TITS ALTERNATIVE FOR 2-DIMENSIONAL CAT(0) COMPLEXES

DAMIAN OSAJDA ${ }^{\dagger}$ AND PIOTR PRZYTYCKI ${ }^{\ddagger}$

Abstract

We prove the Tits Alternative for groups acting on 2-dimensional CAT(0) complexes with a bound on the order of the cell stabilisers.

1. Introduction

A triangle complex X is a 2-dimensional simplicial complex, with a following piecewise smooth Riemannian metric. Namely, we have a family of smooth Riemannian metrics σ_{T}, σ_{e} on the triangles and edges such that the restriction of σ_{T} to e is σ_{e} for each $e \subset T$. Riemannian metrics σ_{T}, σ_{e} induce metrics (i.e. distance functions) on triangles and edges. We then equip X with the quotient pseudometric d (see [BH99, I.5.19]). We assume that for each metric ball B, the simplices of X intersecting B have only finitely many isometry types. (Note that the only time we will apply it to B of radius nonzero is in the proof of Remark 2.5.) Then (X, d) is a complete length space, which can be deduced from [BH99, I.7.13 and I.5.20] using a bilipschitz map from each B to a piecewise Euclidean complex. Note that we study triangle complexes, as opposed to piecewise Euclidean 2-dimensional simplicial complexes, for applications to groups such as Tame $\left(\mathbf{k}^{3}\right)$ (Corollary D). All group actions on X will be by simplicial isometries.

We say that a group acts on a cell complex X almost freely if there is a bound on the order of the cell stabilisers. Note that an almost free action on a triangle complex is proper in the sense of [BH99, I.8.2]. Furthermore, any subgroup of a group acting properly and cocompactly acts almost freely.
Theorem A. Let G be a finitely generated group acting almost freely on a CAT(0) triangle complex X. Then G is virtually cyclic, or virtually \mathbb{Z}^{2}, or contains a nonabelian free group.

By BH99, II.7.5 and II.7.7(2)] and Remarks 2.4 and 2.5, if G acts almost freely on a CAT(0) triangle complex with finitely many isometry types of simplices, then every sequence $G_{1}<G_{2}<\cdots$ of virtually abelian subgroups of G stabilises. Consequently:
Corollary B. If X has finitely many isometry types of simplices, then Theorem A holds also for G infinitely generated.

[^0]As explained in OP21, page 3], one cannot omit in Theorem A the assumption on almost freeness.

Here are some examples of applications of Theorem A to particular groups. The first result, which is a consequence of Corollary B, was studied independently by Paul Tee. We are assuming that G below acts freely instead of almost freely, since A is torsion free [CD95, Thm B].
Corollary C. Let G be a subgroup of a 2-dimensional Artin group A acting freely on the modified Deligne complex of A (see [CD95]). Then G is cyclic, \mathbb{Z}^{2}, the fundamental group of the Klein bottle, or contains a nonabelian free group.

The second result concerns the tame automorphism group Tame $\left(\mathbf{k}^{3}\right)$ (see LP21). In LP21, §2 and §5] we introduced a cell complex \mathbf{X} with an action of Tame $\left(\mathbf{k}^{3}\right)$. We proved that \mathbf{X} is $\operatorname{CAT}(0)$ for \mathbf{k} of characteristic 0 [LP21. Thm A]. Some cells of \mathbf{X} are polygons instead of triangles, but we can easily transform \mathbf{X} into a triangle complex by subdividing.

Corollary D. Let G be a finitely generated subgroup of Tame $\left(\mathbf{k}^{3}\right)$, with \mathbf{k} of characteristic 0 . Suppose that G acts almost freely on the cell complex \mathbf{X}. Then G is virtually cyclic, or virtually \mathbb{Z}^{2}, or contains a nonabelian free group.

An ingredient in the proof of Theorem A is the following characterisation of CAT(0) triangle complexes using a link condition. In BB96, Thm 7.1] this was proved only for locally compact triangle complexes, and in BH99, II.5.2] only for piecewise Euclidean and piecewise hyperbolic triangle complexes.
Theorem E. A triangle complex X is locally CAT(0) if and only if
(i) the Gaussian curvature of σ_{T} at any interior point of a triangle T of X is ≤ 0, and
(ii) the sum of geodesic curvatures in any two distinct triangles of X at any interior point of a common edge is ≤ 0, and
(iii) for each vertex v of X, the girth of the link lk_{v}^{X} is $\geq 2 \pi$.

Motivation and relation to other results. The term Tits Alternative usually refers to the property that all finitely generated subgroups are either virtually solvable or contain a nonabelian free group. The name comes from the theorem of Tits Tit72 who proved that every finitely generated linear group is either virtually solvable or contains a nonabelian free group. It is widely believed (see e.g. Bes00, Quest 2.8], Bri06], Bri07, Quest 7.1], FHT11, Prob 12],[Cap14, §5]) that all CAT(0) groups (groups acting geometrically, that is, properly and cocompactly, on CAT(0) spaces) satisfy the Tits Alternative. This was proved only in a limited number of cases: see NV02, SW05, CS11, MP20, MP22, OP21 and references therein.

Groups acting geometrically on 2-dimensional CAT(0) complexes were studied thoroughly by Ballmann and Brin in BB95], where they proved the Rank Rigidity Conjecture for such groups. They also proved that such
groups are either virtually abelian, or contain a nonabelian free group (statements of this type are sometimes called the Weak Tits Alternative [SW05]). However, the Tits Alternative for such groups has been open till our current work. (E.g. in [FHT11, Prob 12] the question on the Tits Alternative is asked specifically in dimension 2.) Just recently, together with Norin we were able to show in (NOP22, among other results, that the groups in question do not contain infinite torsion subgroups. This property might be seen as the first step towards the Tits Alternative. In [OP21 we proved the Tits Alternative for the class of 2-dimensional recurrent complexes. This class contains all 2-dimensional Euclidean buildings, 2-dimensional systolic complexes, as well as some complexes outside the $\operatorname{CAT}(0)$ setting.

Regarding Corollary C, for right-angled Artin groups the Tits Alternative follows from the work of Baudisch Bau81. In our previous work [OP21] we showed the Tits Alternative for a subclass of 2-dimensional Artin groups, containing all large-type Artin groups. Recently, in [MP22] we proved the Tits Alternative for 2-dimensional Artin groups of hyperbolic type, and in (MP20] we proved it for FC-type Artin groups. An approach to the Tits Alternative for subgroups of 2 -dimensional Artin groups acting not almost freely on the modified Deligne complex has been developed by Martin Mar22.

As for Corollary D, Cantat proved that the group of birational transformations $\operatorname{Bir}\left(\mathbb{C}^{2}\right)$ satisfies the Tits Alternative Can11]. Earlier, Lamy proved the Tits Alternative for the group of polynomial automorphisms Aut $\left(\mathbb{C}^{2}\right)$ Lam01. These proofs extend to any field \mathbf{k} of characteristic 0 Lam22. The same statement for $\operatorname{Aut}\left(\mathbf{k}^{3}\right)$ seems at the moment out of reach. However, we believe that for $\operatorname{Tame}\left(\mathbf{k}^{3}\right) \subsetneq \operatorname{Aut}\left(\mathbf{k}^{3}\right)$, with \mathbf{k} of characteristic 0 , one could study the subgroups acting not almost freely on the CAT(0) complex \mathbf{X} of [P21] by generalising the methods of the current paper ${ }^{1}$

Organisation. In Section 2 we prove Theorem E. In Section 3 we recall the method of invariant cocompact subcomplexes from OP21, which allows us to reduce Theorem A to Proposition 3.2 that assumes the existence of edges of degree ≥ 3 in our complex X. Under this assumption we can exclude the cases of virtually cyclic or \mathbb{Z}^{2} groups in Section 4 . In technical Section 5 , which we recommend to skip at the first reading, we arrange our complex X to have no 'unfoldable' links. ${ }^{2}$ We give criteria for finding 'rank 1 ' elements, and consequently free subgroups, in Section 6. In the absence of 'rank 1' elements, we obtain a particular rationality property of the complex X in

[^1]Section 7. In Section 8 we give new criteria for distinguishing the endpoints of certain piecewise geodesics. Together with a Poincaré recurrence argument this allows us to prove Proposition 3.2 in Section 9 .

Acknowledgements. We thank Werner Ballmann, Martin Bridson, Florestan Brunck, Pierre-Emmanuel Caprace, Koji Fujiwara, Stéphane Lamy, Paul Tee, and the referee for helpful remarks.

2. Characterisation of CAT(0) triangle complexes

In this section we prove Theorem E, which characterises CAT(0) triangle complexes. The following result is known under the name of the CartanHadamard theorem.

Theorem 2.1 ([BH99, II.4.1(2)]). Let X be a complete connected metric space. If X is simply connected and locally CAT(0), then it is CAT(0).

We also have the following consequence of BH99, II.1.7(4) and II.4.14(2)].
Theorem 2.2. Let X be a complete CAT(0) space. A piecewise local geodesic in X with Alexandrov angles π at the breakpoints is a geodesic.

Let x be a point of a triangle complex X. Let lk_{x}^{X} be the metric graph that is the link of x, as defined in BB95, page 176]. Namely, if x is a vertex of X, then the vertices of lk_{x}^{X} correspond to the edges of X containing x and the edges of lk_{x}^{X} correspond to the triangles of X containing x. The length of each edge is the angle in the corresponding triangle of X. Since we assumed that triangles containing x belong to only finitely many isometry classes of σ_{T}, there are only finitely many possible edge lengths in a given lk_{x}^{X}. If x lies in the interior of an edge e of X, then lk_{x}^{X} has two vertices corresponding to the components of $e \backslash x$, and edges of length π corresponding to the triangles of X containing e. If x lies in the interior of a triangle, then lk_{x}^{X} is a circle of length 2π. We denote by d_{x}^{X} (or, shortly, d_{x}) the length metric on lk_{x}^{X}. By NOP22, Lem 2.1], we can identify lk_{x}^{X} with the completion of the space of directions at x (see [BH99, II.3.18]). Thus a local geodesic in X starting at x determines a point in lk_{x}^{X}. The angle at x between two such local geodesics is defined to be the distance between the two corresponding points in lk_{x}^{X} with respect to the metric d_{x}. By NOP22, Lem 2.1], if this angle is $<\pi$, then it coincides with the Alexandrov angle, and if it is $\geq \pi$, then the Alexandrov angle equals π.

Proof of Theorem E. In the 'only if' part, condition (i) follows from BH99, II.1A.6]. The proof of condition (ii) is identical to that in BB96, Thm 7.1], and the proof of condition (iii) was given in NOP22, §2]. For the proof of the 'if' part, suppose that a triangle complex X satisfies conditions (i)-(iii). By condition (i) and [BH99, II.1A.6], we have that X is locally CAT(0) at any interior point of a triangle.

Consider now an edge e of X. Let $\operatorname{St}(e)$ be the union of all the closed triangles containing e. We will show that $\operatorname{St}(e)$ is $\operatorname{CAT}(0)$, which implies
that X is locally $\operatorname{CAT}(0)$ at any interior point x of e, since the metrics on $\operatorname{St}(e)$ and on X coincide on a sufficiently small neighbourhood of x. Let $Y \subset \operatorname{St}(e)$ be the union of the triangles T for which there exists a point on e with positive geodesic curvature in T. By condition (ii), there is at most one such triangle of given isometry type T_{0} and given embedding $e \subset T_{0}$, so Y has finitely many triangles. We denote this number by $m(e)$ for future reference. For each triangle T of $\operatorname{St}(e)$ outside Y, denote $Y_{T}=Y \cup T$. By conditions (i) and (ii), and by BB96, Thm 7.1], we have that each Y_{T} is locally $\operatorname{CAT}(0)$, hence $\operatorname{CAT}(0)$ by Theorem 2.1. (Note that a geodesic in Y_{T} might enter and exit a given triangle infinitely many times.) Furthermore, the inclusion $Y \subset Y_{T}$ is an isometric embedding, since points of e have nonpositive geodesic curvature in T. By BH99, II.11.3], the union $\operatorname{St}(e)$ of Y_{T} is $\operatorname{CAT}(0)$, as desired.

Consider now a vertex v of X. After possibly subdividing X, we can assume that in each triangle T containing v, the local geodesic γ_{T} starting at v and bisecting the angle of T at v ends at the opposite side of T. We will prove that the union $\operatorname{St}(v)$ of all the closed triangles and edges containing v is $\operatorname{CAT}(0)$. This will imply that X is locally $\operatorname{CAT}(0)$ at v, since the metrics on $\operatorname{St}(v)$ and on X coincide on a sufficiently small neighbourhood of v.
Claim. St (v) is geodesic, and there is $M>0$ such that each geodesic in $\operatorname{St}(v)$ intersects the interiors of at most M triangles.

To justify the Claim, we employ the idea of a taut string [BH99, I.7.20]. Let θ be the minimum of π and the minimum length of an edge in lk_{v}^{X}, and set $N=2+\frac{\pi}{\theta}$. Let $M=1+N\left(1+\max _{e} m(e)\right)$, where $m(e)$ is defined as above and the maximum is taken over all the edges e of $\operatorname{St}(v)$ containing v. For each such edge e, let $\operatorname{St}^{\prime}(e) \subset \operatorname{St}(e)$ be the closure of the component containing e of $\operatorname{St}(e) \backslash \bigcup_{T \subset \operatorname{St}(e)} \gamma_{T}$, for γ_{T} as above. Since $\operatorname{St}^{\prime}(e)$ is convex in $\operatorname{St}(e)$, it is $\mathrm{CAT}(0)$ BH99, II.1.15(1)].

For $x, y \in \operatorname{St}(v)$, a string between x and y is a sequence of edges e_{1}, \ldots, e_{n} of $\operatorname{St}(v)$ containing v and points $x_{0}=x, x_{1}, \ldots, x_{n}=y$ with $\operatorname{St}^{\prime}\left(e_{i}\right)$ containing both x_{i-1} and x_{i}. The length of the string is the sum $\sum_{i=1}^{n} d_{i}\left(x_{i-1}, x_{i}\right)$, where d_{i} is the metric on $\operatorname{St}^{\prime}\left(e_{i}\right)$. The distance between x and y in $\operatorname{St}(v)$ is the infimum of the lengths of strings between x and y. A string is taut, if $n \leq 2$ or

- for each $0 \leq i \leq n$, the point x_{i} is distinct from v, and
- for each $0<i<n$, the point x_{i} belongs to one of the γ_{T} defined above, and
- for each $0<i<n$, the concatenation of geodesics $x_{i-1} x_{i}$ in $\operatorname{St}^{\prime}\left(e_{i}\right)$ and $x_{i} x_{i+1}$ in $\mathrm{St}^{\prime}\left(e_{i+1}\right)$ is a geodesic in $\mathrm{St}^{\prime}\left(e_{i}\right) \cup \mathrm{St}^{\prime}\left(e_{i+1}\right)$.
We now justify that for each string $\left(e_{i}\right),\left(x_{i}\right)$ between x and y we can find a taut string between x and y whose length does not exceed the length of $\left(e_{i}\right),\left(x_{i}\right)$. Indeed, by discarding some x_{i}, we can first assume that consecutive e_{i} are distinct and so for each $0<i<n$ the point x_{i} belongs to one of the γ_{T}. Since γ_{T} are compact, there is a choice of x_{i}^{\prime} in the
same γ_{T} as x_{i}, minimising the length of the string $\left(e_{i}\right),\left(x_{i}^{\prime}\right)$. Then the concatenation of geodesics $x_{i-1}^{\prime} x_{i}^{\prime}$ in $\operatorname{St}^{\prime}\left(e_{i}\right)$ and $x_{i}^{\prime} x_{i+1}^{\prime}$ in $\operatorname{St}^{\prime}\left(e_{i+1}\right)$ is a geodesic in $\mathrm{St}^{\prime}\left(e_{i}\right) \cup \mathrm{St}^{\prime}\left(e_{i+1}\right)$. Finally, if an x_{i-1}^{\prime} equals v, and $x_{i}^{\prime} \neq x_{n}$, then for $x_{i}^{\prime} \in \gamma_{T}$, the subpath of γ_{T} from x_{i-1}^{\prime} to x_{i}^{\prime} is a geodesic in both $\operatorname{St}^{\prime}\left(e_{i}\right)$ and $\operatorname{St}^{\prime}\left(e_{i+1}\right)$, and consequently we can discard x_{i}^{\prime} and e_{i} from the string. Repeating the argument we arrive at $i-1=n-1$ or $i-1=n$. Analogously, we obtain $i-1=1$ or $i-1=0$, and so $n \leq 2$.

We will now show that a taut string satisfies $n \leq N$. We can assume $n>2$, and so none of x_{i} equals v. For $0<i<n$, let θ_{i} be the Alexandrov angle at x_{i} in $\operatorname{St}^{\prime}\left(e_{i+1}\right)$ between the geodesics $x_{i} x_{i+1}$ and $x_{i} v$. The concatenation of geodesics $x_{i-1} x_{i}$ in $\operatorname{St}^{\prime}\left(e_{i}\right)$ and $x_{i} x_{i+1}$ in $\operatorname{St}^{\prime}\left(e_{i+1}\right)$ is a geodesic in $\mathrm{St}^{\prime}\left(e_{i}\right) \cup \mathrm{St}^{\prime}\left(e_{i+1}\right)$, which is $\mathrm{CAT}(0)$ by [BH99, II.11.3]. Consequently, by the definition of θ we have $\theta_{i} \geq \theta_{i-1}+\theta$. Thus $\pi \geq \theta_{n-1} \geq(n-2) \theta+\theta_{1}$, and so $n-2 \leq \frac{\pi}{\theta}=N-2$.

Since there are finitely many isometry types of simplices in $\operatorname{St}(v)$, and each taut string satisfies $n \leq N$, the distance between x and y in $\operatorname{St}(v)$ is realised by the length of some taut string $\left(e_{i}\right),\left(x_{i}\right)$. Then the concatenation of all the geodesics $x_{i-1} x_{i}$ in $\operatorname{St}^{\prime}\left(e_{i}\right)$ is a geodesic between x and y, proving that $\operatorname{St}(v)$ is geodesic. Furthermore, for any geodesic γ from x to y in $\operatorname{St}(v)$, one can choose points on γ forming a taut string. Since any taut string satisfies $n \leq N$, and we have that γ intersects the interiors of at most $1+n\left(1+\max _{e} m(e)\right)$ triangles, the Claim follows.

Returning to the proof of Theorem E, we follow the scheme in BB96, Thm 7.1] to find a sequence of $\operatorname{CAT}(0)$ spaces Gromov-Hausdorff converging to $\operatorname{St}(v)$. Namely, realise each (isometry type of a) triangle T of $\operatorname{St}(v)$ as $T \subset \mathbb{R}^{2}$, with metric induced from some smooth Riemannian metric of nonpositive Gaussian curvature on \mathbb{R}^{2} defined in a neighbourhood U of T. Denote by e, f the edges of T containing v, and by g the remaining edge of T. Let l denote the length of e. For each $n>0$, we decompose e into paths $a^{1} \cdot a^{2} \cdots a^{n}$ of length $\frac{l}{n}$, and we define κ^{k} to be the integral of the geodesic curvature along a^{k}. Let e_{n} be the piecewise geodesic in U that starts at v tangent to e, has n locally geodesic pieces of length $\frac{l}{n}$, and exterior angle at the k-th breakpoint that equals κ^{k}. For n sufficiently large the path e_{n} exists, and they C^{1}-converge to e as n tends to ∞. We define paths f_{n} analogously. We define g_{n} to be any piecewise geodesics joining the endpoints of e_{n} and f_{n} and C^{1}-converging to g. This gives us a triangle $T_{n} \subset U$ bounded by e_{n}, f_{n} and g_{n}, whose boundary is piecewise geodesic (one can pass to a union of triangles with locally geodesic boundary by subdividing). Furthermore, we have a map $T_{n} \rightarrow T$ whose restriction to e_{n}, f_{n} preserves length and which is bilipschitz with the bilipschitz constant converging to 1 as n tends to ∞. Glueing various T_{n} along the sides corresponding to the ones of T that we glued to form $\operatorname{St}(v)$ yields a triangle complex that we call $\operatorname{St}(v)_{n}$. Then $\operatorname{St}(v)$ is a Gromov-Hausdorff limit of $\operatorname{St}(v)_{n}$. Note that since $\operatorname{St}(v)$ satisfied conditions (i)-(iii), we have that $\operatorname{St}(v)_{n}$ satisfies conditions (i)-(iii). Since
$\mathrm{St}(v)_{n}$ has locally geodesic edges, and is geodesic by the Claim (applied to $\operatorname{St}(v)_{n}$ instead of $\operatorname{St}(v)$), the same proof as for [BB96, Thm 7.1, case 1] shows that $\operatorname{St}(v)_{n}$ is locally $\operatorname{CAT}(0)$, hence $\operatorname{CAT}(0)$ by Theorem 2.1. Consequently, by [BH99, II.3.10] we have that $\operatorname{St}(v)$ is $\operatorname{CAT}(0)$.

We have the following immediate consequence of Theorem E,
Corollary 2.3. If X is a triangle complex that is locally CAT(0), then all of its subcomplexes are locally $\operatorname{CAT}(0)$.

Note that while we did not apply the Claim to $\operatorname{St}(v)$ in the proof of Theorem E, it will be used in the following remarks.

Remark 2.4. Suppose that X is a CAT(0) triangle complex with finitely many isometry types of simplices. Then the constant M in the Claim does not depend on v. As in the ' $\Psi_{n} \Rightarrow \Phi_{n}$ ' part of the proof of [BH99, I.7.28], we obtain that for each l there is $M^{\prime}>0$ such that each geodesic in X of length $\leq l$ intersects the interiors of at most M^{\prime} simplices. Using this in the place of [Bri99, Lem 1] in the proof of Bri99, Lem 2 and Thm A], we obtain that every simplicial isometry g of X is semisimple: it fixes a point, or is loxodromic, meaning that there is a geodesic line ω in X (called an axis) such that g preserves ω and acts on it as a nontrivial translation.

Remark 2.5. Suppose that X is a CAT(0) triangle complex with finitely many isometry types of simplices. Then the set of translation lengths of simplicial isometries of X is a discrete subset of $[0, \infty)$, which is proved using the Claim exactly as Bri99, Prop]. Similarly we obtain the following:

Let X be a CAT(0) triangle complex with a subcomplex Y on which some group of simplicial isometries of X acts coboundedly. Since any metric ball in X intersects finitely many isometry types of simplices, we have that each bounded neighbourhood of Y intersects finitely many isometry types of simplices. Then for each simplicial isometry g of X, the set $\inf _{y \in Y} d(y, g y)$ attains its infimum, which we denote $|g|_{Y}$. Moreover, the set of $|g|_{Y}$ over all simplicial isometries g of X is a discrete subset of $[0, \infty)$.

3. G-COCOMPACT SUBCOMPLEXES

Let X be a simplicial complex with an action of a group G. We say that a subcomplex $Z \subset X$ is an invariant cocompact subcomplex with respect to G (shortly G-c.s.) if Z is G-invariant, and the quotient Z / G is compact. Note that a G-c.s. is not required to be connected.

A 2-dimensional simplicial complex is essential if every edge has degree at least 2 , and none of connected components is a single vertex. An essential simplicial complex is thick if it has an edge of degree at least 3 .

A disc diagram D is a compact contractible simplicial complex with a fixed embedding in \mathbb{R}^{2}. Its boundary path is the attaching map of the cell at ∞. If X is a simplicial complex, a disc diagram in X is a nondegenerate simplicial map $\varphi: D \rightarrow X$, and its boundary path is the composition of the
boundary path of D and φ. We say that φ is reduced if it maps triangles sharing an edge to two distinct triangles. By [OP21, Rem 3.6], for each contractible closed edge-path α in a simplicial complex X, there is a reduced disc diagram in X with boundary path α.

A group G acts on a simplicial complex X without inversions if for any $g \in G$ stabilising a simplex σ of X we have that g fixes σ pointwise. More generally, we say that G acts without weak inversions if for each vertex v of X there is no $g \in G$ sending v to a distinct vertex in a common edge.

The first ingredient in our proof of Theorem A is the following earlier result.

Proposition 3.1 ($(\overline{\mathrm{OP} 21}$, Prop 3.7]). Let G be a finitely generated group acting almost freely and without inversions on a simply connected 2 -dimensional simplicial complex X that contains no simplicial 2 -spheres. If X contains no thick G-c.s., then G is virtually cyclic, or virtually \mathbb{Z}^{2}, or contains a nonabelian free group.

The second ingredient in the proof of Theorem A is the following, the proof of which will occupy the present article.

Proposition 3.2. Let G be a group acting almost freely and without weak inversions on a CAT(0) triangle complex X that is an increasing union of connected essential G-c.s. If X contains an edge of degree ≥ 3, then G contains a nonabelian free group.

We now show how Theorem follows from these two ingredients.
Proof of Theorem A. By passing to a subdivision (see [NOP22, Lem 2.1]), we can assume that G acts without weak inversions. By Proposition 3.1, we can assume that X contains a thick G-c.s. Z_{1}. We will prove that G contains a nonabelian free group. By passing to a connected component of Z_{1} and its stabiliser G^{\prime} in G (which is finitely generated, since it acts properly and cocompactly on a connected complex), we can assume that Z_{1} is connected. If Z_{1} contains a closed edge-path that is not contractible in Z_{1}, repeatedly attaching to Z_{1} the images of reduced disc diagrams and their G-translates, we obtain an increasing sequence $Z_{1} \subset Z_{2} \subset \cdots$ of connected essential G c.s. such that their union X^{\prime} is simply connected. By Corollary 2.3 we have that X^{\prime} is locally $\operatorname{CAT}(0)$, and so X^{\prime} is $\mathrm{CAT}(0)$ by Theorem 2.1. It remains to apply Proposition 3.2.

4. Not virtually cyclic or \mathbb{Z}^{2}

The first step of the proof of Proposition 3.2 is the following.
Lemma 4.1. Let G be a group acting almost freely on a CAT(0) triangle complex X. If X contains a subcomplex Z that is a connected thick G-c.s., then
(i) G is not virtually cyclic, and
(ii) G is not virtually \mathbb{Z}^{2}.

In the proof of Lemma 4.1 we will need the following vocabulary. Let X be a triangle complex. We say that a ray $\gamma:[0, \infty) \rightarrow X$ or a path $\gamma:[0,1] \rightarrow X$ starts (resp. ends) in a simplex σ, if for some $\varepsilon>0$ the points $\gamma(0, \varepsilon)$ (resp. $\gamma(1-\varepsilon, 1)$) all lie in the interior of σ. If $\gamma(0)$ (resp. $\gamma(1))$ lies in the interior of an edge e, then γ starts (resp. ends) perpendicularly to e if the angle at $\gamma(0)$ (resp. $\gamma(1))$ between γ and e is $\frac{\pi}{2}$.

We will also need the following, which generalises an argument in the proof of MP21, Thm A].
Lemma 4.2. Let A be a group isomorphic to \mathbb{Z}^{2} acting freely on a $\operatorname{CAT}(0)$ triangle complex W with finitely many isometry types of simplices. Then there is an isometrically embedded A-cocompact subcomplex in W isometric to the Euclidean plane.

Proof. Since W has finitely many isometry types of simplices, by Remark 2.4 all elements of A act as loxodromic isometries on W. By [BH99, II.7.20(1)], we have $\operatorname{Min}(A)=Y \times \mathbb{R}^{n}$ with A preserving the product structure and acting trivially on Y. By [BH99, II.7.20(2)], we have $n \leq 2$, but since A acts freely by simplicial isometries, we have $n=2$, and so Y is a point, as desired.

Proof of Lemma 4.1. Let e be an edge of Z of degree ≥ 3 and let x be a point in the interior of e. Let b_{1}, b_{2}, b_{3}, be geodesics starting at x perpendicularly to e contained in distinct triangles T_{1}, T_{2}, T_{3}. For each $i=1,2,3$, the set of starting directions at points in ∂T_{i} of geodesics intersecting b_{i} at angle $<\frac{\pi}{6}$ has positive Liouville measure (see [BB95, §3]). Let S denote the union of all the open edges in the links lk_{y}^{Z} for all $y \in Z^{1} \backslash Z^{0}$, with the (infinite) Liouville measure. We say that $\left(\xi_{j}\right)_{j} \in S^{\mathbb{Z}}$ with $\xi_{j} \in \mathrm{lk}_{y_{j}}^{Z}$ determines a locally geodesic oriented line γ in $Z \backslash Z^{0}$ transverse to Z^{1} if γ intersects Z^{1} exactly at points y_{j} in directions ξ_{j}, in that order. Since G acts on Z properly and cocompactly, the set of $\left(\xi_{j}\right)_{j} \in S^{\mathbb{Z}}$ that determine locally geodesic oriented lines projects to a full measure subset in each coordinate S (see [BB95, §3], which relies on [CFS82, Chap 6]). Consequently, for $i=1,2,3$, there exists a locally geodesic ray γ_{i} in Z starting at an interior point x_{i} of b_{i} at angle $<\frac{\pi}{6}$ from b_{i}, disjoint from Z^{0} and transverse to Z^{1}. Let $a_{i}=x x_{i} \subset b_{i}$. See Figure 1.

Since X is $\operatorname{CAT}(0)$, by Theorem 2.2 we have that γ_{i} are geodesic rays in X and $a_{i}^{-1} \cdot a_{j}$ are geodesics in X. Since each $\gamma_{i}^{-1} \cdot a_{i}^{-1} \cdot a_{j} \cdot \gamma_{j}$ is a piecewise geodesic with angles $>\frac{5 \pi}{6}$ at the two breakpoints, by BH99, II.9.3] the rays γ_{i}, γ_{j} are not asymptotic and they determine points at distance $>\frac{2 \pi}{3}$ in the Tits boundary of X. In particular, Z cannot be quasi-isometric to \mathbb{R}, since it contains three pairwise non-asymptotic geodesic rays. This proves (i).

For (ii), assume for contradiction that G is virtually \mathbb{Z}^{2} generated by elements g, h. Let α, β be edge-paths in Z connecting a basepoint $y \in Z^{0}$ to $g y, h y$, respectively. Then the concatenation $\alpha \cdot g \beta \cdot h \alpha^{-1} \cdot \beta^{-1}$ is a closed edge-path, and since X is simply connected, there is a reduced disc diagram

Figure 1. The geodesic ray γ_{1}
$D \rightarrow X$ with that boundary path. Let $Z^{\prime} \subset X$ be the connected thick G-c.s. obtained from Z by adding the translates under G of the image of D. The complex Z^{\prime} is locally $\operatorname{CAT}(0)$ by Corollary 2.3 . Let $\widetilde{Z}^{\prime} \rightarrow Z^{\prime}$ be the universal cover of Z^{\prime}, which is $\operatorname{CAT}(0)$ by Theorem 2.1. The action of G on Z^{\prime} lifts to an almost free action of a group \widetilde{G} on \widetilde{Z}^{\prime} fitting into the short exact sequence $\pi_{1} Z^{\prime} \rightarrow \widetilde{G} \rightarrow G$. Since $D \rightarrow Z^{\prime}$ lifts to $D \rightarrow \widetilde{Z}^{\prime}$, we have commuting $\tilde{g}, \tilde{h} \in \widetilde{G}$ mapping to $g, h \in G$, and hence generating a subgroup $A<\widetilde{G}$ isomorphic to \mathbb{Z}^{2}.

Since A acts almost freely and is torsion-free, we have that it acts freely on \widetilde{Z}^{\prime}. By Lemma 4.2 applied with $W=\widetilde{Z}^{\prime}$, there is an isometrically embedded A-cocompact subcomplex $E \subset \widetilde{Z}^{\prime}$ isometric to the Euclidean plane. We now justify that the composition $\phi: E \subset \widetilde{Z}^{\prime} \rightarrow Z^{\prime} \subset X$ is an isometric embedding.

Indeed, for two triangles T, T^{\prime} of E containing a common edge e^{\prime}, the sum of the geodesic curvatures in $\phi(T)$ and $\phi\left(T^{\prime}\right)$ at any point of $\phi\left(e^{\prime}\right)$ equals 0 , and so the geodesic curvature at $\phi\left(e^{\prime}\right)$ in any triangle of X distinct from $\phi(T), \phi\left(T^{\prime}\right)$ is nonpositive. Consequently, ϕ is a local isometric embedding at e^{\prime}. Furthermore, since E is isometric to the Euclidean plane, for any geodesic γ in E passing through a vertex v, the angle (see $\$ 2$) between the incoming and outgoing directions of γ at v equals π. Since the map that ϕ induces between lk_{v}^{E} and $\mathrm{lk}_{\phi(v)}^{X}$ is locally injective, the angle between the incoming and outgoing directions of $\phi(\gamma)$ at $\phi(v)$ equals π as well. By Theorem 2.2. we have that $\phi(\gamma)$ is a geodesic. Thus ϕ is an isometric embedding, as desired.

Since the image of A in G is of finite index, it acts cocompactly on Z^{\prime}. Consequently, the geodesic rays γ_{i} from the proof of part (i) are at bounded distance from $\phi(E)$ in Z^{\prime}. Since X is $\operatorname{CAT}(0)$, we obtain that each γ_{i} is asymptotic to a geodesic ray in $\phi(E)$ and these three rays are pairwise at angle $>\frac{2 \pi}{3}$ in $\phi(E)$, which is a contradiction.

5. Folding

This section is devoted to a technical reduction of Proposition 3.2 to the case where the vertex links of X are not 'unfoldable'.

By a graph we mean a (possibly infinite) metric graph with finitely many possible edge lengths. A closed edge-path embedded in a graph Λ is a cycle of Λ. An edge-path I in Λ that is embedded, except possibly at the endpoints, is a segment of Λ if the endpoints of I have degree ≥ 3 in Λ, but every internal vertex of I has degree 2 .

Definition 5.1. Let S be a set with an equivalence relation \sim each of whose equivalence classes has size ≥ 2. A graph is a \sim-clover if it is obtained from the disjoint union of intervals $S \times[0, \pi]$ by identifying all the points in $S \times 0$ to one point called the basepoint and identifying each $s \times \pi$ with $s^{\prime} \times \pi$ for $s \sim s^{\prime}$. A graph is a clover if it is a \sim-clover for some S, \sim. A graph Γ is unfoldable at a vertex y if Γ is a wedge $\Gamma_{1} \vee \Gamma_{2}$ at y of a cycle Γ_{1} of length 2π and a clover Γ_{2} with basepoint y. (In particular, Γ is also a clover.) See Figure 2.

Figure 2. An unfoldable graph
Suppose that we have a triangle complex X^{\prime} and a vertex w^{\prime} contained in distinct edges $e_{1}=w^{\prime} v_{1}, e_{2}=w^{\prime} v_{2}$ of the same length. Suppose that $\mathrm{lk}_{v_{1}}^{X^{\prime}}$ is a circle of length 2π and $\mathrm{lk}_{v_{2}}^{X^{\prime}}$ is a clover with basepoint corresponding to e_{2} Then the quotient map $p^{\prime}: X^{\prime} \rightarrow X$ with X obtained from X^{\prime} by identifying v_{1} with v_{2} and e_{1} with e_{2} is called a folding. (Note that X might not be a simplicial complex, but in this article we will be using only the inverse operation to folding which does result in a simplicial complex.)

Conversely, suppose that X is a triangle complex with a vertex v whose link $\Gamma_{1} \vee \Gamma_{2}$ is unfoldable at a point y corresponding to an edge $v w$. Then, up to an isometry, there exists a unique triangle complex X^{\prime} and a folding $p^{\prime}: X^{\prime} \rightarrow X$ identifying edges $w^{\prime} v_{1}, w^{\prime} v_{2}$ to $w v$ and such that the links of v_{i} in X^{\prime} map isometrically to the graphs Γ_{i} in the link of v. See Figure 3. We call p^{\prime} the folding over Γ_{1} (since it is uniquely determined by Γ_{1}).

Suppose now that $p^{\prime}: X^{\prime} \rightarrow X, \hat{p}^{\prime}: \hat{X}^{\prime} \rightarrow X$ are foldings over $\Gamma_{1} \neq \hat{\Gamma}_{1}$. Suppose that $v \neq \hat{w}$ and $\hat{v} \neq w$. We have that $\hat{\Gamma}_{1}$ lifts to a link $\mathrm{lk}_{v^{\prime}}^{X^{\prime}}$, which

Figure 3. A folding $p^{\prime}: X^{\prime} \rightarrow X$ over Γ_{1}. Subgraphs corresponding to the links Γ_{1} and Γ_{2} and their preimages are thickened, the edge $v w$ and its preimage are dashed.
is again unfoldable, except when $\operatorname{lk}_{v^{\prime}}^{X^{\prime}}=\hat{\Gamma}_{1}$. In that exceptional case, we have $\Gamma_{2}=\hat{\Gamma}_{1}$ and $p^{\prime}=\hat{p}^{\prime}$, and we set $p^{\prime \prime}=\mathrm{id}$. Otherwise, let $p^{\prime \prime}: X^{\prime \prime} \rightarrow X^{\prime}$ be the folding over $\hat{\Gamma}_{1}$. We call $p^{\prime \prime} \circ p^{\prime}$ the folding over $\Gamma_{1}, \hat{\Gamma}_{1}$. Note that the folding over $\Gamma_{1}, \hat{\Gamma}_{1}$ coincides with the folding over $\hat{\Gamma}_{1}, \Gamma_{1}$.

Analogously, given a finite family of foldings $p^{\prime \lambda}: X^{\prime \lambda} \rightarrow X$ over Γ_{1}^{λ} (where λ is an index) with all v^{λ} distinct from all w^{λ}, the folding over $\left\{\Gamma_{1}^{\lambda}\right\}$ is the composition of foldings over the lifts of Γ_{1}^{λ}, which does not depend on the order. For a countable family of such foldings $p^{\prime \lambda}: X^{\prime \lambda} \rightarrow X$, the folding over $\left\{\Gamma_{1}^{\lambda}\right\}$ is the inverse limit of the foldings over the finite subsets of $\left\{\Gamma_{1}^{\lambda}\right\}$.

Lemma 5.2. Let $p_{\mathcal{F}}: X_{\mathcal{F}} \rightarrow X$ be the folding over a (finite or countable) family $\mathcal{F}=\left\{\Gamma_{1}^{\lambda}\right\}$.
(i) The map $p_{\mathcal{F}}$ is a homotopy equivalence.
(ii) If X is locally $\operatorname{CAT}(0)$, then $X_{\mathcal{F}}$ is locally $\operatorname{CAT(0).~}$
(iii) If X is essential, then $X_{\mathcal{F}}$ is essential.

Proof. For part (i), note that if for some indices λ, μ, we have $v^{\lambda}=v^{\mu}$, then $w^{\lambda}=w^{\mu}$, since the point y^{λ} in $\mathrm{lk}_{v^{\lambda}}^{X}$ does not depend on Γ_{1}^{λ}. Consequently,
distinct edges $v^{\lambda} w^{\lambda}$ might intersect only along w^{λ}. Thus their union $V \subset X$ is a forest, and so the quotient map $q: X \rightarrow X^{*}$ collapsing each component of V into a point is a homotopy equivalence. Similarly, the subcomplex $V_{\mathcal{F}}=p_{\mathcal{F}}^{-1}(V) \subset X_{\mathcal{F}}$ is a forest, and so the quotient map $q_{\mathcal{F}}: X_{\mathcal{F}} \rightarrow X^{*}$ collapsing each component of $V_{\mathcal{F}}$ into a point is also a homotopy equivalence. Thus the identity $q_{\mathcal{F}}=q \circ p_{\mathcal{F}}$ implies part (i).

Part (ii) follows from the fact that the maps that $p_{\mathcal{F}}$ induces between the links of $X_{\mathcal{F}}$ and X are locally injective, and from Theorem E.

The map $p_{\mathcal{F}}$ is a local isometry at the open edges outside $V_{\mathcal{F}}$. Thus for part (iii) it suffices to justify that the links of the vertices in each $p_{\mathcal{F}}^{-1}\left(v^{\lambda}\right)$ have no leaves. But each such link is a cycle Γ_{1}^{μ} (for $v^{\mu}=v^{\lambda}$) or a clover, as desired.

Proposition 5.3. Let G be a group acting almost freely and without weak inversions on a $\mathrm{CAT}(0)$ triangle complex X that is an increasing union of connected essential G-c.s. Then G acts almost freely and without weak inversions on a CAT(0) triangle complex X^{\prime} that is an increasing union of connected essential G-c.s. and none of whose links are unfoldable.

Furthermore, if X contains an edge of degree ≥ 3, then X^{\prime} contains an edge of degree ≥ 3 or G contains a nonabelian free group.

Proof. We fix an increasing sequence $Z_{k} \subset X$ of connected essential G-c.s. exhausting X. A multifolding $\left(X^{\prime},\left(Z_{k}^{\prime}\right), p^{\prime}\right)$ is a:
(i) $\operatorname{CAT}(0)$ triangle complex X^{\prime} with an action of G,
(ii) a sequence $\left(Z_{k}^{\prime}\right)$ of essential G-c.s. exhausting X^{\prime}, and
(iii) a G-equivariant simplicial map $p^{\prime}: X^{\prime} \rightarrow X$ that

- maps bijectively the set of triangles of each Z_{k}^{\prime} to the set of triangles of Z_{k}, and
- whose restriction $Z_{k}^{\prime} \rightarrow Z_{k}$ is a homotopy equivalence.

We introduce a partial order \leq on the set of multifoldings, writing $\left(X^{\prime},\left(Z_{k}^{\prime}\right), p^{\prime}\right) \leq$ $\left(X^{\prime \prime},\left(Z_{k}^{\prime \prime}\right), p^{\prime \prime}\right)$ (or, shortly, $X^{\prime} \leq X^{\prime \prime}$) if there is a G-equivariant simplicial map $r: X^{\prime \prime} \rightarrow X^{\prime}$ satisfying $p^{\prime \prime}=p^{\prime} \circ r$. Multifoldings $X^{\prime}, X^{\prime \prime}$ are equivalent if $X^{\prime} \leq X^{\prime \prime}$ and $X^{\prime \prime} \leq X^{\prime}$. Let \mathcal{X} be the set of equivalence classes of multifoldings.

We claim that every chain of elements $X^{\prime \lambda}$ in \mathcal{X} (where λ is an index) has an upper bound. Indeed, denote by p_{k}^{\prime} the restriction of p^{\prime} to Z_{k}^{\prime} and write $\left(Z_{k}^{\prime}, p_{k}^{\prime}\right) \leq\left(Z_{k}^{\prime \prime}, p_{k}^{\prime \prime}\right)$ whenever there is a G-equivariant simplicial map $r: Z_{k}^{\prime \prime} \rightarrow Z_{k}^{\prime}$ satisfying $p_{k}^{\prime \prime}=p_{k}^{\prime} \circ r$. For each k, since G acts properly and cocompactly on $Z_{k}^{\prime \lambda}$, by the first bullet point we have that $\left(Z_{k}^{\prime \lambda}, p_{k}^{\prime \lambda}\right)$ can take on only finitely values up to the appropriate equivalence. Thus there exists a largest element among the $\left(Z_{k}^{\prime \lambda}, p_{k}^{\prime \lambda}\right)$, which we call $Z_{k}^{\prime \infty}$. Furthermore, since $\left(Z_{k+1}^{\prime}, p_{k+1}^{\prime}\right) \leq\left(Z_{k+1}^{\prime \prime}, p_{k+1}^{\prime \prime}\right)$ implies $\left(Z_{k}^{\prime}, p_{k}^{\prime}\right) \leq\left(Z_{k}^{\prime \prime}, p_{k}^{\prime \prime}\right)$, we have natural injective maps $Z_{k}^{\prime \infty} \rightarrow Z_{k+1}^{\prime \infty}$. Let $X^{\prime \infty}$ be their direct limit, equipped with the limit map $p^{\prime \infty}$ to X. Since each $Z_{k}^{\prime \infty}$ is locally $\operatorname{CAT}(0)$ (Corollary 2.3), we have that $X^{\prime \infty}$ is locally $\operatorname{CAT}(0)$ (Theorem E).

To prove that $X^{\prime \infty}$ is an upper bound for our chain in \mathcal{X}, by Theorem 2.1 it remains to prove that $X^{\prime \infty}$ is simply connected. Let α be a closed edgepath in the 1 -skeleton of $X^{\prime \infty}$, and fix k such that α lies in $Z_{k}^{\prime \infty}$. Fix λ with $Z_{k}^{\prime \lambda}=Z_{k}^{\prime \infty}$ and keep the notation α for its copy in $Z_{k}^{\prime \lambda}$. Since $X^{\prime \lambda}$ is simply connected, there is a disc diagram $D \rightarrow X^{\prime \lambda}$ with boundary path α. Fix l such that the image of D is contained in $Z_{l}^{\prime \lambda}$. Since, by the second bullet point, the induced map $\pi_{1} Z_{l}^{\prime \infty} \rightarrow \pi_{1} Z_{l}^{\prime \lambda}$ is an isomorphism, we have that α is trivial in $\pi_{1} Z_{l}^{\prime \infty}$ and hence in $\pi_{1} X^{\prime \infty}$. Consequently, by the KuratowskiZorn lemma, there is a maximal element $X^{\prime} \in \mathcal{X}$.

We now prove that none of the links of X^{\prime} are unfoldable. Otherwise, suppose that X^{\prime} has a vertex v whose link $\Gamma=\Gamma_{1} \vee \Gamma_{2}$ is unfoldable at a point corresponding to an edge $v w$ of X^{\prime}. Let $\mathcal{F}=\left\{g \Gamma_{1}\right\}$, for $g \in G$. Since G acts without weak inversions, we have $g v \neq h w$, for all $g, h \in G$. Thus we can define the folding over \mathcal{F}, which we denote by $X_{\mathcal{F}} \rightarrow X^{\prime}$. The action of G on X^{\prime} lifts to an action of G on $X_{\mathcal{F}}$. For each essential G-c.s. $Z^{\prime} \subset X^{\prime}$, let $Z_{\mathcal{F}} \subset X_{\mathcal{F}}$ be the closure of the union of all the open triangles of $X_{\mathcal{F}}$ mapping into Z^{\prime}. Note that if Z^{\prime} does not contain v, or if Z^{\prime} contains v, but $\mathrm{lk}_{v}^{Z^{\prime}}$ is contained in Γ_{1} or Γ_{2} (in the latter case $\mathrm{lk}_{v}^{Z^{\prime}} \subset \bigcap_{g \in \operatorname{Stab}(v)} g \Gamma_{2}$), then $Z_{\mathcal{F}} \rightarrow Z^{\prime}$ is an isometry. Otherwise $\mathrm{lk}_{v}^{Z^{\prime}}$ contains edges lying on both the cycle Γ_{1} and the clover Γ_{2}. Since Z^{\prime} is essential, the link $\mathrm{lk}_{v}^{Z^{\prime}}$ is the wedge of Γ_{1} and a clover, so it is unfoldable. Then $Z_{\mathcal{F}} \rightarrow Z^{\prime}$ is the folding over the family $\left\{g \Gamma_{1}\right\}$, for $g \in G$. By Lemma 5.2(i,iii) we have that $Z_{\mathcal{F}}$ is essential and $Z_{\mathcal{F}} \rightarrow Z^{\prime}$ is a homotopy equivalence. By Lemma 5.2 (i,ii) we have that $X_{\mathcal{F}}$ is simply connected and locally $\operatorname{CAT}(0)$, and hence $\mathrm{CAT}(0)$ by Theorem 2.1. Consequently, we have $X_{\mathcal{F}} \in \mathcal{X}$ and $X_{\mathcal{F}}>X^{\prime}$, contradicting the maximality of X^{\prime}. Thus none of the links of X^{\prime} are unfoldable.

For the last assertion, note that, by Lemma 4.1 applied to X, we have that G is neither virtually cyclic, nor virtually \mathbb{Z}^{2}. Moreover, G is finitely generated, since it acts properly and cocompactly on Z_{1}, which is connected. Consequently, if X^{\prime} does not have edges of degree 3 , then by Proposition 3.1 we have that G contains a nonabelian free group, as desired.

6. Criteria for rank 1 elements

In this section, we give criteria for finding 'rank 1' elements, and consequently free subgroups in G.

Definition 6.1. Let γ be a geodesic line in a CAT(0) triangle complex X. We say that γ is curved if γ passes through a vertex v and its incoming and outgoing directions at v are at angle $>\pi$.

Lemma 6.2. Let g be a loxodromic isometry of a CAT(0) triangle complex X with a curved axis γ. Then there exists M such that the projection to γ of each closed metric ball in X disjoint from γ has diameter $\leq M$.
Proof. Suppose that γ passes through a vertex v with incoming and outgoing directions at angle $>\pi+\kappa$, for some $\frac{\pi}{2}>\kappa>0$. Let R be the translation
length of g. We will prove that $M=R\left\lceil\frac{2 \pi}{\kappa}\right\rceil$ satisfies the lemma. Otherwise, let x, y be points in a closed metric ball disjoint from γ, such that the projections x^{\prime}, y^{\prime} of x, y to γ are at distance $>M$.

There are at least $n=\left\lceil\frac{2 \pi}{\kappa}\right\rceil$ translates of v under $\langle g\rangle$ on $x^{\prime} y^{\prime}$ distinct from x^{\prime}, y^{\prime}. We denote these translates by $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$, in order in which they appear on $x^{\prime} y^{\prime}$. By the continuity of the projection map, there are points v_{1}, \ldots, v_{n} lying on the geodesic $x y$ in that order such that each v_{i}^{\prime} is the projection of v_{i} to γ. We additionally denote $v_{0}=x, v_{0}^{\prime}=x^{\prime}, v_{n+1}=y, v_{n+1}^{\prime}=y^{\prime}$. For $0 \leq i \leq n$, let β_{i} denote the geodesic quadrilateral $v_{i} v_{i+1} v_{i+1}^{\prime} v_{i}^{\prime} v_{i}$. The sum of the four Alexandrov angles of each β_{i} is $\leq 2 \pi$ BH99, II.2.11], so the sum of all the Alexandrov angles of all β_{i} is $\leq(n+1) 2 \pi$.

On the other hand, for $0 \leq i<n$, the sum of the Alexandrov angles of β_{i} and β_{i+1} at v_{i+1} is $\geq \pi$. We will now prove that the sum of the Alexandrov angles of β_{i} and β_{i+1} at v_{i+1}^{\prime} is $>\pi+\kappa$. Indeed, if one of them is not equal to the angle in the usual sense (see $\S 2$), then it equals π. However, since v_{i+1}^{\prime} is the projection of v_{i+1}, the second Alexandrov angle is $\geq \frac{\pi}{2}$, so their sum is $\geq \frac{3 \pi}{2}$, as desired. Consequently, we have $n(\pi+\pi+\kappa)<(n+1) 2 \pi$, and so $n \kappa<2 \pi$, which is a contradiction.

Lemma 6.3. Let G be a group acting almost freely on a CAT(0) triangle complex X with a fixed point ξ in the visual boundary of X. Suppose that there is a curved axis γ for some $g \in G$ with one of the limit points ξ. Then G is virtually cyclic.

Proof. Consider the space of geodesic rays $\rho:[0, \infty) \rightarrow X$ representing ξ, with the pseudometric $d\left(\rho_{1}, \rho_{2}\right)=\inf _{t_{1}, t_{2}} d\left(\rho_{1}\left(t_{1}\right), \rho_{2}\left(t_{2}\right)\right)$. Identifying ρ_{1} with ρ_{2} for $d\left(\rho_{1}, \rho_{2}\right)=0$, we obtain a metric space whose metric completion X_{ξ} is $\operatorname{CAT}(0)$ Lee00, Prop 2.8]. Since X has geometric dimension ≤ 2 (see $\left[\right.$ Kle99]), by Cap09, Rem after Cor 4.4], we have that X_{ξ} has geometric dimension ≤ 1 (more precisely, as we learned from Pierre-Emmanuel Caprace, for any ρ representing ξ the space $X_{\xi} \times \mathbb{R}$ embeds isometrically in the pointed ultralimit of $(X, \rho(n))_{n}$, which has geometric dimension ≤ 2 by Lyt05, Lem 11.1]). Since G fixes ξ, the action of G on X induces an action of G on X_{ξ}.

We will now justify that a complete $\operatorname{CAT}(0)$ space X_{ξ} of geometric dimension ≤ 1 is an \mathbb{R}-tree, which we learned also from Pierre-Emmanuel Caprace. For a geodesic triangle $x y z$ in X_{ξ}, let x^{\prime} be the projection of x to the geodesic $y z$. If $x^{\prime} \neq x, y$, then the direction of the geodesic $x^{\prime} x$ in $\mathrm{lk}_{x^{\prime}}^{X_{\xi}}$ is distinct from that of the geodesic $x^{\prime} y$. Thus the geodesic $x y$ must pass through x^{\prime}, since otherwise mapping it to $\operatorname{lk}_{x^{\prime}}^{X_{\xi}}$ would give a path between distinct points of a discrete set. Analogously, the geodesic $x z$ passes through x^{\prime}, and so $x y z$ is 0 -thin, justifying that X_{ξ} is an \mathbb{R}-tree.

Suppose first that there is $h \in G$ acting loxodromically on X_{ξ}. Let M be the constant given by Lemma 6.2 for γ. Let ρ be a ray in γ representing ξ. Since h acts loxodromically on X_{ξ}, after possibly replacing h by
its power, we can assume $d(\rho, h \rho)>M$. Assume without loss of generality that the Busemann function (see [BH99, II.8.17 and II.8.20]) satisfies $B_{\xi}(\rho(0)) \leq B_{\xi}(h \rho(0))$. Then for each $t \geq 0$, the projection $p(t)$ of $\rho(t)$ to $h \gamma$ is contained in $h \rho$, and for $D=d(\rho(0), h \rho(0))$ we have $d(\rho(t), p(t)) \leq D$. Pick $k \in \mathbb{N}$ with $k M>2 D$. Then by the triangle inequality we have $d(p(0), p(2 k M)) \geq 2 k M-2 D>k M$. Consequently, there is $0 \leq n<k$ such that $d(p(2 n M), p(2(n+1) M))>M$. Thus the closed ball of radius M centred at $\rho((2 n+1) M)$ is disjoint from $h \gamma$ and contains points $\rho(2 n M), \rho(2(n+1) M)$ whose projections to $h \gamma$ are at distance $>M$. This contradicts the choice of M.

Consequently, G has a global fixed point in X_{ξ} (which might not be represented by a geodesic ray, but be a point added in the completion). Thus there is $D>0$ such that for any $\varepsilon>0$ there is a geodesic ray ρ^{\prime} representing ξ at distance $\leq D$ from ρ and satisfying $d\left(\rho^{\prime}, g \rho^{\prime}\right)<\varepsilon$ for each $g \in G$. Consider the homomorphism $\psi: G \rightarrow \mathbb{R}$ defined by $\psi(g)=B_{\xi}(g x)-B_{\xi}(x)$ for any $x \in X$. We will now justify that ψ has discrete image. Otherwise, for any $\varepsilon>0$ and ρ^{\prime} as above there is $t>0$ such that $d\left(\rho^{\prime}(t), g \rho^{\prime}(t)\right)<2 \varepsilon$, but g does not fix a point of X. This contradicts Remark 2.5 applied with Y containing the D-neighbourhood of γ.

Let K be the kernel of ψ. Arguing as in the previous paragraph, we obtain that every $g \in K$ fixes a point of X. By [NOP22, Thm 1.1(i)], every finitely generated subgroup of K fixes a point of X. Since K acts almost freely, we have that K is finite and so G is virtually cyclic.

Proposition 6.4. Let G be a group acting almost freely on a $\operatorname{CAT}(0)$ triangle complex X. Assume that G contains a loxodromic element g with a curved axis γ. Then G is virtually cyclic or contains a nonabelian free group.

Proof. By Lemma 6.2, g is rank 1 in the sense of BF09, Def 5.1]. By Lemma 6.3, we can assume that G does not have a finite index subgroup fixing a limit point of γ. Then there is $f \in G$ with γ and $f \gamma$ having disjoint limit point pairs. Consequently, by [BF09, Prop 5.9], for some n the elements g^{n} and $f g^{n} f^{-1}$ generate a nonabelian free group.

7. Extrationality

The main result of this section will be Proposition 7.4 , where we will show that in the absence of unfoldable vertices and curved axes, the complex X enjoys a particularly strong rationality property of angles, which we call extrationality.

Definition 7.1. The branching locus E of a triangle complex X is the subcomplex of X that is the union of all the closed edges of degree ≥ 3. A patch of X is a maximal connected subspace P of $X \backslash E$ such that $P \backslash X^{0}$ is connected; see Figure 4. If X is simply connected, then by Van Kampen's theorem P is a planar surface, and so we can choose an orientation on P.

We equip $P \backslash X^{0}$ with the length metric induced from $X \backslash X^{0}$ (see BH99, I.3.24]). Let \bar{P} denote the completion of $P \backslash X^{0}$, which admits an obvious embedding of P. Furthermore, \bar{P} admits an obvious triangle complex structure and a simplicial map $\bar{P} \rightarrow X$ fitting the following commutative diagram.

Note that \bar{P} is a connected surface with boundary, which we denote ∂P.

Figure 4. A patch (in dark grey)
Definition 7.2. A triangle complex X is piecewise Euclidean if all its triangles are geodesic Euclidean triangles. A piecewise Euclidean triangle complex X is rational if for any vertex v of X all cycles and segments (see $\$ 5$) in the link of v have lengths commensurable with π. In particular, the angle at v between any edges of the branching locus E is then commensurable with π. A rational triangle complex X is extrational, if

- for any vertex v of X with a component C of lk_{v}^{X} a circle, we have that the length of C is 2π, and
- each homomorphism ψ defined below is trivial.

We define $\psi=\psi(P)$ for each patch P of X. Consider the chain complex $C_{*}(\bar{P}, \partial P)$ consisting of those singular chains that are affine w.r.t. the affine structure on \bar{P} induced by the piecewise Euclidean metric. Note that the affine structure on \bar{P} has singularities at the points x of ∂P with $\mathrm{lk}_{x}^{\bar{P}}$ of length $\neq \pi$, and so we require our affine chains to be disjoint from such x except possibly at the vertices. For each $x \in \bar{P}$ choose (not necessarily continuously) a direction $\xi_{x} \in \mathrm{lk}_{x}^{\bar{P}}$ at x, with the only restriction that for $x \in \partial P$, the direction ξ_{x} corresponds to one of the edges in ∂P containing x.

For an affine singular 1-simplex $\sigma \rightarrow \bar{P}$ with endpoints x and y, let $\psi(\sigma) \in$ $\mathbb{R} / \pi \mathbb{Q}$ be the oriented angle between ξ_{x} and σ at x minus the oriented angle between ξ_{y} and σ at y. Note that since X was rational, this equals 0 $\bmod \pi \mathbb{Q}$ for σ in ∂P, and so we obtain a homomorphism $\psi: C_{1}(\bar{P}, \partial P) \rightarrow$ $\mathbb{R} / \pi \mathbb{Q}$. Note that the restriction of ψ to $Z_{1}(\bar{P}, \partial P)$ does not depend on the choice of the ξ_{x}. Furthermore, for each affine singular 2-simplex τ we have $\psi(\partial \tau)= \pm \pi=0 \bmod \pi \mathbb{Q}$, and so ψ descends to a homomorphism $\psi: H_{1}(\bar{P}, \partial P) \rightarrow \mathbb{R} / \pi \mathbb{Q}$. It is not hard to check that our $H_{1}(\bar{P}, \partial P)$ coincides with the usual first (singular) homology group.

We will need the following variant of [BB95, Lem 7.4] that was implicit in the proof of [NOP22, Prop 3.4].

Lemma 7.3. Let G be a group acting almost freely on a CAT(0) triangle complex X that is an increasing union of essential G-c.s. Furthermore, assume that there is a vertex v of X with points $\xi_{i}, \eta_{i} \in \operatorname{lk}_{v}^{X}$, for $i=1, \ldots, n$, such that

- $d_{v}^{X}\left(\xi_{i}, \eta_{i}\right)=\pi$ for $i=1, \ldots, n$, and
- $d_{v}^{X}\left(\eta_{i}, \xi_{i+1}\right) \geq \pi$ for $i=1, \ldots, n-1$, and
- $d_{v}^{X}\left(\eta_{n}, \xi_{1}\right)>\pi$.

Then G contains a loxodromic element g with a curved axis.
Proof. Let $Z \subset X$ be an essential G-c.s. containing v, such that lk_{v}^{Z} contains ξ_{i}, η_{i}, with $d_{v}^{Z}\left(\xi_{i}, \eta_{i}\right)=\pi$, for $i=1, \ldots, n$. By [NOP22, Lem 5.4] (which was stated in terms of the compact quotient but has the same proof for proper and cocompact actions), for any $\varepsilon>0$ there is a path $\omega=\omega_{1} \cdots \omega_{3 n}$ in Z such that

- paths ω_{j} are local geodesics in Z, and
- there are $g_{0}=\mathrm{id}, g_{1}, \ldots, g_{n}=g \in G$ such that paths $\omega_{3 i+1}$ start at $g_{i} v$, paths $\omega_{3 i}$ end at $g_{i} v$, and except for that ω is disjoint from the vertex set Z^{0} and transverse to Z^{1}, and
- the starting direction of $\omega_{3 i+1}$ is at distance $<\frac{\varepsilon}{2}$ to $g_{i} \xi_{i+1}$ in $\mathrm{lk}_{g_{i} v}^{Z}$, and the ending direction of $\omega_{3 i}$ is at distance $<\frac{\varepsilon}{2}$ to $g_{i} \eta_{i}$, and
- at the remaining breakpoints, ω_{j} and ω_{j+1} are at angle $>\pi-\varepsilon$ (and $\leq \pi$ since outside Z^{0}).
Since ω_{j} are disjoint from Z^{0} and transverse to Z^{1}, by Theorem 2.2 they are geodesics in X. The last two bullet points hold in X as well. In particular, at all the breakpoints ω_{j} and ω_{j+1} are at angle $>\pi-\varepsilon$. By BB95, Lem 2.5], the geodesic γ in X with the same endpoints as ω starts and ends in directions at distance $<(3 n-1) \varepsilon$ to $\xi_{1}, g \eta_{n}$. Consequently, for ε sufficiently small, by Theorem 2.2 we have that $\bigcup_{l \in \mathbb{Z}} g^{l} \gamma$ is a curved axis for g.

Proposition 7.4. Let G be a group acting almost freely on a $\operatorname{CAT}(0)$ triangle complex X that is an increasing union of essential G-c.s. and none of
whose links are unfoldable. If X is not G-equivariantly isometric (by a possibly non-simplicial isometry) to a piecewise Euclidean triangle complex X^{\prime} or X is isometric to such X^{\prime} but X^{\prime} is not extrational, then G is virtually cyclic or contains a nonabelian free group.

Proof. To prove that G is virtually cyclic or contains a nonabelian free group in each case we will show the existence of a curved axis in X (or in a different $\operatorname{CAT}(0)$ triangle complex \bar{X}) for an element of G, since then the proposition follows from Proposition 6.4.

Assume first that X is not G-equivariantly isometric to a piecewise Euclidean triangle complex X^{\prime}. Then by BB95, Prop 2.11] there is
(i) a point in the interior of a triangle of X with negative Gaussian curvature, or
(ii) a point in the interior of an edge of X with negative sum of geodesic curvatures of some two incident triangles, or
(iii) a vertex v of X with lk_{v}^{X} a circle of length $>2 \pi$.

In case (iii), or, more generally, if lk_{v}^{X} has a component C that is a circle of length $>2 \pi$, let ξ_{1}, η_{1} be points at distance π in C, and let η_{2}, ξ_{2} be their antipodal points. Applying Lemma 7.3 with $n=2$, we obtain a curved axis. In cases (i) and (ii), by NOP22, Lem 5.5], there is a $\operatorname{CAT}(0)$ triangle complex \bar{X}, obtained from X by a G-equivariant subdivision and a G-equivariant replacement of the smooth Riemannian metrics, with a vertex $u \in \bar{X}$ whose $\mathrm{lk}_{u}^{\bar{X}}$ is either

- a circle of length $>2 \pi$, or
- a graph obtained from a family of disjoint circles C_{1}, C_{2}, \ldots of length 2π by glueing them along a nontrivial arc b of length $<\pi$.
The first bullet point brings us to case (iii). In the case of the second bullet point, let $\xi_{1}, \xi_{2} \in C_{1} \backslash b$ and $\eta_{1}, \eta_{2} \in C_{2} \backslash b$ be points at distance $\frac{\pi}{2}$ from the endpoints of b, with $d_{u}^{\bar{X}}\left(\xi_{1}, \eta_{1}\right)=d_{u}^{\bar{X}}\left(\xi_{2}, \eta_{2}\right)=\pi$. Applying Lemma 7.3 with $n=2$, we obtain a curved axis in \bar{X}, as desired.

Thus without loss of generality we can assume that X is a piecewise Euclidean triangle complex. If X is not rational, then by [BB95, Prop 7.7], applied to an essential G-c.s., there is a closed locally injective edge-path β in some lk_{v}^{X} whose length is not commensurable with π. In particular, by BB95, Lem 6.1(iii)], there are points ξ, η in lk_{v}^{X} at distance $>\pi+\delta$, for some $\delta>0$. (One could apply NOP22, Cor 1.7] to find such ξ, η in β, but it does not simplify the argument.) Let $\beta_{-}\left(\right.$resp. $\left.\beta_{+}\right)$be the shortest path from ξ (resp. η) to β. Since the length of β is not commensurable with π, there is a path $\beta_{-} \beta_{0} \beta_{+}$with β_{0} factoring through the universal cover of β whose length equals $(2 n-1) \pi+\delta^{\prime}$ for some $n \in \mathbb{N}$ and $0 \leq \delta^{\prime} \leq \delta$. Choosing $\xi_{1}=\xi, \eta_{1}, \xi_{2}, \ldots, \eta_{n}$ as consecutive points at distance π along that path, we have $d_{v}^{X}\left(\xi_{1}, \eta_{n}\right)>\pi$. Applying Lemma 7.3, we obtain a curved axis.

Finally, if X is not extrational, let P be a patch of X with nontrivial $\psi=\psi(P)$. Since P is planar, there is an element in $H_{1}(\bar{P}, \partial P)$ represented
by a piecewise affine path α in \bar{P} with endpoints in ∂P and $\psi(\alpha) \neq 0$. Let α be shortest among such paths, which exists since $\operatorname{Stab}(P)$ acts cocompactly on \bar{P}. Note that then α does not intersect ∂P except at its endpoints, since otherwise we could decompose it into two shorter paths, with ψ nontrivial on at least one of them. Thus the image of α in X (for which we keep the same notation) is a local geodesic in X that intersects the branching locus E exactly at its endpoints x, x^{\prime}. Let e (resp. e^{\prime}) be the segment of $1 \mathrm{l}_{x}^{X}$ (resp. $\mathrm{lk}_{x^{\prime}}^{X}$) containing the point corresponding to the direction of α. By the shortness condition, we have that e (resp. e^{\prime}) has endpoints at distance $\geq \frac{\pi}{2}$ from x (resp. x^{\prime}), and so is of length $\geq \pi$. They cannot both have length π, since then we would have $\psi(\alpha)=0$, so assume without loss of generality that the length l of e is $>\pi$.

If $l>2 \pi$, then it is easy to find points $\eta_{1}, \xi_{1}, \xi_{2}, \eta_{2}$ lying on l in that order and satisfying the hypothesis of Lemma 7.3 with $n=2$. If $2 \pi>l>\pi$ or $l=2 \pi$ and the endpoints of e are distinct, then the construction of such points is given in the proof of BB95, Lem 7.6]. It remains to consider the case where $l=2 \pi$ and where both endpoints of e are equal to a vertex y. Let Γ_{2} be the graph obtained from lk_{x}^{X} by removing e. If Γ_{2} contains a point z at distance $>\pi$ from y, then it is easy to find points $\xi_{1}, \eta_{1}, \xi_{2}, \eta_{2}$ on a geodesic from z to the midpoint of e satisfying the hypothesis of Lemma 7.3 with $n=2$. Otherwise, Γ_{2} is a clover, contradicting the assumption that lk_{x}^{X} is not unfoldable.

8. Sheared geodesics

In this section we prove that the following piecewise geodesics have distinct endpoints. We will use some vocabulary from $\$ 4$.

Definition 8.1. A sheared geodesic in a piecewise Euclidean triangle complex X is a concatenation $\gamma_{1} \cdot \gamma_{2} \cdots \gamma_{2 k-1} \cdot \gamma_{2 k}$ of geodesics such that (see Figure 5):

- for $i=1, \ldots, k$, the (possibly trivial) geodesic $\gamma_{2 i}$ lies in the interior of an edge e_{i} of X, and
- for $i=1, \ldots, k-1$, the geodesic $\gamma_{2 i-1}$ ends and the geodesic $\gamma_{2 i+1}$ starts perpendicularly to e_{i} in triangles of X that are distinct, and the geodesic $\gamma_{2 k-1}$ ends perpendicularly to e_{k} in a triangle.

Proposition 8.2. Let X be a piecewise Euclidean triangle complex that is CAT(0). Let γ in X be a sheared geodesic. Then γ is not a closed path.

The proof will use the following two building blocks.
Lemma 8.3. Let X be a piecewise Euclidean triangle complex that is CAT(0). Let $x y$ be a nontrivial geodesic in X such that y belongs to the interior of an edge e of X and $x y$ ends in a triangle T. Then for any z in the interior of e, the geodesic $x z$ is nontrivial and ends in T.

Figure 5. A sheared geodesic
Proof. We have $z \neq x$ since edges are geodesics and so in particular x does not lie in e. If for some z in the interior of e the geodesic $x z$ does not end in T, then, since the geodesic $x z$ varies continuously with z, for some z in the interior of e the geodesic $x z$ ends in e. Denote by e_{1}, e_{2} the two subedges into which such z divides e. Suppose that $x z$ ends in e_{1}. Then the entire e_{1} must lie in $x z$. Moreover, appending $x z$ by e_{2} we also obtain a geodesic (Theorem 2.2). Since y lies in $e=e_{1} \cdot e_{2}$, this shows that $x y$ ends in e, which is a contradiction.

Lemma 8.4. Let X be a piecewise Euclidean triangle complex that is $\operatorname{CAT}(0)$. Let $x z$ be a nontrivial geodesic in X such that z belongs to the interior of an edge e of X and $x z$ ends in a triangle T. Suppose that y belongs to the interior of an edge e^{\prime} of X and $z y$ is a nontrivial geodesic in X that starts perpendicularly to e in a triangle distinct from T and ends perpendicularly to e^{\prime} in a triangle T^{\prime}. Then the geodesic $x y$ is nontrivial and ends in T^{\prime}.

Proof. Consider the geodesic triangle xyz. By our assumptions, its Alexandrov angle at z is $>\frac{\pi}{2}$, and so in particular $x \neq y$, and its Alexandrov angle at y is $<\frac{\pi}{2}$. Since $z y$ ends in a triangle T^{\prime} perpendicularly to e^{\prime}, we have that $x y$ ends in T^{\prime}, as desired.

Proof of Proposition 8.2. Let $\gamma=\gamma_{1} \cdot \gamma_{2} \cdots \gamma_{2 k-1} \cdot \gamma_{2 k}$ as in Definition 8.1. For $i=1, \ldots, k$, denote $\gamma_{2 i}=y_{i} z_{i}$ and denote by T_{i} the triangle in which $\gamma_{2 i-1}$ ends. Let x be the starting point of γ_{1}. We prove by induction on $i=1, \ldots, k$, that x and z_{i} are distinct and that the geodesic $x z_{i}$ ends in T_{i}. The proposition follows from this induction hypothesis applied with $i=k$.

For $i=1$ the induction hypothesis follows from Lemma 8.3. Suppose now that we have established it for some $i=m<k$. Then by Lemma 8.4 the geodesic $x y_{m+1}$ is nontrivial and ends in T_{m+1}. Thus by Lemma 8.3, the induction hypothesis holds for $i=m+1$.

9. Free

Proof of Proposition 3.2. By Proposition 5.3, we can assume that none of the vertex links of X are unfoldable. Thus by Proposition 7.4 and Lemma 4.1(i) we can assume that X is piecewise Euclidean and extrational. Let $Z \subset X$
be a thick G-c.s. Note that each patch of X either has no triangle in Z or is contained in Z, in which case we call it a Z-patch.

Since X is rational, and Z is a G-c.s., there is $q \in \mathbb{N}$ such that for each Z patch P and each vertex $v \in \partial P$, the length of $\operatorname{lk}_{v}^{P}$ is a multiplicity of $\frac{\pi}{q}$. For each Z-patch P, we define the homomorphism $\psi^{\prime}=\psi^{\prime}(P): H_{1}(\bar{P}, \partial P) \rightarrow$ $\mathbb{R} / \frac{\pi}{q} \mathbb{Z}$ in the same way as ψ, but replacing $\pi \mathbb{Q}$ by $\frac{\pi}{q} \mathbb{Z}$. We have $\psi=\psi^{\prime}$ $\bmod \pi \mathbb{Q}$. Since ψ is trivial, the image of ψ^{\prime} is contained in $\pi \mathbb{Q} / \frac{\pi}{q} \mathbb{Z}$. Since there are finitely many G-orbits of Z-patches, and since each $H_{1}(\bar{P}, \partial P)$ is finitely generated as a $\operatorname{Stab}(P)$-module, there is $q^{\prime} \in \mathbb{N}$ such that the image of each ψ^{\prime} is contained in $\frac{\pi}{q^{\prime}} \mathbb{Z} / \frac{\pi}{q} \mathbb{Z}$. Consequently, for any Z-patch P, any geodesic $x y$ in \bar{P} disjoint from ∂P, except at its endpoints, that is at angle $\in \frac{\pi}{q^{\prime}} \mathbb{Z}$ from ∂P at x, is also at angle $\in \frac{\pi}{q^{\prime}} \mathbb{Z}$ from ∂P at y. Without loss of generality assume that q^{\prime} is even.

We need the following variant of the Liouville measure μ from [BB95, §3]. Let S be the set of all the directions ξ at an angle $\theta(\xi) \in \frac{\pi}{q^{\prime}} \mathbb{Z} \cap\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ from a direction normal to E in the links lk_{x}^{Z} for all the points $x \in Z$ that lie in the interior of an edge e of E. The Liouville measure $d \mu(\xi)$ on S is given as $\cos \theta(\xi) d x$, where $d x$ is the volume element on e. Let $V \subset S$ be the full measure subset of S of directions ξ such that each geodesic ray γ in Z with starting direction ξ is disjoint from Z^{0}. Let $F: V \rightarrow \mathcal{P}(V)$ be the map defined by $\eta \in F(\xi)$ for $\eta \in \mathrm{lk}_{x}^{Z}$ if there exists a geodesic $y z$ in Z with starting direction ξ, intersecting E only in y and x, and with η being the direction at x of $x z$. Since G acts on Z properly and cocompactly, we have that each $F(\xi)$ is finite. We can thus define a Markov chain with states V and transition probabilities $\frac{1}{|F(\xi)|}$ from ξ to each $\eta \in F(\xi)$. By (the calculation in) BB95, Prop 3.3], the measure μ is stationary for this Markov chain. Thus the space $V^{\mathbb{Z}}$ can be equipped with Markov measure μ^{*} invariant under the shift (see e.g. (Wal82, Ex (8), page 21]). Since Z is a G-c.s., the quotient $V^{\mathbb{Z}} / G$ by the diagonal action of G is of finite measure. Note that the shift map descends to $V^{\mathbb{Z}} / G$ and is still measure preserving.

Let e be an edge of Z lying in three distinct triangles T_{a}, T_{b}, T_{c} of Z. Let $V^{a b} \subset V^{\mathbb{Z}}$ be the set of $\left(\xi_{i}\right)_{i}$ such that

- we have $\xi_{1} \in \mathrm{lk}_{x}^{T_{a}}$ for $x \in e$, and ξ_{1} is at angle $\frac{\pi}{2}$ from e, and
- the geodesic $y x$ from the definition of $\xi_{1} \in F\left(\xi_{0}\right)$ ends in T_{b}.

Note that $V^{a b}$ has positive Markov measure. Thus by the Poincaré recurrence (see e.g. Wal82, Thm 1.4]), there is $\left(\xi_{i}\right)_{i} \in V^{a b}$ and $j>0$ with $\left(\xi_{i-j}\right)_{i} \in G V^{a b}$. Consequently, there is a geodesic $\gamma^{a b}$ in $Z \backslash Z^{0}$ starting perpendicularly to e in T_{a} and ending perpendicularly to a translate $f e$ in $f T_{b}$, for some $f \in G$.

Denote by $a, f b$ the endpoints of $\gamma^{a b}$. Let $I^{a b}$ be the domain of the isometric embedding $\gamma^{a b}: I^{a b} \rightarrow Z \backslash Z^{0}$. Analogously, there is a geodesic $\gamma^{c a}: I^{c a} \rightarrow Z \backslash Z^{0}$ starting perpendicularly to e in T_{c} and ending perpendicularly to a translate $g e$ in $g T_{a}$, with endpoints c, a^{\prime}, for some $g \in G$. Finally,
there is a geodesic $\gamma^{b c}: I^{b c} \rightarrow Z \backslash Z^{0}$ starting perpendicularly to $g e$ in T_{b} and ending perpendicularly to a translate $f^{\prime} g e$ in $f^{\prime} g T_{c}$, with endpoints $b^{\prime}, f^{\prime} c^{\prime}$, for some $f^{\prime} \in G$. Let $\gamma: I \rightarrow e$ be the shortest geodesic in e containing all a, b, c in its image (possibly I is a single point), and let $\gamma^{\prime}: I^{\prime} \rightarrow g e$ be the shortest geodesic in $g e$ containing all $a^{\prime}, b^{\prime}, c^{\prime}$ in its image.

Let Γ be the metric graph obtained in the following way. We start from the disjoint union of the five intervals $I^{a b}, I^{c a}, I^{b c}, I, I^{\prime}$, and we identify (see Figure 6):

- points of I and $I^{a b}$ mapping to a under γ and $\gamma^{a b}$,
- points of I and $I^{c a}$ mapping to c under γ and $\gamma^{c a}$,
- points of I^{\prime} and $I^{c a}$ mapping to a^{\prime} under γ^{\prime} and $\gamma^{c a}$, and
- points of I^{\prime} and $I^{b c}$ mapping to b^{\prime} under γ^{\prime} and $\gamma^{b c}$.

Note that Γ admits the map $\varphi: \Gamma \rightarrow Z$ that is the quotient of $\gamma^{a b} \sqcup \gamma^{c a} \sqcup$ $\gamma^{b c} \sqcup \gamma \sqcup \gamma^{\prime}$. Let $s, t, s^{\prime}, t^{\prime}$, be the points in $I, I^{a b}, I^{\prime}, I^{b c}$ mapping under φ to $b, f b, c^{\prime}, f^{\prime} c^{\prime}$, respectively.

Figure 6. The graph Γ
Let F_{2} be the free group on two generators h, h^{\prime} and let $\widehat{\Gamma}$ be the quotient of the graph $F_{2} \times \Gamma$ (which is the disjoint union of F_{2} copies of Γ) by the relations $w \times t \sim w h \times s, w \times t^{\prime} \sim w h^{\prime} \times s^{\prime}$, for all $w \in F_{2}$. Note that $\widehat{\Gamma}$ is a tree with a free action of F_{2}. Let $\varphi_{*}: F_{2} \rightarrow G$ be the homomorphism mapping h, h^{\prime} to f, f^{\prime}, respectively. Then φ extends to a φ_{*}-equivariant map $\widehat{\varphi}: \widehat{\Gamma} \rightarrow Z$ mapping each $w \times r \in F_{2} \times \Gamma$ to $\varphi_{*}(w) \varphi(r) \in Z$.

Let w be a nontrivial element of F_{2} and let \mathbb{R}_{w} be the axis for w in $\widehat{\Gamma}$. Pick $p \in \mathbb{R}_{w}$ an endpoint of a translate of one of $I^{a b}, I^{c a}, I^{b c}$ contained in \mathbb{R}_{w}. Let $I_{w} \subset \mathbb{R}_{w}$ be the interval between p and $w p$, and let $\gamma_{w}: I_{w} \rightarrow Z$ be the restriction of $\hat{\varphi}$ to I_{w}. Since T_{a}, T_{b}, T_{c}, were distinct, we have that γ_{w} is a sheared geodesic. By Proposition 8.2, we have $\widehat{\varphi}(p) \neq \widehat{\varphi}(w p)=\varphi_{*}(w) \widehat{\varphi}(p)$,
and consequently $\varphi_{*}(w)$ is nontrivial. Thus φ_{*} is injective, and so G contains a nonabelian free group.

References

[BB95] Werner Ballmann and Michael Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 169-209 (1996).
[Bau81] Andreas Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar. 38 (1981), no. 1-4, 19-28.
[BB96] Werner Ballmann and Sergei Buyalo, Nonpositively curved metrics on 2polyhedra, Math. Z. 222 (1996), no. 1, 97-134.
[Bes00] Mladen Bestvina, Questions in Geometric Group Theory (2000), available at https://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf
[BF09] Mladen Bestvina and Koji Fujiwara, A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal. 19 (2009), no. 1, 11-40.
[Bri99] Martin R. Bridson, On the semisimplicity of polyhedral isometries, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2143-2146.
[Bri06] , Non-positive curvature and complexity for finitely presented groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 961-987.
[Bri07] , Problems concerning hyperbolic and CAT(0) groups (2007), available at https://docs.google.com/file/d/OB-tup63120-GVVZqNF1TcEJmMmc/edit.
[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.
[Can11] Serge Cantat, Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2) 174 (2011), no. 1, 299-340 (French, with English and French summaries).
[Cap09] Pierre-Emmanuel Caprace, Amenable groups and Hadamard spaces with a totally disconnected isometry group, Comment. Math. Helv. 84 (2009), no. 2, 437-455.
[Cap14]_, Lectures on proper CAT(0) spaces and their isometry groups, Geometric group theory, IAS/Park City Math. Ser., vol. 21, Amer. Math. Soc., Providence, RI, 2014, pp. 91-125.
[CS11] Pierre-Emmanuel Caprace and Michah Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal. 21 (2011), no. 4, 851-891.
[CD95] Ruth Charney and Michael W. Davis, The $K(\pi, 1)$-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995), no. 3, 597-627.
[CFS82] Isaac P. Cornfeld, Sergĕ̆ V. Fomin, and Yakov G. Sină̆, Ergodic theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ.
[FHT11] Benson Farb, Chris Hruska, and Anne Thomas, Problems on automorphism groups of nonpositively curved polyhedral complexes and their lattices, Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 515-560.
[GdlH90] Étienne Ghys and Pierre de la Harpe (eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988.
[Kle99] Bruce Kleiner, The local structure of length spaces with curvature bounded above, Math. Z. 231 (1999), no. 3, 409-456.
[Lam01] Stéphane Lamy, L'alternative de Tits pour Aut[$\left.\mathbb{C}^{2}\right]$, J. Algebra 239 (2001), no. 2, 413-437 (French, with French summary).
[Lam22] \qquad , The Cremona group, 2022. Book in preparation, preliminary version available at https://www.math.univ-toulouse.fr/~slamy/blog/cremona. html
[LP21] Stéphane Lamy and Piotr Przytycki, Presqu'un immeuble pour le groupe des automorphismes modérés, Ann. H. Lebesgue 4 (2021), 605-651.
[LP22] , Tits Alternative for the 3-dimensional tame automorphism group (2022), submitted, available at arXiv:2206.05611.
[Lee00] Bernhard Leeb, A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 326, Universität Bonn, Mathematisches Institut, Bonn, 2000.
[Lyt05] Alexander Lytchak, Rigidity of spherical buildings and joins, Geom. Funct. Anal. 15 (2005), no. 3, 720-752.
[Mar22] Alexandre Martin, Tits alternative for two-dimensional Artin groups and Wise's power alternative (2022), in preparation.
[MP20] Alexandre Martin and Piotr Przytycki, Tits alternative for Artin groups of type $F C$, J. Group Theory 23 (2020), no. 4, 563-573.
[MP21] , Abelian subgroups of two-dimensional Artin groups, Bull. Lond. Math. Soc. 53 (2021), no. 5, 1338-1350.
[MP22] , Acylindrical actions for two-dimensional Artin groups of hyperbolic type, Int. Math. Res. Not. 2022 (2022), no. 17, 13099-13127.
[NOP22] Sergey Norin, Damian Osajda, and Piotr Przytycki, Torsion groups do not act on 2-dimensional CAT(0) complexes, Duke Math. J. 171 (2022), no. 6, 13791415.
[NV02] Guennadi A. Noskov and Èrnest B. Vinberg, Strong Tits alternative for subgroups of Coxeter groups, J. Lie Theory 12 (2002), no. 1, 259-264.
[OP21] Damian Osajda and Piotr Przytycki, Tits alternative for groups acting properly on 2-dimensional recurrent complexes, Adv. Math. 391 (2021), Paper No. 107976. With an appendix by J. McCammond, D. Osajda and P. Przytycki.
[SW05] Michah Sageev and Daniel T. Wise, The Tits alternative for CAT(0) cubical complexes, Bull. London Math. Soc. 37 (2005), no. 5, 706-710.
[Tit72] Jacques Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270.
[Wal82] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982.

Instytut Matematyczny, Uniwersytet Wroceawski, pl. Grunwaldzki 2/4, 50-384 Wroceaw, Poland

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00656 Warszawa, Poland

Email address: dosaj@math.uni.wroc.pl
Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

Email address: piotr.przytycki@mcgill.ca

[^0]: $\dagger \ddagger$ Partially supported by (Polish) Narodowe Centrum Nauki, UMO2018/30/M/ST1/00668.
 \ddagger Partially supported by NSERC and AMS.

[^1]: ${ }^{1}$ We have recently extended Corollary D to such subgroups using methods tailored to Tame $\left(\mathbf{k}^{3}\right)$ LP22.
 ${ }^{2}$ This solves an issue that seems to have been overlooked in the proof of BB95, Thm C], page 197, line 9. Namely, not all angles 2π are excluded there, since in BB95, Lem 7.6] one cannot remove the assumption $\xi \neq \eta$ for ω of length 2π, for example for S_{v} a wedge of two circles of length 2π.

