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1. Introduction

In his seminal paper [Gro87], among many other results, Gromov gave a pretty combinato-

rial characterization of CAT(0) cubical complexes as simply connected cubical complexes in

which the links of vertices are simplicial flag complexes. Based on this result, [Che00,Rol98]

established a bijection between the 1–skeleta of CAT(0) cubical complexes and the median

graphs, well-known in metric graph theory; cf. [BC08]. A similar combinatorial characteri-

zation of CAT(0) simplicial complexes having regular Euclidean simplices as cells seems to

be out of reach. Nevertheless, Chepoi [Che00] characterized the bridged complexes (i.e., the

simplicial complexes having bridged graphs as 1–skeleta) as the simply connected simplicial

complexes in which the links of vertices are flag complexes without embedded 4– and 5–

cycles; the bridged graphs are exactly the graphs which satisfy one of the basic features of



CAT(0) spaces: the balls around convex sets are convex. Bridged graphs have been intro-

duced in [FJ87, SC83] as graphs without embedded isometric cycles of length greater than

3 and have been further investigated in several graph-theoretical and algebraic papers; cf.

[AF88,BC96,Che97,Pol02,Pol00] and the survey [BC08]. Januszkiewicz-Świa̧tkowski [JŚ06]

and Haglund [Hag03] rediscovered this class of simplicial complexes (they call them systolic

complexes) using them (and groups acting on them geometrically — systolic groups) fruitfully

in the context of geometric group theory. Systolic complexes and groups turned out to be

good combinatorial analogs of CAT(0) (nonpositively curved) metric spaces and groups; cf.

[Hag03,JŚ06,Osa07,OP09,Prz08,Prz09].

One of the characteristic features of systolic complexes, related to the convexity of balls

around convex sets, is the following SDn(σ∗) property introduced in [Osa10]: if a simplex σ

of a simplicial complex X is located in the sphere of radius n + 1 centered at some simplex

σ∗ of X, then the set of all vertices x such that σ ∪ {x} is a simplex and x has distance

n to σ∗ is a nonempty simplex σ0 of X. Relaxing this condition, Osajda [Osa10] called a

connected simplicial complex X weakly systolic if the property SDn(σ∗) holds whenever σ∗

is a vertex (i.e., a 0–dimensional simplex) of X. He further showed that this SDn property

is equivalent with the SDn(σ∗) property in which σ∗ is a vertex and σ is a vertex or an

edge (i.e., a 1–dimensional simplex) of X. Finally it is shown in [Osa10] that weakly systolic

complexes can be characterized as simply connected simplicial complexes satisfying some

local combinatorial conditions, cf. also Theorem A below. This is analogous to the cases of

CAT (0) cubical complexes and systolic complexes. In graph-theoretical terms, the 1–skeleta

of weakly systolic complexes (which we call weakly bridged graphs) satisfy the so-called triangle

and quadrangle conditions [BC96], i.e., weakly bridged graphs are weakly modular. Median

graphs and bridged graphs (i.e., the 1–skeleta of respectively CAT(0) cubical complexes and

systolic complexes) are two other subclasses of weakly modular graphs. From the results of

[Osa10] and of the present paper it follows that the properties of weakly systolic complexes

resemble very much the properties of spaces of non-positive curvature.

The initial motivation of [Osa10] for introducing weakly systolic complexes was to exhibit

a class of simplicial complexes with some kind of simplicial nonpositive curvature that will

include the systolic complexes and some other classes of complexes appearing in the context

of geometric group theory. As we noticed already, systolic complexes are weakly systolic.

Moreover, for every simply connected locally 5–large cubical complex (i.e. CAT(-1) cubical

complex [Gro87]) there exists a canonically associated simplicial complex, which is weakly

systolic [Osa10]. In particular, the class of weakly systolic groups, i.e., groups acting geo-

metrically by automorphisms on weakly systolic complexes, contains the class of CAT(-1)

cubical groups and is therefore essentially bigger than the class of systolic groups; cf. [Osa07].

Other classes of weakly systolic groups are presented in [Osa10]. The ideas and results from

[Osa10] permit the construction in [Osa13] of new examples of Gromov hyperbolic groups

of arbitrarily large (virtual) cohomological dimension. Furthermore, Osajda [Osa10] and
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Osajda-Świa̧tkowski [OŚ10] provide new examples of high dimensional groups with interest-

ing asphericity properties. On the other hand, as we will show below, the class of weakly

systolic complexes seems also to appear naturally in the context of graph theory and has not

been studied before from this point of view.

In this paper, we present further characterizations and properties of weakly systolic com-

plexes and their 1–skeleta, weakly bridged graphs. Relying on techniques from graph theory

we establish dismantlability of locally-finite weakly bridged graphs. This result is used to

show some interesting nonpositive-curvature-like properties of weakly systolic complexes and

groups (see [Osa10] for other properties of this kind). As corollaries, we also get new results

about systolic complexes and groups. We conclude this introductory section with the formu-

lation of our main results (see respective sections for all missing definitions and notations as

well as for other related results).

We start with a characterization of weakly systolic complexes proved in Section 3:

Theorem A. For a connected flag simplicial complex X the following conditions are equiv-

alent:

(a) X is weakly systolic;

(b) the 1–skeleton of X is a weakly modular graph without induced C4;

(c) the 1–skeleton of X is a weakly modular graph with convex balls;

(d) the 1–skeleton of X is a graph with convex balls in which any C5 is included in a

5–wheel W5;

(e) X is simply connected, satisfies the Ŵ5–condition, and does not contain induced C4.

In Section 4 we prove the following result:

Theorem B. Any LexBFS ordering of vertices of a locally-finite weakly systolic complex X

is a dismantling ordering of its 1–skeleton.

This result allows us to prove in Section 5 the following fixed point theorem concerning

group actions:

Theorem C. Let G be a finite group acting by simplicial automorphisms on a locally-finite

weakly systolic complex X. Then there exists a simplex σ ∈ X which is invariant under the

action of G.

The barycenter of an invariant simplex is a point fixed by G. An analogous theorem holds

in the case of CAT (0) spaces; cf. [BH99, Corollary 2.8]. As a direct corollary of Theorem C,

we get the fixed point theorem for systolic complexes. This was conjectured by Januszkiewicz-

Świa̧tkowski (personal communication) and Wise [Wis03], and later was formulated in the

collection of open questions [08, Conjecture 40.1 on page 115]. A partial result in the systolic

case was proved by Przytycki [Prz08]. In fact, in Section 7, based on a result of Polat [Pol02]

for bridged graphs, we prove an even stronger version of the fixed point theorem in this case.
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The use of dismantlability of the underlying graph to prove the fixed point theorem for

finite group actions is, due to our knowledge, a novelty brought by the current paper. It

should be noticed, that there are well known examples of contractible, or even collapsible

simplicial complexes admitting finite group actions without fixed points. Thus it seems

that dismantlability is a right strengthening of those properties in the context of fixed point

results. Subsequently, many other complexes studied in connection with group actions have

dismantling properties. There, our approach gives new results concerning sets of fixed points;

cf. e.g. [PS12].

There are several important group theoretical consequences of Theorem C. The first one

follows directly from this theorem and [Prz08, Remarks 7.7&7.8].

Theorem D. Let k ≥ 6. Free products of k–systolic groups amalgamated over finite subgroups

are k–systolic. HNN extensions of k–systolic groups over finite subgroups are k–systolic.

The following result (Corollary 5.4 below) also has its CAT (0) counterpart; cf. [BH99,

Corollary 2.8]:

Corollary. Let G be a weakly systolic group. Then G contains only finitely many conjugacy

classes of finite subgroups.

The next important consequence of the fixed point theorem concerns classifying spaces for

proper group actions. Recall that if a group G acts properly on a space X such that the fixed

point set for any finite subgroup of G is contractible (and therefore non-empty), then we say

that X is a model for EG — the classifying space for finite subgroups. If additionally the

action is cocompact, then X is a finite model for EG. A (finite) model for EG is in a sense a

“universal” G–space (see [Lüc05] for details). The following theorem is a direct consequence

of Theorem C and Proposition 6.6 below.

Theorem E. Let G act properly by simplicial automorphisms on a finite dimensional weakly

systolic complex X. Then X is a finite dimensional model for EG. If, moreover, the action

of G on X is cocompact, then X is a finite model for EG.

As an immediate consequence we get an analogous result about EG for systolic groups.

This was conjectured in [08, Chapter 40]. Przytycki [Prz09] showed that the Rips complex

(with the constant at least 5) of a systolic complex is an EG space. Our result gives a systolic

— and thus much nicer — model of EG in that case.

In the final Section 7 we present some further results about systolic complexes and groups.

Besides a stronger version of Theorem C, we remark on another approach to this theorem

initiated by Zawíslak [Zaw04] and Przytycki [Prz08]. In particular, our Proposition 7.5 proves

their conjecture about round complexes; cf. [Zaw04, Conjecture 3.3.1] and [Prz08, Remark

8.1]. Finally, we show (cf. the end of Section 7) how our results about EG apply to the

questions of existence of particular boundaries of systolic groups (and thus to the Novikov
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conjecture for systolic groups with torsion). This relies on earlier results of Osajda-Przytycki

[OP09].

2. Preliminaries

2.1. Graphs and simplicial complexes. We continue with basic definitions used in this

paper concerning graphs and simplicial complexes (see [Die10] for graph theoretical notions

used in this paper). All graphs G = (V,E) occurring here are undirected, connected, and

without loops or multiple edges. A graph G is complete if any two of its vertices are connected

by an edge. A graph H = (V ′, E′) is an induced subgraph of the graph G if V ′ ⊆ V , and

uv ∈ E′ iff uv ∈ E. The distance d(u, v) between two vertices u and v is the length of

a shortest (u, v)–path, and the interval I(u, v) between u and v consists of all vertices on

shortest (u, v)–paths, that is, of all vertices (metrically) between u and v:

I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}.

An induced subgraph of G (or the corresponding vertex set A) is called convex if it includes

the interval of G between any of its vertices. By the convex hull conv(W ) of W ⊆ V in

G we mean the smallest convex subset of V (or induced subgraph of G) that contains W.

An isometric subgraph of G is an induced subgraph in which the distances between any two

vertices are the same as in G. In particular, convex subgraphs are isometric. The neighborhood

N(x) of a vertex x consists of all vertices y 6= x adjacent to x in G. The ball Br(x) of center

x and radius r ≥ 0 consists of all vertices of G at distance at most r from x. In particular,

the unit ball B1(x) comprises x and the neighborhood N(x) of x. The sphere Sr(x) of center

x and radius r ≥ 0 consists of all vertices of G at distance exactly r from x. The ball Br(S)

centered at a convex set S is the union of all balls Br(x) with centers x from S. The sphere

Sr(S) of center S and radius r ≥ 0 consists of all vertices of G at distance exactly r from S.

A graph G is called thin if for any two nonadjacent vertices u, v of G any two neighbors

of v in the interval I(u, v) are adjacent. A graph G is weakly modular [BC96, BC08] if its

distance function d satisfies the following conditions:

Triangle condition (T): for any three vertices u, v, w with 1 = d(v, w) < d(u, v) = d(u,w)

there exists a common neighbor x of v and w such that d(u, x) = d(u, v)− 1.

Quadrangle condition (Q): for any four vertices u, v, w, z with d(v, z) = d(w, z) = 1 and

2 = d(v, w) ≤ d(u, v) = d(u,w) = d(u, z) − 1, there exists a common neighbor x of v and w

such that d(u, x) = d(u, v)− 1.

An abstract simplicial complex X is a collection of sets (called simplices) such that σ ∈ X

and σ′ ⊆ σ implies σ′ ∈ X. The geometric realization |X| of a simplicial complex is the

polyhedral complex obtained by replacing every face σ of X by a “solid” regular simplex

|σ| such that realization commutes with intersection, that is, |σ′| ∩ |σ′′| = |σ′ ∩ σ′′| for any

two simplices σ′ and σ′′. Then |X| =
⋃
{|σ| : σ ∈ X}. X is called simply connected if |X| is
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connected and if every continuous mapping of the 1–dimensional sphere S1 into |X| can be

extended to a continuous mapping of the disk D2 with boundary S1 into |X|.
For a simplicial complex X, denote by V (X) and E(X) the vertex set and the edge set of X,

namely, the set of all 0–dimensional and 1–dimensional simplices of X. The pair (V (X), E(X))

is called the (underlying) graph or the 1–skeleton of X and is denoted by G(X). Conversely,

for a graph G one can derive a simplicial complex X(G) (the clique complex of G) by taking

all complete subgraphs (cliques) as simplices of the complex. A simplicial complex X is a flag

complex (or a clique complex) if any set of vertices is included in a face of X whenever each

pair of its vertices is contained in a face of X (in the theory of hypergraphs this condition

is called conformality). A flag complex can therefore be recovered by its underlying graph

G(X): the complete subgraphs of G(X) are exactly the simplices of X. The link of a simplex

σ in X, denoted lk(σ,X) is the simplicial complex consisting of all simplices σ′ such that

σ ∩ σ′ = ∅ and σ ∪ σ′ ∈ X. For a simplicial complex X and a vertex v not belonging to X,

the cone with apex v and base X is the simplicial complex v ∗X = X ∪ {σ ∪ {v} : σ ∈ X}.
For a simplicial complex X and any k ≥ 1, the Rips complex Xk is a simplicial complex

with the same set of vertices as X and with a simplex spanned by any subset S ⊆ V (X)

such that d(u, v) ≤ k in G(X) for each pair of vertices u, v ∈ S (i.e., S has diameter ≤ k in

the graph G(X)); cf. e.g. [Gro87]. From the definition it immediately follows that the Rips

complex of any complex is a flag complex. Alternatively, the Rips complex Xk can be viewed

as the clique complex X(Gk(X)) of the kth power of the graph of X (the kth power Gk of

a graph G has the same set of vertices as G and two vertices u, v are adjacent in Gk if and

only if d(u, v) ≤ k in G).

All simplicial complexes occurring in this paper are flag complexes not containing infi-

nite simplices. Analogously, we will consider only graphs not containing infinite complete

subgraphs.

2.2. SDn property and weakly systolic complexes. The following generalization of sys-

tolic complexes has been presented by Osajda [Osa10]. Let X be a flag simplicial complex

and σ∗ be a simplex of X. Then X satisfies the SDn(σ∗) property if for each i ≤ n and each

simplex σ located in the sphere Si+1(σ
∗) the set σ0 := V (lk(σ,X))∩Bi(σ∗) spans a non-empty

simplex of X (SD stands for simple descent on balls). Systolic complexes are exactly the flag

complexes which satisfy the SDn(σ∗) property for all simplices σ∗ and all natural numbers

n. On the other hand, the 5–wheel W5 (see the definition at the beginning of Section 3)

is an example of a (2–dimensional) simplicial complex which satisfies the SD1(σ
∗) property

for σ∗ being any vertex or triangle but not for σ∗ being a boundary edge. In view of this

analogy and of subsequent results, we define a weakly systolic complex to be a connected flag

simplicial complex X which satisfies the SDn(v) property for all vertices v ∈ V (X) and for

all natural numbers n. We will also define a weakly bridged graph to be the underlying graph

of a weakly systolic complex. It can be shown (cf. Theorem 3.1) that X is a weakly systolic

complex if for each vertex v and every i it satisfies the following two conditions:
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Vertex condition (V): for every vertex w ∈ Si+1(v), the intersection V (lk(w,X)) ∩Bi(v) is a

single simplex;

Edge condition (E): for every edge e ∈ Si+1(v), the intersection V (lk(e,X)) ∩ Bi(v) is

nonempty.

In fact, this is the original definition of a weakly systolic complex given in [Osa10]. Notice

that these two conditions imply that weakly systolic complexes are exactly the flag complexes

whose underlying graphs are thin and satisfy the triangle condition.

2.3. Dismantlability of graphs and LC-contractibility of complexes. Let G = (V,E)

be a graph and u, v two vertices of G such that any neighbor of v (including v itself) is

also a neighbor of u, i.e. B1(v) ⊆ B1(u). Then there is a retraction of G to G − v taking

v to u. Following [HN04], we call this retraction a fold and we say that v is dominated by

u (if B1(v) ( B1(u), then we say that v is strictly dominated by u). A finite graph G is

dismantlable if it can be reduced, by a sequence of folds, to a single vertex. In other words,

an n–vertex graph G = (V,E) is dismantlable if its vertices can be ordered v1, . . . , vn so that

for each vertex vi, 1 ≤ i < n, there exists another vertex vj with j > i, such that B1(vi)∩Vi ⊆
B1(vj) ∩ Vi, where Vi := {vi, vi+1, . . . , vn}. This order is called a dismantling order. We now

consider the analogue of dismantlability for a simplicial complex X investigated in the papers

[CY07,Mat08]. A vertex v of X is LC-removable if lk(v,X) is a cone. If v is an LC-removable

vertex of X, then X − v := {σ ∈ X : v /∈ σ} is obtained from X by an elementary LC-

reduction (link-cone reduction) [Mat08]. Then X is called LC-contractible [CY07] if there is

a sequence of elementary LC-reductions transforming X to one vertex. For flag simplicial

complexes, the LC-contractibility of X is equivalent to dismantlability of its graph G(X)

because an LC-removable vertex v is dominated by the apex of the cone lk(v,X) and vice

versa the link of any dominated vertex v is a cone having the vertex dominating v as its apex.

LC-contractible simplicial complexes are collapsible (see [CY07, Corollary 6.5]).

The simplest algorithmic way to order the vertices of a locally-finite graph is to apply the

Breadth-First Search (BFS) starting from the root vertex (base point) u. We number with 1

the vertex u and put it on the initially empty queue. We repeatedly remove the vertex v at

the head of the queue and consequently number (in an arbitrary order) and place onto the

queue all still unnumbered neighbors of v. BFS constructs a spanning tree Tu of G with the

vertex u as a root. Then a vertex v is the father in Tu of any of its neighbors w in G included

in the queue when v is removed (notation f(w) = v). Notice that the distance from any

vertex v to the root u is the same in G and in Tu. Another method to order the vertices of a

graph is the Lexicographic Breadth-First Search (LexBFS) proposed by Rose-Tarjan-Lueker

[RTL76]. According to LexBFS, the vertices of a graph G are numbered in decreasing order.

The label L(w) of an unnumbered vertex w is the list of its numbered neighbors. As the next

vertex to be numbered, select the vertex with the lexicographic largest label, breaking ties

arbitrarily. As in case of BFS, we number and remove the vertex v at the head of the queue

and consequently label according to the lexicographic order and place onto the queue all still
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unnumbered neighbors of v. LexBFS is a particular instance of BFS, i.e., every ordering

produced by LexBFS can also be generated by BFS.

Anstee-Farber [AF88] established that bridged graphs are dismantlable. Chepoi [Che97]

noticed that any order of a bridged graph returned by BFS is a dismantling order. Namely,

he showed a stronger result: for any two adjacent vertices vi, vj with i < j, their fathers

f(vi), f(vj) either coincide or are adjacent and moreover f(vj) is adjacent to vi. Polat [Pol02,

Pol00] defined dismantlability and BFS for arbitrary (not necessarily locally-finite) graphs

and extended the results of [AF88,Che97] to all bridged graphs.

2.4. Group actions on simplicial complexes. Let G be a group acting by automorphisms

on a simplicial complex X. By FixGX we denote the fixed point set of the action of G on X,

i.e. FixGX = {x ∈ X| Gx = {x}}. Recall that the action is cocompact if the orbit space G\X
is compact. The action of G on a locally-finite simplicial complex X is properly discontinuous

if stabilizers of simplices are finite. Finally, the action is geometric (or G acts geometrically

on X) if it is cocompact and properly discontinuous.

3. Characterizations of weakly systolic complexes

We continue with the characterizations of weakly systolic complexes and their underlying

graphs; some of those characterizations have been presented also in [Osa10]. We denote by

Ck a k–cycle and by Wk a k–wheel, i.e., a k–cycle x1, . . . , xk plus a central vertex c adjacent

to all vertices of Ck. Wk can also be viewed as a 2–dimensional simplicial complex consisting

of k triangles σ1, . . . , σk sharing a common vertex c and such that σi and σj intersect in an

edge xic exactly when |j − i| = 1 (mod k). In other words, lk(c,Wk) = Ck, i.e. Wk is a

cone over Ck. By Ŵk we denote a k–wheel Wk plus a triangle axixi+1 for some i < k (we

suppose that a 6= c and that a is not adjacent to any other vertex of Wk). We continue with

a condition which basically characterizes weakly systolic complexes among simply connected

flag simplicial complexes:

Ŵ5–condition: for any Ŵ5, there exists a vertex v /∈ Ŵ5 such that Ŵ5 is included in lk(v,X),

i.e., v is adjacent in G(X) to all vertices of Ŵ5 (see Fig. 1).

Theorem 3.1 (Characterizations). For a connected flag simplicial complex X the following

conditions are equivalent:

(i) X is weakly systolic;

(ii) X satisfies the vertex condition (V) and the edge condition (E);

(iii) G(X) is a weakly modular thin graph;

(iv) G(X) is a weakly modular graph without induced C4;

(v) G(X) is a weakly modular graph with convex balls;

(vi) G(X) is a graph with convex balls in which any C5 is included in a 5–wheel W5;

(vii) X is simply connected, satisfies the Ŵ5–condition, and does not contain induced C4.
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Figure 1. The Ŵ5–condition

Proof. First we show that the conditions (i) through (v) are equivalent and then we show that

these conditions are equivalent to (vi) and to (vii). The implications (i)⇒(ii) and (iii)⇒(iv)

are obvious.

(ii)⇒(iii): The condition (V) implies that all vertices of I(u, v) adjacent to v are pairwise

adjacent, i.e., that G(X) is thin. On the other hand, from the condition (E) we conclude

that if 1 = d(v, w) < d(u, v) = d(u,w) = i + 1, then v and w have a common neighbor x

in the sphere Si(u), implying the triangle condition. Finally, in thin graphs the quadrangle

condition is automatically satisfied if the triangle condition is satisfied. This shows that G(X)

is a weakly modular thin graph.

(iv)⇒(v): Let Bi(u) be any ball in G(X). Since G(X) is weakly modular and Bi(u) is a

connected subgraph, to show that Bi(u) is convex it suffices to show that Bi(u) is locally-

convex, i.e., if x, y ∈ Bi(u) and d(x, y) = 2, then I(x, y) ⊆ Bk(u); cf. [Che89, Theorem 7(a)]

(compare also [BC00, Lemma 1]). Suppose by way of contradiction that z ∈ I(x, y) \ Bi(u).

Then necessarily d(x, u) = d(y, u) = i and d(z, u) = i+1. Applying the quadrangle condition,

we infer that there exists a vertex z′ adjacent to x and y at distance i−1 from u. As a result,

the vertices x, z, y, z′ induce a forbidden 4–cycle, a contradiction.

(v)⇒(i): Pick a simplex σ in the sphere Si+1(u). Denote by σ0 the set of all vertices

x ∈ Si(u) such that σ∪{x} is a simplex of X. Since the balls of G(X) are convex, necessarily

any two vertices of σ0 are adjacent. Thus σ0 and σ ∪σ0 induce complete subgraphs of G(X).

Since X is a flag complex, σ0 and σ ∪ σ0 are simplices. Notice that obviously σ′ ⊆ σ0 holds

for any other simplex σ′ ⊆ Si(u) such that σ ∪ σ′ ∈ X. Therefore, to establish the SDi(u)

property it remains to show that σ0 is non-empty. This is obviously true if σ is a vertex.

Thus we suppose that σ contains at least two vertices. Let x be a vertex of Si(u) which is

adjacent to the maximum number of vertices of σ. Since G(X) is weakly modular and σ is

contained in Si+1(u), the vertex x must be adjacent to at least two vertices of σ. Suppose

by way of contradiction that x is not adjacent to a vertex v ∈ σ. Pick any neighbor w of x

in σ. By the triangle condition, there exists a vertex y ∈ Si(u) adjacent to v and w. Since
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w is adjacent to x, y ∈ Si(u) and w ∈ Si+1(u), the convexity of Bi(u) implies that x and y

are adjacent. Pick any other vertex w′ of σ adjacent to x. Since x is not adjacent to v and

G(X) does not contain induced 4–cycles, the vertices y and w′ must be adjacent. Hence, y

is adjacent to v ∈ σ and to all neighbors of x in σ, contrary to the choice of x. Thus x is

adjacent to all vertices of σ, i.e., σ0 6= ∅. This shows that X satisfies the SDn(u) property.

(v)⇒(vi): Pick a 5–cycle induced by the vertices x1, x2, x3, x4, x5. Since d(x4, x1) =

d(x4, x2) = 2, by the triangle condition there exists a vertex y adjacent to x1, x2, and x4.

Since G(X) does not contain induced 4–cycles, necessarily y must be also adjacent to x3 and

x5, yielding a 5–wheel.

(vi)⇒(vii): That X does not contain induced 4–cycles follows from the convexity of balls.

To show that the flag complex X is simply connected, it is enough to show that every cycle in

the 1–skeleton of X (seen as a topological loop) can be freely homotoped to a given vertex u

(seen as a constant loop). By contradiction, let A be the set of cycles in G(X), which are not

freely homotopic to u, and assume that A is non-empty. For a cycle C ∈ A, let r(C) denote

the maximal distance d(x, u) of a vertex x of C from the basepoint u. Clearly r(C) ≥ 2 for

any cycle C ∈ A (otherwise C would be null-homotopic). Let B ⊆ A be the set of cycles

C with minimal r(C) among cycles in A. Let r := r(C) for some C ∈ B. Let D ⊆ B be

the set of cycles having minimal number e of edges in the r–sphere around u, i.e., with both

endpoints at distance r from u. Further, let E ⊆ D be the set of cycles with the minimal

number m of vertices at distance r from u.

Consider a cycle C = (x1, x2, . . . , xk, x1) ∈ E. We can assume without loss of generality

that d(x2, u) = r. We distinguish two cases.

Case 1: d(x1, u) = d(x3, u) = r − 1. Then, by the convexity of the ball Br−1(u), we have

that x1 and x3 are adjacent. Thus the cycle C ′ = (x1, x3, . . . , xk, x1) is homotopic to C by a

homotopy through the triangle x1x2x3. Thus C ′ belongs to D and the number of its vertices

at distance r from v is equal to m− 1. This contradicts the minimality choice of m.

Case 2: d(x1, u) = r or d(x3, u) = r. Assume without loss of generality that d(x3, u) = r.

For i ∈ {2, 3}, let x′i be a vertex in Br−1(u) adjacent to xi. Since the path (x′2, x2, x3, x
′
3) has

length 3, by the convexity of the ball Br−1(u), we have d(x′2, x
′
3) ≤ 2. If x′2 = x′3, then we

set C ′ = (x1, x2, x
′
2, x3, . . . , x1). If d(x′2, x

′
3) = 1, then we set C ′ = (x1, x2, x

′
2, x
′
3, x3, . . . , x1).

Observe, that in that case either x2 is adjacent to x′3 or x3 is adjacent to x′2. In particular,

the 4–cycle (x2, x3, x
′
3, x
′
2, x2) is homotopically trivial in X. If d(x′2, x

′
3) = 2, then we set

C ′ = (x1, x2, x
′
2, x
′, x′3, x3, . . . , x1), where x ∈ Br−1(u) is adjacent to x′2 and x′3. Observe that

in this case the 5–cycle (x2, x3, x
′
3, x
′, x′2, x2) is either not a full subcomplex or is included in

a 5–wheel. In any case it is homotopically trivial in X.

In each of the three cases above, the cycle C is freely homotopic to C ′ by a homotopy

through, respectively, a triangle, a triangulated square, or a triangulated pentagon. Moreover,

C ′ ∈ B. The number of edges of C ′ lying on the r–sphere around u is less than e (we removed
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the edge x2x3). This contradicts the choice of the number e. In both Cases 1 and 2 we get

contradiction. It follows that the set A is empty and hence X is simply connected.

Finally, pick an extended 5–wheel Ŵ5 : let x1, x2, x3, x4, x5 be the vertices of the 5–cycle,

c be the center of the 5–wheel, and x1, x2, a be the vertices of the pendant triangle. Since

x3 and x5 are not adjacent and the balls of G(X) are convex, necessarily d(a, x4) = 2. Let u

be a common neighbor of a and x4. If u is adjacent to one of the vertices x2 and x3, then to

avoid induced 4–cycles (forbidden by the convexity of balls in G(X)), u will be also adjacent

to the second vertex and to c. But if u is adjacent to c, then it will be adjacent to x1 and

therefore to x5 as well. Hence, in this case u will be adjacent to all vertices x1, x2, x3, x4, x5,

and c, and we are done. So, we can suppose that u is not adjacent to any one of the vertices

x1, x2, x3, x5, and c. As a result, we obtain two 5–cycles induced by the vertices a, x2, x3, x4, u

and a, x1, x5, x4, u. Each of these cycles extends to a 5–wheel. Let v be the center of the

5–wheel extending the first cycle. To avoid a 4–cycle induced by the vertices x2, v, x4, c, the

vertices v and c must be adjacent. Subsequently, to avoid a 4–cycle induced by the vertices

c, v, a, x1, the vertices v and x1 must be adjacent. Finally, to avoid a 4–cycle induced by

x1, v, x4, x5, the vertices v and x5 must be adjacent. In this way, we deduce that v is adjacent

to all six vertices of Ŵ5, establishing the Ŵ5–condition.

(vii)⇒(iv): To prove this implication, as in [Che00], we will use minimal disk diagrams.

Let D and X be two simplicial complexes. A map ϕ : V (D) → V (X) is called simplicial if

ϕ(σ) ∈ X for all σ ∈ D. If D is a planar triangulation (i.e. the 1–skeleton of D is an embedded

planar graph whose all interior 2–faces are triangles) and C = ϕ(∂D), then (D, ϕ) is called a

singular disk diagram (or Van Kampen diagram) for C (for more details see [LS01, Chapter

V]). According to Van Kampen’s lemma ([LS01], pp.150–151), for every cycle C of a simply

connected simplicial complex one can construct a singular disk diagram. A singular disk

diagram with no cut vertices (i.e., its 1–skeleton is 2–connected) is called a disk diagram. A

minimal (singular) disk for C is a (singular) disk diagram D for C with a minimum number

of 2–faces. This number is called the (combinatorial) area of C and is denoted Area(C). The

minimal disk diagrams (D, ϕ) of simple cycles C in 1–skeleta of simply connected simplicial

complexes have the following properties [Che00]: (1) ϕ bijectively maps ∂D to C and (2) the

image of a 2–simplex of D under ϕ is a 2–simplex, and two adjacent 2–simplices of D have

distinct images under ϕ.

Let C be a simple cycle in the underlying graph G(X) of a flag simplicial complex X

satisfying the condition (vii).

Claim 1: If C has length 5, then the minimal disk diagram for C is a 5–wheel. If the length

of C is not 5, then C admits a minimal disk diagram D which is a systolic complex, i.e., a

plane triangulation whose all inner vertices have degrees ≥ 6.

Proof of Claim 1: First we show that any minimal disk diagram D of C does not contain

interior vertices of degrees 3 and 4. Let x be any interior vertex of D. Let x1, . . . , xk be

the cyclically ordered neighbors of x and let σ1, σ2, . . . , σk be the faces incident to x, where
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σi = xxixi+1(mod k) (i = 1, . . . , k). Trivially, k ≥ 3. Suppose by way of contradiction that

k ≤ 4. By properties of minimal disk diagrams, ϕ(σ1), . . . , ϕ(σk) are distinct 2–simplices of

X.

Case 1: k = 3. Then the 2–simplices ϕ(σ1), ϕ(σ2), ϕ(σ3) of X intersect in ϕ(x) and pairwise

share an edge of X. Since X is flag, they are contained in a 3–simplex of X. This implies

that δ = ϕ(x1)ϕ(x2)ϕ(x3) is a 2–face of X. Let D′ be a disk triangulation obtained from D
by deleting the vertex x and the triangles σ1, σ2, σ3, and adding the 2–simplex x1x2x3. The

map ϕ : V (D′)→ V (X) is simplicial, because it maps x1x2x3 to δ. Therefore (D′, ϕ) is a disk

diagram for C, contrary to the minimality choice of D.

Case 2: k = 4. Since two adjacent 2–simplices of D have distinct images under ϕ, the

cycle C ′ = (x1, x2, x3, x4, x1) is sent to a 4–cycle ϕ(C ′) of lk(ϕ(x),X). Since G(X) does not

contain induced 4–cycles, two opposite vertices of ϕ(C ′), say ϕ(x1) and ϕ(x3), are adjacent.

Consequently, since X is flag, δ′ = ϕ(x1)ϕ(x3)ϕ(x2) and δ′′ = ϕ(x1)ϕ(x3)ϕ(x4) are 2–faces of

X. Let D′ be a disk triangulation obtained from D by deleting the vertex x and the triangles

σi(i = 1, . . . , 4), and adding the 2–simplices σ′ = x1x3x2 and σ′′ = x1x3x4. The map ϕ

remains simplicial, since it sends σ′, σ′′ to δ′, δ′′, respectively, contrary to the minimality

choice of D.

This establishes that the degree of each interior vertex x of any minimal disk diagram is

≥ 5. Suppose now additionally that D is a minimal disk diagram for C having a minimum

number of inner vertices of degree 5. We will denote the vertices of D and their images in X

under ϕ by the same symbols but specifying each time their position. Let x be any interior

vertex of D of degree 5 and let x1, . . . , x5 be the neighbors of x. If C = (x1, x2, x3, x4, x5, x1)

then we are done because D is a 5–wheel. If C 6= (x1, x2, x3, x4, x5, x1) then one of the edges

of the 5–cycle (x1, x2, x3, x4, x5, x1), say x1x2, belongs in D to the second triangle x1x2x6.

The minimality of D implies that x, x1, x2, x3, x4, x5, x6 induce in X a Ŵ5 or that x and x6
are adjacent in X. In the first case, by the Ŵ5–condition, there exists a vertex y of X which is

adjacent to all vertices of this Ŵ5. Let D′ be a disk triangulation obtained from D by deleting

the vertex x and the five triangles incident to x as well as the triangle x1x2x6 and replacing

them by the six triangles of the resulting 6–wheel centered at y (we call this operation a flip).

In the second case, let D′ be a disk triangulation obtained from D by deleting the triangles

xx1x2 and x1x2x6 and replacing them by the triangles xx1x6 and xx2x6. In both cases, the

resulting map ϕ remains simplicial. D′ has the same number of triangles as D, therefore

D′ is also a minimal disk diagram for C. The flip replaces in the first case the vertex x of

degree 5 by the vertex y of degree 6. In the second case, it increases the degree of x from

5 to 6. In both cases, it also increases the degree of x6 by 1 and preserves the degrees of

all other vertices except the vertices x1 and x2, whose degrees decrease by 1. Since, by the

minimality choice of D, the disk diagram D′ has at least as many inner vertices of degree 5

as D, necessarily at least one of the vertices x1, x2, say x1, is an inner vertex of degree at

most 6 of D. If the degree of x1 in D is 5, then in D′ the degree of x1 will be 4, which is
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impossible by what has been shown above because D′ is also a minimal disk diagram and x1
is an interior vertex of D′. Hence the degree of x1 in D is 6 and its neighbors constitute an

induced (in D) 6–cycle (x6, x2, x, x5, u, v, x6).

Case 1: x and x6 are not adjacent in X. Since X does not contain induced C4 and the minimal

disk diagrams for C do not contain interior vertices of degree 3 and 4, it can be easily shown

that the images in X of the vertices x5, y, x6, v, u, x1, x4 induce a Ŵ5 constituted by the 5–

wheel centered at x1 and the triangle x4yx5. By the Ŵ5–condition, there exists a vertex z

of X which is adjacent to all vertices of Ŵ5. If z is adjacent in X with all vertices of the

7–cycle (u, v, x6, x2, x3, x4, x5, u), then replacing in D the 9 triangles incident to x and x1
by the 7 triangles of X incident to z, we will obtain a disk diagram D′′ for C having less

triangles than D, contrary to the minimality of D. Therefore z is different from x and is not

adjacent to one of the vertices x2, x3. Since x1 and x4 are not adjacent and both x and z are

adjacent to x1, x4, to avoid an induced C4 we conclude that z is adjacent in X to x. If z is

not adjacent to x2, then, since x and x6 are not adjacent, we will obtain a C4 induced by

x, z, x6, x2. Thus z is adjacent to x2, and therefore z is not adjacent to x3. Since both z and

x3 are adjacent to nonadjacent vertices x2 and x4, we will obtain a C4 induced by z, x2, x3, x4.

This contradiction shows that the degree of x1 in D is at least 7.

Case 2: x and x6 are adjacent in X. Again, using the fact that the minimal disk diagrams for

C do not contain interior vertices of degree 3 and 4, the fact that X does not contain induced

C4, it can be easily shown that d(x, u) = 2. Therefore the vertices x1, x2, x3, x4, x5, x, u induce

a Ŵ5 constituted by the 5–wheel centered at x and the triangle x1ux5. Thus, by the Ŵ5–

condition, there exists a vertex y′ 6= x containing Ŵ5 in its link. Then considering the

minimal disk diagram obtained by the flip exchanging x and y′ we conclude that the vertices

u, v, x6, x2, y
′, x1 induce a 5–wheel. Together with the vertex x3 they induce a Ŵ5, so that,

by Ŵ5–condition, there exists a vertex z adjacent to all the vertices u, v, x6, x2, y
′, x1, x3. If

z is adjacent to x4 and x5 then we get a disk diagram for C having less triangles than D,

which contradicts the minimality of D. If z is not adjacent to one of the vertices x4, x5 then

we also get a contradiction arguing as in Case 1. Therefore, in our case the degree of x1 in D
is also at least 7. This final contradiction shows that all interior vertices of D have degrees

≥ 6, establishing Claim 1.

From Claim 1 we deduce that any simple cycle C of the underlying graph of X admits a

minimal disk diagram D which is either a 5–wheel or a systolic plane triangulation. We will

refer to a degree two boundary vertex v of D as a corner of first type and to a degree three

boundary vertex v of D as a corner of second type. In the first case, the two neighbors of v

are adjacent. In the second case, v and its neighbors in ∂D are adjacent to the third neighbor

of v. If D is a 5–wheel then it has five corners of second type. Otherwise D is a systolic

plane triangulation and we can use the Gauss-Bonnet formula “sum over interior vertices of

six minus degree plus sum over boundary vertices of four minus degree equals six times Euler
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characteristic”; see [LS01, Ch. V.3]. From this formula we infer that D contains at least three

corners, and if D has exactly three corners then they are all of first type. Furthermore, if D
contains exactly four corners, then at least two of them are corners of first type.

Claim 2: G(X) is weakly modular, i.e. G(X) satisfies the triangle and quadrangle conditions.

Proof of Claim 2: To verify the triangle condition, let u, v, w be three vertices with 1 =

d(v, w) ≤ d(u, v) = d(u,w) = k. We claim that if I(u, v)∩I(u,w) = {u}, then k = 1. Suppose

not. Pick two shortest paths P ′ and P ′′ joining the pairs u, v and u,w, respectively, such that

the cycle C composed of P ′, P ′′ and the edge vw has minimal combinatorial area Area(C)

among all cycles constituted by the edge vw and shortest paths connecting u with v and w

(the choice of v, w implies that C is a simple cycle). Let D be a minimal disk diagram for

C satisfying Claim 1. Then either D has a corner x different from u, v, w or the vertices

u, v, w are the only corners of D. In the second case, u, v, w are all three corners of first type,

therefore the two neighbors of v in C will be adjacent. This means that w will be adjacent

to the neighbor of v in P ′, contrary to I(u, v) ∩ I(u,w) = {u}. Thus we can assume that a

corner x exists and x is not one of u, v or w. Without loss of generality we can assume x is

on the path P ′. Let y and z be its neighbors on P ′. Note that x cannot be of first type, since

otherwise y and z are adjacent, contrary to the assumption that P ′ is a shortest path. Thus

x is of the second type and there is a vertex p of D adjacent to x, y, z. If we replace in P ′ the

vertex x by p, we will obtain a new shortest path between u and v. Together with P ′′ and

the edge vw this path forms a cycle C ′ whose area is strictly smaller than Area(C), contrary

to the choice of C. This establishes the triangle condition.

To verify the quadrangle condition, suppose by way of contradiction that we can find

distinct vertices u, v, w, z such that v, w ∈ I(u, z) are neighbors of z and I(u, v) ∩ I(u,w) =

{u}, however u is not adjacent to v and w. Again, select two shortest paths P ′ and P ′′

between u, v and u,w, respectively, so that the cycle C composed of P ′, P ′′ and the edges vz

and zw has minimum area. Choose a minimal disk D of C as in Claim 1. From the initial

hypothesis concerning the vertices u, v, w, z we deduce that D has at most one corner of first

type located at u. Hence D contains at least four corners of second type. Since one corner x is

distinct from u, v, w, z, then proceeding in the same way as in the triangle condition case, we

will obtain a contradiction with the choice of the paths P ′, P ′′. This shows that u is adjacent

to v, w, establishing the quadrangle condition. This concludes the proof of Claim 2.

By Claim 2 the graph G(X) is weakly modular. On the other hand, by condition (vii)

G(X) does not contain induced C4. This concludes the proof of the implication (vii)⇒(iv)

and of the theorem. �

In the analysis of his construction of locally homogeneous graphs H having a given regular

graph of girth ≥ 6 (i.e., 6–large) as a link of each vertex of H, Weetman [Wee94] introduced

quasitrees as the graphs G = (V,E) satisfying the following two conditions for each vertex

v : (F1) each vertex x ∈ Si+1(v) has one or two adjacent neighbors in Si(v); (F2) any two
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adjacent vertices x, y ∈ Si+1(v) have a common neighbor z ∈ Si(v). It can be easily seen

that (F2) is a reformulation of the edge condition (E) (alias the triangle condition). On the

other hand, (F1) is a particular case of the vertex condition (V). From Theorem 3.1(ii) we

immediately obtain the following observation:

Corollary 3.2. The simplicial complexes derived from quasitrees are weakly systolic. In

particular, quasitrees are weakly bridged graphs.

The 5–wheel is an example of a quasitree which is not a bridged graph, thus not all

simplicial complexes derived from quasitrees are systolic.

4. Dismantlability of weakly bridged graphs

In this section, we show that the underlying graphs of weakly systolic complexes are dis-

mantlable and that a dismantling order can be obtained using LexBFS. Then we use this

result to deduce several consequences about collapsibility of weakly systolic complexes and

fixed simplices. Other consequences of dismantling are given in subsequent sections.

Theorem 4.1 (LexBFS dismantlability). Any LexBFS ordering of a locally-finite weakly

bridged graph G is a dismantling ordering.

Proof. We will establish the result for finite weakly bridged graphs. The proof in the locally-

finite case is completely similar. Let vn, . . . , v1 be the total order returned by the LexBFS

starting from the basepoint u = vn. Let Gi be the subgraph of G induced by the vertices

vn, . . . , vi. For a vertex v 6= u of G, denote by f(v) its father in the LexBFS tree Tu, by L(v)

the list of all neighbors of v labeled before v, and by α(v) the number of v (i.e., if v = vi, then

α(v) = i). We decompose the label L(v) of each vertex v into two parts L′(v) and L′′(v) :

if d(v, u) = i, then L′(v) = L(v) ∩ Si−1(u) and L′′(v) = L(v) ∩ Si(u). Notice that in the

lexicographic order of L(v), all vertices of L′(v) precede the vertices of L′′(v); in particular,

the father of v belongs to L′(v). The proof of the theorem is a consequence of the following

assertion, which we call the fellow traveler property:

Fellow Traveler Property: If v, w are adjacent vertices of G, then their fathers v′ = f(v)

and w′ = f(w) either coincide or are adjacent. If v′ and w′ are adjacent and α(w) < α(v),

then w′ is adjacent to v and v′ is not adjacent to w.

Indeed, if this assertion holds, then we claim that vn, . . . , v1 is a dismantling order. To

see this, it suffices to show that any vertex vi is dominated in Gi by its father f(vi) in the

LexBFS tree Tu. Pick any neighbor vj of vi in Gi. We assert that vj coincides or is adjacent

to f(vi). This is obviously true if f(vj) = f(vi). Otherwise, if f(vi) 6= f(vj), then the Fellow

Traveler Property implies that f(vi) and f(vj) are adjacent and since i < j that vj is adjacent

to f(vi). This shows that indeed any LexBFS order is a dismantling order.

Therefore, it remains to prove the Fellow Traveler Property which we establish in the

following lemma.
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Lemma 4.2. G satisfies the Fellow Traveler Property.

Proof of Lemma 4.2. We proceed by induction on i+ 1 := max{d(u, v), d(u,w)}. We distin-

guish two cases: d(u, v) < d(u,w) and d(u, v) = d(u,w) = i+ 1.

Case 1: d(u, v) < d(u,w). Then v, w′ ∈ I(w, u) and since G is thin, we conclude that

v and w′ = f(w) either coincide or are adjacent. In the first case we are done because

v (and therefore w′) is adjacent to its father v′ = f(v). If v and w′ are adjacent, since

i = d(u, v) = d(u,w′), the vertices v′ and f(w′) coincide or are adjacent by the induction

assumption. Again, if v′ = f(w′), the assertion is immediate. Now suppose that v′ and

f(w′) are adjacent. Since w′ = f(w) was labeled before v (otherwise the father of w is

v and not w′), f(w′) must be labeled before v′, therefore by the induction hypothesis we

deduce that v′ = f(v) must be adjacent to w′ = f(w). This concludes the analysis of the case

d(u, v) < d(u,w).

Case 2: d(u, v) = d(u,w) = i + 1. Suppose, without loss of generality that α(w) < α(v). If

the vertices v′ = f(v) and w′ = f(w) coincide, then we are done. If the vertices v′ and w′

are adjacent, then the vertices v, w,w′, v′ define a 4–cycle. Since G is weakly bridged, by

Theorem 3.1 this cycle cannot be induced. Since v was labeled before w, the vertex v′ must

be labeled before w′. Therefore, if v′ is adjacent to w, then LexBFS will label w from v′ and

not from w′, giving a contradiction. Thus v′ and w are not adjacent, showing that w′ must be

adjacent to v, establishing the required assertion. So, assume by way of contradiction that the

vertices v′ and w′ are not adjacent in G. Then w′ is not adjacent to v, otherwise w′, v′ ∈ Bi(u)

and v ∈ I(v′, w′) ∩ Si+1(u), contrary to the convexity of the ball Bi(u) (similarly, v′ is not

adjacent to w).

SinceG is weakly modular by Theorem 3.1(iii), the triangle condition applied to the vertices

v, w, and u implies that there exists a common neighbor s of v and w located at distance i

from u. Denote by S the set of all such vertices s. From the property SDi(u) we infer that

S is a simplex of X (i.e., its vertices are pairwise adjacent in G). Since v′ and w′ do not

belong to S, necessarily all vertices of S have been labeled later than v′ and w′ (but obviously

before v and w). Pick a vertex s in S with the largest label α(s) and set z := f(s). By the

induction assumption applied to the pairs of adjacent vertices {v′, s} and {s, w′}, we conclude

that the vertices of each of the pairs {f(v′), z} and {z, f(w′)} either coincide or are adjacent.

Moreover, in all cases, the vertex z must be adjacent to the vertices v′ and w′.

Claim 1: L′(v′) = L′(s) = L′(w′) and z is the father of v′ and w′.

Proof of Claim 1: Since s was labeled later than v′ and w′, it suffices to show that

L′(v′) = L′(s). Indeed, if this is the case, then necessarily z is the father of v′. Then, as z

is adjacent to w′ and α(w′) < α(v′), necessarily z is also the father of w′. Now, if L′(w′)

and L′(s) = L′(v′) do not coincide, since L′(v′) lexicographically precedes L′′(v′) and L′(w′)

precedes L′′(w′), the fact that LexBFS labeled v′ before w′ means that L′(v′) lexicographically

precedes L′(w′). Since L′(s) = L′(v′), then necessarily LexBFS would label s before w′, a
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contradiction. This shows that the equality of the two labels L′(s) and L′(v′) implies the

equality of the three labels L′(v′), L′(s), and L′(w′).

To show that L′(v′) = L′(s), since α(s) < α(v′), it suffices to establish only the inclusion

L′(v′) ⊆ L′(s). Suppose by way of contradiction that there exists a vertex in L′(v′) \ L′(s)
i.e., a vertex x ∈ Si−1(u) which is adjacent to v′ but is not adjacent to s. Let x be the vertex

of L′(v′) \ L′(s) having the largest label α(x). Since s was labeled by LexBFS later than v′,

necessarily any vertex of L′(s) \L′(v′) must be labeled later than x. Notice that x cannot be

adjacent to w′, since otherwise we would obtain an induced 4–cycle formed by the vertices

v′, s, w′, x. On the other hand x is adjacent to z because both vertices belong to the convex

ball Bi−1(u) and both are adjacent to the vertex v′ ∈ Si(u). Since x is not adjacent to v, w,

and s, we conclude that the vertices v, w,w′, z, c′, s, x induce an extended 5–wheel Ŵ5. By the

Ŵ5–condition, there exists a vertex t adjacent to all vertices of this Ŵ5. Notice that t ∈ Si(u)

because it is adjacent to x ∈ Si−1(u) and v ∈ Si+1(u). Hence t ∈ S. By definition, t is

adjacent to z. Further, t must be adjacent to any other vertex z′ belonging to L′(v′)∩L′(s),
otherwise we obtain a forbidden 4–cycle. This means that LexBFS will label t before s. Since

t belongs to S and α(t) > α(s), we obtain a contradiction with the choice of the vertex s.

This contradiction concludes the proof of Claim 1.

We continue with the analysis of Case 2. Since v′ and w′ are not adjacent and G does

not contain induced 4–cycles, any vertex s′ 6= s adjacent to v′ and w′ is also adjacent to

s. In particular, this shows that L′′(v′) ∩ L′′(w′) ⊆ L′′(s). Therefore, if L′′(w′) ⊆ L′′(v′),

then L′′(w′) ⊆ L′′(s). Since v′ ∈ L′′(s) \ L′′(w′) and L′(s) = L′(w′) by Claim 1, we conclude

that the vertex s must be labeled before w′, contrary to the assumption that α(s) < α(w′).

Therefore the set B := L′′(w′) \L′′(v′) is nonempty. Then, since v′ was labeled before w′ and

L′(v′) = L′(w′) by Claim 1, we conclude that the set A := L′′(v′) \ L′′(w′) is nonempty as

well. Let p be the vertex of A with the largest label α(p) and let q be the vertex of B with the

largest label α(q). Since LexBFS labeled v′ before w′ and L′(v′) = L′(w′) holds, necessarily

α(q) < α(p) holds. Since p ∈ L′′(v′), we obtain that α(w′) < α(v′) < α(p). Since v′ = f(v)

and w′ = f(w), this shows that p cannot be adjacent to the vertices v and w. If s is adjacent to

p, then p ∈ L′′(s). But then from Claim 1 and the inclusion L′′(v′)∩L′′(w′) ⊆ L′′(s) we could

infer that LexBFS must label s before w′, contrary to the assumption that α(s) < α(w′).

Therefore p is not adjacent to s either. On the other hand, since α(v′) < α(p), by the

induction hypothesis applied to the adjacent vertices p and v′, we infer that z = f(v′) must

be adjacent to p. Hence the vertices v, w,w′, z, v′, s, p induce an extended 5–wheel. By the

Ŵ5–condition, there exists a vertex t adjacent to all these vertices. Since C := L′(v′) = L′(w′)

and d(v′, w′) = 2, to avoid induced 4–cycles, the vertex t must be adjacent to any vertex of C.

For the same reason, t must be adjacent to any vertex of L′′(v′) ∩ L′′(w′). Since additionally

t is adjacent to the vertex p of A with the highest label, necessarily t will be labeled by

LexBFS before w′ and s. Since t is adjacent to v and w, this contradicts the assumption that

w′ = f(w). This shows that the initial assumption that v′ and w′ are not adjacent lead to
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a final contradiction. Hence the order returned by LexBFS is indeed a dismantling order of

the weakly bridged graph G. This completes the proof of the lemma and of the theorem. �

Corollary 4.3. Locally finite weakly systolic complex X and every its Rips complex Xk are

LC-contractible and therefore collapsible.

Proof. Again we consider only the finite case. To show that any finite weakly systolic complex

X is LC-contractible it suffices to notice that, since X is a flag complex, the LC-contractibility

of X is equivalent to the dismantlability of its graph G = G(X), and hence the result follows

from Theorem 4.1.

To show that the Rips complex Xk is LC-contractible, since Xk is a flag complex, it suffices

to show that its graph G(Xk) is dismantlable. From the definition of Xk, the graph G(Xk)

coincides with the kth power Gk of the underlying graph G of X. Now notice that if a vertex

v is dominated in G by a vertex v′, then v′ also dominates v in the graph Gk. Indeed, pick

any vertex x adjacent to v in Gk. Then d(v, x) ≤ k in G. Let y be the neighbor of v on some

shortest path P connecting the vertices v and x in G. Since v′ dominates v, necessarily v′

is adjacent to y. Hence d(v′, x) ≤ k in G, therefore v′ is adjacent to x in Gk. This shows

that v is dominated by v′ in the graph Gk as well. Therefore the dismantling order of G

returned by LexBFS is also a dismantling order of Gk, establishing that the Rips complex

Xk is LC-contractible. �

Corollary 4.4. Graphs of Rips complexes Xn of locally-finite systolic and weakly systolic

complexes are dismantlable.

For a locally-finite weakly bridged graph G and integer k we denote by Gk the subgraph

of G induced by the first k labeled vertices v1, . . . , vk in a LexBFS order with basepoint u,

i.e., by the vertices of G with k lexicographically largest labels. For each k, let vk be the last

labeled vertex of Gk (notice that v1 = u).

Corollary 4.5. Any Gk is an isometric weakly bridged subgraph of G.

Proof. First we show that every Gk is an isometric subgraph of G. Pick two arbitrary vertices

x, y of Gk. For a shortest path P in G between x and y let i(P ) be the least integer i such

that P is completely contained in the subgraph Gi. From the definition of i(P ) it follows

that P passes via the vertex vi of Gi. Among all shortest paths between x and y, let P ∗ has

minimal index i(P ∗). Let k′ = i(P ∗). If k′ ≤ k, then P ∗ is contained in Gk and we are done.

So, suppose that k′ > k. Since x, y belong to Gk, vk′ 6= x, y. Let x′, y′ be the neighbors of

vk′ in P ∗ such that x′ belongs to the portion of P ∗ between x and vk′ . Let v′ = f(vk′) be

the vertex (of Gk′−1) dominating vk′ in the dismantling order of G. Then v′ is adjacent to

x′ and y′. Therefore, the path Q of G consisting of the portion of P ∗ between x and x′, the

path of length 2 (x′, v′, y′), and the subpath of P ∗ between between y′ and y, is a shortest

path between x and y. Since i(Q) < i(P ∗), we obtain a contradiction with minimality of

i(P ∗). This contradiction shows that each Gk is an isometric subgraph of G. In particular,
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this implies that any interval I(x, y) in Gk is contained in the interval between x and y in

G. Since G is a thin graph, each Gk is also thin. Moreover, since G is weakly bridged and

weakly bridged graphs do not contain embedded isometric cycles of length > 5, Gk, as an

isometric subgraph of G, does not contain such isometric cycles either. All balls of a graph

are convex if and only if this graph is thin and does not contain embedded isometric cycles

of length > 5; cf. [SC83, Theorem 2] and [FJ87, Theorem 2.2]. Hence, each Gk is a graph

with convex balls.

To complete the proof that each graph Gk is weakly bridged, by Theorem 3.1(vi) it remains

to show that any induced 5–cycle C of Gk is included in a 5–wheel. Suppose by the induction

assumption that this is true for Gk−1. Therefore C must contain the last labeled vertex of Gk.

Denote this vertex by v and let x, y be the neighbors of v in C. Since C is induced, necessarily

v′ is adjacent to x and y but distinct from these vertices. Denote by C ′ the 5–cycle obtained

by replacing in C the vertex v by v′. If C ′ is not induced, then v′ will be adjacent to a third

vertex of C, and since Gk does not contain induced 4–cycles, v′ will be adjacent to all vertices

of C, showing that C extends to a 5–wheel. So, suppose that C ′ is induced. Applying the

induction hypothesis to Gk−1, we conclude that C ′ extends to a 5–wheel in Gk−1. Let w be

the central vertex of this wheel. To avoid a 4–cycle induced by the vertices x, y, v, and w,

necessarily v and w must be adjacent. Hence C extends in Gk to a 5–wheel centered at w.

This establishes that Gk is indeed weakly bridged. �

A simplicial map on a simplicial complex X is a map ϕ : V (X)→ V (X) such that for all

σ ∈ X we have ϕ(σ) ∈ X. A homomorphism of a graph G = (V,E) is a simplicial map on a

one-dimensional simplicial complex G. A simplicial map fixes a simplex σ ∈ X if ϕ(σ) = σ.

Every simplicial map on X is a homomorphism of its graph G(X). Every homomorphism of

a graph G is a simplicial map on its clique complex X(G). Therefore, if X is a flag complex,

then the set of simplicial maps of X coincides with the set of homomorphisms of its graph

G(X). It is well know (see, for example, [HN04, Theorem 2.65]) that any homomorphism

of a finite dismantlable graph to itself fixes some clique. From Theorem 4.1 we know that

the graphs of weakly systolic complexes as well as the graphs of their Rips complexes are

dismantlable. Therefore from the preceding discussion we obtain:

Corollary 4.6. Let X be a finite weakly systolic complex. Then any simplicial map of X to

itself or of its Rips complex Xk to itself fixes some simplex of the respective complex. Any

homomorphism of G = G(X) to itself fixes some clique.

5. Fixed point theorem

In this section, we establish the fixed point theorem (Theorem C from Introduction). We

start with two auxiliary results. The first one is an easy corollary of Theorem 4.1:

Lemma 5.1 (Strictly dominated vertex). Let X be a finite weakly systolic complex. Then

either X is a single simplex or it contains two vertices v, w such that v is strictly dominated

by w, i.e., B1(v) ( B1(w) .
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Proof. Let v be the last vertex of X labeled by LexBFS which started at vertex u (see Theorem

4.1). If d(u, v) = 1, then the construction of our ordering implies that B1(u) = V (X). Hence,

either there exists a vertex w, such that B1(w) ( V (X) = B1(u), and we are done, or every

two vertices of X are adjacent, i.e., X is a simplex. Now suppose that d(u, v) ≥ 2. Let w be

the father of v and let z be the father of w. From Theorem 4.1 we know that B1(v) ⊆ B1(w).

Since d(u, v) = d(u,w) + 1 ≥ 2, we conclude that u 6= w and that z ∈ B1(w) \B1(v). Hence

B1(v) is a proper subset of B1(w). �

Lemma 5.2 (Elementary LC-reduction). Let X be a finite weakly systolic complex. Let v, w

be two vertices such that B1(v) is a proper subset of B1(w). Then the full subcomplex X0 of

X spanned by all vertices of X except v is weakly systolic.

Proof. It is easy to see that X0 is simply connected (see also the discussion in Section 2.3).

Thus, by condition (vii) of Theorem 3.1, it suffices to show that X0 does not contain induced

4–cycles and satisfies the Ŵ5–condition. Since, by Theorem 3.1, X does not contain induced

C4, the same is true for its full subcomplex X0. Let Ŵ5 ⊆ X0 be a given 5–wheel plus a

triangle as defined in Section 3. By Theorem 3.1 there exists a vertex v′ ∈ X adjacent in X

to all vertices of Ŵ5. If v′ 6= v then v′ ∈ X0 and if v′ = v then Ŵ5 ⊆ lk(w,X0). In both cases

all vertices of Ŵ5 are adjacent to a vertex of X0: Ŵ5 is coned to v in one case and to w in

the other. Thus X0 also satisfies the Ŵ5–condition and hence the lemma follows. �

Theorem 5.3 (The fixed point theorem). Let G be a finite group acting by simplicial auto-

morphisms on a locally-finite weakly systolic complex X. Then there exists a simplex σ ∈ X

which is invariant under the action of G.

Proof. Let X′ be the subcomplex of X spanned by the convex hull of the set Gz = {gz :

g ∈ G}, for an arbitrary vertex z. Since Gz is finite and, by Theorem 3.1(v), balls in X are

convex, X′ is a bounded full subcomplex of X. Since X is locally-finite, X′ is finite. Moreover,

as a convex subcomplex of a weakly systolic complex, X′ is itself weakly systolic. Clearly X′

is also G–invariant. Thus there exists a minimal finite non-empty G–invariant subcomplex

X0 of X, that is itself weakly systolic. We assert that X0 must be a single simplex.

Assume by way of contradiction that X0 is not a simplex. Then, by Lemma 5.1, X0

contains two vertices v, w such that B1(v) ( B1(w) (i.e., v is a strictly dominated vertex).

Since the strict inclusion of 1–balls is a transitive relation and X0 is finite, there exists a finite

set S of strictly dominated vertices of X0 with the following property: for a vertex x ∈ S
there is no vertex y with B1(y) ( B1(x). Let X′0 be the full subcomplex of X spanned by

V (X0) \ S. It is clear that X′0 is a non-empty G–invariant proper subcomplex of X0. By

Lemma 5.2, X′0 is weakly systolic. This contradicts the minimality of X0 and thus shows

that X0 has to be a simplex. �

Corollary 5.4 (Conjugacy classes of finite subgroups). Let G be a group acting geometrically

by automorphisms on a weakly systolic complex X (i.e. G is weakly systolic). Then G contains

only finitely many conjugacy classes of finite subgroups.
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Proof. Suppose by way of contradiction that we have infinitely many conjugacy classes of

finite subgroups represented by H1, H2, . . . ≤ G. Since G acts geometrically on X, there

exists a compact subset K ⊆ V (X) with
⋃
g∈G gK = X. For i = 1, 2, . . . , let σi be an

Hi–invariant simplex of X (whose existence is assured by the fixed point Theorem 5.3) and

let gi ∈ G be such that gi(σi) ∩K 6= ∅. Then gi(σi) is giHig
−1
i invariant and

⋃
i giHig

−1
i is

infinite. But for every element g ∈
⋃
i giHig

−1
i we have g(B1(K))∩B1(K) 6= ∅, a contradiction

with the properness of the G–action on X. �

6. Contractibility of the fixed point set

The aim of this section is to prove that for a group acting on a weakly systolic complex its

fixed point set is contractible (Proposition 6.6). As explained in the Introduction, this result

implies Theorem E asserting that weakly systolic complexes are models for EG for groups

acting on them properly.

Our proof closely follows Przytycki’s proof of an analogous result for the case of systolic

complexes [Prz09]. There are however minor technical difficulties. In particular, since balls

around simplices in weakly systolic complexes need not to be convex, we have to work with

other convex objects that are defined as follows. For a simplex σ of a simplicial complex X,

set K0(σ) = σ and Ki(σ) =
⋂
v∈σ Bi(v) for i = 1, 2, . . ..

Lemma 6.1 (Properties of Ki(σ)). Let σ be a simplex of a weakly systolic complex X. Then,

for i = 0, 1, 2, ..., Ki(σ) is convex and Ki+1(σ) ⊆ B1(Ki(σ)).

Proof. Trivially, K0(σ) = σ is convex. For i > 0, Ki(σ) is the intersection of the balls

Bi(v), v ∈ σ. By Theorem 3.1, balls around vertices are convex, whence Ki(σ) is convex as

well. To establish the inclusion Ki+1(σ) ⊆ B1(Ki(σ)), pick any vertex w ∈ Ki+1(σ). Let

l = d(w, σ)− 1 and denote by σ0 the metric projection of w in σ. By the property SDl(w),

there exists a vertex z ∈ Sl(w) adjacent to all vertices of the simplex σ0. Let w′ be a neighbor

of w in the interval I(w, z). Then obviously d(w′, σ) = l and therefore σ0 is the metric

projection of w′ in σ. Since d(w′, v) = d(w, v)− 1 for any vertex v ∈ σ and w ∈ Ki+1(σ), we

conclude that w′ ∈ Ki(σ), whence w ∈ B1(w
′) ⊆ B1(Ki(σ)). �

We recall now two general results that were proved in [Prz09] and which will be important

in the proof of Proposition 6.6.

Proposition 6.2 ([Prz09, Proposition 4.1]). If C,D are posets and F0, F1 : C → D are func-

tors such that for each object c of C we have F0(c) ≤ F1(c), then the maps induced by F0, F1

on the geometric realizations of C,D are homotopic. Moreover this homotopy can be chosen

to be constant on the geometric realization of the subposet of C of objects on which F0 and

F1 agree.

Proposition 6.3 ([Prz09, Proposition 4.2]). Let F0 : C′ → C be the functor from the flag

poset C′ of a poset C into the poset C, assigning to each object of C′, which is a chain of

21



objects of C, its minimal element. Then the map induced by F0 on geometric realizations of

C′, C (that are homeomorphic in a canonical way) is homotopic to identity.

The following property of flag complexes will be crucial in the definition of expansion by

projection below. It says that in the weakly systolic case we can define projections on convex

subcomplexes the same way as projections on balls.

Lemma 6.4 (Projections on convexes). Let X be a weakly systolic complex and let Y be

its convex subset. If a simplex σ belongs to S1(Y ), i.e. σ ⊆ B1(Y ) and σ ∩ Y = ∅, then

τ := lk(σ,X) ∩ Y is a single nonempty simplex.

Proof. First, assuming that τ is nonempty, we show that it is a single simplex. By definition

of links, τ consists of all vertices v of Y adjacent in G(X) to all vertices of σ. Since the set

Y is convex and σ is disjoint from Y, necessarily the vertices of τ are pairwise adjacent. As

X is a flag complex, τ is a simplex of X.

By induction on the dimension m of σ we will prove that τ is nonempty. The claim is

clear for m = 0. Now we show it for m = 1. Let σ be an edge x1x2. Let y1, y2 ∈ Y be

adjacent to x1, x2, respectively. By convexity of Y we have that d(y1, y2) ≤ 2. If y1 = y2,

then y1 ∈ τ and we are done. If d(y1, y2) = 1 then, since there are no induced 4–cycles in

X (cf. Theorem 3.1), y1 is adjacent to x2 or y2 is adjacent to x1. Consequently, one of the

vertices y1, y2 belongs to τ . If d(y1, y2) = 2, then there exists y ∈ Y adjacent to both y1 and

y2. By Theorem 3.1, the 5–cycle (x1, x2, y2, y, y1, x1) is either not a full subcomplex, or it is

contained in a 5–wheel. In both cases one easily finds a vertex in Y adjacent to both x1, x2
and thus belonging to τ .

Now, we turn to the induction step. Assume that lk(σ,X) ∩ Y 6= ∅ for all σ of dimension

at most m − 1. We show that it is true for dimension m ≥ 2. Let x1, x2, . . . , xm+1 be the

vertices of σ. Let σi := σ \ {xi}, i = 1, . . . ,m + 1. By the induction assumption, for each σi
there exists a vertex yi ∈ Y such that σi ∪{yi} is a simplex of X. Pick any two indices i 6= j.

Then σi ∩ σj 6= ∅ because m + 1 ≥ 3. Since yi, yj ∈ Y and Y is convex, this implies that yi
and yj are adjacent. Then either yi is adjacent to xi or yj is adjacent to xj , otherwise the

vertices xi, xj , yi, yj induce a forbidden 4–cycle. In both cases we will obtain a vertex of Y

adjacent to all vertices of σ, showing that τ 6= ∅. �

We will call the simplex τ as in the lemma above the projection of σ on Y . Now we are in

position to define the following notion introduced (in a more general version) by Przytycki

[Prz09, Definition 3.1] in the systolic case. Let Y be a convex subset of a weakly systolic

complex X and let σ be a simplex in B1(Y ). The expansion by projection eY (σ) of σ is a

simplex in B1(Y ) defined in the following way: if σ ⊆ Y, then eY (σ) = σ, otherwise eY (σ) is

the join of σ ∩ S1(Y ) and its projection on Y . A version of the following simple lemma was

proved in [Prz09] in the systolic case. Its proof given there is valid also in our case.
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Lemma 6.5 ([Prz09, Lemma 3.8]). Let Y be a convex subset of a weakly systolic complex

X and let σ1 ⊆ σ2 ⊆ . . . ⊆ σn ⊆ B1(Y ) be an increasing sequence of simplices. Then the

intersection (
⋂n
i=1 eY (σi)) ∩ Y is nonempty.

Let σ be a simplex of a weakly systolic complex X. As in [Prz09], we define an increasing

sequence of full subcomplexes D2i(σ) and D2i+1(σ) of the barycentric subdivision X′ of X in

the following way. Let D2i(σ) be the subcomplex spanned by all vertices of X′ corresponding

to simplices of X which have all their vertices in Ki(σ). Let D2i+1(σ) be the subcomplex

spanned by all vertices of X′ which correspond to those simplices of X that have all their

vertices in Ki+1(σ) and at least one vertex in Ki(σ). The proof of the main proposition in

this section follows closely the proof of [Prz09, Proposition 1.4].

Proposition 6.6 (Contractibility of the fixed point set). Let H be a group acting by simplicial

automorphisms on a weakly systolic complex X. Then the complex FixHX
′ is contractible or

empty.

Proof. Assume that FixHX
′ is nonempty and let σ be a maximal H–invariant simplex. By

Di we will denote here Di(σ). We will prove the following three assertions.

(i) D0 ∩ FixHX
′ is contractible;

(ii) the inclusion D2i ∩ FixHX
′ ⊆ D2i+1 ∩ FixHX

′ is a homotopy equivalence;

(iii) the identity on D2i+2∩FixHX
′ is homotopic to a mapping with image in D2i+1∩FixHX

′ ⊆
D2i+2 ∩ FixHX

′.

As in the proof of [Prz09, Proposition 1.4], the three assertions imply that Dk ∩ FixHX
′

is contractible for every k, thus the proposition holds. To show (i), note that D0 ∩FixHX
′ is

a cone over the barycenter of σ and hence it is contractible.

To prove (ii), let C be the poset of H–invariant simplices in X with vertices in Ki+1(σ) and

at least one vertex in Ki(σ). Its geometric realization is D2i+1 ∩FixHX
′. Consider a functor

F : C → C assigning to each object of C (i.e., each simplex of X), its subsimplex spanned

by its vertices in Ki(σ). By Proposition 6.2, the geometric realization of F is homotopic to

identity (which is the geometric realization of the identity functor). Moreover, this homotopy

is constant on D2i ∩ FixHX
′. The image of the geometric realization of F is contained in

D2i ∩ FixHX
′. Hence D2i ∩ FixHX

′ is a deformation retract of D2i+1 ∩ FixHX
′, as desired.

To establish (iii), let C be the poset of H–invariant simplices of X′ with vertices in Ki+1(σ)

and let C′ be its flag poset. Let also F0 : C′ → C be the functor assigning to each object of

C′ its minimal element; cf. Proposition 6.3. Now we define another functor F1 : C′ → C.
For any object c′ of C′, which is a chain of objects c1 < c2 < . . . < ck of C, recall that cj
are some H–invariant simplices in Ki+1(σ). Let c′j = eKi(σ)(cj). Then by Lemma 6.5 the

intersection
⋂k
j=1 c

′
j contains at least one vertex in Ki(σ). Thus

⋂k
j=1 c

′
j is an H–invariant

non-empty simplex and hence it is an object of C. We define F1(c
′) to be this object. In the

geometric realization of C, which is D2i+2∩FixHX
′, the object F1(c

′) corresponds to a vertex
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of D2i+1 ∩ FixHX
′. It is obvious that F1 preserves the partial order. Notice that for any

object c′ of C′ we have F0(c
′) ⊆ F1(c

′), hence, by Proposition 6.3, the geometric realizations

of F0 and F1 are homotopic. We have that F0 is homotopic to the identity and that F1 has

image in D2i+1 ∩ FixHX
′, thus establishing (iii). �

7. Some remarks on systolic complexes

In this final section, we restrict to the case of systolic complexes and present some further

results in that case. First, using Lemma 3.10 and Theorem 3.11 of Polat [Pol02] for bridged

graphs, we prove a stronger version of the fixed point theorem for systolic complexes. Namely,

Polat [Pol02] established that for any subset Y of vertices of a graph with finite intervals,

there exists a minimal isometric subgraph of this graph which contains Y . Moreover, if Y

is finite and the graph is bridged, then [Pol02, Theorem 3.11(i)] shows that this minimal

isometric (and hence bridged) subgraph is also finite. We continue with two lemmata which

can be viewed as G–invariant versions of these two results of Polat [Pol02].

Lemma 7.1 (Minimal subcomplex). Let a group G act by simplicial automorphisms on a

systolic complex X. Let Y be a G–invariant set of vertices of X. Then there exists a minimal

G–invariant subcomplex Y of X containing Y , which is itself a systolic complex.

Proof. Let Σ be a chain (with respect to the subcomplex relation) of G–invariant subcom-

plexes of X, which contain Y and induce isometric subgraphs of the underlying graph of

X (and thus are systolic complexes themselves). Then, as in the proof of [Pol02, Lemma

3.10], by Zorn lemma we conclude that the subcomplex Y =
⋂

Σ is a minimal G–invariant

subcomplex of X, containing Y and which is itself a systolic complex. �

Lemma 7.2 (Minimal finite subcomplex). Let a group G act by simplicial automorphisms

on a systolic complex X. Let Y be a finite G–invariant set of vertices of X. Then there exists

a minimal (as a simplicial complex) finite G–invariant subcomplex Y of X, which is itself a

systolic complex.

Proof. Let conv(Y ) be the convex hull of Y in X. The full subcomplex Z of X spanned by

conv(Y ) is a bounded systolic complex. By Lemma 7.1, there exists a minimal G–invariant

subcomplex Y of Z containing the set Y and which itself is a systolic complex. Then from the

minimality of Y (and as in the proof of [Pol02, Theorem 3.11]) we conclude that all dominated

vertices of Y are contained in Y . Thus Y contains finitely many dominated vertices. Since

additionally Y is bounded and does not contain infinite simplices, by [Pol02, Theorem 3.8],

Y is finite. �

Theorem 7.3 (The fixed point theorem). Let G be a finite group acting by simplicial auto-

morphisms on a systolic complex X. Then there exists a simplex σ ∈ X which is invariant

under the action of G.
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Proof. Let Y = Gv = {gv| g ∈ G}, for some vertex v ∈ X. Then Y is a finite G–invariant set

of vertices of X and thus, by Lemma 7.2, there exists a minimal finite G–invariant subcomplex

Y of X, which is itself a systolic complex. Then, the same way as in the proof of Theorem

5.3, we conclude that there exists a simplex in Y that is G–invariant. �

Remark 7.4. We believe that, as in the systolic case, the stronger version of Theorem

5.3 holds also for weakly systolic complexes, i.e., one can drop the assumption on the local

finiteness of X in Theorem 5.3. This needs extensions of some results of Polat (in particular,

Theorems 3.8 and 3.11 from [Pol02]) to the class of weakly bridged graphs.

Zawíslak [Zaw04] initiated another approach to the fixed point theorem in the systolic

case based on the following notion of round subcomplexes. A systolic complex X of finite

diameter k is round (cf. [Prz08]) if ∩{Bk−1(v) : v ∈ V (X)} = ∅. Przytycki [Prz08] established

that all round systolic complexes have diameter at most 5 and used this result to prove that

for any finite group G acting by simplicial automorphisms on a systolic complex there exists

a subcomplex of diameter at most 5 which is invariant under the action of G. Zawíslak

[Zaw04, Conjecture 3.3.1] and Przytycki (Remark 8.1 of [Prz08]) conjectured that in fact the

diameter of round systolic complexes must be at most 2. Zawíslak [Zaw04, Theorem 3.3.1]

showed that if this is true, then it implies that G has an invariant simplex, thus paving

another way to the proof of Theorem 7.3. We will show now that the positive answer to the

question of Zawíslak and Przytycki directly follows from an earlier result of Farber [Far89]

on diameters and radii of finite bridged graphs.

Proposition 7.5 (Round systolic complexes). Any round systolic complex X has diameter

at most 2.

Proof. Let diam(X) and rad(X) denote the diameter and the radius of a systolic complex X,

i.e., the diameter and radius of its underlying bridged graph G = G(X). Recall that rad(X)

is the smallest integer r such that there exists a vertex c of X (called a central vertex) so

that the ball Br(c) of radius r and centered at c covers all vertices of X, i.e., Br(c) = V (X).

Farber [Far89, Theorem 4] proved that if G is a finite bridged graph, then 3rad(G) ≤
2diam(G) + 2. We will show first that this inequality holds for infinite bridged graphs G of

finite diameter diam(G). Set k := rad(G) ≤ diam(G). By definition of rad(G) the intersection

of all balls of radius k − 1 of G is empty. Then using an argument of Polat (personal

communication) presented below, we can find a finite subset of vertices Y of G such that

the intersection of the balls Bk−1(v), v running over all vertices of Y, is still empty. By

[Pol02, Theorem 3.11], there exists a finite isometric bridged subgraph H of G containing Y.

From the choice of Y we conclude that the radius of H is at least k, while the diameter of

H is at most the diameter of G. As a result, applying Farber’s inequality to H, we obtain

3rad(G) ≤ 3rad(H) ≤ 2diam(H) + 2 ≤ 2diam(G) + 2, whence 3rad(G) ≤ 2diam(G) + 2.

To show the existence of a finite set Y such that ∩{Bk−1(v) : v ∈ Y } = ∅, we use an

argument of Polat. According to Theorem 3.9 of [Pol98], any graph G = (V,E) without
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isometric rays (in particular, any bridged graph of finite diameter) can be endowed with a

topology, called geodesic topology, so that the resulting topological space is compact. A

vertex x of G geodesically dominates a subset A of V if, for every finite S ⊆ V − {x}, there

exists an element a of A−{x} such that the interval I(x, a) between x and a is disjoint from

S. A set A ⊆ V is geodesically closed if it contains all vertices which geodesically dominate

A. Then the geodesic topology on V consists of all geodesically closed sets. It is shown in

[Pol04, Corollary 6.26] that any convex set of a bridged graph containing no infinite simplices

is closed in the geodesic topology. As a result, the balls of a bridged graph G of finite diameter

containing no infinite simplices are compact convex sets. Hence any family of balls with an

empty intersection contains a finite subfamily with an empty intersection, showing that such

a finite set Y indeed exists.

Now suppose that X is a round systolic complex and let k := diam(X). Since X is round,

one can easily deduce that rad(X) = k: indeed, if rad(X) ≤ k − 1 and c is a central vertex,

then c will belong to the intersection ∩{Bk−1(v) : v ∈ V (X)}, which is impossible. Applying

Farber’s inequality to the (bridged) underlying graph of X, we conclude that 3k ≤ 2k + 2,

whence k ≤ 2. �

Remark 7.6. It would be interesting to extend Proposition 7.5 and the relationship of [Far89]

between radii and diameters to weakly systolic complexes.

Osajda-Przytycki [OP09] constructed a Z–set compactification X = X ∪ ∂X of a systolic

complex X. The main result there ([OP09, Theorem 6.3]) together with Theorem E from

Introduction, suggest that for a group G acting geometrically by simplicial automorphisms

on a systolic complex X the following result holds:

The compactification X = X ∪ ∂X of X satisfies the following properties:

1. X is a Euclidean retract (ER);

2. ∂X is a Z–set in X;

3. for every compact set K ⊆ X, (gK)g∈G is a null sequence;

4. the action of G on X extends to an action, by homeomorphisms, of G on X;

5. for every finite subgroup F of G, the fixed point set FixFX is contractible;

6. for every finite subgroup F of G, the fixed point set FixFX is dense in FixFX.

This asserts that X is an EZ–structure, sensu Rosenthal [Ros03], for a systolic group G;

for details, see [OP09]. The existence of such a structure implies, by [Ros03], the Novikov

conjecture for G.
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