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Abstract. We introduce the notion of weakly systolic complexes and groups,

and initiate regular studies of them. Those are simplicial complexes with
nonpositive-curvature-like properties and groups acting on them geometri-

cally. We characterize weakly systolic complexes as simply connected sim-

plicial complexes satisfying some local combinatorial conditions. We provide
several classes of examples — in particular systolic groups and CAT(-1) cubical

groups are weakly systolic. We present applications of the theory, concerning

Gromov hyperbolic groups, Coxeter groups and systolic groups.

1. Introduction

1.1. Overview. In recent decades exploration of various notions of nonpositive cur-
vature (NPC) became one of the leading subjects in geometry and in related fields.
In particular, in geometric group theory a significant role is played by studies of
Gromov hyperbolic and CAT(0) spaces and groups; see e.g. [BH99,ECH+92,Gro87].
Objects arising in this way have nice algorithmic properties and some applications
(beyond the pure mathematics) for them have been found. Moreover, the frame-
work allows to treat at the same time many classical groups, e.g. fundamental
groups of nonpositively curved manifolds.

The combinatorial approach to nonpositive curvature, i.e. studying groups act-
ing on NPC (nonpositively curved) complexes, yields a rich source of NPC groups
with interesting and often unexpected properties. A good example in dimension
two is the classical theory of small cancellation groups that emerged initially in
the combinatorial group theory. As for higher dimensional objects, at the moment
the two leading subjects of interests are CAT(0) cubical complexes and groups

(see [BH99, Gro87]), and systolic complexes and groups (see [JŚ06, Hag03]). The
combinatorial nature allows in those cases to get quite profound insight into their
structure and thus to obtain strong results. For example, there is a big effort to
“cubulate” many classical groups, in order to get e.g. various separability results.
On the other hand many constructions of NPC complexes have been developed re-
cently, giving us useful tools for producing examples of NPC groups with interesting
properties; see [DO07,Hag03,JŚ06,Osa13,OŚ13].

In this paper we introduce weakly systolic complexes and initiate regular studies
of them and of groups acting on them geometrically, i.e. weakly systolic groups.
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Weakly systolic complexes are simplicial complexes possessing many nonpositive-
curvature-like properties. They can be characterized as simply connected simplicial
complexes satisfying some local combinatorial conditions. This forms a new class of
“combinatorially nonpositively curved” complexes and groups. Systolic complexes
and groups (see [JŚ06]) are weakly systolic. Groups acting geometrically on simply
connected cubical complexes with flag-no-square links (i.e. on simply connected
locally 5–large, or CAT(-1), cubical complexes) are weakly systolic. We describe
also other classes of examples. We provide some applications of ideas and results
from this paper, to the theory of systolic groups, Coxeter groups, and Gromov
hyperbolic groups. Other results concerning the theory of weakly systolic complexes
and groups can be found in e.g. [BCC+13,CO13,Osa13,OŚ13].

1.2. Main results. In Section 3 we define weakly systolic complexes as flag simpli-
cial complexes satisfying a global combinatorial property SDn — of simple descent
on balls. Immediately from that definition the following important property of
weakly systolic complexes is derived there.

Theorem A (see Proposition 3.7 in the text). Finitely dimensional weakly systolic
complexes are contractible.

On the way we provide an equivalent definition of the SDn property that is more
convenient for applications.

In Section 4 we define a local combinatorial condition SD∗2 and prove the fol-
lowing important result.

Theorem B (Theorem 4.5 in the text). Let a simplicial complex satisfy the con-
dition SD∗2. Then its universal cover is weakly systolic.

Together with Theorem A, the latter result form a version of the Cartan-Hadamard
theorem, and is the fundament of the whole theory.

In Section 5 we derive some convexity properties of balls in weakly systolic
complexes. Those results provide technical tools used in other places of the paper
and beyond. Then, in Section 6, we provide important examples of weakly systolic
complexes, and of weakly systolic groups, i.e. groups acting geometrically on weakly
systolic complexes. By the way, we develop a useful tool — the thickening of cell
complexes; see Subsection 6.2.

Theorem C (see Section 6). The following classes of groups are weakly systolic:

• Systolic groups;
• CAT(-1) cubical groups;
• Uniform lattices of right-angled hyperbolic buildings.

It is worth to notice that some CAT(-1) cubical groups provide examples of
weakly systolic groups that are not systolic (see Remarks after Corollary 6.15),
despite the fact that most of weakly systolic techniques are quite “systolic”. We
find also other examples of weakly systolic groups, e.g. some subgroups of such
groups.

In Section 7 we study “negative curvature” in the context of weak systolicity. In
Theorem 7.1 we show that for weakly systolic groups Gromov hyperbolicity is equiv-
alent to the non-existence of isometrically embedded flats. Then (Subsection 7.2)
we define a local combinatorial condition SD∗2(7), an analogue of a negative curva-
ture. The following result justifies the analogy.
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Theorem D (Theorem 7.5 in the text). The universal cover of an SD∗2(7) complex
is Gromov hyperbolic.

In particular, we obtain a nice description of Gromov boundaries of negatively
curved weakly systolic complexes (see Subsection 7.2 for the details).

Theorem E (Theorem 7.11 in the text). The Gromov boundary of a weakly systolic
SD∗2(7) complex is homeomorphic to the associated inverse limit of spheres.

We also show (Corollary 7.17) that quasiconvex subgroups of weakly systolic
SD∗2(7) groups are weakly systolic SD∗2(7) groups as well.

In Section 8 we study weakly systolic complexes with SD∗2 links and groups
acting on them geometrically. These are weakly systolic complexes and groups
whose asymptotic behavior resembles a lot the one of systolic counterparts. In
particular we show that finitely presented subgroups of such torsion-free groups are
of the same type (Theorem 8.7) — this is an analogue of a corresponding systolic
result of D. Wise. Then we prove various properties of asymptotic asphericity; see
Theorem 8.8 and Theorem 8.11.

1.3. Motivations and applications. Our initial motivation was to provide a set
of local combinatorial conditions on a simplicial complex that guarantee, that the
universal cover of such complex exhibits various nonpositive-curvature-like proper-
ties. Moreover, we would like a new theory to include the existing examples of such
“combinatorial nonpositive curvature”. In particular we would like that systolic
groups (see [JŚ06]) and CAT(0) cubical groups (i.e. groups acting geometrically on
simply connected cubical complexes with flag links; see [BH99]) act on complexes
from the new class. The question of such a “unification” (of systolic and CAT(0)
cubical theories) has been raised number of times by various people. Let us men-
tion here Mladen Bestvina, Frédéric Haglund, Tadeusz Januszkiewicz and Jacek
Świa↪tkowski, who suggested this problem to us.

The goal of the unification is achieved only partially via the theory of weakly
systolic complexes. Systolic groups and CAT(-1) cubical groups are weakly systolic,
but we conjecture (see Section 6.4) that some CAT(0) cubical groups are not weakly
systolic. Nevertheless, the theory provides powerful tools for studying a large class
of groups. In fact most of the techniques developed in this paper (and in [CO13,

Osa13, OŚ13]) are quite “systolic” in the spirit. And, surprisingly, they can be
used in very (i.e. asymptotically) “non-systolic” cases; see e.g. Section 6.2. Several
applications of the theory has been already found (see below). And the main idea
of the simple descent on balls (i.e. the SDn property from Definition 3.1), being the
core of the combinatorial nonpositive curvature in our approach, is being developed
by us to provide a full unification theory. Actually, we believe that other theories in
the same spirit can provide a framework to treat various classes of groups, including
many classical ones. On the other hand, from the topological viewpoint, our main
results — Theorem A and Theorem B — provide local combinatorial conditions
on a simplicial complex guaranteeing its asphericity. Not many such conditions are
known, the well known being CAT(0) property and systolicity; for other ones see
e.g. [BCC+13].

Similarly as systolic complexes, weakly systolic complexes are flag, which means
that they are determined by their 1–skeleta. Graphs being 1–skeleta of systolic
complexes are bridged graphs. This class of graphs has been intensively studied
within the metric and algorithmic graph theory for last decades; see e.g. [AF88,
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BC08,Che89,Che97,Che00] and references therein. Also 1–skeleta of CAT(0) cubi-
cal complexes, known as median graphs, has been explored in graph theory since a
long time, before the recent rise of interest in the corresponding complexes; see e.g.
[BC08, Che00] and references therein. To the contrary, weakly bridged graphs (see
Subsection 3.1) being 1–skeleta of weakly systolic complexes, were not investigated
in metric graph theory before. They appearance seems quite natural in this con-
text, though. And introducing them leads to many interesting structural problems;
some of them are treated in [CO13,BCC+13] (and some are solved there using tools
from the current paper).

The techniques and results presented in this article found already few applica-
tions, and we are working on further ones. The proof of Cartan-Hadamard theorem
(Theorem B above) given in Section 4, presents a general scheme for proving results
of this type. It can be used in other NPC cases (we use it, even following closely
the notations, in [BCC+13], and for some more general complexes, in progress) and
beyond (see [CCO12] where we use it in a case of “positive curvature”). Moreover,
such a proof allows to show developability of complexes of groups with certain (in
particular “weakly systolic”) local developments properties (work in progress). This
in turn leads to new constructions of combinatorially nonpositively curved groups
— fundamental groups of the corresponding complexes of groups (in progress).

Another important tool introduced in this paper is thickening. The thickening
of a cell complex is a simplicial complex whose simplices correspond to cells of the
former complex — see Section 6 for details. The use of thickening reduces studies
of a complicated complex to studying the corresponding simplicial complex, whose
properties (e.g. homotopical properties) resemble the ones of the original object.
In Section 6 we use thickening to show that CAT(-1) cubical groups and lattices
of right-angled hyperbolic buildings are weakly systolic (Theorem C above). Those
results form the core of new constructions of Gromov hyperbolic groups provided in
[Osa13,OŚ13]. The technique of thickening may be used in a case of quite general
complexes (an instance being the thickening of buildings from Subsection 6.3), and
we believe that it is a very useful tool.

Furthermore, the thickening together with the combinatorial negative curva-
ture (Theorem D) introduced in Section 7, allows one to e.g. describe nicely Gro-
mov boundaries of some classical groups; see Theorem E and Remark after Theo-
rem 7.11. Such description gives a good insight into the structure of the boundary
as a limit of polyhedra. We believe that this can be helpful in exploring various
structures on such boundaries.

Weakly systolic groups with SD∗2 links introduced in Section 8 are groups whose
asymptotic behavior resembles a lot the one of systolic groups. The latter groups
lead to examples of highly dimensional groups with interesting asphericity proper-
ties; see [JŚ07,Osa07,Osa08, Świ09]. Results from Section 8 allowed us in [OŚ13] to
provide new constructions of groups with the same properties. On the other hand,
using the technique of thickening and tools from Section 7 we can provide the first
examples of non-systolic highly dimensional “asymptotically aspherical” groups (in
progress).

Finally, let us note that in the current paper we provide few simpler (and some-
times still more general) proofs of some already known results concerning systolic
complexes. Among them are e.g.: the proof of contractibility of systolic complexes
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provided in Subsection 6.1 (see Corollary 6.3 and Remark afterwards), and the local
characterization of convexity given in Lemma 5.2.

1.4. Acknowledgments. I am grateful to Mladen Bestvina, Victor Chepoi, Tade-
usz Januszkiewicz and Jacek Świa↪tkowski for stimulating and helpful discussions.
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2. Preliminaries

2.1. Simplicial complexes. Let X be a simplicial complex. We do not usually
distinguish between a simplicial complex and its geometric realization. The i–
skeleton of X is denoted by X(i). A subcomplex Y of X is full if every subset A of
vertices of Y contained in a simplex of X, is contained in a simplex of Y . For a sub-
complex A of X, by 〈A〉 we denote the span of A, i.e. the smallest full subcomplex
of X containing A. If A is the set of vertices v1, v2, . . ., then we write 〈v1, v2, . . .〉
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for 〈A〉. Thus “〈A〉 ∈ X” or “〈v1, v2, . . .〉 ∈ X” mean that the corresponding sets
span a simplex in X. If vertices v 6= w span an edge 〈v, w〉, we denote this edge
simply by vw. We write v ∼ v′ (respectively v � v′) if 〈v, v′〉 ∈ X (respectively
〈v, v′〉 /∈ X). Moreover, we write v ∼ v1, v2, . . . (respectively v � v1, v2, . . .) when
v ∼ vi (respectively v � vi) for i = 1, 2, . . ..

A simplicial complex X is flag whenever every finite set of vertices of X joined
pairwise by edges in X, is contained in a simplex of X. A link of a simplex σ
of X is a simplicial complex Xσ = {τ | τ ∈ X & τ ∩ σ = ∅ & 〈τ ∪ σ〉 ∈ X}. Let
k > 4. A k–cycle (v0, . . . , vk−1, v0) is a triangulation of a circle consisting of k
edges vivi+1 (mod k) and k vertices: v0, . . . , vk−1.

If it is not stated otherwise we consider the (combinatorial) metric on the set of
vertices X(0), defined as the number of edges in the shortest path connecting given
two vertices; it is usually denoted by d(·, ·). For subcomplexes A,B of X we set
d(A,B) = inf

{
d(v, w)| v ∈ A(0), w ∈ B(0)

}
. For a subcomplex Y of a flag simplicial

complex X, by Bi(Y,X) (respectively, Si(Y,X)) we denote the (combinatorial) ball
(respectively, sphere) of radius i around Y , i.e. the subcomplex of X spanned by
the set of vertices at distance at most i (respectively, exactly i) from the set of
vertices of Y . If it does not lead to a confusion we write Bi(Y ) or Si(Y ) instead of
Bi(Y,X) or Si(Y,X).

By X ′ we denote the first barycentric subdivision of a simplicial complex X. For
a simplex σ of X, by bσ we denote a vertex of X ′ corresponding to σ.

2.2. Cell complexes. For the definition and basics concerning cell complexes we
follow [Dav08, Appendix A].

A cell complex is a collection of convex polytopes, called cells, such that each
sub-cell is a cell, and the intersection of every two cells is again a (possibly empty)
cell. A simplicial complex is a cell complex whose all cells are simplices. A cubical
complex is a cell complex whose all cells are cubes [0, 1]n.

Consider a cell c of a cell complex X. Let P be the poset of nonempty cells
strictly containing c. The cell complex whose poset of cells is isomorphic to P is
called the link of c in X, and is denoted by Xc. A cell complex is simple if all its
links are simplicial complexes.

Definition 2.1 (loc. k–large). Let k be a natural number > 4. A simple cell
complex Y is locally k–large if every its link is 4–large.

Remark. By a lemma of Gromov [Gro87] a locally 4–large (respectively, locally
5–large) cubical complex is a locally CAT(0) (respectively, locally CAT(-1)) space
when equipped with a piecewise Euclidean (respectively hyperbolic) metric in which
every cube is isometric to the standard cube in En (respectively, in Hn).

3. Property SDn and weak systolicity

In this section we introduce central objects of this paper: the SDn property and
the weakly systolic complexes. We also prove that weakly systolic complexes are
contractible.

Definition 3.1 (Property SDn(A)). Let X be a flag simplicial complex, let A be its
subcomplex and let n ∈ {0, 1, 2, 3, . . .}. We say thatX satisfies the property SDn(A)
(simple descent on balls of radii at most n around A) if for every i = 1, 2, . . . , n
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the following condition holds. For every simplex σ ∈ Si+1(A) the intersection
πA(σ) = Xσ ∩Bi(A) is a non-empty simplex.

For technical reasons the following, weaker variation of the definition above will
be useful.

Definition 3.2 (Property S̃Dn(A)). Let X be a flag simplicial complex, let A be
its subcomplex and let n ∈ {0, 1, 2, 3, . . .}. We say that X satisfies the property

S̃Dn(A) if for every i = 1, 2, . . . , n the following two conditions hold.

(E) (edge condition): For every edge e ∈ Si+1(A,X) the intersection Xe ∩
Bi(A,X) is non-empty.

(V) (vertex condition): For every vertex w ∈ Si+1(A,X) the intersection
Xw ∩Bi(A,X) is a single simplex.

Definition 3.3 (Weakly systolic). A simplicial complex X is weakly systolic if it

is flag and if it satisfies the property S̃Dn(v) for every natural number n and for
every vertex v ∈ X.

Lemma 3.4 (SD vertices vs. simplices). Let A be a subcomplex of a flag simplicial
complex X and let σ be a simplex of X. Assume that Xσ ∩ A 6= ∅. Assume that
Xv∩A is a single simplex, for some vertex v of σ. Then Xσ∩A is a single simplex.

Proof. It follows easily from the flagness and the fact that Xσ ⊂ Xv. �

The following lemma shows that in the Definition 3.3 we can use the (more

intuitive) property SDn(v) instead of S̃Dn(v).

Lemma 3.5 (SDn vs. S̃Dn). Let X be a weakly systolic complex. Then X satisfies
the property SDn(v) for every natural number n and for every vertex v ∈ X.

Proof. By Lemma 3.4 it is enough to prove that the intersection Xσ ∩ Bi(v,X) is
non-empty, for every i, every v and for every simplex σ in Si+1(v).

We show this by induction on m = dim(σ). By weak systolicity it is true for
m = 0, 1. Assume this is proved for m. We show that it holds for m+ 1. Let σ be
an (m+ 1)–dimensional simplex in Si+1(v). Let σ = 〈σ′ ∪w〉 where w /∈ σ′. Let w′

be a vertex of σ′. By inductive assumption there exist vertices z, z′ ∈ Bi(v) such
that 〈σ′, z′〉, 〈w′, w, z〉 ∈ X. Let σ′′ be a maximal simplex in Si+1(v) joinable with
both z, z′. Observe that w′ ∈ σ′′. We consider separately three cases.

Case 1. If w ∈ σ′′ then 〈σ, z′〉 ∈ X and the lemma follows.

Case 2. If σ′ ⊆ σ′′ then 〈σ, z〉 ∈ X and the lemma follows.

Case 3. If neither Case 1 nor 2 hold then there exists a vertex w′′ ∈ σ′ \ σ′′.
Analyzing the cycle (w′′, w, z, z′, w′′) we have, by weak systolicity, that either w′′ ∼
z or w ∼ z′. In both cases we get contradiction. �

Remark. Let A be a subcomplex of a flag simplicial complex X. Observe that

if X satisfies the property S̃Dn(A) then Xσ ∩ Bn(A) can be empty for a simplex
σ ∈ Sn+1(A).

Now we prove that weakly systolic complexes are contractible. We follow the
approach of [JŚ06, Section 5] (for the case of systolic complexes). Let X be a
complex of dimension d < ∞ and let v be its vertex. Assume that X satisfies the
property SDn(v) for every n. For l = 0, 1, . . . , d − 1 we define (compare [JŚ06,
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Section 5]) the sets Ql = Bi(v) ∪
⋃
{〈σ ∪ πv(σ)〉 | σ ∈ Si+1(v), dim(σ) 6 l}. We

set also Q−1 = Bi(v). Observe that Qd−1 = Bi+1(v).

Lemma 3.6. There exists a (canonical) deformation retraction rl : Ql → Ql−1.

Proof. The deformation retraction is defined by the property that for every l–
simplex σ ∈ Si+1(v) the restriction rl|〈σ∪πv(σ)〉 : 〈σ ∪ πv(σ)〉 → 〈(∂σ) ∪ πv(σ)〉 is a
standard deformation retraction of a simplex. �

Proposition 3.7 (SDn(v) implies contractibility). Let X be a finite dimensional
simplicial complex satisfying SDn(v) property for some vertex v and for every nat-
ural number n. Then X is contractible.

Proof. For every i we define a deformation retraction ri : Bi+1(v) → Bi(v) as the
composition r0◦r1◦· · ·◦rd−1. Contractibility of X follows by applying compositions
of maps ri for different i’s. �

Remark. Observe that the above approach yields in fact collapsibility of complexes
in question. This is a property stronger than contractibility, but we do not need to
use it in this paper. In [CO13] we show that weakly systolic complexes satisfy even
stronger property — their 1–skeleta are dismantlable graphs.

3.1. Weakly bridged graphs. For systolic complexes, their 1–skeleta belong to
the class of bridged graphs. Here we define the corresponding class of weakly bridged
graphs. Note, that 1–skeleta of weakly systolic complexes do not contain infinite
cliques, since we consider only finite simplices. For arbitrary graphs one can define
balls and links of vertices analogously as we did above in Section 2 (e.g. link is a
graph spanned by neighbors of a given vertex). Thus the definition of the property

S̃Dn(v) makes sense.

Definition 3.8 (Weakly bridged graph). A graph Γ is weakly bridged if it satisfies

the property S̃Dn(v) for every natural number n and for every vertex v ∈ X.

Remark. In [CO13] we show some structural properties of weakly bridged graphs
relating them to well known classes of graphs.

4. Local to global

The aim of this section is to show that some local conditions on a complex X
imply that the universal cover of X is weakly systolic and thus, by Proposition
3.7, contractible. This result is an analogue of the Cartan-Hadamard theorem for
nonpositively curved spaces (see [BH99, Chapter II.4]) and is the heart of the whole
theory developed in our paper.

A rough idea is that if X satisfies the SD2 property then its universal cover
satisfies the conditions SDn, for all n. However, we will prove a stronger result
where instead of the property SD2 we consider its version — the property SD∗2 . It

is much more useful for providing examples — see Section 8 and [OŚ13].

Definition 4.1 (Wheels). Let X be a simplicial complex and let k > 4 be a
natural number. A k–wheel (v0; v1, . . . , vk), where vi’s are vertices of X, is a full
subcomplex of X such that (v1, . . . , vk, v1) is a full k–cycle and v0 is joinable with
vi, for i = 1, . . . , k.
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Figure 1. SD∗2 property

A k–wheel with a pendant triangle (v0; v1, . . . , vk; t) is a subcomplex of X being
the union of a k–wheel (v0; v1, . . . , vk) and a triangle 〈v1, v2, t〉 ∈ X, with t 6= vi,
i = 0, 1, . . . , k.

Definition 4.2 (SD∗2 property). A flag simplicial complex X satisfies the SD∗2
property if the following two conditions hold.

(a) X does not contain 4–wheels,

(b) for every 5–wheel with a pendant triangle Ŵ in X, there exists a vertex v

with Ŵ ⊆ B1(v,X).

Remark. Note that the local conditions (SD∗2) considered in the current paper
are weaker than the ones in [CO13]. First, our definition of a wheel with a pendant
triangle does not assume that it is full. Then, the main difference is that we allow
4–cycles to appear (but not 4–wheels). This implies that our main result here,
Theorem 4.5 below, is stronger; cf. Remark after its proof.

Lemma 4.3. Let X satisfy the SD∗2 property and let Ŵ = (v0; v1, . . . , vk; t) be a 5–

wheel with a pendant triangle contained in X. If t � v0 then Ŵ is a full subcomplex
of X.

Proof. Assume that t � v0. We have to prove that t � vi, for i = 3, 4, 5.
Suppose that t ∼ v3. Then, since t � v0 and v1 � v3, we have that there exists

a 4–wheel (v2; t, v3, v0, v1) — contradiction. Thus t � v3 and, by an analogous
argument, t � v5.

Suppose that t ∼ v4. Let v be a vertex joinable with all vertices of Ŵ . Then,
since t � v0 and v1 � v3, we have that there exists a 4–wheel (v; t, v1, v0, v4) —
contradiction. Thus t � v4 and the lemma is proved. �

Lemma 4.4 (SD2 ⇒ SD∗2). If X satisfies the condition SD2(v), for every vertex
v ∈ X, then it satisfies also the condition SD∗2.

Proof. It is clear that X as in the lemma satisfies the condition (a) of Definition 4.2.

Thus we show only that X satisfies condition (b). Let Ŵ = (v0; v1, v2, v3, v4, v5; t)
be a 5–wheel with a pendant triangle.
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Observe that d(v4, t) 6 2. If this was not true then d(v4, t) = 3 and, by the
property SD2(t) (Definition 3.1), we would have that v5 ∼ v3 — contradiction with
the definition of a 5–wheel.

If d(v4, t) = 1 then, by property SD2(t), we have that either v0 ∼ t or v1 ∼ v4.

In the first case we have Ŵ ⊆ B1(v0) and we are done. The second case contradicts

the definition of Ŵ .
Thus further we assume that d(v4, t) = 2 and that v0 � t. By the property

SD2(t), there exists a vertex v ∈ S1(t) such that 〈v0, v4, v〉 ∈ X. Consider the cycle
(t, v1, v0, v, t). By property SD2(t) we have that v1 ∼ v. Similarly, we have v2 ∼ v.
Analogous considerations for cycles (v, v2, v3, v4, v) and (v, v1, v5, v4, v) yield that
v ∼ v3, v5. This proves the lemma. �

Remark. For k = 4, 5, the k–cycle satisfies condition SD∗2 and does not satisfy
condition SD2(v) for any vertex v.

Theorem 4.5 (Cartan-Hadamard theorem). Let X be a simplicial complex satisfy-
ing the condition SD∗2. Then its universal cover is weakly systolic and in particular
contractible.

Proof. We construct the universal cover X̃ of X as an increasing union
⋃∞
i=1 B̃i of

combinatorial balls. The covering map is then the union
∞⋃
i=1

fi :

∞⋃
i=1

B̃i → X,

where fi : B̃i → X is locally injective and fi|B̃j
= fj , for j 6 i.

We proceed by induction. Choose a vertex v of X. Define B̃0 = {v}, B̃1 =

B1(v,X) and f1 = IdB1(v). Assume that we have constructed the balls B̃1, B̃2, . . . , B̃i
and the corresponding maps f1, f2, . . . , fi to X so that the following conditions are
satisfied:

(Pi): B̃j = Bj(v, B̃i) for j = 1, 2, . . . , i;

(Qi): B̃i satisfies the SDi−1(v) property;

(Ri): fi|B1(w̃,B̃i)
: B1(w̃, B̃i) → B1(fi(w̃), X) is injective for w̃ ∈ B̃i and it is

an isomorphism for w̃ ∈ B̃i−1.

Observe that those conditions are satisfied for B̃1 and f1, i.e. that conditions

(P1), (Q1) and (R1) hold. Now we construct B̃i+1 and the map fi+1 : B̃i+1 → X.

For a simplex σ̃ of B̃i, we denote by σ its image fi(σ̃) in X. Let S̃i = Si(v, B̃i) and
let

Z =
{

(w̃, z) ∈ S̃(0)
i ×X

(0)| z ∈ Xw \ fi((B̃i)w̃)
}
.

Define a relation
e∼ on Z as follows:

(w̃, z)
e∼ (w̃′, z′) iff (z = z′ and 〈w̃, w̃′〉 ∈ B̃(1)

i ).

Claim 1. The relation
e∼ is an equivalence relation.

Proof of Claim 1. To show the claim it is enough to show that
e∼ is transitive. Let

(w̃, z)
e∼ (w̃′, z′) and (w̃′, z′)

e∼ (w̃′′, z′′). We will prove that then (w̃, z)
e∼ (w̃′′, z′′).

This will follow easily from the following claim.
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Claim 2. The vertices w and w′′ coincide or are connected by an edge in X.

Proof of Claim 2. By conditions (Pi) and (Qi) we have the following. There exist

simplices ρ̃, σ̃, τ̃ ∈ B̃i−1 such that 〈w̃ ∪ w̃′ ∪ ρ̃〉, 〈w̃′ ∪ σ̃〉, 〈w̃′ ∪ w̃′′ ∪ τ̃〉 are simplices

in B̃i. Observe that ρ̃, τ̃ ⊆ σ̃.
Consider the case i = 1 for which σ = ρ = τ = v. If d(z, v) 6 1 then z ∈

fi((B̃1)w̃) and thus (w̃, z) /∈ Z — contradiction. Thus d(z, v) = 2. If d(w,w′′) = 2
then there exists a 4–wheel (w′; v, w, z, w′′) in X. This contradicts the condition
SD∗2 for X. Hence d(w,w′′) 6 1 and Claim 2 holds in the case i = 1.

Thus for the rest of the proof of Claim 2 we assume that i > 2. Then there exists

a vertex t̃ ∈ B̃i−2 joinable with σ̃. Assume that d(w,w′′) = 2 — this will lead us
to contradiction.

First observe that d(z, u) = 2 for every vertex u ∈ σ. It is because if d(z, u) 6
1 then z ∈ fi((B̃i)w̃′) and hence (w̃′, z) /∈ Z — a contradiction. Moreover, by
condition (Ri), we have d(w, t) = d(w′, t) = d(w′′, t) = 2.

Choose two vertices: u ∈ ρ and u′′ ∈ τ . We show that d(w, u′′) = 2. It is
clear that w 6= u′′ and if d(w, u′′) = 1 then there exists a 4–wheel (w′;u′′, w, z, w′′)
— contradiction with the SD∗2 property. Similarly, we have d(w′′, u) = 2. Thus

there is a 5–wheel with a pendant triangle Ŵ5 = (w′;u, u′′, w′′, z, w; t) in X. By

the condition SD∗2 there exists in X a vertex wc 6= w′ such that Ŵ5 ⊆ Xwc
. By

the condition (Ri) we have that there exist a vertex ũ ∈ τ̃ and a vertex w̃c ∈ (B̃i)ũ
such that fi(w̃c) = wc, fi(ũ) = u.

Observe that, by the condition (Ri) (for B1(ũ, B̃i)), we have that d(w̃c, w̃) = 1

and d(w̃c, t̃) = 1. Thus d(w̃c, ṽ) = i − 1. Since 〈wc, z〉 ∈ X we have that z ∈
fi((B̃i)w̃) and hence (w̃, z) /∈ Z — a contradiction. This shows that d(w,w′′) 6= 2
and finishes the proof of Claim 2.

We come back to the proof of Claim 1. Choose again u ∈ ρ and u′′ ∈ τ . If w � u′′

and w′′ � u (both in X) then we have a 4–wheel (w′;w,w′′, u′′, u) — contradiction.

W.l.o.g. we can thus assume that w′′ ∼ u. Then, by condition (Ri) (for B1(ũ, B̃i)),

we have that 〈w̃, w̃′′〉 ∈ B̃i and (w̃, z)
e∼ (w̃′′, z′′). This finishes the proof of Claim

1.

We define the flag simplicial complex B̃i+1 as follows. Its 0–skeleton is by defi-

nition the set B̃
(0)
i+1 = B

(0)
i ∪ (Z/

e∼). Now we define the 1–skeleton B̃
(1)
i+1 of B̃i+1

as follows. Edges between vertices of B̃i are the same as in B̃i. Moreover, for

every w̃ ∈ S̃i
(0)

, there are edges joining w̃ with [w̃, z] ∈ Z/ e∼ (here [w̃, z] denotes
the equivalence class of (w̃, z) ∈ Z) and the edges joining [w̃, z] with [w̃, z′], for

〈z, z′〉 ∈ X. Having defined B̃
(1)
i+1 the higher dimensional skeleta are determined by

the flagness property.

Definition of the map fi+1 : B̃
(0)
i+1 → X is clear: fi+1|B̃i

= fi and fi+1([w̃, z]) = z.

We show that it can be simplicially extended. It is enough to do it for simplices in

B̃i+1 \ B̃i−1. Let σ̃ = 〈[w̃1, z1], . . . , [w̃l, zl], w̃′1, . . . , w̃
′
m〉 ∈ B̃i+1 be a simplex. Then,

by definition of edges in B̃i+1, we have that 〈zp, zq〉 ∈ X and 〈zr, w′s〉 ∈ X, for

p, q, r ∈ {1, 2, . . . , l} and s ∈ {1, 2, . . . ,m}. Since fi+1([w̃p, zp]) = zp, fi+1(w̃′s) = w′s
and since fi was simplicial, it follows that 〈{fi+1(w̃)| w̃ ∈ σ̃}〉 ∈ X. Hence, by the

simplicial extension, we can define the map fi+1 : B̃i+1 → X.
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Now we check that B̃i+1 and fi+1 satisfy conditions (Pi+1), (Qi+1) and (Ri+1).

Condition (Pi+1). Since for every [w̃, z] ∈ B̃i+1 we have d(v, [w̃, z]) = i + 1, it is

clear that B̃j = Bj(v, B̃i+1), for j = 3, 4, . . . , i+ 1. Thus (Pi+1) holds.

Condition (Ri+1). Observe that, since the property (Ri) is satisfied by Bi, it is

enough to consider only vertices w̃ ∈ B̃i+1 \ B̃i−1. We consider separately the two
following cases.

(Case 1: w̃ ∈ S̃i.) First we prove injectivity of the map fi+1|B1(w̃,B̃i+1). Let

x̃ 6= x̃′ ∈ (B̃i+1)w̃ be two vertices. If x̃, x̃′ ∈ S̃i, then fi+1(x̃) 6= fi+1(x̃′) 6=
fi+1(w̃) 6= fi+1(x̃), by local injectivity of fi. If x̃ ∈ S̃i and x̃′ = [w̃, z] then

fi+1(x̃) 6= fi+1(x̃′) = z 6= fi+1(w̃) 6= fi+1(x̃), by local injectivity of fi and by the

definition of the set Z containing z. If x̃ = [w̃, z] and x̃′ = [w̃, z′] then fi+1(x̃) =

z 6= fi+1(x̃′) = z′ 6= fi+1(w̃) 6= fi+1(x̃) = z by the definition of Z and by the fact
that z 6= z′.

Surjectivity of the map fi+1|B1(w̃,B̃i+1) follows from the fact that, for z ∈ Xw \
fi(B1(w̃, B̃i)), we have fi+1([w̃, z]) = z.

(Case 2: w̃ = [ỹ, z].) Here we prove only injectivity of fi+1|B1(w̃,B̃i+1). Let x̃ 6= x̃′ ∈
(B̃i+1)w̃ be two vertices. If x̃, x̃′ ∈ S̃i, then fi+1(x̃) 6= fi+1(x̃′) 6= fi+1(w̃) = z 6=
fi+1(x̃), by local injectivity of fi and by the definition of the set Z. If x̃ ∈ S̃i and

x̃′ = [ỹ′, z′] then fi+1(x̃) 6= fi+1(x̃′) = z′ 6= fi+1(w̃) = z 6= fi+1(x̃), by the definition

of the set Z and since z 6= z′. If x̃ = [ỹ′, z′] and x̃′ = [ỹ′′, z′′] then d(ỹ′, ỹ′′) 6 1 and

thus z′ 6= z′′. Since z′ 6= z 6= z′′ we have fi+1(x̃) = z′ 6= fi+1(x̃′) = z′′ 6= fi+1(w̃) =
z 6= fi+1(x̃) = z′,

Condition (Qi+1). By the condition (Qi) it is enough to show the following. Let

σ be a simplex in S̃i+1. Then (B̃i+1)σ ∩ B̃i is a non-empty simplex (see Definition
3.1).

By the definition of edges in S̃i+1 it is clear that (B̃i+1)σ ∩ B̃i is non-empty.
Thus, by Lemma 3.4, it is now enough to show that for every vertex [w̃, z], if

〈[w̃, z], w̃′〉, 〈[w̃, z], w̃′′〉 ∈ B̃i+1 then 〈w̃′, w̃′′〉 ∈ B̃i+1. If w̃′, w̃′′ are as above then,

by definition of edges in B̃i+1, we have [w̃, z] = [w̃′, z] and [w̃, z] = [w̃′′, z]. Thus,

by definition of
e∼ we get that 〈w̃′, w̃′′〉 ∈ B̃i. Hence (Qi+1) follows.

Having established conditions (Pi+1), (Qi+1) and (Ri+1) we conclude that, in-

ductively, we construct a complex X̃ =
⋃∞
i=1 B̃i and a map f =

⋃∞
i=1 fi : X̃ → X

with the following properties. The complex X̃ satisfies the property SDn(v) for
every n and the map f is a covering map. Thus, by Proposition 3.7, the complex

X̃ is contractible and in particular it is the universal cover of X. Since the vertex
v was chosen arbitrarily in our construction and since the universal cover of X is

unique it follows that X̃ satisfies the property SDn(v) for every vertex v and for
every natural number n. This finishes the proof of the theorem. �

Remark. The above proof of the local-to-global result is a combinatorial version
of the well known construction of the universal cover, as a quotient of a space of
paths. Similar proof was first given in the systolic case in [JŚ06, Section 4]. In
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[CO13] we present another proof of the Cartan-Hadamard theorem for weakly sys-
tolic complexes, basing on the minimal disk diagram technique; cf. Subsection 6.1
below. However, the assumptions there are stronger (see Remark after Defini-
tion 4.2 above), hence the corresponding result is weaker than Theorem 4.5 above.
Moreover, the scheme for proving local-to-global statements presented in the proof
above is useful in many other situations (where other methods seem not to work).
We use it (nearly following the notations from here) in [BCC+13] for a class of com-
plexes generalizing weakly systolic and CAT(0) cubical complexes (note however
that the result there is again weaker if restricted to weakly systolic case). More
intriguingly, the same method is used for a construction of the universal cover in a
“positive curvature” case in [CCO12].

5. Convexity

Convexity of some balls is a crucial property of weakly systolic complexes, imply-
ing many nonpositive-curvature-like properties. In this section we show few, rather
technical results concerning convexity. They are used e.g. in Section 7.

Definition 5.1 (Convexity). A subcomplex Z in a flag simplicial complex X is
convex if it is full, connected, and if for every two vertices v, w ∈ Z, each 1–
skeleton geodesic between v and w (in X) is contained in Z. The subcomplex Z is
3–convex if it is full, and for any 1–skeleton geodesic (v1, v2, v3) in X, if v1, v3 ∈ Z
then v2 ∈ Z. A subcomplex Z is locally 3–convex if it is full, and if for every vertex
v ∈ Z the link Zv is 3–convex in the corresponding link Xv.

Remark. The notion of 3–convexity appears e.g. in [Che89, Section 4] (under the

name “local convexity”), and in [JŚ06, Section 3], where the term “3–convexity” is
introduced.

Lemma 5.2 (loc. convex ≡ convex). For Z being a subcomplex of a weakly systolic
complex X, the following conditions are equivalent.

(1) Z is convex.
(2) Z is connected and locally 3–convex.
(3) Z is connected and 3–convex.

Proof. The implications (1)⇒(2) and (1)⇒(3) are obvious.

(2)⇒(3). Let (z, v, w) be a 1–skeleton geodesic in X with w, z ∈ Z. By connected-
ness, there is a 1–skeleton path γ = (v0 = w, v1, . . . , vl = z) being a full subcomplex

of Z. Assume that γ is chosen so that the sum S(γ) =
∑l
i=0 d(v, vi) is minimal

(among full paths connecting z and w in Z). If l = 2 then, by the property SD1(w)
we have that v1 ∼ v and thus, by the local 3–convexity (at vertex v1) v ∈ Z.

Thus further we assume that l > 3. If vi = v for some i then we are done.
Assume this is not the case. If γ ⊆ Xv then, by the local 3–convexity at v1 we get
v ∈ Z. Hence, it remains to consider the case when d(vi, v) > 2, for some i. Let i
be the smallest number such that n = d(v, vi) is maximal. Then d(vi−1, v) = n− 1
and, by the SDn−1(v) property, there exists a vertex v′i ∈ Sn−1(v,X) such that
v′i ∼ vi−1, vi+1. By the local 3–convexity of Z (at vi ∈ Z) we have that v′i ∈ Z.
Consider now the path γ′ = (v0, v1, vi−1, v

′
i, vi+1, . . . , vl). One can find a full path

γ′′ containing some (possibly all) vertices of γ′, and no other vertices. However,



14 DAMIAN OSAJDA

then we have

S(γ′′) 6 S(γ′) =

= d(v, v0) + · · ·+ d(v, vi−1) + d(v, v′i) + d(v, vi+1) + · · ·+ d(v, vl) = S − 1.

This contradicts the choice of γ.

(3)⇒(1). Connectedness together with the 3–convexity imply convexity by [Che89,
Theorem 7] (cf. also [Che00, Lemma 4.2]) — weakly bridged graphs are obviously
weakly modular ; cf. [CO13]. �

Corollary 5.3. Balls around vertices in weakly systolic complexes are convex.

Proof. Clearly, balls around vertices are connected. Vertex condition (V) from
Definition 3.2 implies immediately their 3–convexity. �

Lemma 5.4. A convex subcomplex of a weakly systolic complex is weakly systolic.

Proof. This follows easily from the definition of convexity and from Definition 3.2

of the property S̃Dn(A). �

Remark. In general balls around simplices in weakly systolic complexes are not
convex. As an example consider the ball of radius one around an edge in the 5–
wheel, not adjacent to the central vertex. The following results establish convexity
of some particular balls in weakly systolic complexes, and the corresponding simple
descent properties.

Lemma 5.5 (Edges descend on balls). Let σ be a simplex of a weakly systolic
complex X. Let e = zz′ be an edge contained in the sphere Si(σ). Then there
exists a vertex w ∈ σ and a vertex v ∈ Bi−1(σ) such that v is adjacent to z, z′ and
d(v, w) = i− 1.

Proof. If there exists a vertex w ∈ σ such that z, z′ ∈ Si(w) then the assertion

follows from the edge condition (E) of Definition 3.2 of the property S̃Di(w). Thus
further we assume that such a vertex of X does not exists. Let w,w′ be two vertices
of σ with d(w, z) = d(w′, z′) = i. Since d(w′, z) = d(w, z′) = i+ 1, we conclude that
z belongs to a geodesic connecting w and z′. Since w, z′ ∈ Bi(w′) and z /∈ Bi(w′),
this contradicts the convexity of Bi(w

′). �

Lemma 5.6 (Big balls are convex). Let σ be a simplex of a weakly systolic complex
X and let i > 2. Then the ball Bi(σ) is convex. In particular, Bi(σ)∩Xz is a simplex
for any vertex z ∈ Si+1(σ).

Proof. To prove convexity it is enough, by Lemma 5.2, to prove local 3–convexity.
Let a vertex z be adjacent to x, y ∈ Bi(σ), with d(x, y) = 2. We have to show
that z ∈ Bi(σ). Suppose by way of contradiction that z ∈ Si+1(σ). Let u and v
be vertices of σ located at distance i from x and y, respectively. If u = v then, by

the property S̃Di(u), the vertices x, y must be adjacent. So, suppose that u 6= v,
and d(y, u) = d(z, u) = i + 1. By the edge condition (E) (of Definition 3.2), there
exists a common neighbor w of z and y, at distance i from u. Then, by vertex
condition (V) (applied to z and u), the vertices x and w are adjacent. Again by
edge condition (E), there exists a common neighbor u′ of w and x at distance i− 1
from u. If d(w, v) = i + 1 then y and u′ must be adjacent, by vertex condition
(V) (for vertices w and v). As a result, we obtain a 4–cycle defined by x, z, y, u′.
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Since d(z, u) = i+ 1 and d(u′, u) = i− 1, vertices z and u′ cannot be adjacent, thus
vertices w, x, y, z, u′ span a 4–wheel, which is impossible. Hence d(w, v) = i. Let u′′

be a neighbor of u on the geodesic between u′ and u (it is possible that u′′ = u′).
Since d(y, u) = i+ 1 and d(u′, u) = i− 1, d(u′, y) = 2, we conclude that u′ belongs
to a geodesic between y and u, implying that u′′ belongs to a geodesic between
u and y. Since v also belongs to the latter geodesic, by vertex condition (V), the
vertices u′′ and v must be adjacent. But in this case d(x, v) = 1 + d(u′, u′′) + 1 = i,
contrary to the assumption that d(x, v) = i + 1. This contradiction shows that
Bi(σ) is convex for any i > 2. �

Proposition 5.7 (SDn property for maximal simplices). A weakly systolic complex
satisfies the property SDn(τ) for any maximal simplex τ and every n.

Proof. Let σ be a simplex of the sphere Si+1(τ). For each vertex v ∈ σ, denote
by τ(v) the metric projection of v in τ, i.e., the set of all vertices of τ located at
distance i + 1 from v. Notice that the sets τ(v) (v ∈ σ) can be linearly ordered
by inclusion. Indeed, if we suppose the contrary, then there exist two vertices
v′, v′′ ∈ σ, and the vertices u′ ∈ τ(v′) \ τ(v′′) and u′′ ∈ τ(v′′) \ τ(v′). This would
however contradict the convexity of Bi+1(u′). It follows that σ ⊂ Si+1(u) holds for
any vertex u belonging to all metric projections τ0 = ∩{τ(v) | v ∈ σ}. Applying
the SDn(u) property to σ we conclude that the set of all vertices x ∈ Si(u) ⊆ Si(τ)
adjacent to all vertices of σ is a non-empty simplex. Pick two vertices x, y ∈ Si(τ)
adjacent to all vertices of σ. Let x ∈ Si(u) and y ∈ Si(w) for u,w ∈ τ0. We assert
that x and y are adjacent. Let v be a vertex of σ whose projection τ(v) is maximal
by inclusion. If τ(v) = τ then applying the SDn(v) property we conclude that
there exists a vertex v′ at distance i to v and adjacent to all vertices of τ contrary
to maximality of τ . Hence τ(v) is a proper simplex of τ . Let s ∈ τ \ τ(v). Then
x, y belong to geodesics between w and s, and by vertex condition (V), the vertices
x and y must be adjacent. �

Corollary 5.8. In weakly systolic complexes balls around maximal simplices are
convex.

6. Examples of weakly systolic complexes and groups

In this section we provide several classes of examples of weakly systolic complexes
and groups. Those are: systolic complexes and groups (Subsection 6.1), “CAT(-
1) cubical” groups (Subsection 6.2), lattices in isometry groups of right-angled
hyperbolic buildings (Subsection 6.3) and some other (non-)examples (Subsection
6.4).

6.1. Systolic complexes. Here we show elementarily (cf. Remarks after Corol-

lary 6.3) that systolic complexes (see [Che00,Hag03,JŚ06]) are weakly systolic. In
particular this gives a simple proof of the contractibility of systolic complexes.

Recall, that for k > 4 a flag simplicial complex is k–large if every full cycle in X
has length at least k. A flag simplicial complex is locally k–large if every its link is
k–large. A (connected and) simply connected locally k–large simplicial complex is
called k–systolic and a 6–systolic complex is called just systolic.

Let X be a simplicial complex and let D be a triangulation of a 2–disk. Following
[Che00] we call a simplicial map f : D → X a disk diagram for the cycle f(∂D). A
disk diagram for a cycle C ⊆ X is minimal if D has minimal number of 2–simplices.
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A disk diagram is non-degenerate if it is injective on each simplex of D. The proof
of the following simple lemma can be found in [Che00, Lemma 5.1 and proof of

Theorem 8.1] and [JŚ06, Lemma 1.6].

Lemma 6.1 (Systolic filling). Let X be a systolic complex and let C be a simple
(i.e. without self-intersections) cycle in X. Then there exists a non-degenerate disk
diagram f : D → X for C — a minimal disk diagram — such that f |∂D : ∂D → C
is an isomorphism and every interior vertex of D is contained in at least 6 triangles.

The proof of the following lemma is essentially the same as the proof of Theorem
8.1 in [Che00]. We provide it for completeness.

Proposition 6.2. Every systolic complex is weakly systolic.

Proof. Let X be a systolic complex. Let i be a natural number and let v be a vertex.
First we check the vertex condition (V) of Definition 3.2. Let w ∈ Si+1(v,X) be
a vertex. Let γ = (v0 = v, v1, . . . , vi+1 = w) and γ′ = (v′0 = v, v′1, . . . , v

′
i+1 =

w) be two 1–skeleton geodesics. We have to show that 〈vi, v′i〉 ∈ X. If there
exists 0 < j 6 i such that vj = v′j then we can restrict our analysis to the cycle
(vj , . . . , vi, w, v

′
i, . . . , v

′
j , vj). Thus w.l.o.g. we can assume that it is not the case,

i.e. that the cycle C = (v0, . . . , vi, w, v
′
i, . . . , v

′
0, v0) is simple. Let f : D → X be

a minimal disk diagram for C as in Lemma 6.1. Since the Euler characteristics
χ(D) of the disk D equals 1, a combinatorial Gauss-Bonnet Formula (compare e.g.

[Che00, Section 3] or [JŚ06, Section 1]) gives the following (we use here the same
notation for the vertices in D and for their images in X):

1 = χ(D) =
1

6

( ∑
z∈intD

(6− χ(z)) +
∑
v∈∂D

(3− χ(z))

)
,

where the first sum is taken over the vertices in the interior intD of D, the second
one over vertices on the boundary ∂D of D and χ(z) denotes the number of triangles
in D containing z. Observe that since γ, γ′ are geodesics we have χ(vj), χ(v′j) > 2
for j = 1, . . . , i and, moreover, if χ(vj) = χ(vk) = 2 (or χ(v′j) = χ(v′k) = 2), for
some j < k, then there exists j < l < k with χ(vl), χ(vl) > 3 (χ(v′l), χ(v′l) > 3).

Thus
∑i
j=1(3−χ(vj))+

∑i
j=1(3−χ(v′j)) 6 2. Since χ(z) 6 0 for z ∈ intD, we have

by Gauss-Bonnet formula that χ(v)+χ(w) 6 2. Thus we get that χ(v) = χ(w) = 1
that implies vi ∼ v′i and finishes the proof of the vertex condition.

Now we go to the edge condition (E) of Definition 3.2. Let e = 〈w,w′〉 ∈
Si+1(v,X) be an edge. Choose 1–skeleton geodesics (v0 = v, v1, . . . , vi+1 = w),
(v′0 = v, v′1, . . . , v

′
i+1 = w′). As before we can assume that C = (v0, . . . , vi+1, v

′
i+1, . . . , v

′
0, v0)

is a simple cycle and we can consider a minimal disk diagram f : D → X for C
as in Lemma 6.1. Again, using the combinatorial Gauss-Bonnet formula, we get
that χ(v) + χ(w) + χ(w′) 6 5. If χ(w) = 1 (or χ(w′) = 1) then vi ∼ w′ (v′i ∼ w)
thus 〈vi, e〉 ∈ X (〈v′i, e〉 ∈ X) and the edge condition is proved. Assume that
χ(w), χ(w′)〉1. Then we have to have χ(w) = χ(w′) = 2. Let u ∈ D be the vertex
which spans a simplex with e. Since u ∼ vi we have that i 6 d(u, v) 6 i+ 1. If we
prove that d(u, v) = i then we are done. Assume that this is not the case, i.e. that
d(u, v) = i + 1. Then, by the vertex condition proved above we have that vi ∼ v′i
since 〈vi, u〉, 〈v′i, u〉 ∈ D. The cycle (vi, w, w

′, v′i, vi) has a diagonal in D and we get
contradiction with χ(w) = 1 or with χ(w′) = 2. �

By applying Proposition 3.7 we get the following.
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Corollary 6.3. A finite dimensional systolic complex is contractible.

Remark. The first implicit proof of the contractibility of systolic complexes can
be found in [Che00] where it is proved (see [Che00, Theorem 8.1]) that systolic
complexes are bridged. By [AF88] (see also [Che97]) bridged complexes are dis-
mantlable — this property is stronger than contractibility. The explicit proof of
Corollary 6.3 appears in [JŚ06, Theorem 4.1.1]. There it is proved that systolic
complexes are weakly systolic by constructing directly a universal cover of a locally
6–large complex, similarly as in our proof of Theorem 4.5. We decided to present
in the current paper a self-contained proof of contractibility of systolic complexes
(including proofs of Proposition 3.7 and Proposition 6.2) because it seems to be
much simpler than the two approaches mentioned above and because it emphasizes
the role of the SDn(v) property in the systolic setting.

Yet another approach to proving Proposition 6.2 is to use Theorem 4.5 and the
following lemma, whose proof is a direct consequence of the definitions and will be
omitted here.

Lemma 6.4. A locally 6–large flag simplicial complex satisfies the property SD∗2.

Remark. The class of systolic groups includes in particular: Z, Z2, free non-
abelian groups Fn, F2 × F2, fundamental groups of surfaces, some classes of small
cancelation groups, systolic groups of arbitrarily large virtual cohomological dimen-
sion constructed in [JŚ06, Hag03, Osa13] (look there for details). However, many

classical groups are not systolic. In [JŚ07, Osa07, Osa08, OŚ13] serious restrictions
on systolic groups are studied and many non-examples are listed.

6.2. CAT(-1) cubical groups. In this section we present the second most im-
portant class of weakly systolic groups: groups acting geometrically on CAT(-1)
cubical complexes; see Corollary 6.15. CAT(-1) cubical complexes provide exam-
ples of weakly systolic groups that are not systolic; see Remarks after Corollary
6.15. Actually, in Proposition 6.13 we prove that some more general class of groups
consists of weakly systolic groups.

Remark. We think that it would be very instructive for the reader to consider
first the easiest cases of the following crucial Lemma 6.7. For k = 4, 5, 6 a version
of that lemma is proved more elementarily in [Osa13].

Definition 6.5 (Thickening). Let Y be a simple cell complex. The thickening
Th(Y ) of Y is the simplicial complex whose vertices are vertices of Y and whose
simplices correspond to sets of vertices of Y contained in a common face.

Remark. The technique of the thickening was invented by T. Januszkiewicz and,
independently, by the author; compare [Świ09, Section 8]. In the case of cubical
complexes, a construction similar to the thickening has been used in graph theory.
For a graph G being the 1–skeleton of a cubical complex Y (such graphs are called
median graphs), a graph G∆ is defined as the 1–skeleton of Th(Y ); see [BC08] (we
use their notation here).

Lemma 6.6. Let k > 4 be a natural number and let Ai be a finite set, for i =
0, 2, . . . , k − 1. Let Γ be a graph with the vertex set

⋃
Ai and with the following

properties:

(1) 〈v, v′〉 ∈ Γ, for every i and every v ∈ Ai, v′ ∈ Ai+1(mod k),
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(2) for every i, i′ with i − i′ 6= ±1(mod k), there exist vertices vii′ ∈ Ai and

vi
′

i ∈ Ai
′

not connected by an edge.

Then, for some l 6 k, there exists a 1–skeleton cycle (v1, v2, . . . , vl, v1) ⊂ Γ without
a diagonal in Γ.

Proof. We prove this by induction on k.
(Case k = 4.) The required cycle is (v0

2 , v
1
3 , v

2
0 , v

3
1 , v

0
2).

(Induction step k → k + 1.) We assume that we proved the lemma for k > 4.
Now we prove the lemma for k + 1.

If there exist (in Γ) a cycle of length at most k then we are done. So for the rest
of the proof we assume there is no such a cycle.

Claim 1. For every i = 0, 1, . . . , k and i′ such that i′ − i = 2, . . . , k − 1 (mod

(k + 1)), we have vii+2 � vi
′

i′−2 (addition mod (k + 1)).

Proof of Claim 1. We show the claim by induction on m = i′ − i (here and later
we add mod k). If m = 2 then the claim follows from the assumptions on Γ.

Assume we proved the claim for 1, 2, . . . ,m. Now we show it for i′ − i = m+ 1.

Consider a subgraph Γ′ of Γ spanned (induced) by vertices in the set
⋃i′−1
j=i+1A

i ∪{
vii+2, v

i′

i′−2

}
.

By the induction assumptions we have that vii+2 � vjj−2, for every j = i +

2, . . . , i′−1. And, analogously, we have that vi
′

i′−2 � vjj+2, for every j = i+1, . . . , i′−
2. We want to show that vii+2 � vi

′

i′−2. Assume it is not so, i.e. vii+2 ∼ vi
′

i′−2. Let

A
0

=
{
vii+2

}
, A

m
=
{
vi
′

i′−2

}
and let A

j
= Ai+j , for every j = 1, 2, . . . ,m−1. Then

the family
{
A
j
}

and the graph Γ′ satisfy the hypotheses of the lemma. Thus by

the induction (on k — observe that m+2 = i′− i+1 6 k) assumptions there exists
a cycle γ in Γ′ of length at most k and without a diagonal. Then γ is a cycle in
Γ with the same properties — contradiction. Hence vii+2 � vi

′

i′−2 and Claim 1 is
proved.

Claim 2. For every i = 0, 1, . . . , k and i′ such that i′ − i = 2, . . . , k − 1 (mod

(k + 1)), we have vii+2 � vi
′

i′+2 (addition mod (k + 1)).

Proof of Claim 2. We argue by contradiction. Assume vii+2 ∼ vi
′

i′+2. Consider a

subgraph Γ′ spanned by vertices in the set
⋃i′−1
j=i+1A

i∪
{
vii+2, v

i′

i′+2

}
. Let m = i′−i

and let A
0

=
{
vii+2

}
, A

m
=
{
vi
′

i′+2

}
, and A

j
= Ai+j , for every j = 1, 2, . . . ,m− 1.

Then, by Claim 1., the family
{
A
j
}

and the graph Γ′ satisfy the hypotheses of

the lemma. Thus by the induction (on k — observe that m + 2 = i′ − i + 1 6 k)
assumptions there exists a cycle γ in Γ′ of length at most k and without a diagonal.
Then γ is a cycle in Γ with the same properties — contradiction. Hence vii+2 � vi

′

i′+2

and Claim 2 is proved.

To conclude the proof of the lemma, observe that the cycle (v0
2 , v

1
3 , v

2
4 , . . . , v

k
0 , v

0
2)

is, by Claim 2., the required cycle without a diagonal in Γ. �

Lemma 6.7 (Loc. k–large thickening). Let Y be a locally k–large simple cell com-
plex, for some k > 4. Then Th(Y ) is also locally k–large.
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Proof. We have to study links of vertices in Th(Y ). Let v ∈ Th(Y ) be a vertex.

Let, for a vertex w ∈ Th(Y )v, the set Aw ⊆ Y (0)
v (here we identify the 0–skeleton of

the link of a vertex v in a cell complex with the set of vertices joined with the vertex

v) be the set of all vertices of Y
(0)
v ⊆ Y belonging to the minimal cell containing v

and w.

First we prove that Th(Y )v is flag (the case k = 4). Let A ⊆ Th(Y )(0) be a finite
set of pairwise connected (by edges in Th(Y )) vertices. Then, by the definition of
the thickening we have the following. For any two w,w′ ∈ A, and for every z ∈ Aw
and z′ ∈ Aw

′
, vertices z and z′ are contained in a common cell of Y (the one

containing v, w and w′) and thus 〈z, z′〉 ∈ Yv. Hence A =
⋃
w∈AA

w is a set of

pairwise connected vertices in Yv and thus, by flagness of Yv, the set A spans a
simplex in Yv. It follows that A ∪ {v} is contained in a cell of Y so that A is
contained in the same cell and thus A spans a simplex in Th(Y )v. It proves that
links in Th(Y ) are flag.

Now we prove that Th(Y )v is k–large, k > 5. We do it by a contradiction.
Assume there is an l–cycle c = (w0, w1, . . . , wl−1, w0) in Th(Y )v without a diagonal,
for l < k. We show that then there exists an l′–cycle c′ in Yv without a diagonal,
for some l′ 6 l. This contradicts k–largeness of Yv.

Let Ai = Awi for i = 0, . . . , l − 1. Since there is no diagonal in c, we have that
for for every i, i′ with i− i′ 6= 1 mod l, there exist vertices zij ∈ Ai and zji ∈ Aj not
contained in a common cell (containing v) and thus not connected by an edge in
Yv. Thus the subgraph Γ of Yv spanned by

⋃
Ai, and the family

{
Ai
}

satisfy the
hypotheses of Lemma 6.6. By this lemma, there exists l′ 6 l and an l′–cycle c′ in
Γ. �

Remark. Frédéric Haglund introduced the notion of face complex of a cell complex
(see [JŚ10, Section 1]). Vertices in the face complex correspond to cells in the
original complex and span a simplex whenever correspond to cells contained in
a common cell. Hence, the face complex is a full subcomplex of the barycentric
subdivision of the thickening. Haglund proved that the face complex of a simplicial
complex X is k–large iff X is k–large; see [JŚ10, Appendix B]. This implies the
above Lemma 6.7 in the case of cubical complexes in view of the following useful
result of Jaros law Weksej (whose immediate proof we leave to the reader).

Proposition 6.8 (Lemma 3.32 in [Wek12]). Let Y be a cubical complex and let v
be its vertex. Then the link Th(Y )v is isomorphic to the face complex of the link
Yv.

Definition 6.9 (No-∆’s). A cell complex is called no-∆ if three cells intersect
whenever they pairwise intersect.

Lemma 6.10 (Thickening of no-∆). Let Y be a locally flag no-∆ cell complex.
Then Th(Y ) is flag.

Proof. Th(Y ) is locally flag by Lemma 6.7. Let A ⊆ Th(Y ) be a set of pairwise
connected vertices of cardinality at least 4. Let v ∈ A. By the no-∆ condition every
two vertices in A \ {v}, span a simplex with v. Thus A \ {v} is a set of pairwise
connected, in Th(Y )v, vertices. By local flagness, A\{v} span a simplex in Th(Y )v
and thus A span a simplex in Th(Y ). �
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Lemma 6.11. Let Y be a cell complex. Then Th(Y ) is homotopically equivalent
with Y .

Proof. It follows immediately from Borsuk’s Nerve Theorem [Bjö03]. �

Corollary 6.12. Let Y be a simply connected locally k–large simple cell complex.
Then Th(Y ) is k–systolic.

Proposition 6.13 (Loc. 5–large no-∆ ⇒ SD∗2). Let Y be a locally 5–large no-∆

simple cell complex. Then Th(Y ) satisfies the SD∗2 property. Moreover, Th(Ỹ ) is

weakly systolic, for Ỹ being the universal cover of Y . In particular groups acting

geometrically by automorphisms on Ỹ are weakly systolic.

Proof. By Lemma 6.10, the simplicial complex Th(Y ) is flag, and by Lemma 6.7
it is locally 5–large. It follows that the condition (a) of Definition 4.2 (of the SD∗2
property) is satisfied. We then turn to the condition (b).

Let Ŵ = (v0; v1, . . . , v5; t) be a 5–wheel with a pendant triangle in Th(Y ). Let
c be the cell (in Y ) containing v0, v1, v2. Let c1, c2, c3 be cells of Y containing,
respectively, {v0, v2, v3} , {v0, v1, v5} , {v1, v2, t}. Then, by no-∆ condition, the faces
c1∩ c, c2∩ c, c3∩ c of c intersect in a vertex w. Since there is no 4–wheels in Th(Y ),
the cycle (w, v3, v4, v5, w) cannot be full and thus w ∼ v4 (in Th(Y )). It follows

that Ŵ ⊆ B1(w, Th(Y )) and thus the lemma is proved.

Weak systolicity follows from the fact that, by Lemma 6.11, Th(Ỹ ) is simply
connected and thus, by Theorem 4.5, it is weakly systolic. �

Lemma 6.14 (Thickening of CAT(0) c.c.). Let Y be a simply connected locally flag
(i.e. loc. 4–large) cubical complex. Then Th(Y ) is a no-∆ cell complex.

Proof. This is a reformulation of the clique Helly property of median graphs; see
[BC08, Theorem 3.1 and Proposition 3.2]. �

Corollary 6.15 (Thickening of CAT(-1) c.c.). Let Y be a simply connected locally
5–large cubical complex (i.e. CAT(-1) cubical complex). Then Th(Y ) is weakly
systolic and groups acting geometrically by automorphisms on Y are weakly systolic.

Proof. It follows directly from Lemma 6.7, Lemma 6.14, and Proposition 6.13. �

Remarks. 1) Proposition 6.13 shows that simply connected locally 5–large cell
complexes are often weakly systolic, if their cells have no-∆ of faces. The simplest
such complex seems to be a cubical complex. If there are “∆ of faces” (like in
simplicial complexes) then we need local 6–largeness (cf. Section 6.1). Simply con-
nected locally 5–large cell complexes with no-∆ of faces exist and groups acting on
them geometrically appears in the literature. E.g. many Coxeter groups and their
Davis complexes.

2) There are weakly systolic groups acting geometrically on CAT(-1) cubical
complexes, that are not systolic groups. For example, right-angled Coxeter groups
acting geometrically on the hyperbolic space Hk, for k = 3, 4. Such groups “con-
tain asymptotically spheres” and thus are not systolic [JŚ07, Osa07, Osa08, OŚ13].
Moreover, in [Osa13] we construct examples of weakly systolic, not systolic hyper-
bolic Coxeter groups in every virtual cohomological dimension. This gives the first
non-systolic examples of such groups. The construction bases on tools developed
in this section.
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6.3. Right-angled hyperbolic buildings. In this section we show that for a
right-angled hyperbolic building there exists an associated weakly systolic complex
— it’s “thickening” (see Definition 6.19). This gives us new examples of weakly
systolic groups: lattices in isometry groups of such buildings.

6.3.1. Preliminaries on Coxeter groups and buildings. We adopt here notations
from [Dav08,DO07]. A Coxeter group is given by a presentationW = 〈S|(st)mst ; s, t ∈
S〉, where S is a finite set, mst ∈ N ∪ {∞}, mst = mts and mst = 1 iff t = s (here
(st)∞ means no relation). A Coxeter group (or a Coxeter system (W,S)) is called
right-angled if mst ∈ {1, 2,∞}. A special subgroup WT of a Coxeter group W is a
subgroup generated by a subset T ⊆ S. A subset T ⊆ S is called spherical if WT

is finite. In that case WT is called also spherical. By S we denote the poset (with
respect to inclusions) of spherical subsets of S. The poset of all nonempty spherical
subsets is an abstract simplicial complex: the nerve L = L(W,S) of the Coxeter
system (W,S). The geometric realization of the poset (with respect to inclusions)⋃
T∈SW/WT is called the Davis complex and is denoted by Σ = Σ(W,S). The

Davis chamber K is the simplicial cone conebK (L′) over the barycentric subdivision
L′ of the nerve L, with the cone point denoted by bK . We equip W with a family
of equivalence relations (∼s)s∈S , defined as follows: w ∼s w′ ⇔ w′ ∈ {w,ws}.

For a given Coxeter system (W,S) a building of type (W,S) will be denoted Φ and
is defined as follows. Φ is a set (of chambers) equipped with a family of equivalence
relations (∼s)s∈S and with a family of subsets (called apartments) isomorphic to
W (here an isomorphism is a bijection preserving every ∼s), such that:

(1) every two chambers are contained in a common apartment;
(2) if two chambers x, y are both contained in apartments A,A′, then there

exists an isomorphism A→ A′ fixing x and y;
(3) if apartments A,A′ contain a chamber x and both intersect an equivalence

class R of ∼s, then there exists an isomorphism A → A′ fixing x and
mapping R ∩ a to R ∩A′.

For a subset T ⊆ S and x ∈ Φ we define the residue Res(x, T ) as the set of all
y ∈ Φ such that there exists a sequence (s1, . . . , sl) of elements of T and xi ∈ Φ
with x0 = x ∼s1 x1 ∼s2 x2 ∼s3 · · · ∼sl xl = y.

We consider here the following geometric realization |Φ| of the building Φ. For
a point p in a Davis chamber K, let S(p) = {s ∈ S| p ∈ B1(s, L′)}. Observe that
S(p) 6= ∅ iff p ∈ L. Let |Φ| = Φ × K/ ∼, where (x, p) ∼ (y, q) iff p = q and
x ∈ Res(y, S(p)). In this construction chambers correspond to copies of K. In
the sequel we do not distinguish a building Φ from its geometric realization |Φ|,
and both are denoted by Φ. A building is right-angled (respectively hyperbolic) if
the corresponding Coxeter system is right-angled (respectively Gromov hyperbolic).
Observe that W itself (respectively Σ) is a building (respectively a geometric real-
ization of a building). By a theorem of Moussong (see [Dav08, Corollary 12.6.3]), a
right-angled Coxeter group (W,S) is Gromov hyperbolic iff its nerve L = L(W,S)
is a 5–large simplicial complex. In that case there is a locally 5–large cubulation of
Σ (i.e. CAT(-1) cubulation), but we do not know any such cubulation for a general
right-angled hyperbolic building.

6.3.2. Thickenings of buildings are weakly systolic. Vertices in K being barycenters
of maximal simplices in L will be called vertices of Φ. For a vertex v of Φ, its star,
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denoted Stv, is the union of all simplices of Φ (in the triangulation corresponding
to the barycentric subdivision of L) containing v.

Remark. In the sequel we usually denote stars by c, ci etc. It follows from the
fact that they play a role of “cells” (as in Section 6.2) in our Definition 6.19 of a
“thickening”, analogous to the thickening of a cell complex — Definition 6.5.

Lemma 6.16. Let π : Φ→ Σ be a folding map. Then, for a vertex v of Φ, the image
π(Stv) of its star is a cube of the standard cubulation of Σ (see [Dav08, Chapter
1.2]).

Proof. If Φ = Σ (i.e. if the equivalence class of each ∼s has two elements) then stars
of vertices are cubes of the standard cubulation of Σ. In the general case observe
that π(Stv) = Stπ(v). �

Lemma 6.17. Let Φ be a right-angled hyperbolic building and let c1, c2 be two of
its stars, with ci = St(vi), for a vertex vi of Φ4; i = 1, 2. Let σi be the maximal
simplex in L with barycenter vi and let A be the set of Davis chambers containing
v1 and v2.

(1) Φ is the union
⋃
v Stv of stars over all vertices of Φ.

(2) If, for a Davis chamber K, we have ci ∩K 6= ∅, then vi ∈ K.
(3) A = ∅ iff c1 ∩ c2 = ∅.
(4) If A 6= ∅ and σ1 ∩ σ2 6= ∅ then c1 ∩ c2 =

⋃
K∈A conebK (σ1 ∩ σ2).

(5) If A 6= ∅ and σ1 ∩σ2 = ∅, then A = {K}, and c1 ∩ c2 = bK , for some Davis
chamber K.

Proof. (1) Every vertex of L, as well as the cone point in K belong to cone over
some maximal simplex in L. Thus Φ =

⋃
v Stv.

(2), (3) and (4) are obvious.
(5) follows from the fact that the intersection of two distinct chambers has di-

ameter at most two in corresponding barycentric subdivisions of nerves. �

Lemma 6.18 (no-∆ of stars). A right-angled hyperbolic building has no-∆ of stars,
i.e. if three stars c1, c2, c3 pairwise intersect, then they all intersect.

Proof. Let c1, c2, c3 be three pairwise intersecting stars. By Lemma 6.17, there
exists a chamber K with bK ∈ c1 ∩ c2. Let πK : Φ → Σ be the K–based fold-
ing map. Observe that, by Lemma 6.16, πK(c1), πK(c2), πK(c3) are three pair-
wise intersecting cubes in the CAT(-1) cubical complex Σ. Thus, by Lemma 6.14,
πK(c1) ∩ πK(c2) ∩ πK(c3) 6= ∅. By our choice of K, we have π−1

K (πK(ci)) = ci,

for i = 1, 2, and π−1
K (πK(c1) ∩ πK(c2)) = c1 ∩ c2. Thus, if c3 ∩ (c1 ∩ c2) = ∅

then c3 ∩ π−1
K (πK(c1) ∩ πK(c2)) = ∅ that implies πK(c3) ∩ (πK(c1) ∩ πK(c2)) = ∅;

contradiction. �

Definition 6.19 (Thickening). A thickening Th(Φ) of a building Φ is a flag sim-
plicial complex defined as follows. Vertices of Th(Φ) are cone points bK , for all
chambers K. The set of vertices span a simplex if they are all contained in a
common star of Φ.

Lemma 6.20. Let A be a finite collection of simplices in a flag simplicial complex
X, such that every two simplices in A are contained in a common simplex of X.
Then there exists a simplex containing all simplices from A.
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Proof. Let A(0) =
⋃
σ∈A σ

(0). Every two vertices in A(0) are connected by an edge
in X since the two simplices in A containing them are themselves contained in a
common simplex. Thus, by flagness, 〈A(0)〉 is a simplex containing all simplices in
A. �

Lemma 6.21 (Th(Φ) loc. 5–large). The thickening Th(Φ) of a hyperbolic right-
angled building Φ is locally 5–large.

Proof. Let bK be a vertex of Th(Φ), with K = conebK (L′). We check 5–largeness
of Th(Φ)bK . For every bK′ ∈ Th(Φ)bK let LK′ be the minimal simplex in L such
that K ′ ∈ Res(K,LK′).

First we prove flagness. Let {bKi
}i∈I be a set of vertices pairwise connected by

edges. Then the collection A = {LKi
}i∈I has the following property. For every

i, j ∈ I, simplices LKi
and LKj

are contained a common simplex — the maximal
simplex of L corresponding to a star containing bKi

and bKj
. Then, by Lemma

6.20 there is a maximal simplex containing all simplices in A, i.e. there exists a star
containing each bKi . Thus {bKi}i∈I spans a simplex in Th(Φ)bK .

Now we show that there is no full 4–cycles in Th(Φ)bK . Suppose that (bK0 , bK1 , bK2 , bK3 , bK0)
is such a cycle. Since it has no diagonals, for every i ∈ {0, 1, 2, 3}, there exists a
vertex vi ∈ LKi

with 〈vi, vi+2 (mod 4)〉 /∈ L. Then the cycle (v0, v1, v2, v3, v0) is a
full cycle in L, which contradicts the 5–largeness of L. It implies that there are no
full 4–cycles in Th(Φ)bK and thus Th(Φ) is locally 5–large. �

Lemma 6.22. Th(Φ) is flag and it is homotopically equivalent to Φ. In particular
it is contractible.

Proof. Flagness follows from Lemma 6.18 and Lemma 6.21 in the same way as in
the proof of Lemma 6.10.

For the homotopy type of Th(Φ) observe that, by Lemma 6.17, intersections of
stars are contractible. Thus, as in Lemma 6.11, we can apply directly the Borsuk
Nerve Theorem [Bjö03] to get the homotopy equivalence. �

Proposition 6.23 (Th(Φ) is weakly systolic). Let Φ be right-angled hyperbolic
building. Then Th(Φ) is weakly systolic. In particular uniform lattices in the isom-
etry group of Φ are weakly systolic.

Proof. By Lemma 6.18, Φ has no ∆ of stars. The proof of the lemma is thus
analogous to the one of Proposition 6.13 — we use Lemma 6.21 instead of Lemma
6.7, and Lemma 6.22 instead of Lemmas 6.10 & 6.11. �

6.4. Some other (non-)examples.

6.4.1. Subgroups. In Subsection 7.5 we show that quasi-convex subgroups of some
hyperbolic weakly systolic groups are weakly systolic; see Corollary 7.17. In Subsec-
tion 8.1 we prove that finitely presented subgroups of some weakly systolic groups
are weakly systolic; see Theorem 8.7. We do not know at the moment whether
finitely presented subgroups of every weakly systolic group are weakly systolic.
This is true for systolic groups; see [Wis03] and Subsection 8.7 below.

6.4.2. Products. Several constructions of “free products” of SD∗2 complexes result-
ing in an SD∗2 complex are possible. For example, if X,Y are SD∗2 complexes and
σ ∈ X, τ ∈ Y their maximal simplices, then the following amalgamated union



24 DAMIAN OSAJDA

X ′ ∪c Y ′ is an SD∗2 complex. We set X ′ = X ∪ conec(σ) and Y ′ = Y ∪ conec(τ),
where conec(σ) denotes the cone over σ with the cone point c.

However, in general we do not know whether a free product of weakly systolic
groups with amalgamation over a finite subgroup is weakly systolic. A result like
that holds for systolic groups; see [CO13].

6.4.3. Non-examples. In [Osa13] we construct weakly systolic groups of arbitrar-
ily large virtual cohomological dimension. However, all the examples constructed
there “contain asymptotically” spheres of dimension at most 3; see a discussion
in [Osa13]. A conjecture by Januszkiewicz-Świa↪tkowski (personal communication)
states that simply connected locally 5–large cubical complexes “contain asymptoti-
cally” spheres of dimension at most 3. We do not know if this is true for weakly sys-
tolic groups (observe that systolic groups do not “contain asymptotically” spheres

above dimension one [JŚ07,Osa07,Osa08,OŚ13]).
On the other hand it seems plausible that Z3 is a simple example of a (CAT(0)

cubical) group that is not weakly systolic.

7. A combinatorial negative curvature

In this section we introduce and study the local condition, SD∗2(7) (see Definition
7.2 below), that is a combinatorial analogue of the negative curvature for weakly
systolic complexes. In particular, in Theorem 7.5, we prove that groups acting
geometrically on simply connected complexes satisfying that condition are Gromov
hyperbolic.

However, we begin with a general result concerning weakly systolic complexes
and hyperbolicity.

7.1. Flats vs. hyperbolicity. Recall that the systolic plane is a 2–dimensional
simplicial complex isomorphic to the triangulation of the Euclidean plane by equi-
lateral triangles. The following result is an analogue of [Prz07, Theorem 1.2].

Theorem 7.1 (Hyperbolicity ≡ no-flats). Let a group G act geometrically by auto-
morphisms on a weakly systolic complex X. Then G is Gromov hyperbolic iff there
is no isometric embedding of the systolic plane in X.

Proof. The proof follows the idea of the proof of [Prz07, Theorem 1.2]. It is clear
that If there is an embedding as in the lemma, then X is not Gromov hyperbolic.
Thus we now prove the converse.

Assume that X is not Gromov hyperbolic. Then, by the Papasoglu’s criterion
[Pap95], for every k > 2, there exist vertices v, w and 1–skeleton geodesics γ =
(v0 = v, v1, . . . , vn = w) and γ′ = (v′0 = v, v′1, . . . , v

′
n = w) with the following

properties. There exists i such that d(vi, v
′
i) > k. Let δ = (z0

0 = vi, z
0
1 , . . . , z

0
l = v′i)

be a geodesic. By convexity of balls we have that δ ⊆ Bi(v,X) ∩Bn−i(w,X). Let
z1
j , for j = 0, . . . , n− 1, be a vertex in πv(〈z0

j , z
0
j+1〉).

Claim 1. z1
j+1 6= z1

j .

Proof of Claim 1. Assume that z1
j+1 = z1

j . Let s and t be vertices in, respectively,

πw(〈z0
j , z

0
j+1〉) and πw(〈z0

j+1, z
0
j+2〉). Then s 6= t, s � z0

j+2 and t � z0
j because there

are no 4–wheels in X. Thus there is a 5–wheel with a pendant triangle Ŵ =
(z0
j+1; s, t, z0

j+2, z
1
j , z

0
j ;u), where u is a vertex in πw(〈s, t〉). Then, by the property
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SD∗2 , there exists a vertex x with Ŵ ⊆ B1(x,X). But this is a contradiction, since
d(z1

j , u) = 3. This finishes the proof of Claim 1.

Observe that z1
j ∼ z0

j , z
0
j+1, z

1
j+1. Inductively we define zmj as a vertex in

πv(〈zm−1
j , zm−1

j+1 〉), form = 1, 2, . . . , l and j = 0, . . . , l−m. Then zmj ∼ z
m−1
j , zm−1

j+1 , z
m
j+1,

and zmj � zm−1
j−1 , z

m−1
j+2 . The full subcomplex ∆l spanned by the set

{
zmj
}

is iso-
morphic to an equilateral triangle on the systolic plane with the side of length l.

Claim 2. The complex ∆l is isometrically embedded in X.

Proof of Claim 2. We have to show that for every two vertices z, u ∈ ∆l their
distance d∆l

(z, u) in ∆l is the same as their distance d(z, u) in X.

Let z = zmj and u = zm
′

j′ . Assume, by contrary, that there exist pairs (z, u)

with d(z, u) < d∆l
(z, u). Let a pair (z, u) has the smallest m′ + m among such

pairs. Observe that if m = m′ = 0 then z, u lie on the geodesic δ and thus
d(z, u) = d∆l

(z, u). W.l.o.g. assume that m + j 6 m′ + j′ and m 6 m′ (the other
cases can be treated analogously by symmetry).

If m = m′ then consider the pair (z′ = zm−1
j , u). We have d(z′, u) 6 d(z, u)+1 <

d∆l
(z, u) + 1 = d∆l

(z′, u). This contradicts our assumptions on (z, u).
Thus we assume that m < m′. If j′ 6 j then d∆l

(u, z) = m′ − m = d(u, z);

contradiction. Hence j < j′. Consider the pair (z, u′) with u′ = zm
′−1

j′+1 . By our
assumptions we have

d(z, u′) = d∆l
(z, u′) = (j′ + 1− j) + (m′ − 1−m)

= (j′ − j) + (m′ −m) = d∆l
(z, u) > d(z, u) + 1.

Thus there exists a geodesic in X between z and u′ passing through u. But this
contradicts the convexity of the ball B(n−i)+(m′−1)(w,X) containing z and u′. This
finishes the proof of Claim 2.

Thus, for every l there exists a systolic equilateral triangle ∆l with the side l
isometrically embedded in X. Since X admits the geometric G–action it follows,
see [Prz07, Lemma 3.4], that there is an isometrically embedded systolic plane in
X. �

Remark. An analogous result holds also for CAT(0) groups; see [BH99, Chapter
III.Γ, Theorem 3.1].

7.2. Negative curvature.

Definition 7.2 (SD∗2(k) property). For k > 5, a flag simplicial complex X satisfies
the SD∗2(k) property (or is an SD∗2(k) complex ) if the following two conditions hold.

(a) X does not contain 4–wheels,

(b) for 5 6 l < k and every l–wheel with a pendant triangle Ŵ in X, there exists

a vertex v with Ŵ ⊆ B1(v,X).

Observe that the condition SD∗2(6) is equivalent to SD∗2 , and that SD∗2(k) im-
plies SD∗2(l), for l 6 k.

Lemma 7.3 (Strict geodesic contraction). Let v be a vertex of a simply connected
SD∗2(7) complex X. Let n > 2 and let w1 ∼ w2 be two vertices on the sphere
Sn(v,X). Then π2

v(wi) = πv(πv(wi)) ⊆ π2
v(wj) = πv(πv(wj)) for some i 6= j.
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Proof. By Theorem 4.5, X is a weakly systolic complex. If πv(wj) ⊆ πv(wi) then
π2
v(wi) ⊆ π2

v(wj) and we are done. If n = 2 then π2
v(w1) = π2

v(w2) = v. Thus
for the rest of the proof we assume that n > 3 and πv(wj) * πv(wi) for any
i 6= j. Then the following vertices exist: w0 ∈ πv(〈w1, w2〉); w3 ∈ πv(w2) \ πv(w1);
w6 ∈ πv(w1) \ πv(w2).

We argue by contradiction. Suppose that π2
v(wi) * π2

v(wj) for any i 6= j; i, j =
1, 2. Then we can find vertices: w4 ∈ πv(〈w0, w3〉)\πv(〈w0, w6〉); w5 ∈ πv(〈w0, w6〉)\
πv(〈w0, w3〉); t ∈ πv(〈w4, w5〉). Observe that then there exists a 6–wheel with a

pendant triangle Ŵ = (w0;w4, w5, w6, w1, w2, w3; t) in X. By the condition SD∗2(7),

there is a vertex z with Ŵ ⊆ B1(z,X). But this contradicts the fact that d(w1, t) =
3. Hence π2

v(wi) ⊆ π2
v(wj) for some i 6= j; i, j = 1, 2. �

Lemma 7.4 (Thin bigons). Let v, w be two vertices in a simply connected SD∗2(7)
complex X, and let γ = (v0 = v, v1, . . . , vn = w) be a 1–skeleton geodesic between
them. For any other geodesic γ′ = (v′0 = v, v′1, . . . , v

′
n = w) from v to w we have

d(vi, v
′
i) 6 1, for every i = 0, 1, . . . , n.

Proof. Assume that there exists i such that d(vi, v
′
i) = 2. Let moreover i be the

biggest number with this property. Then it is clear that d(vi+1, v
′
i+1) = 1. By

Theorem 7.3, we have that, w.l.o.g. πv(πv(vi+1)) ⊆ πv(πv(v′i+1). Thus there exists
a vertex z′ in Si−1(v,X) such that z′ ∼ vi, v

′
i, z, for some z ∈ πv(〈vi+1, v

′
i+1〉).

Observe that for a vertex t ∈ πw(〈vi+1, v
′
i+1〉), we have that there exists a 5–wheel

with a pendant triangle Ŵ = (z; vi+1, v
′
i+1, v

′
i, z
′, vi; t). Then, by the condition SD∗2

we have that there exists a vertex z0 with Ŵ ⊆ B1(z0, X). But this contradicts the
fact that d(t, z′) = 3. Thus the lemma follows. �

Theorem 7.5 (SD∗2(7) implies hyperbolicity). The universal cover of an SD∗2(7)
complex is Gromov hyperbolic. In particular, groups acting geometrically by auto-
morphisms on simply connected SD∗2(7) complexes are Gromov hyperbolic.

Proof. This follows immediately from Lemma 7.4, by Papasoglu’s criterion [Pap95].
�

Remark. Another proof of hyperbolicity could be similar to the one of hyperbol-
icity of 7–systolic groups given in [JŚ06]. This would use filling diagrams; cf. e.g.
[CO13].

7.3. Examples. Here we provide some examples of weakly systolic SD∗2(7) com-
plexes. In particular they include 7–systolic groups (see Proposition 7.6) and CAT(-
1) cubical groups (see Corollary 7.8); compare also Section 6.1.

The following is a direct consequence of Definition 7.2.

Proposition 7.6. A locally k–large complex is an SD∗2(k) complex for k > 6.

The proof of the following is the same as the one of Proposition 6.13.

Proposition 7.7 (Loc. 5–large no-∆ ⇒ SD∗2(k)). Let Y be a locally 5–large no-∆
cell complex. Then Th(Y ) satisfies the SD∗2(k) property, for every k > 6.

As a corollary we get the following strengthening of Corollary 6.15.

Corollary 7.8 (Thickening of CAT(-1) c.c.). Let Y be a simply connected locally
5–large cubical complex (i.e. CAT(-1) cubical complex). Then Th(Y ) is weakly
systolic SD∗2(k) complex, for every k > 6.
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Similarly, following the proof of Proposition 6.23, we obtain the following.

Proposition 7.9 (Th(Φ) satisfies SD∗2(k)). Let Φ be a right-angled hyperbolic
building. Then Th(Y ) satisfies the SD∗2(k) property, for every k > 6.

7.4. Gromov boundary. Let v be a vertex of a weakly systolic complex X. Then,
for every n > 0, we can define a map πv : ((Sn+1(v,X))′)(0) → ((Sn(v,X))′)(0) as
follows. For a barycenter w of a simplex σ in Sn+1(v,X), its image πv(w) is the
barycenter of πv(σ) (here πv is as in Definition 3.1). There should be no confusion
between this new definition of πv and the one from Definition 3.1.

Let v be a vertex of an SD∗2(7) complex X. By Lemma 7.3, we have immediately
the following.

Lemma 7.10. Let X be a simply connected SD∗2(7) complex X. Then for every
vertex v ∈ X and for every n > 0 the map π2

v = πv ◦ πv : ((Sn+2(v,X))′)(0) →
((Sn(v,X))′)(0)extends to a simplicial map π2

v : (Sn+2(v,X))′ → (Sn(v,X))′.

Theorem 7.11 (Gromov boundary). The Gromov boundary of an SD∗2(7) complex
X is homeomorphic to the inverse limit inv limn→∞

{
(S2n(v,X))′, π2

v

}
, for every

vertex v ∈ X.

Proof. The proof is the same as the one of [Osa08, Lemma 4.1]. �

Remark. Theorem 7.11 above is an analogue of [Osa08, Lemma 4.1]. The pre-
vious result appeared to be very useful for studying the topology of the boundary
of 7–systolic groups and its algebraic consequences; see [Osa08, Świ09,Zaw10]. The
new result (Theorem 7.11) provides a nice combinatorial description of the Gromov
boundary for some more classical groups, e.g. CAT(-1) cubical groups (see Corol-
lary 7.8) and some hyperbolic buildings (see Proposition 7.9). We believe it can be
useful for various purposes.

7.5. Quasi-convex subgroups. In this subsection we prove analogues of some
results of [HŚ08]. The goal is to show that quasi-convex subgroups of groups acting
geometrically on weakly systolic SD∗2(7) complexes are themselves acting geomet-
rically on weakly systolic SD∗2(7) complexes — Corollary 7.17. This provides new
examples of weakly systolic groups.

Lemma 7.12 (Y-lemma; cf. [HŚ08, Lemma 5.1]). Let v be a vertex in a weakly
systolic complex X. Let v1, v2 be vertices at distance n from v and with d(v1, v2) =
g 6 n. Then there is a geodesic of length n− d with starting at v that extends to a
geodesic to either of the vertices vi.

Proof. The proof is the same as the one of [HŚ08, Lemma 5.1] — one uses Lemma

5.3 instead of [HŚ08, Corollary 4.10]. �

Lemma 7.13 (cf. [HŚ08, Lemma 5.2]). Let X be a weakly systolic SD∗2(7) complex.
Let (v0, v1, . . . , vn), (v0, v

′
1, . . . , v

′
n) be two geodesics with the same origin and such

that d(v1, v
′
1) = 2. Then n < 5 + d(vn, v

′
n).

Proof. If n 6 5 then, by thinness of bigons (see Lemma 7.4), we are done. Assume
that n > 6.

(Step 1.) We argue, as in [HŚ08, proof of Lemma 5.2], by contradiction. Suppose
that d(vn, v

′
n) 6 n − 5. By Lemma 7.12, there is a geodesic (v0, u1, u2, u3, u4, u5)
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which extends to geodesics from v0 to either of the vertices vn or v′n. By Lemma
7.4 we have d(ui.vi) 6 1 > d(ui, v

′
i) for i = 1, 2, 3, 4, 5. By weak systolicity we have

that v2 � v′1, v1 � v′2 and v2 6= v′2.

(Step 2.) Suppose that u2 ∼ v1. Then u2 � v′1, v′2 ∼ u1, and one of vertices u3, v
′
3,

say u3, spans a simplex with 〈u2.v
′
2〉. By the SD∗2 property there exists a vertex u′

such that the 5–wheel with a pendant triangle (u1;u2, v
′
2, v
′
1, v0, v1;u3) is contained

in B1(u′, X). This contradicts the fact that d(v0, u3) = 3. Thus u2 � v1 and,
analogously, u2 � v′1. This implies that v2 6= u2 6= v′2 and u1 ∼ v2, v

′
2.

(Step 3.) Suppose that v2 ∼ v′2. If either of the vertices v3, u3, v
′
3, say v3, is joined

with v2 and v′2, then we have a 5–wheel with a pendant triangle (u1; v2, v
′
2, v
′
1, v0, v1; v3)

which contradicts, by the property SD∗2 as above, the fact that d(v0, v3) = 3. Thus
none of the vertices v3, u3, v

′
3 is joined simultaneously with v2 and v′2. Thus, by the

weak systolicity v3 � v′3 (otherwise there is a 4–cycle (v3, v
′
3, v
′
2, v2, v3) that has to

have a diagonal) and, in particular v3 6= u3 6= v′3.
Now, proceeding as in Step 1. and Step 2. (replacing indexes i by i+ 2) we get

that u3 ∼ v4, v
′
4, and v4 6= v′4 6= u4 6= v4, v3 � v′4, and v′3 � v4. Then we have a

5–wheel (u3;u2, v3, v4, v
′
4, v
′
3; v2) or a 6–wheel (u3;u2, v3, v4, u4, v

′
4, v
′
3; v2). In both

cases, by the property SD∗2(7), there exists a vertex u with u ∼ v2, v
′
3, v4. By the

weak systolicity, considering the cycle (v2, u, v
′
3, v
′
2, v2) we have u ∼ v′2. But this

gives a 5–wheel with a pendant triangle (u1; v2, v
′
2, v
′
1, v0, v1;u), which contradicts,

by the property SD∗2 as above, the fact that d(v0, u) = 3.

(Step 4.) We have thus v2 � v′2. Then, as in Step 1. and Step 2. we conclude
(replacing indexes i by i + 1) that u2 ∼ v3. Thus we have a 6–wheel with a pen-
dant triangle (u1; v2, u2, v

′
2, v
′
1, v0, v1; v3). This contradicts again, by the property

SD∗2(7), the fact that d(v0, v3) = 3.
This is the final contradiction that finishes the proof. �

Corollary 7.14 (cf. [HŚ08, Corollary 5.3]). Let v1, v2, v be vertices of a weakly sys-
tolic SD∗2(7) complex X, and suppose that d(v1, v2) 6 d and d(v1, x) = d(v2, x) =
n > d+5. Denote by σ1, σ2 the projections of the vertex v on the spheres Sn−1(v1, X)
and Sn−1(v2, X) respectively. Then σ1 ∪ σ2 spans a simplex of X.

Proof. The proof follows verbatim the one of [HŚ08, Corollary 5.3] — one uses

Lemma 7.13 instead of [HŚ08, Lemma 5.2]. �

Definition 7.15 (Quasi-convexity). Given K > 0, we say that a subcomplex Y in
a connected simplicial complex X is K–quasi-convex whenever the following holds:
for any geodesic (v0, . . . , vn) in X such that v0, vn ∈ Y we have d(vi, Y ) 6 K for
i = 0, 1, . . . , n. A subcomplex Y is quasi-convex if it is K–quasi-convex for some
K.

A subgroup H of a Gromov hyperbolic group G is quasiconvex if H is a qua-
siconvex subset in the Cayley graph C(G,S) for some finite generating set S of
G.

The following theorem together with its proof are analogues of [HŚ08, Theorem
5.5] and the proof there.

Theorem 7.16 (Convex neighborhood of quasi-convex). Let X be a locally finite
weakly systolic SD∗2(7) complex. Let Y ⊆ X be its K–quasi-convex subcomplex, for
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some K > 0. Then there exists an integer n(K) such that for every n > n(K) the
ball Bn(Y,X) is convex.

Proof. The proof follows the one of [HŚ08, Theorem 5.5].

X admits quasi-projections on quasi-convex subsets (see [HŚ08, proof of Theorem
5.5]), hence there exists a natural number d = d(K) such that for every vertex
v ∈ X and every vertices v1, v2 ∈ Y with d(v, v1) = d(v, v2) = d(v, Y ) we have
d(v1, v2) 6 d.

Set n(K) = max {K, d(K) + 4} and observe that for every n > n(K) the ball
Bn(Y,X) is connected by quasi-convexity. Thus, in view of Lemma 5.2 it is enough
to check the local 3–convexity of Bn(Y,X); see Definition 5.1. Obviously, it is
enough to consider only the local convexity at vertices v with d(v, Y ) = n. Let
v1 ∼ v2 ∼ v3 be distinct vertices in Xv, with v1 � v3 and v1, v3 ∈ Bn(Y,X).
Suppose that v2 /∈ Bn(Y,X), i.e. d(v2, Y ) = n + 1. We show that this leads to a
contradiction and it will finish the proof.

Let A ⊆ Y be the set of all vertices of Y at distance n + 1 from v2. By the
properties of quasi-projection, the diameter of A is at most d. We claim that the
set of simplices {πv2(w)| w ∈ A} span a simplex τ in X. Indeed, since d(v2, Y ) =
n + 1 > d(K) + 5, it follows from Corollary 7.14 that any pair of such simplices
span a simplex in X. Thus, by flagness and local finite dimensionality, the claim
follows. It follows that v2 ∈ Sn(τ,X) and v1, v3 ∈ Sn−1(τ,X). However, since
n > 4 and, by Lemma 5.6, the ball Bn−1(τ,X) is convex, we have that v1 ∼ v3 —
contradiction. �

The next result provides, in particular, other examples of weakly systolic groups.

Corollary 7.17 (Quasi-convex subgroups). Let G be a group acting geometrically
by automorphisms on a weakly systolic SD∗2(7) complex X. Then any quasi-convex
subgroup H of G is convex cocompact, i.e. there exists a convex H–invariant sub-
complex Y on which H acts geometrically. In particular H acts geometrically on a
weakly systolic SD∗2(7) complex.

Proof. This follows immediately from Theorem 7.16; cf. the proof of [HŚ08, Corol-
lary 5.8]. The last assertion follows from Lemma 5.4 and Lemma 8.6. �

8. Weakly systolic complexes with SD∗2 links

In this section we study a class of weakly systolic complexes, whose asymptotic
properties resemble very much the ones of systolic complexes; see Subsections 8.2
and 8.3. Those are the so called weakly systolic complexes with SD∗2 links. They
provide many new (i.e. a priori not systolic) examples of (highly dimensional) groups
with interesting asphericity properties; see Theorem 8.8, Theorem 8.11, Remarks
afterwards, and [Osa13,OŚ13].

Definition 8.1. A flag simplicial complex X is called a complex with SD∗2 links
(respectively a complex with SD∗2(k) links) if X and every of its links satisfy the
property SD∗2 (respectively SD∗2(k)); see Definition 7.2.

The following proposition is the key result in showing various asphericity prop-
erties of weakly systolic complexes with SD∗2 links.
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Proposition 8.2. Let X be an n–dimensional (n < ∞) flag simplicial complex.
Then the following three conditions are equivalent.

i) X is a complex with SD∗2(k) links.
ii) X does not contain 4–wheels and full i–wheels with pendant triangles (i.e.

5–wheels with pendant triangles being full subcomplexes of X), for i = 5, . . . , k− 1.
iii) Every full subcomplex of X satisfies the SD∗2(k) property. In particular every

full subcomplex of X is aspherical.

Proof. (i) ⇒ (ii). By the definition of the SD∗2(k) property X does not contain
4–wheels.

Assume, by contradiction, that Ŵ = (v0; v1, . . . , vi; t) is a full i–wheel with a
pendant triangle in X (see Definition 4.1).

Observe that then v0 � t. Since X satisfies the property SD∗2(k), there exists

a vertex w1 6= v0 such that Ŵ ⊆ Xw1
. By the assumption on X we have that

Xw1 satisfies the property SD∗2(k) so that there exists a vertex w2 ∈ Xw1 with

Ŵ ⊆ (Xw1
)w2

= X〈w1,w2〉. We can continue this process until we get vertices

w1, . . . , wn−1 such that Ŵ ⊆ X〈w1,...,wn−1〉. However this is a contradiction, since

X〈w1,...,wn−1〉 is at most 1–dimensional and thus cannot contain Ŵ .

(ii)⇒ (iii). Let Y be a full subcomplex of X. Then Y is a flag complex and we
have to check both conditions: (a) and (b) from Definition 7.2.

For (a) observe that if W ⊂ Y is a 4–wheel then, since Y is full in X, the complex
W is a 4–wheel in X, too. Thus, by (ii), Y cannot contain 4–wheels.

Similarly, for (b), observe that if Ŵ is a full i–wheel with a pendant triangle in

Y , i = 5, . . . , k − 1, then Ŵ is also a full i–wheel with a pendant triangle in X.
Thus, by (ii), Y does not contain full i–wheels with pendant triangles.

The last assertion follows from the fact that complexes satisfying the property
SD∗2(k) are aspherical — Theorem 4.5.

(iii)⇒ (i). This implication is clear, since X, and every its link are full subcom-
plexes of X. �

Remark. Observe that the implications (ii) ⇒ (iii) ⇒ (i) hold also without the
assumption about finiteness of dimension.

Corollary 8.3 (Loc. k–large complexes). For k > 6, a locally k–large complex is
a complex with SD∗2(k) links.

Remark. There are weakly systolic complexes with SD∗2 links that are not systolic.

In [OŚ13] we provide a construction of such complexes, equipped with a geometric
group action, in arbitrarily high (cohomological) dimension.

8.1. Finitely presented subgroups. Here we prove that finitely presented sub-
groups of fundamental groups of complexes with SD∗2(k) links act geometrically
on weakly systolic complexes with SD∗2(k) links; see Theorem 8.7 below. The
proof follows almost verbatim the proof of an analogous theorem by Dani Wise
[Wis03, Theorem 5.7] concerning the case of torsion-free systolic groups.

A version of the following definition was given in [Wis03, Definition 5.4].

Definition 8.4 (Full tower). A map Y → X of connected flag simplicial complexes
is a full tower if it can be expressed as the composition

Y = Xn ↪→ X̂n−1 → Xn−1 ↪→ · · · ↪→ X̂1 → X1 = X,
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where the maps are alternately inclusions of full subcomplexes and covering maps.
Let f : Z → X be a map of connected flag simplicial complexes. A map g : Z → Y

is a full tower lift of f if there is a full tower h : Y → X such that the following
diagram commutes:

Z X

Y

....................................................................................................................................... ............
f

...............................................................
.....
.......
.....
h

............
............
............
............
............
............
............
............
............
............
............
................
............

g

The full tower lift g is compact if Y is compact and g is maximal if for every full
tower lift g′ : Z → Y ′ of g the map Y ′ → Y is an isomorphism.

The following crucial lemma is a version of [Wis03, Lemma 5.5]. For completeness
we provide its proof here. It is the same as the proof of Wise’ lemma.

Lemma 8.5 (Maximal full tower lift). Let Z,X be flag simplicial complexes and let
moreover Z be connected and finite, and X be locally finite. Then every simplicial
map f : Z → X has a maximal compact full tower lift.

Proof. We construct the tower inductively as follows. Let X1 = X. For i > 1 let

X̂i be the based covering space of Xi corresponding to the image of π1(Z) and let

Xi+1 be the span of the image of the lift Z → X̂i.
If no maximal full tower existed than we would have an infinite sequence of

immersions · · · → Xi+1 → Xi → · · · → X1. Observe that the number of vertices in
every Xi is bounded by the number of vertices in Z. Thus there is a uniform bound
on the number of simplices in Xi’s and hence there are finitely many isomorphism
types of Xi’s. Let X1, X2, . . . , XM represent all the types.

We claim that Xi+1 → Xi is injective for i > M . To show this we observe
that Xi+1 is isomorphic Xl, for some 1 6 l 6 M , and the map Xi+1 → Xl is a
combinatorial immersion between compact complexes. By [Wis04, Lemma 6.3] we
have that Xi+1 → Xl is an isomorphism and it follows that Xi+1 → Xi is injective.

By the claim we have that · · · → XM+2 → XM+1 → XM is a sequence of
inclusions of subcomplexes. It has to terminate because of the uniform bound on
the number of simplices in Xi’s. �

Lemma 8.6. (Coverings) Let h : Y → X be a covering of a complex X satisfying
the property SD∗2(k), k > 6. Then Y satisfies the property SD∗2(k).

Proof. By the definition of a covering map Y does not contain 4–cycles. Thus, we
need only to check that the condition (b) of Definition 7.2 is satisfied by Y . Let

Ŵ be an i–wheel with a pendant triangle contained in Y , for i = 5, . . . , k − 1.

Then, since h is a covering map, we have that h(Ŵ ) is an i–wheel with a pendant
triangle in X. By the SD∗2(k) property for X, there exists a vertex v ∈ X with

h(Ŵ ) ⊆ B1(v,X). Then Ŵ ⊆ B1(v′, X) for some v′ ∈ Y with h(v′) = v. This
finishes the proof. �

Theorem 8.7 (Finitely presented subgroups). Let k > 6 and let X be a compact
complex with SD∗2(k) links. Then every finitely presented subgroup of π1(X) is a
fundamental group of a finite complex with SD∗2(k) links.
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Proof. Let H be a finitely presented subgroup of π1(X) and let f : Z → X be a
simplicial map of compact complexes such that π1(Z) = H, and f∗ : π1(Z)→ π1(X)
is an isomorphism on H.

By Lemma 8.5 there exists a maximal compact full tower lift g : Y → X of f .
By the definition of a full tower, by Proposition 8.2, and by Lemma 8.6, we have
that Y is a weakly systolic complex with SD∗2(k) links.

The map π1(Z) → π1(Y ) is surjective because the tower is maximal and is
injective because f∗ factors through it. �

Remark. If, in the considerations above, we replace everywhere “complex(es) with
SD∗2(k) links” by “locally k–large complexes”, then we get Wise’s result together
with its proof.

8.2. Connectedness at infinity. Here we prove analogues of results from [Osa07],
in the case of weakly systolic complexes with SD∗2 links and groups acting on them
geometrically.

Recall, see e.g. [Osa07,OŚ13], that for a group G acting geometrically by auto-
morphisms on a simplicial complex X, the n–th homotopy groups at infinity vanish,
denoted by π∞n (X) = 0 and π∞n (G) = 0, iff for every compact K ⊆ X there ex-
ists a compact subset L ⊇ K of X with the following property. For every map
f : Sn = ∂Bn+1 → X \ L, of the n–dimensional sphere Sn, there exists a map
F : Bn+1 → X \ K extending f , i.e. F |Sn = f . We say that X (respectively G)
is simply connected at infinity if X (respectively G) has one end and π∞1 (X) = 0
(respectively π∞1 (G) = 0).

Theorem 8.8 (Connectedness at infinity). Let G be a group acting geometrically
on a weakly systolic complex X with SD∗2 links. Then π∞n (X) = 0 and π∞n (G) = 0,
for all n > 2. Moreover G is not simply connected at infinity.

Proof. The proof follows verbatim the proofs of [Osa07, Theorem 3.1 and Theorem
3.2]. �

Corollary 8.9. Let 0 → K → G → H → 0 be a short exact sequence of infinite
finitely presented groups. If G acts geometrically on a weakly systolic complex with
SD∗2 links then neither K nor H has one end.

Proof. The proof is the same as the one of [Osa07, Corollary 3.3]. �

Remarks. 1) Theorem 8.8 yields serious restriction on groups acting geometrically
on weakly systolic complexes with SD∗2 links. In particular they cannot be isomor-
phic to the fundamental groups of closed manifolds covered by Rn, for n > 3. See
[Osa07] for other non-examples.

2) In [OŚ13] we prove actually, basing on Proposition 8.2, that groups acting ge-
ometrically on weakly systolic complexes with SD∗2 links are asymptotically hered-

itarily aspherical (shortly AHA); see [JŚ07]. This implies the results about con-

nectedness at infinity above and has many other consequences; see [OŚ13].

8.3. SHA Gromov boundaries. Recall, see [Dav91] (cf. [Osa08]), that a metric
space Z is strongly hereditarily aspherical (shortly SHA) if it can be embedded in
the Hilbert cube Q in such a way that for each ε > 0 there exists an ε–covering
U of Z by open subsets of Q, where the union of any subcollection of elements
of U is aspherical. This notion was introduced by Robert J. Daverman [Dav91]
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and its significance follows from the fact that a cell-like map defined on a strongly
hereditarily aspherical compactum does not raise dimension.

Lemma 8.10. Let v be a vertex of a weakly systolic SD∗2(7) complex X whose
links are SD∗2 complexes and let π2

v = πv ◦πv : Si+2(v,X)→ Si(v,X) be the projec-
tion (as in Lemma 7.10). Then, for every subcomplex L of Si(v,X), its preimage
(π2
v)−1(L) ⊆ Si+2(v,X) is aspherical.

Proof. The proof follows the one of [Osa08, Lemma 3.4]. Instead of [Osa08, Propo-
sition 2.1] and [Osa08, Theorem 2.5] we use, respectively, Proposition 8.2 and The-
orem 4.5. Instead of [Osa08, Lemma 3.1] we use Lemma 7.3. �

Theorem 8.11 (SHA Gromov boundary). Let G be a group acting geometrically by
automorphisms on a weakly systolic SD∗2(7) complex X whose links are SD∗2 com-
plexes. Then the Gromov boundary of G is strongly hereditarily aspherical (SHA).

Proof. The proof goes along the lines of the proof of [Osa08, Theorem 4.2] applying
[Osa08, Proposition 2.9] to the inverse sequence

{
(S2n(v,X))′, π2

v

}
(for some vertex

v of X; see Theorem 7.11) and using Lemma 8.10 above. �

Remarks. 1) The only known up to now high dimensional Gromov hyperbolic
groups with SHA boundaries were 7–systolic groups; see [Osa08]. Theorem 8.11
extends those results to some new systolic groups. For example, if X is a simply
connected locally 6–large cubical complex, then, by Corollary 6.15, its thickening
Th(X) is a weakly systolic SD∗2(k) complex (for every > 6) with 6–large (by Lemma
6.7) links. Thus the Gromov boundary of X is SHA. Examples of groups acting
geometrically on such complexes include right-angled Coxeter groups with 6–large
nerves (then the corresponding cubical complex is the Davis complex).

2) In [OŚ13], we present a simple construction of highly dimensional groups
acting on complexes with SD∗2(k) links, k > 6. Those complexes can be non-
systolic, thus we get a priori new examples of highly dimensional hyperbolic groups
with SHA boundary.

3) Jacek Świa↪tkowski [Świ09] introduced a property of pro-π1–saturation and
proved that the Gromov boundary of a 7–systolic group is pro-π1–saturated. This
seems to be stronger than SHA. It is likely that the Gromov boundary of a weakly
systolic SD∗2(7) complex with SD∗2 links is pro-π1–saturated. In particular we
believe that it is relatively easy to show e.g. that boundaries of right-angled Coxeter
groups with 6–large nerves are pro-π1–saturated.
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[Zaw10] Pawe l Zawíslak, Trees of manifolds and boundaries of systolic groups, Fund. Math.
207 (2010), 71–99, DOI 10.4064/fm207-1-4.

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien,

Austria, and

(on leave from) Instytut Matematyczny, Uniwersytet Wroc lawski, pl. Grunwaldzki

2/4, 50–384 Wroc law, Poland

E-mail address: dosaj@math.uni.wroc.pl


	1. Introduction
	1.1. Overview
	1.2. Main results
	1.3. Motivations and applications
	1.4. Acknowledgments

	2. Preliminaries
	2.1. Simplicial complexes
	2.2. Cell complexes

	3. Property SDn and weak systolicity
	3.1. Weakly bridged graphs

	4. Local to global
	5. Convexity
	6. Examples of weakly systolic complexes and groups
	6.1. Systolic complexes
	6.2. CAT(-1) cubical groups
	6.3. Right-angled hyperbolic buildings
	6.4. Some other (non-)examples

	7. A combinatorial negative curvature
	7.1. Flats vs. hyperbolicity
	7.2. Negative curvature
	7.3. Examples
	7.4. Gromov boundary
	7.5. Quasi-convex subgroups

	8. Weakly systolic complexes with SD2 links
	8.1. Finitely presented subgroups
	8.2. Connectedness at infinity
	8.3. SHA Gromov boundaries

	References

