gromov hyperbolic Coxeter groups in every dimension. It
should be noticed here that before it was believed; cf. a conjecture of Moussong
[Mou88] — that there is a universal bound on the virtual cohomological dimension
of any Gromov hyperbolic Coxeter group (this was supported by a result of Vinberg

[Vin85]). Later several similar constructions appeared [Hag03, JŚ06, ABJ+09]. All
of them are using a fairly advanced machinery of complexes of groups and, more-
over, the groups obtained those ways are always systolic in the sense of [JŚ06]. As

shown by Januszkiewicz-Świa̧tkowski [JŚ07] and the author [Osa07,Osa08] systolic
groups satisfy some very restrictive asphericity properties that make them in a way
asymptotically two-dimensional. In particular they do not “contain asymptotically”
spheres of dimension two and more.

In this paper we give a simple geometric construction of Gromov hyperbolic
Coxeter groups of arbitrarily large virtual cohomological dimension. Actually, it is
the simplest construction of highly dimensional Gromov hyperbolic groups known
to us. Our method is elementary and uses only (in the simplest version) basic facts
about right-angled Coxeter groups. It allows us to construct highly dimensional
Gromov hyperbolic Coxeter groups that are not systolic — they may contain spheres
at infinity. Those are the first examples of this type. On the other hand the general
framework presented here allowed us to provide in [OŚ10] new constructions of
highly dimensional groups with various asphericity properties. This paper bases on
tools and ideas around weakly systolic complexes introduced and developed by the
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author in [Osa10] (cf. also [CO09]). In particular our construction gives examples
of weakly systolic groups of arbitrarily large dimension that are not systolic.

The construction is as follows; cf. the following sections for explanations of all the
notions involved. To construct a Gromov hyperbolic right-angled Coxeter group all
we need is a finite 5–large (or flag no-square) simplicial complex. We construct such
simplicial complexes inductively. Their global cohomological dimension increases
each time. The induction step is itself divided into the following three steps.

The basic construction.

Step 1. Let X be a finite 5–large (i.e. flag no-square) simplicial complex with
Hn(X;Q) 6= 0. Let (W,S) be the Coxeter system whose nerve is X, i.e. X =
L(W,S). Then the virtual cohomological dimension of W is vcd W ≥ n + 1. The
complex X is the link of every vertex of the Davis complex Σ = Σ(W,S) of (W,S).

Step 2. Choose a torsion-free subgroup H of sufficiently large finite index in W .
Then Y = Σ/H is a locally 5–large cubical complex (i.e. with links being flag
no-square simplicial complexes) with Hn+1(Y ;Q) 6= 0.

Step 3. Let X ′ = Th(Y ) be the simplicial thickening of Y (i.e. the simplicial
complex obtained by replacing cubes by simplices spanned on their vertices). Then
X ′ is a finite 5–large simplicial complex with Hn+1(X ′;Q) 6= 0.

This is the end of the inductive step. The constructed complex X ′ can be now
used as the initial complex X again in Step 1. The crucial fact for this construction
to work and the main result of the paper is the following.

Main Theorem (cf. Theorem 4.6 in Section 4). Let X be a finite 5–large simplicial
complex such that Hn(X;Q) 6= 0. Then there exists a torsion-free finite index
subgroup H of W such that the complex X ′ obtained by the basic construction above
is a finite 5–large simplicial complex with Hn+1(X ′;Q) 6= 0. Thus the right-angled
Coxeter group with the nerve X ′ is Gromov hyperbolic of virtual cohomological
dimension at least n+ 2.

Starting with a finite 5–large n0–dimensional simplicial complex X0, after per-
forming k times Steps 1–3, we get a finite 5–large simplicial complex X with
Hn0+k(X;Q) 6= 0. Thus the right-angled Coxeter group with the nerve X is Gro-
mov hyperbolic of virtual cohomological dimension at least n0 + k + 1.

The main idea behind this construction is that one uses the finite quotient X
of an “n–dimensional” complex (of the Davis complex) as the link of vertices in a
new complex (the new Davis complex). Thus the “dimension” of the new complex
jumps up by at least one (since the new complex is a union of cones over its links).
Then one proceeds inductively.

Organization. Sections 2 and 3 are preliminary sections. In particular, in Section
3 we reprove some technical results from [Osa10] concerning thickenings of cubical
complexes. In Section 4 we present in details the basic construction following the
scheme given above. In particular we prove Main Theorem above; cf. Theorem 4.6.
Results from Section 5 show that our construction provides examples of Gromov
hyperbolic groups of arbitrarily large dimension that are asymptotically different
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from the groups known before. In particular we show that our groups can “con-
tain asymptotically” spheres of dimension up to 3; cf. Corollary 5.2 and Examples
afterwards. Finally, in the concluding Section 6 we give some remarks concerning
variants of the basic construction.

Acknowledgment. I thank Jan Dymara, Frédéric Haglund, Tadeusz Januszkiewicz
and Jacek Świa̧tkowski for helpful conversations.

During writing of this paper I found out that the same idea of the basic con-
struction was discovered independently and at the same time by Frédéric Haglund
(unpublished).

2. Preliminaries

2.1. Simplicial complexes. Let X be a simplicial complex. The i–skeleton of X
is denoted by X(i). A subcomplex Y of X is full if every subset A of vertices of
Y contained in a simplex of X, is contained in a simplex of Y . For a finite set
A = {v1, . . . , vk} of vertices of X, by span(A) or by 〈v1, . . . , vk〉 we denote the span
of A, i.e. the smallest full subcomplex of X containing A. A simplicial complex X
is flag whenever every finite set of vertices of X joined pairwise by edges in X, is
contained in a simplex of X. The link of a simplex σ of X is the simplicial complex
Xσ = {τ | τ ∈ X & τ ∩ σ = ∅ & span(τ ∪ σ) ∈ X}.

Let k ≥ 4. The k–cycle (v0, . . . , vk−1, v0) is the triangulation of a circle consisting
of k edges (〈vi, vi+1 (mod k)〉) and k vertices: v0, . . . , vk−1. For k ≥ 4, a flag simplicial
complex X is k–large if there are no j–cycles being full subcomplexes of X, for j < k
(4–large means simply flag). In other words it means that for j < k each j–cycle
has a diagonal, i.e. an edge connecting two nonconsecutive vertices. The term flag
no square is sometimes used instead of 5–large. A complex is locally k–large if all
its links are k–large. A flag simplicial complex is k–systolic, k ≥ 4, if it is simply
connected and locally k–large. A group acting geometrically (i.e. properly and
cocompactly by automorphisms) on a k–systolic complex is called itself k–systolic.
We use the term systolic as an abbreviation for “6–systolic”.

For i ∈ N, a (combinatorial) ball Bi(v,X) of radius i around a vertex v in
a simplicial complex X, is the full subcomplex spanned by the set of vertices at
distance at most i from v. Here the distance between two vertices is the minimal
number of edges in a 1–skeleton path joining the vertices.

2.2. Cubical complexes. Cubical complexes are cell complexes in which every
cell is a cube; see e.g. [Dav08, Appendix A] for a precise definition. It means in
particular that two cubes in a cubical complex intersect along a single subcube.
The link Yv of a vertex v of a cubical complex Y is the simplicial complex that can
be identified with a small sphere around v (simplices of Yv are intersections of the
sphere with cubes). A cubical complex is locally k–large (resp. locally flag) if links
of its vertices are k–large (resp. flag). A lemma of Gromov (cf. [Dav08, Appendix I])
states that a simply connected locally flag (resp. locally 5–large) cubical complex
admits a metric of non-positive (resp. negative) curvature, or in other words a
CAT(0) (resp. CAT(−1)) metric.

The following result is classical; cf. e.g. [BC08, Section 2].

Helly’s Lemma. A finite family of pairwise nontrivially intersecting convex sub-
complexes of a CAT(0) cubical complex has nontrivial intersection.
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In particular, any cube and the 1–ball around any vertex (i.e. the union of cubes
containing the vertex) are convex.

2.3. Coxeter groups. We use the terminology and notations from the Davis’ book
[Dav08]. A Coxeter group is given by a presentation W = 〈S|(st)mst ; s, t ∈ S〉,
where S is a finite set, mst ∈ N∗ ∪ {∞}, mst = mts and mst = 1 iff t = s (here
(st)∞ means no relation). A Coxeter group (or a Coxeter system (W,S)) is called
right-angled if mst ∈ {1, 2,∞}. A special subgroup WT of a Coxeter group W is
a subgroup generated by a subset T ⊆ S. A subset T ⊆ S is called spherical if
WT is finite. In that case WT is called also spherical. By S we denote the poset
(wrt inclusions) of spherical subsets of S. Its geometric realization is denoted by
K. The poset of all nonempty spherical subsets is an abstract simplicial complex:
the nerve L = L(W,S) of the Coxeter system (W,S). For T ∈ S, by σT we denote
the simplex of L spanned by T (σT = ∅ if T = ∅). The geometric realization of the
poset (wrt inclusions)

⋃
T∈SW/WT is called the Davis complex and is denoted by

Σ = Σ(W,S). In the right-angled case Σ possesses a natural structure of a locally
flag cubical complex. For s ∈ S we define Ks as the union of the simplices in K
with minimum vertex {s}. For T ⊆ S we define KT =

⋃
s∈T Ks. For T ∈ S, it can

be shown that L− σT deformation retracts onto KS−T ; cf. [Dav08, Lemma A.5.5].
The lemma of Gromov implies the following.

Theorem 2.1. (Hyperbolic right-angled Coxeter group) A right-angled Coxeter
group (W,S) is Gromov hyperbolic iff its nerve L(W,S) is a 5–large (i.e. flag no-
square) simplicial complex.

In fact in that case the Davis complex Σ(W,S) possesses a natural structure of
a locally 5–large (i.e. CAT(−1); cf. Section 2.2) cubical complex.

2.4. Virtual cohomological dimension. Recall (cf. [Dav08, Chapter 8.5]) that
the cohomological dimension of a group G is defined as

cd G = sup {n| Hn(G;M) 6= 0 for some ZG−module M} .

If G has nontrivial torsion then cd G = ∞. Thus for virtually torsion-free groups
(i.e. groups having a torsion-free subgroup of finite index) the following notion of
dimension is more convenient.

The virtual cohomological dimension of a group G, denoted vcd G, is the coho-
mological dimension of any torsion-free finite index subgroup of G. For a Coxeter

system (W,S) as above we have the following (here H
∗

denotes the reduced coho-
mology).

Theorem 2.2 ([Dav08, Corollary 8.5.5]).

vcd W = max
{
n| Hn(K,KS−T ;Z) 6= 0, for some T ∈ S

}
= max

{
n| Hn−1

(L− σT ;Z) 6= 0, for some T ∈ S
}
.

Corollary 2.3. If H
n−1

(L;Z) 6= 0 then vcd W ≥ n.

3. Thickening of a CAT(−1) cubical complex

In this section we show how to find, for a given CAT(−1) cubical complex, an
associated 5–large (i.e. flag no-square) simplicial complex.
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Definition 3.1 (Thickening). Let Y be a cubical complex. The thickening Th(Y )
of Y is a simplicial complex defined in the following way. Vertices of Th(Y ) are
vertices of Y . Vertices v1, . . . , vk of Th(Y ) span a simplex iff vertices v1, . . . , vk ∈ Y
(as vertices of Y ) are contained in a common cube of Y .

The following lemma is proved in [Osa10].

Lemma 3.2 (Loc. k–large thickening). Let k ≥ 4 and let Y be a locally k–large
cubical complex. Then its thickening Th(Y ) is a locally k–large simplicial complex.

The proof in the case k ≤ 6 in the lemma above is much easier than the one in the
general case. Moreover, the case k = 5 is the most interesting for our construction.
Thus, for completeness and for the reader’s convenience we present it below.

Proof. (The case k = 4, 5, 6.) We have to study links of vertices in Th(Y ). Let v

be a vertex. Let, for a vertex w ∈ Th(Y )v, the set Aw ⊆ Y (0)
v (here we identify the

0–skeleton of the link of a vertex in a cubical complex with the set of vertices joined

with the vertex) be the set of all vertices of Y
(0)
v ⊆ Y belonging to the minimal

cube containing v and w.

First we prove that Th(Y )v is flag. Let A ⊆ Th(Y )
(0)
v be a finite set of pairwise

connected (by edges in Th(Y )v) vertices. Then, by definition of the thickening we
have the following. For any two w,w′ ∈ A, and for every z ∈ Aw and z′ ∈ Aw′ ,
vertices z and z′ are contained in a common cube of Y (the one containing v, w,
and w′) and thus 〈z, z′〉 ∈ Yv. Hence A =

⋃
w∈AAw is a set of pairwise connected

vertices in Yv and thus, by flagness of Yv, it spans a simplex. It follows that A∪{v}
is contained in a cube of Y so that A is contained in the same cube and thus A
spans a simplex in Th(Y )v. It proves that links in Th(Y ) are flag.

Now we prove that Th(Y )v is k–large, for k = 5, 6. We do it by contradiction.
Assume there is an l–cycle c = (w0, w1, . . . , wl−1, w0) in Th(Y )v without a diagonal,
for l < k. Then we will show that there exists an l–cycle c′ = (z0, z1, . . . , zl−1, z0)
in Yv without a diagonal. This would contradict k–largeness of Yv.

Since there is no diagonal in c we have that for i 6= j and i 6= j±1 (mod l), there

exist vertices zij ∈ Awi
and zji ∈ Awj

not contained in a common cube (containing
v) and thus not connected by an edge in Yv. Now we treat separately two cases.

(Case l = 4.) Then the cycle in Yv that leads to a contradiction is c′ = (z0
2 , z

1
3 , z

2
0 , z

3
1 , z

0
2).

(Case l = 5.) If 〈z0
2 , z

3
1〉 ∈ Yv or 〈z1

3 , z
4
2〉 ∈ Yv then, for c′ we can take, respec-

tively, (z0
2 , z

1
3 , z

2
0 , z

3
1 , z

0
2) or (z1

3 , z
2
4 , z

3
1 , z

4
2 , z

1
3). Assume that it is not true. Then

if 〈z2
0 , z

4
2〉 ∈ Yv, we can set c′ = (z4

2 , z
0
2 , z

1
3 , z

2
0 , z

4
2), and if not we can take c′ =

(z0
2 , z

1
3 , z

2
0 , z

3
1 , z

4
2 , z

0
2). In every case we get a cycle c′ without diagonal, of length 4

or 5. �

Now, using the local results above, we prove that in the case of simply connected
locally 5–large cubical complexes (i.e. CAT(−1) cubical complexes) their thicken-
ings are 5–large. Results of the following two lemmas were proved in a bigger
generality in [Osa10].

Lemma 3.3 (Thickening of CAT(0) c.c.). Let Y be a simply connected locally
4–large cubical complex. Then Th(Y ) is a 4–large (i.e. flag) simplicial complex.
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Proof. Let v0, v1, . . . , vk ∈ Th(Y ) be vertices pairwise joined by edges in Th(Y ).
We have to prove that they span a simplex in Th(Y ), that means they are contained
(as vertices of Y ) in a common cube.

Let Bi be the 1–ball around vi in Y , i.e. the union of cubes in Y containing vi.
Since the balls Bi pairwise intersect, by Helly’s Lemma there is a vertex v ∈

⋂
iBi.

Since Yv is flag, by Lemma 3.2 we have that Th(Y )v is flag. Since v0, v1, . . . , vk ∈
B1(v, Th(Y )) we get that these vertices span a simplex in Th(Y ). �

Proposition 3.4 (Thickening of CAT(−1) c.c.). Let Y be a simply connected locally
5–large cubical complex. Then Th(Y ) is a 5–large simplicial complex.

Proof. By Lemma 3.3 we have that Th(Y ) is flag. Thus it only leaves to show
that every 4–cycle in Th(Y ) has a diagonal. Let (v, w, z, w′, v) be a cycle in the
1–skeleton of Th(Y ). Let c and c′ be cubes containing z and, respectively, w and
w′. Let B be the 1–ball around v in Y . By Helly’s Lemma there exists a vertex
u ∈ c ∩ c′ ∩ B. Hence we have that v, w,w′, z ∈ Th(Y )u and, by Lemma 3.2, we
have that the cycle (v, w, z, w′, v) has a diagonal since Th(Y ) is locally 5–large. �

Lemma 3.5. Let Y be a finite dimensional cubical complex. Then Th(Y ) is ho-
motopically equivalent to Y .

Proof. Let N be the nerve of the cover of Y by (closed) cubes. Then, by Nerve
Theorem of Borsuk [Bor48], N is homotopically equivalent to Y . Since N is at the
same time the nerve of the cover of Th(Y ) by (closed) simplices, again by Nerve
Theorem we get the assertion of the lemma. �

Lemma 3.6. Let Y be a locally k–large, simply connected cubical complex, for some
k ≥ 4. Then Th(Y ) is a k–systolic, contractible simplicial complex.

Proof. By Lemma 3.2, Th(Y ) is locally k–large, and by Lemma 3.5, it is contractible
(since CAT(0) cubical complexes are contractible). �

For a cubical complex Y we can identify links of vertices in Y with subcomplexes
in links of vertices of Th(Y ). The following lemma is obvious. It will be used in
Section 5.

Lemma 3.7. Let v be a vertex of a locally flag cubical complex Y . Then Yv is a full
subcomplex of Th(Y )v, and hence every full subcomplex of Yv is a full subcomplex
of Th(Y )v.

Remark. In the more general setting of cell complexes, the thickening was invented
by T. Januszkiewicz and, independently, by the author; cf. [Osa10]. In the case of
cubical complexes, a construction similar to the thickening has been used in graph
theory. For a graph G being the 1–skeleton of a CAT(0) cubical complex Y (such
graphs are called median graphs), a graph G∆ is defined as the 1–skeleton of Th(Y );
cf. [BC08, Section 3.1] (we use their notation here).

4. The basic construction

In this section we present in details the construction of high dimensional Gromov
hyperbolic right-angled Coxeter groups as described roughly in the Introduction —
Section 1. We will keep here the notations introduced there.

By Theorem 2.1, a Gromov hyperbolic right-angled Coxeter group W is deter-
mined by its nerve L = L(W,S) (where S is a given set of generators of W ) that is



A CONSTRUCTION OF HYPERBOLIC COXETER GROUPS 7

itself a finite 5–large simplicial complex. By Corollary 2.3, the virtual cohomologi-
cal dimension of W is estimated by the global cohomological dimension of L. Thus
the question reduces to a construction of finite 5–large simplicial complexes X of
arbitrarily large global cohomological dimension, i.e. with Hn(X;Z) 6= 0 for large
n.

We construct such complexes by induction. Their “dimension” will increase at
each step.

The base of the induction is a finite 5–large simplicial complex X0 satisfying
Hn0(X0,Q) 6= 0, for some n0 ≥ 1. As an example one can choose X0 to be a finite
graph of girth at least 5 (i.e. not containing cycles of length less than 5) containing
a k–cycle for some k ≥ 5.

The induction step is as follows. The input data is a finite 5–large simplicial
complex X with Hn(X;Q) 6= 0, for n ≥ n0. As an output we obtain a finite
5–large simplicial complex X ′ with Hn+1(X ′;Q) 6= 0.

Now we present the induction step in details following the overview given in
Introduction. It consists itself of the three following steps.

Step 1. Let (W,S) be the right-angled Coxeter system whose nerve is X, i.e.
X = L(W,S). The Davis complex Σ = Σ(W,S) is a contractible cubical complex
in which links of all vertices are isomorphic to X. Thus it is a contractible locally
5–large cubical complex.

Step 2. In this step we find a torsion-free subgroup H < W of large finite index
such that Y = H\Σ is a locally 5–large cubical complex of rational global coho-
mological dimension at least n + 1, i.e. with Hn+1(Y ;Q) 6= 0. The only difficulty
here is to prove the last inequality. We do it, using standard tools (cf. [Dav08]), by
constructing a nontrivial cohomology class in Hn+1(Y ;Q); see Lemma 4.5 below.
We use simplicial cohomology wrt the standard triangulation of Σ, in which the
Davis chamber K is the cone over the barycentric subdivision of the nerve L.

For H < W , let Y = H\Σ and let p : Σ→ Y be the quotient map. Let K denote
the chamber corresponding to the coset of identity in Σ and let K be the set of
copies of K in Y , i.e. K = {p(wK)| w ∈W}.

Definition 4.1 (Orientation). An orientation of Y = H\Σ is a map ε : K →
{−1, 1} such that ε(p(wsK)) = −ε(p(wK)), for every w ∈W and s ∈ S.

Observe that ε(wK) = (−1)lS(w) (here lS(w) denotes the length of w in the word
metric on W wrt S) defines an orientation on Y = Σ, i.e. in the case H = {1}.

By Corollary D.1.4 of [Dav08] Coxeter groups are virtually torsion-free and thus
there exists a finite index torsion-free subgroup H of W . Coxeter groups are
residually finite (cf. e.g. [Dav08, Section 14.1]) so that we can choose H whose
minimal displacement is “big”. For our purposes we make the following choice.
We take a torsion-free subgroup H < W such that for the action (induced by
the W–action on Σ) of H on Th(Σ) (on the thickening of Σ; cf. Section 3) we
have inf

{
d(v, hv)| v ∈ Th(Σ)(0), h ∈ H

}
≥ 5, where d(·, ·) is the usual metric on

Th(Σ)(1).
As in the case of manifolds which have two-sheeted orientable covering, the same

is true here, with an analogous proof.

Lemma 4.2. There exists a covering of Y of degree at most two, which admits an
orientation.
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Thus wlog we can assume that there is an orientation ε : K → {−1, 1} of Y . From
now on we fix an orientation ε for the rest of this section. We get an orientation ε′

of Σ by setting ε′(w(K)) = ε(p(wK)). We will write ε instead of ε′ — it should not
lead to misunderstanding.

Below we introduce an operation of antisymmetrization of cochains on Y . It
produces a cochain whose value on a simplex σ inside K is a signed (wrt the
orientation ε) average over all simplices “congruent” to σ — one for each copy of
K in Y .

Definition 4.3 (Antisymmetrization of cochains). For h ∈ C∗(Y ;Q), the antisym-
metrization of a cochain h is a cochain a(h) defined as follows:

a(h)(p(wσ)) =
ε(wK)

|K|
∑
K′∈K

ε(K ′)h(p(wK′σ)),

where w ∈W , σ is a simplex in K, wK′ ∈W and p(wK′σ) ∈ K ′.

It is clear that the cochain obtained by antisymmetrization attains the same ab-
solute value on “congruent” simplices and its sign changes on “s–adjacent” (s ∈ S)
simplices. In the following lemma we show precisely the properties of antisym-
metrization that we need later.

Lemma 4.4 (Properties of a(h)). Let h ∈ C∗(Y ;Q). The antisymmetrization has
the following properties:

(1) δa(h) = a(δh),
(2) a(a(h)) = a(h).

Proof. Let w ∈W and let σ be a simplex in K. Then we have the following.
(1)

δa(h)(p(wσ)) = a(h)(∂p(wσ)) = a(h)(p(w∂σ))

=
ε(wK)

|K|
∑
K′∈K

ε(K ′)h(∂(p(wK′σ)))

=
ε(wK)

|K|
∑
K′∈K

ε(K ′)δh(p(wK′σ)) = a(δh)(p(wσ)).

(2)

a(a(h))(p(wσ)) =
ε(wK)

|K|
∑
K′∈K

ε(K ′)a(h)(p(wK′σ))

=
ε(wK)

|K|
∑
K′′∈K

ε(K ′′)h(p(wK′′σ))
∑
K′∈K

ε(K ′)
ε(K ′)

|K|
= a(h)(p(wσ)).

�

By our inductive assumptions, there exists a cocycle f ∈ Zn+1(K,KS ;Q) rep-
resenting a nontrivial class [f ] ∈ Hn+1(K,KS ;Q) = Hn(X;Q). We can “extend”
f to the cochain on Y by setting: f(p(σ)) = f(σ) for σ in K, and f(p(σ)) = 0 if
p(σ) is not in p(K). Define a cochain f ′ = |K|a(f) on Y .

The (n + 1)–cochain f ′ is the antisymmetrization of the “radial” extension of
the nontrivial n–cochain f ∈ Zn(X;Q). The next crucial lemma shows that f ′

represents a nontrivial cohomology class [f ′]. The geometric picture behind the
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proof is as follows. If [f ′] is trivial then f ′ is a coboundary of an “antisymmetric” n–
cochain a(g′), i.e. a(g′) vanishes on simplices in the “boundary” KS of the chamber
K. Thus the restriction g of a(g′) to K is the cochain whose coboundary is f ,
contradicting nontriviality of [f ].

Lemma 4.5 (Nontriviality of [f ′]). The cochain f ′ is a cocycle representing a
nontrivial class [f ′] ∈ Hn+1(Y ;Q).

Proof. First we prove that δf ′ = 0. This follows from Lemma 4.4, since δf ′ =
δ|K|a(f) = |K|a(δf) = 0 (the last equality follows from the fact that f vanishes on
KS).

Now we prove that [f ′] 6= 0 in Hn+1(Y ;Q). Suppose this is not so. Let f ′ = δg′

for some cochain g′ ∈ Cn(Y ;Q). Then, by Lemma 4.4, δa(g′) = a(δg′) = a(f ′) =
a(|K|a(f)) = f ′. Observe that a(g′) vanishes on p(wKS), for every w ∈ W . Let
g ∈ Cn(K,KS ;Q) be defined as g(σ) = a(g′)(p(σ)), for σ in K. Then, for any
(n+ 1)–simplex σ in K, we have

δg(σ) = a(g′)(p(∂σ)) =
ε(K)

|K|
∑
K′∈K

ε(K ′)g′(∂(p(wK′σ)))

=
ε(K)

|K|
∑
K′∈K

ε(K ′)f ′(p(wK′σ))

=
ε(K)

|K|
∑
K′∈K

ε(K ′)|K|ε(K
′)

|K|
∑
K′′∈K

ε(K ′′)f(p(wK′′σ))

= ε(K)
∑
K′′∈K

ε(K ′′)f(p(wK′′σ)) = f(σ).

This contradicts the fact that [f ] 6= 0 in Hn+1(K,KS ;Q) and finishes the proof of
the lemma. �

Step 3. Let X ′ = Th(Y ). Then, by Lemma 3.5 and Lemma 4.5, Hn+1(X ′;Q) =
Hn+1(Y ;Q) 6= 0. Observe that X ′ = H\Th(Σ). Since, by Lemma 3.4, the complex
Th(Σ) is 5–large, our choice of H (with large minimal displacement) guarantees
that X ′ is 5–large.

Let us conclude what we get in Steps 1–3, in the following theorem; cf. Main
Theorem from Introduction.

Theorem 4.6. Let X be a finite 5–large simplicial complex such that Hn(X;Q) 6=
0. Then the complex X ′ (as obtained in Steps 1–3) is a finite 5–large simplicial
complex and Hn+1(X ′;Q) 6= 0. Thus Hn+1(X ′;Z) 6= 0 and the right-angled Coxeter
group with nerve X ′ is Gromov hyperbolic of virtual cohomological dimension at
least n+ 2.

5. New examples of hyperbolic Coxeter groups

In this section we show that our construction provides also examples of highly
dimensional Gromov hyperbolic Coxeter groups that are very (i.e. asymptotically)
different from the ones constructed before. In fact, all such Coxeter groups ob-
tained by using constructions from [JŚ03, JŚ06, Hag03, ABJ+09] are systolic. Sys-
tolic groups are in a way two-dimensional — they “do not contain asymptotically”
spheres above dimension one; cf. [JŚ07, Osa07, Osa08, OŚ10]. We show how to get
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non-systolic examples (cf. Corollary 5.2 and Examples afterwards) — they “con-
tain” spheres up to dimension 3.

Proposition 5.1 (Subgroups). Let Z be a full subcomplex of a finite 5–large simpli-
cial complex X0. Let X be a finite 5–large simplicial complex obtained by the basic
construction starting with X0 (i.e. by performing several times Steps 1–3 from Sec-
tion 4) and let (W,S) be the resulting Coxeter system (i.e. X = L(W,S)). Then the
right-angled Coxeter group W ′ with the nerve Z (i.e. Z = L(W ′, S′)) is a subgroup
of W .

Proof. By repeated use of Lemma 3.7 and the fact that a vertex link of a flag
simplicial complex is a full subcomplex, we get that Z is a full subcomplex of X.
Thus it corresponds to the subgroup W ′ of W ; cf. [Dav08, Section 8.8]. �

For distinguishing some of “our” groups from systolic groups we use the notion
of asymptotic hereditary asphericity (shortly AHA), which we do not define here —

see [JŚ07, OŚ10] for details. AHA is a rigorous way of saying that a group “does
not contain asymptotically” spheres.

Corollary 5.2 (Non-systolic). If X0 is the nerve of a group W ′ which is not asymp-
totically hereditarily aspherical , then a group W obtained by the basic construction
is not systolic.

Proof. It follows directly from Proposition 5.1 above and from the fact that sub-
groups of systolic groups are AHA; cf. [JŚ07,OŚ10]. �

Examples. Here we show how our construction can lead to non-systolic examples.
Let X0 be the nerve of a right-angled Coxeter group W ′ acting geometrically on the
k–dimensional real hyperbolic space Hk (such groups exist only for k = 1, 2, 3, 4;

cf. [Vin85]). If k ≥ 3, then W ′ is not AHA (cf. [JŚ07, Osa07, OŚ10]) and thus W
(a group obtained by our construction) is not AHA, in particular not systolic; cf.

[JŚ07,OŚ10].

Remark. We do not know whether Gromov hyperbolic right-angled Coxeter group
can “contain asymptotically” spheres above dimension 3. A (form of a) conjecture

by Januszkiewicz-Świa̧tkowski says that the Gromov boundary of a simply con-
nected locally 5–large cubical complex (i.e. CAT(−1) cubical complex) cannot con-
tain spheres of dimension above 3. Since hyperbolic right-angled Coxeter groups act
geometrically on such cubical complexes (their Davis complexes), this conjecture
implies that their boundaries cannot contain highly dimensional spheres.

6. Final remarks

6.1. Systolic groups and groups with various asphericity properties. In
contrast to the results in Section 5 here we present the following proposition, whose
immediate proof using Lemma 3.6 is left to the reader.

Proposition 6.1 (Systolic groups). Let k ≥ 6 and let X be a finite 5–large simpli-
cial complex obtained by the basic construction (as in Section 4). Assume that the
two following conditions are satisfied.

1) The initial complex X0 is k–large (cf. Section 4);

2) At every step of the basic construction the group H (cf. Step 2 in Section 4) is
chosen so that the minimal displacement of the H–action on Th(Σ)(1) is at least k.
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Then the resulting complex X is k–large and, consequently, the Coxeter group W
with the nerve X is k–systolic.

Moreover, other variants of the basic construction are used in [OŚ10] to obtain
new constructions of groups with various asphericity properties satisfied by systolic
groups; cf. [JŚ07,Osa07,Osa08]. This relies on the notion of weakly systolic groups
introduced recently by the author; cf. [Osa10,CO09].

6.2. Variants of the basic construction. There are many variants of the basic
construction corresponding to the choice of the complex Z playing the role of Σ in
Step 1.(cf. Section 4), for a fixed X. Let us describe here one of them.

For a given X, W and Σ as in Step 1. of the basic construction, let Z be a
regular right-angled building associated with W . A simple construction of such
buildings is described in [DO07]. It is also showed there (reproving known facts
in a new way) that groups of isometries of such buildings admit residually finite
uniform lattices. In [Osa10] it is shown that for any such building there exists a
locally 5–large simplicial complex Th(Z), being an analogue of the thickening of a
cubical complex described in Section 3: simplices of Th(Z) correspond to spherical
residues in Z. Thus, for an appropriate H being a lattice in Isom(Z), the quotient
H\Th(Z) is a finite 5–large simplicial complex with Hn+1(H\Th(Z)) 6= 0 (since Z
contains copies of Σ). And thus we can continue the induction.

6.3. Non right-angled case. Given a Gromov hyperbolic right-angled Coxeter
group W with a presentation W = 〈S | (st)mst〉, one can construct a non right-

angled Coxeter group W f = 〈S | (st)m
f
st〉 as follows. If mst 6=∞, then mf

st = mst,

otherwise mf
st is an arbitrary number larger than 4, or ∞. It is proved in [JŚ03]

that W f is then Gromov hyperbolic and that vcd(W f ) = vcd(W ), if vcd(W ) ≥ 2.
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[OŚ10] Damian Osajda and Jacek Świa̧tkowski, On asymptotically hereditarily aspherical

groups (2010), preprint, available at http://www.math.uni.wroc.pl/~dosaj/trav/.
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