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Abstract. A simplicial graph is said to be (coarsely) Helly if any collection of pairwise inter-
secting balls has non-empty (coarse) intersection. (Coarsely) Helly groups are groups acting
geometrically on (coarsely) Helly graphs. Our main result is that finitely generated groups
that are hyperbolic relative to (coarsely) Helly subgroups are themselves (coarsely) Helly. One
important consequence is that various classical groups, including toral relatively hyperbolic
groups, are equipped with a CAT(0)-like structure – they act geometrically on spaces with
convex geodesic bicombing. As a means of proving the main theorems we establish a result of
independent interest concerning relatively hyperbolic groups: a ‘relatively hyperbolic’ descrip-
tion of geodesics in a graph on which a relatively hyperbolic group acts geometrically. In the
other direction, we show that for relatively hyperbolic (coarsely) Helly groups their parabolic
subgroups are (coarsely) Helly as well. More generally, we show that ‘quasiconvex’ subgroups
of (coarsely) Helly groups are themselves (coarsely) Helly.
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1. Introduction

We consider any (simplicial) graph as its vertex set equipped with the combinatorial metric.
We say a graph Γ is Helly (respectively, coarsely Helly) if given any collection of balls {Bρi(xi) |
i ∈ I} in Γ such that Bρi(xi) ∩ Bρj (xj) 6= ∅ for any i, j ∈ I, we have

⋂
i∈I Bρi(xi) 6= ∅

(respectively,
⋂
i∈I Bρi+ξ(xi) 6= ∅ for some universal constant ξ ≥ 0). We say a group is Helly

(respectively, coarsely Helly) if it acts geometrically on a Helly (respectively, coarsely Helly)
graph. See Definition 4.1 for more details.

Intuitively, a group G is said to be hyperbolic relative to subgroups H1, . . . ,Hm ≤ G if the
subgroups Hj are some (possibly non-hyperbolic) subgroups “arranged in G in a hyperbolic
way”. The reader may refer to Section 2.2 for precise definitions, notation and terminology on
relatively hyperbolic groups.

Based on a result of Lang [Lan13] it was shown in [CCG+20] that all (Gromov) hyperbolic
groups are Helly. Our main results are as follows.

Theorem 1.1 (Hellyness of Relatively Hyperbolic Groups). Let G be a finitely generated group
that is hyperbolic relative to a collection of Helly subgroups. Then G is Helly.

As a step towards proving Theorem 1.1 we prove the following ‘coarse’ version.
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Theorem 1.2 (Coarse Hellyness of Relatively Hyperbolic Groups). Let G be a finitely generated
group that is hyperbolic relative to a collection of coarsely Helly subgroups. Then G is coarsely
Helly.

Helly graphs are classical objects that have been studied intensively within the metric and
algorithmic graph theory for decades. They are also known as absolute retracts (in the category
of simplicial graphs with simplicial morphisms), and are universal, in the sense that every graph
embeds isometrically into a Helly graph – cf. e.g. the survey [BC08]. The study of groups acting
on such graphs was initiated recently in [CCG+20], with non-positive aspects of flag completions
of Helly graphs as a starting point.

Many (non-positive curvature)-like properties of Helly groups, including biautomaticity, the
coarse Baum–Connes conjecture and the Farrell–Jones conjecture, were shown in [CCG+20].
Most of these properties, however, are known to hold for groups hyperbolic relative to sub-
groups satisfying these properties [Reb03, FO12, Bar17]. Nevertheless, Theorem 1.1 provides
an alternative proof of these results for groups that are hyperbolic relative to Helly subgroups,
for instance toral relatively hyperbolic groups.

However, our Theorem 1.1 provides new results for groups in question, e.g. equipping them
with a fine local geometry, as follows. One remarkable feature of Helly groups proved in
[CCG+20] is that they act geometrically on injective metric spaces – injective hulls of cor-
responding Helly graphs – and hence on spaces with convex geodesic bicombing. The latter are
geodesic spaces in which one has a chosen geodesic between any two points, and the family of
such geodesics satisfies some strong convexity properties reminiscent of CAT(0) geodesics. This
allows one to obtain many CAT(0)-like results for groups acting geometrically on such spaces –
see e.g. [DL16]. Theorem 1.1 equips finitely generated groups hyperbolic relative to Helly groups
with such a fine CAT(0)-like structure. As an example, one refines this way the geometry of
toral relatively hyperbolic groups – a classical and widely studied class of groups hyperbolic rel-
ative to abelian subgroups (cf. e.g. [DG08]). It is so because all finitely generated abelian groups
and, more generally, all CAT(0) cubical groups are Helly [CCG+20]. For further examples of
Helly groups and group-theoretic constructions preserving Hellyness see [CCG+20, HO21].

The notion of coarsely Helly graphs has been introduced in [CCG+20]. The motivation was
that – as proved in [CCG+20] – groups acting geometrically on coarsely Helly graphs satisfying
an additional condition (of having stable intervals) are Helly – see Theorem 4.2. This way the
notion of coarse Hellyness may be seen as a means for proving Hellyness, and this is exactly
what is happening in this article – see Section 4. On the other hand, the class of coarsely Helly
groups seem to be of interest on its own. Recently it has been shown in [HHP22] that mapping
class groups of surfaces and, more generally, hierarchically hyperbolic groups act geometrically
on coarsely injective spaces – non-discrete analogues of coarsely Helly graphs.

In the direction converse to Theorems 1.1 & 1.2, we prove the following.

Theorem 1.3 (Parabolic Subgroups of (Coarsely) Helly Groups). Let G be a group hyperbolic
relative to {H1, . . . ,Hm}. If G is Helly then H1, . . . ,Hm are Helly. If G is coarsely Helly then
H1, . . . ,Hm are coarsely Helly.

The parabolic subgroups H1, . . . ,Hm < G as above are known to be strongly quasiconvex
[DS05]. Roughly speaking, this means that if G acts on a graph Γ geometrically then for any
λ ≥ 1 and c ≥ 0, all (λ, c)-quasi-geodesic paths with endpoints in an orbit x ·Hi are bounded
distance away from x · Hi; see Definition 5.1. Strongly quasiconvex subgroups (and subsets)
are also known in the literature as Morse subgroups (and subsets), and have been extensively
studied: see [ACGH17, Tra19], for instance. We also consider a weaker condition of being
semi-strongly quasiconvex, where we replace (λ, c)-quasi-geodesics with (1, c)-quasi-geodesics.

Theorem 1.3 is then an immediate consequence of the following theorem concerning arbitrary
(coarsely) Helly groups. We believe the result is of its own interest, providing further examples
of such groups.
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Theorem 1.4 (Quasiconvex Subgroups of (Coarsely) Helly Groups). Let Γ be a locally finite
graph, let G be a group acting on Γ geometrically, and let H ≤ G be a subgroup. Then the
following hold.

(i) If Γ is Helly and H is strongly quasiconvex with respect to Γ, then H is Helly.
(ii) If Γ is coarsely Helly and H is semi-strongly quasiconvex with respect to Γ, then H is

coarsely Helly.

We may use Theorem 1.4 to find new examples of groups that are not (coarsely) Helly. For
instance, in [Hod20] Hoda characterised virtually nilpotent Helly groups, showing that they are
all virtually abelian and act geometrically on (Rn, ‖−‖∞) for some n. As a consequence, if G is
a group and H < G is a strongly quasiconvex virtually nilpotent subgroup not satisfying these
properties, then G cannot be Helly.

Our proof of Theorems 1.1 & 1.2 relies on the following result on relatively hyperbolic groups.
We believe it is of independent interest from the point of view of the general theory of relative
hyperbolicity. In what follows, we let G be a finitely generated group hyperbolic relative to
subgroups H1, . . . ,Hm and let X be a finite generating set for G. For j ∈ {1, . . . ,m} and
an integer N ≥ 1, given a proper graph Γj together with a geometric action Hj y Γj , we
construct a (Vietoris–Rips) graph Γj,N by adding edges to Γj so that v ∼ w in Γj,N if and only
if dΓj (v, w) ≤ N . We then construct a graph Γ(N) by, roughly speaking, taking a disjoint union
of the barycentric subdivision of the Cayley graph Cay(G,X) and a copy of Γj,N for each right
coset of Hj in G, and adding extra edges to make the graph connected. The graph Γ(N) thus
obtained comes equipped with a geometric action of G. The reader may refer to Section 2.3 for

precise definitions, and to Section 2.4 for a construction of a ‘derived path’ P̂ ⊆ Cay(G,X ∪H)
given any path P ⊆ Γ(N).

Theorem 1.5 (Geodesics to Quasi-geodesics). There exist constants N ≥ 1, λ ≥ 1, c ≥ 0 and
a finite collection Φ of non-geodesic paths in Γ(N) with the following property. Let P be a path
in Γ(N) having no parabolic shortenings and not containing any G-translate of a path in Φ as

a subpath. Then the derived path P̂ in Cay(G,X ∪H) is a 2-local geodesic (λ, c)-quasi-geodesic
that does not backtrack.

We prove Theorem 1.5 in Section 3. Theorem 1.2 follows immediately from Proposition 4.5.
The latter, together with Theorem 1.1 are proved in Section 4. Theorem 1.4 (implying Theo-
rem 1.3) is proved in Section 5.

Acknowledgements. We thank Oleg Bogopolski for directing us towards Proposition 2.8, and
the anonymous referee for their valuable feedback.

2. Preliminaries

2.1. Graphs and hyperbolicity. In our setting, a graph Γ is a set V (Γ) of vertices together
with a multiset E(Γ) of edges {v, w} for v, w ∈ V (Γ); in particular, we allow loops and multiple
edges in a graph. By a path P in a graph Γ we mean a combinatorial path, i.e. a sequence of
vertices v0, . . . , vn ∈ V (Γ) and edges {vi, vi+1} ∈ E(Γ). In this case, |P | := n is said to be the
length of P , and we write P− := v0 and P+ := vn for the starting and ending vertices of a path
P , respectively. A path of length 0 is said to be trivial. We also write P for the path from P+

to P− following the same edges as P just in opposite order. A subpath of P is a path consisting
of consecutive edges in P . Furthermore, given paths P0, . . . , Pk in Γ such that (Pi−1)+ = (Pi)−
for 1 ≤ i ≤ k, we write P0P1 · · ·Pk for the path obtained by concatenating the paths Pi.

We require all our graphs Γ to be connected, i.e. we assume that for any v, w ∈ V (Γ) there
exists a path P in Γ such that P− = v and P+ = w. In this case, we view a graph Γ as a metric
space with underlying set V (Γ) and a metric

dΓ(v, w) = min{|P | | P is a path in Γ, P− = v, P+ = w}.
Given some constants λ ≥ 1 and c ≥ 0, a path P = (v0, . . . , vn) in a graph Γ is said to
be a (λ, c)-quasi-geodesic if |i − j| ≤ λdΓ(vi, vj) + c whenever 0 ≤ i, j ≤ n (equivalently, if
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|Q| ≤ λdΓ(Q−, Q+) + c for every subpath Q ⊆ P ). A (1, 0)-quasi-geodesic is said to be a
geodesic. Given some k ≥ 2, we also say a path P is a k-local geodesic (respectively, a k-
local (λ, c)-quasi-geodesic) if every subpath Q ⊆ P with |Q| ≤ k is a geodesic (respectively, a
(λ, c)-quasi-geodesic).

The following definition of hyperbolicity, which we state for graphs, is usually stated for
geodesic metric spaces. However, it is easy to see that a graph Γ is hyperbolic in the sense of
Definition 2.1 if and only if it is quasi-isometric to a hyperbolic geodesic metric space in the
usual sense. Moreover, even though Lemma 2.2 and Theorem 2.3 below are usually stated for
geodesic metric spaces, they can be easily seen to apply to graphs (under our terminology) as
well.

Definition 2.1. Let λ ≥ 1 and δ, c ≥ 0, and let Γ be a graph. ∆ = PQR is said to be a geodesic
(respectively, (λ, c)-quasi-geodesic) triangle in Γ if P,Q,R ⊆ Γ are geodesic (respectively, (λ, c)-
quasi-geodesic) paths with R+ = P−, P+ = Q− and Q+ = R−. A geodesic triangle ∆ = PQR in
Γ is said to be δ-thin if given any two vertices u ∈ R and v ∈ P (respectively, u ∈ P and v ∈ Q,

u ∈ Q and v ∈ R) such that dΓ(P−, u) = dΓ(P−, v) ≤ |R|+|P |−|Q|
2 (respectively, dΓ(Q−, u) =

dΓ(Q−, v) ≤ |P |+|Q|−|R|2 , dΓ(R−, u) = dΓ(R−, v) ≤ |Q|+|R|−|P |2 ), we have dΓ(u, v) ≤ δ. The graph
Γ is said to be δ-hyperbolic if all its geodesic triangles are δ-thin; we say that Γ is hyperbolic if
it is δ-hyperbolic for some constant δ ≥ 0.

The following result is very well-known. A triangle ∆ satisfying the assumptions of Lemma 2.2
is said to be δ-slim.

Lemma 2.2 (see [GH90, Proposition 2.21]). Let Γ be a graph and let δ ≥ 0. Suppose that for
any geodesic triangle ∆ = PQR in Γ and for any vertex u ∈ R, there exists a vertex v ∈ PQ
such that dΓ(u, v) ≤ δ. Then Γ is hyperbolic.

We also use the following well-known result on hyperbolic metric spaces.

Theorem 2.3 (see [GH90, Théorème 5.11]). For any δ, c ≥ 0 and λ ≥ 1, there exists a constant
ζ = ζ(δ, λ, c) ≥ 0 with the following property. Let Γ be a δ-hyperbolic graph, let P ⊆ Γ be a
(λ, c)-quasi-geodesic, and let Q ⊆ Γ be a geodesic with Q− = P− and Q+ = P+. Then the
Hausdorff distance between P and Q is at most ζ.

A particular case of a graph is the Cayley graph Cay(G, Y ) of a group G with respect to a
(not necessarily finite) generating set Y . Formally, we view Y as an abstract set together with
a map ε : Y → G such that the image of ε generates G: in particular, this allows considering
Cayley graphs with multiple edges. We assume that Y is equipped with an involution ι : Y → Y
such that ε(ι(y)) = ε(y)−1 for all y ∈ Y . For simplicity, we also assume that 1 /∈ ε(Y ), so that
the Cayley graphs we consider do not contain loops. The Cayley graph Cay(G, Y ) then has G
as its vertex set and edge e from g to ε(y)g for any g ∈ G and y ∈ Y . We label such a directed
edge e by the letter y, and identify its inverse e with the edge from ε(y)g to g labelled by ι(y).

For simplicity of notation, we write dY (g, h) for dCay(G,Y )(g, h) whenever g, h ∈ G. Moreover,
for a path P ⊆ Cay(G, Y ) and a symmetric generating set Ω of G not containing the identity, we
write |P |Ω for dΩ(P−, P+); we furthermore allow for the possibility that Ω ⊆ G is an arbitrary
symmetric subset of G not containing the identity, in which case we set |P |Ω = ∞ whenever
(P+)(P−)−1 is not in the subgroup generated by Ω.

Remark 2.4. All of this formalism regarding the generating sets might seem unnecessary. How-
ever, it allows us to use different ‘generators’ to represent the same element of the group G.
This allows simplifications in our arguments when G is hyperbolic relative to a collection of
subgroups {H1, . . . ,Hm} in the case when the subgroups Hj intersect non-trivially.

We also label any path P in Cay(G, Y ) by a word y1 · · · yn over Y if P is the path from g to
ε(yn) · · · ε(y1)g (for some g ∈ G) following the edges labelled by y1, . . . , yn, in this order. We say a
word over Y is geodesic (respectively, (λ, c)-quasi-geodesic) if it labels a geodesic (respectively,
(λ, c)-quasi-geodesic) path P ⊆ Cay(G, Y ); note that this property does not depend on the
choice of P . We similarly define k-local geodesic and k-local (λ, c)-quasi-geodesic words over Y .
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2.2. Relatively hyperbolic groups. Our approach to relatively hyperbolic groups follows the
approach of D. V. Osin [Osi06].

Let G be a group and let H1, . . . ,Hm be a finite collection of distinct subgroups of G. Suppose
G is finitely generated, i.e. there exists a surjective group homomorphism ε̂ : F (X) → G
for a finite set X; without loss of generality, suppose that ε̂|X is injective, and that ε̂(X)
is symmetric and does not contain 1 ∈ G. Thus, ε̂ extends to a surjective homomorphism

ε : F = F (X) ∗ (∗mi=1H̃i)→ G, such that ε maps each group H̃i isomorphically onto Hi. We say
that G is finitely presented with respect to {H1, . . . ,Hm} if ker ε is the normal closure (in F ) of
a finite subset R ⊆ F . We also write

(1) G = 〈X, {H1, . . . ,Hm} | R〉

for a relative presentation of G, which is said to be finite if X and R are finite.
Now suppose G is finitely presented with respect to {H1, . . . ,Hm} with a finite relative

presentation (1). Let H =
⊔m
j=1(H̃j \ {1}). We say f : N → N is a relative isoperimetric

function of the presentation (1) if for all n ≥ 1 and all words W over X ∪ H of length n with
ε(W ) =G 1 we have

W =F

k∏
i=1

g−1
i R±1

i gi

for some k ≤ f(n) and some elements gi ∈ F , Ri ∈ R. A minimal relative isoperimetric function
(if it exists) is called a relative Dehn function, and a function f : N→ N is said to be linear if
there exist a, b ∈ N such that f(n) ≤ an+ b for all n.

Definition 2.5 (Osin [Osi06, Definition 2.35]). We say that the group G is hyperbolic relative
to {H1, . . . ,Hm} if G is finitely presented with respect to {H1, . . . ,Hm}, and the relative Dehn
function of this presentation exists and is linear.

Now consider the Cayley graph Cay(G,X ∪H), defined in Section 2.1 for Y = X ∪H. In this

case, we take the involution ι : X ∪H → X ∪H such that ι(X) = X and ι(H̃j \ {1}) = H̃j \ {1}
for each j: together with the condition that ε(ι(y)) = ε(y)−1 for each y ∈ X ∪H, this defines ι
uniquely.

We say a path P in Cay(G,X ∪ H) is an Hj-path if all edges of P are labelled by elements

of H̃j ; an Hj-path of length 1 is called an Hj-edge or an H-edge. A maximal Hj-subpath of a
path P is said to be an Hj-component (or simply a component). Given two paths P and Q in
Cay(G,X ∪H), an Hi-component P ′ of P is said to be connected to an Hj-component Q ′ of Q
if i = j and P ′−(Q ′−)−1 ∈ Hj (note that this defines an equivalence relation). A component P ′

of a path P is said to be isolated if it is not connected to any other component of P, and we
say a path P in Cay(G,X ∪ H) does not backtrack if all its components are isolated. We also
say that a subword of a word P over X ∪H is a component of P if the corresponding subpath
of a path P labelled by P is a component of P, and that P does not backtrack if P does not
backtrack.

A vertex v of a path P is said to be non-phase if it belongs to the interior of some component
of P, and phase otherwise. Note that a geodesic path does not backtrack and all its vertices
are phase. Given k ∈ N, two paths P,Q are said to be k-similar if dX(P−,Q−) ≤ k and
dX(P+,Q+) ≤ k. For future reference, given a path P = P1UP2 in Cay(G,X ∪H) we define V
to be a subpath of P preceding U if V is a subpath of P1.

In our proofs of Theorem 1.5 and Proposition 2.10 below, we use the following results due
to D. V. Osin. In all of these results, G is a (fixed) finitely generated group that is hyperbolic
relative to subgroups {H1, . . . ,Hm}, X is a finite generating set for G, and H is as above.

Theorem 2.6 (Bounded Coset Penetration; Osin [Osi06, Theorem 3.23]). For any λ ≥ 1, c ≥ 0
and k ∈ N, there exists a constant ε = ε(λ, c, k) ∈ N with the following property. Let P and Q

be two k-similar (λ, c)-quasi-geodesics in Cay(G,X ∪H) that do not backtrack. Then

(i) for any phase vertex u of Q, there exists a phase vertex v of P such that dX(u, v) ≤ ε;
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(ii) for any component Q ′ of Q with dX(Q ′−,Q
′
+) > ε, there exists a component of P con-

nected to Q ′; and
(iii) for any two connected components P ′,Q ′ of P,Q (respectively), we have dX(P ′−,Q

′
−) ≤ ε

and dX(P ′+,Q
′
+) ≤ ε.

Theorem 2.7 (Osin [Osi06, Theorem 3.26]). There exists a constant ν ∈ N such that the
following holds. Let ∆ = PQR be a geodesic triangle in Cay(G,X ∪H). Then for any vertex u
of P, there exists a vertex v of Q ∪ R such that dX(u, v) ≤ ν.

Proposition 2.8 (Osin [Osi07, Proposition 3.2]). For any λ ≥ 1 and c ≥ 0, there exists a
finite subset Ω ⊆ G and a constant L = L(λ, c) ∈ N such that the following holds. Let n ≥ 1,
let Q = P1 · · ·Pn be a closed path in Cay(G,X ∪ H), and suppose that there exists a subset
I ⊆ {1, . . . , n} such that Pi is an isolated component of Q if i ∈ I and a (λ, c)-quasi-geodesic
otherwise. Then the Ω-lengths of the Pi for i ∈ I satisfy∑

i∈I
|Pi|Ω ≤ Ln.

Remark 2.9. Theorems 2.6 and 2.7 are stated in [Osi06] only for generating sets X ⊆ G that
satisfy a certain technical condition stated in the beginning of [Osi06, §3]. However, it is easy
to see that the statement of Theorem 2.6 is independent of the choice of a finite symmetric
generating set X (up to possibly increasing the constant ε). Using Theorem 2.6(i), we can also
show that Theorem 2.7 holds independently of the choice of a finite symmetric generating set
X.

We end our introduction to relatively hyperbolic groups by proving the following result, which
we use in our proof of Theorem 1.2. This can be viewed as a version of Theorem 2.6 stated for
triangles instead of ‘bigons’.

Proposition 2.10. For any λ ≥ 1 and c ≥ 0, there exists a constant µ = µ(λ, c) with the
following property. Let ∆ = PQR be a non-backtracking (λ, c)-quasi-geodesic triangle in the
Cayley graph Cay(G,X ∪ H) (i.e. P,Q,R are (λ, c)-quasi-geodesics in Cay(G,X ∪ H) that do
not backtrack such that P+ = Q−, Q+ = R− and R+ = P−). Then

(i) for any phase vertex u of R, there exists a phase vertex v of P or of Q such that
dX(u, v) ≤ µ;

(ii) for any component R ′ of R with dX(R ′−,R
′
+) > µ, there exists a component of P or of

Q connected to R ′;
(iii) if a component R ′ of R is connected to a component P ′ of P but is not connected to any

component of Q, we have dX(R ′+,P
′
−) ≤ µ and dX(P ′+,R

′
−) ≤ µ; and

(iv) if a component R ′ of R is connected to a component P ′ of P and a component Q ′ of Q,
then dX(R ′+,P

′
−) ≤ µ, dX(P ′+,Q

′
−) ≤ µ and dX(Q ′+,R

′
−) ≤ µ.

R0

Q0P0

R

QP

u

u0

v0

v

(a) Part (i).

R1R ′R2

QP

(b) Part (ii).

R1R ′R2

P1

P ′

P2

Q

e1

e2

(c) Part (iii).

R1R ′R2

P1

P ′

P2 Q1

Q ′

Q2
e1

e2

e3

(d) Part (iv).

Figure 1. The proof of Proposition 2.10.
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Proof. Let ε = ε(λ, c, 0) ∈ N be as in Theorem 2.6, let ν ∈ N be as in Theorem 2.7, and let Ω ⊆ G
and L = L(λ, c) ∈ N be as in Proposition 2.8. Since |Ω| <∞, we have M := supω∈Ω |ω|X <∞;
it follows that if dΩ(g, h) ≤ D for some g, h ∈ G and D ∈ N then dX(g, h) ≤ DM . We set
µ := max{2ε+ ν, 5ML}.

We now prove parts (i)–(iv) in the statement of the theorem.

(i) Let P0,Q0,R0 ⊆ Cay(G,X ∪ H) be geodesics such that (P0)+ = P+ = Q− = (Q0)−,
(Q0)+ = Q+ = R− = (R0)− and (R0)+ = R+ = P− = (P0)−, so that ∆′ = P0Q0R0 is a
geodesic triangle in Cay(G,X ∪H); see Figure 1(a). Thus the paths P,Q,R,P0,Q0,R0

are all (λ, c)-quasi-geodesics that do not backtrack.
Let u ∈ R be a phase vertex. By Theorem 2.6(i), there is a phase vertex u0 ∈ R0

such that dX(u, u0) ≤ ε. By Theorem 2.7, there is a vertex v0 of either P0 or Q0 such
that dX(u0, v0) ≤ ν; note that since P0 and Q0 are geodesics, v0 is necessarily a phase
vertex. Finally, by Theorem 2.6(i) again, there exists a phase vertex v of P (if v0 ∈ P0)
or of Q (if v0 ∈ Q0) such that dX(v0, v) ≤ ε. We thus have

dX(u, v) ≤ dX(u, u0) + dX(u0, v0) + dX(v0, v) ≤ 2ε+ ν ≤ µ,

as required.
(ii) Suppose that R ′ is an isolated component of PQR. We can then write R = R1R

′R2,
so that P, Q, R1, R2 are all (λ, c)-quasi-geodesics, and R ′ is an isolated component of
PQR1R

′R2: see Figure 1(b). It follows from Proposition 2.8 that |R ′|Ω ≤ 5L, and so
|R ′|X ≤ 5ML. This contradicts the fact that dX(R ′−,R

′
+) > µ.

Thus R ′ must be connected to some other component of PQR. As R does not back-
track, it follows that R ′ is connected to a component of either P or Q, as required.

(iii) Let j ∈ {1, . . . ,m} be such that P ′ and R ′ are Hj-components. Thus there exist Hj-edges
e1 and e2 such that (e1)− = P ′−, (e1)+ = R ′+, (e2)− = R ′− and (e2)+ = P ′+; moreover,
we may write P = P1P

′P2 and R = R1R
′R2: see Figure 1(c). Since P and R do not

backtrack, and since R ′ (and therefore e2) is not connected to any component of Q,
it follows that e1 and e2 are isolated components of R2P1e1 and P2QR1e2, respectively.
Moreover, R2, P1, P2, Q and R1 are all (λ, c)-quasi-geodesics.

It follows from Proposition 2.8 that |e1|Ω ≤ 3L and |e2|Ω ≤ 4L; therefore, we have
|e1|X ≤ 3ML ≤ µ and |e2|X ≤ 4ML ≤ µ. Hence dX(P ′−,R

′
+), dX(R ′−,P

′
+) ≤ µ, as

required.
(iv) Let j ∈ {1, . . . ,m} be such that P ′, Q ′ and R ′ are Hj-components. Thus there exist

Hj-edges e1, e2 and e3 such that (e1)− = P ′−, (e1)+ = R ′+, (e2)− = Q ′−, (e2)+ = P ′+,
(e3)− = R ′−, (e3)+ = Q ′+; moreover, we may write P = P1P

′P2, Q = Q1Q
′Q2 and

R = R1R
′R2: see Figure 1(d). Since P, Q and R do not backtrack, it follows that e1, e2

and e3 are isolated components of R2P1e1, P2Q1e2 and Q2R1e3, respectively. Moreover,
R2, P1, P2, Q1, Q2 and R1 are all (λ, c)-quasi-geodesics.

It follows from Proposition 2.8 that |ei|Ω ≤ 3L, and so |ei|X ≤ 3ML ≤ µ, for each
i ∈ {1, 2, 3}. Hence dX(P ′−,R

′
+), dX(Q ′−,P

′
+) and dX(R ′−,Q

′
+) are all bounded above by

µ, as required. �

2.3. The graph Γ(N). We now construct an action of G on a graph Γ(N) given an action of

H̃j ≤ G on a graph Γj for each j ∈ {1, . . . ,m}, so that if the actions H̃j y Γj are all geometric
then so is G y Γ(N). Roughly speaking, we take the barycentric subdivision of the Cayley
graph Cay(G,X) together with a copy of a graph Γj,N (obtained by adding extra edges to Γj)
for each right coset of Hj in G, and glue them together using ‘connecting edges’ in a consistent
way.

Thus, let G be a group with a finite symmetric generating set X, let H1, . . . ,Hm ≤ G be

a collection of subgroups, and, for each j, let H̃j be an isomorphic copy of Hj acting on a

simplicial graph Γj by isometries, and fix a vertex vj ∈ Γj . Let F = F (X) ∗ (∗mj=1H̃j), let

H =
⊔m
j=1(H̃j \ {1}), let ε : F → G be the canonical surjection, and let ι : X → X be an

involution such that ε(ι(x)) = ε(x)−1 for all x ∈ X. For each j, let πj : F → H̃j be the
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canonical retraction, defined as the identity map on H̃j and as the trivial map on F (X) and on

H̃i for i 6= j.

We now construct a graph Γ̃(N) by taking a copy of the barycentric subdivision of the Cayley
graph Cay(F (X), X) for each right coset of F (X) in F and a copy of Γj,N for each right coset

of H̃j in F , and connecting them using auxiliary edges.

Definition 2.11. Let N ≥ 1. We construct a simplicial graph Γ̃(N) as follows.

(i) For each j ∈ {1, . . . ,m}, define a graph Γj,N with vertices V (Γj,N ) = V (Γj) and edges
{v, w} whenever dΓj (v, w) ≤ N .

(ii) The vertices of Γ̃(N) are V (Γ̃(N)) = Ṽfree t Ṽmed t Ṽint, where

(a) Ṽfree = F , the free vertices;

(b) Ṽmed = (F ×X)/ ∼, where (g, x) ∼ (h, y) if and only if (h, y) ∈ {(g, x), (xg, ι(x))},
the medial vertices; and

(c) Ṽint =
⊔m
j=1(H̃j\F )× V (Γj), where H̃j\F is the set of right cosets of H̃j in F , the

internal vertices.
(iii) The edges of Γ̃(N) are of three types:

(a) the free edges: {g, [(g, x)]} for vertices g ∈ Ṽfree and [(g, x)] ∈ Ṽmed;

(b) the connecting edges:
{
g, (H̃jg, vj · πj(g))

}
for g ∈ Ṽfree and (H̃jg, vj ·πj(g)) ∈ Ṽint;

and
(c) the internal edges:

{
(H̃jg, v), (H̃jg, w)

}
for vertices (H̃jg, v), (H̃jg, w) ∈ Ṽint such

that {v, w} ∈ E(Γj,N ).

We define a right action of F on V (Γ̃(N)) as follows: for g ∈ F ,

h · g = hg for h ∈ Vfree;

[(h, x)] · g = [(hg, x)] for [(h, x)] ∈ Vmed; and

(H̃jh, v) · g = (H̃jhg, v · πj(g)) for (H̃jh, v) ∈ Vint.

It is easy to see that this is indeed a well-defined action, and that it sends edges of Γ̃(N) to

edges, thus inducing an action of F on Γ̃(N). It is also clear that this action preserves the types
of vertices (free, medial or internal) and edges (free, connecting or internal): see Figure 2.

Γ1,N/H̃1 Γm,N/H̃m

Figure 2. The quotient graph Γ̃(N)/F . Orbits of medial vertices are shown
in green, connecting edges in blue, free vertices and edges in gray. Orbits of
internal vertices and edges are represented by the red regions.

Finally, we define the graph Γ(N) as the quotient Γ(N) = Γ̃(N)/ ker(ε), so that we have an

action Gy Γ(N) induced by F y Γ̃(N). The following result is straightforward.

Lemma 2.12 (Description of Γ(N)). We have V (Γ(N)) = Vfree t Vmed t Vint, where Vfree = G
are the free vertices, Vmed = (G × X)/ ∼ are the medial vertices, where (g, x) ∼ (h, y) if and
only if (h, y) ∈ {(g, x), (ε(x)g, ι(x))}, and Vint =

⊔m
j=1(Hj\G)× V (Γj) are the internal vertices.
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The edges of Γ(N) can be partitioned into

free: {g, [(g, x)]} for g ∈ Vfree and [(g, x)] ∈ Vmed,

connecting: {g, (Hjg, uj,g)} for g ∈ Vfree, (Hjg, uj,g) ∈ Vint and some uj,g ∈ V (Γj),

internal: {(Hjg, v), (Hjg, w)} for (Hjg, v), (Hjg, w) ∈ Vint with {v, w} ∈ E(Γj,N ). �

In particular, it follows that for any j ∈ {1, . . . ,m} and any Hjg ∈ Hj\G, the subset
{(Hjg, v) | v ∈ V (Γj)} ⊂ V (Γ(N)) spans a subgraph isomorphic to Γj,N . We will refer to
this subgraph as the g-copy (or just a copy) of Γj,N , and we say that a path P penetrates a
copy Γ0 of Γj,N if P ∩ Γ0 6= ∅.

Given a path P ⊆ Γ(N), we also say that P has no parabolic shortenings if every subpath
of P all of whose vertices are internal – that is, a subpath contained in some copy Γ0 ⊆ Γ(N)
of Γj,N – is a geodesic when viewed as a path in Γ0. (This terminology is taken from [AC16],
which in turn arises from the notion of parabolic subgroups: when G is hyperbolic relative to
{H1, . . . ,Hm}, a subgroup of G is said to be parabolic if it is conjugate to some Hj .)

Lemma 2.13 (Properties of G y Γ(N)). Suppose that, for each j ∈ {1, . . . ,m}, the graph Γj
is proper (as a metric space). Then the graphs Γ̃(N) and Γ(N) are proper, and the following
hold.

(i) If each action H̃j y Γj is properly discontinuous, then so are the actions F y Γ̃(N)
and Gy Γ(N).

(ii) If each action H̃j y Γj is cocompact, then so are the actions F y Γ̃(N) and Gy Γ(N).

Proof. To show that Γ̃(N) is proper, it is enough to show that each vertex of Γ̃(N) is incident to

finitely many edges. But a free vertex of Γ̃(N) is incident to |X|+m <∞ edges, a medial vertex

is incident to two edges, and an H̃j-internal vertex (H̃jg, u) is incident to at most dj,N (u) +
|Stab

H̃j
(u)| <∞ edges, where dj,N (u) is the number of vertices v ∈ Γj such that dΓj (u, v) ≤ N .

Thus Γ̃(N) is proper as a metric space. As Γ(N) is a quotient of Γ̃(N), it follows that Γ(N) is
proper as well.

We now prove (i) and (ii).

(i) Since H̃j y Γj is properly discontinuous, each vertex of Γj has a finite H̃j-stabiliser.

Now each free vertex and each medial vertex of Γ̃(N) has a trivial stabiliser. Moreover, it

is easy to check that StabF (H̃jg, u) = g−1
[
Stab

H̃j

(
u · πj(g)−1

)]
g for any H̃j-internal

vertex (H̃jg, u), and so | StabF (H̃jg, u)| < ∞. Thus vertices of Γ̃(N) have finite F -

stabilisers and so the action of F on Γ̃(N) is properly discontinuous. Since G-stabilisers

of vertices in Γ(N) are just images of F -stabilisers of vertices in Γ̃(N) under ε, it follows
that they are finite, and so Gy Γ(N) is properly discontinuous as well.

(ii) Since Γj is proper and the action of H̃j on Γj is cocompact (for each j), the action of

H̃j on Γj,N is cocompact as well. It is then easy to check that Γ̃(N) has m <∞ orbits

of connecting edges, 2 · |X/∼| < ∞ orbits of free edges, and
∑m

j=1

∣∣∣E(Γj,N/H̃j)
∣∣∣ < ∞

orbits of internal edges (see also Figure 2). Thus the action of F on Γ̃(N) is cocompact,

and since Γ̃(N)/F ∼= Γ(N)/G so is the action of G on Γ(N). �

2.4. Derived paths. Here we define a derived path P̂ in Cay(G,X ∪ H) corresponding to a
given path P in Γ(N). Our definition is an adaptation of a construction of Y. Antoĺın and
L. Ciobanu [AC16, Construction 4.1].

Definition 2.14. Let N ≥ 1. For each vertex v ∈ V (Γ(N)), we define a path Zv ⊆ Γ(N) such
that (Zv)− = v and (Zv)+ is a free vertex, and such that |Zv| is as small as possible under these

conditions. Given a path P ⊆ Γ(N), we define the derived path P̂ ⊆ Cay(G,X ∪ H) in the
following steps.
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(i) If P has no free vertices, then set n = 1 and P1 = ZP−PZP+ , and proceed to step (iii).
Otherwise, write P = P ′P2 · · ·Pn−1P

′′ in such a way that P ′+ = (P2)−, (P2)− = (P3)+,
. . . , (Pn−1)+ = P ′′− are all free, no other vertices of P are free, and |Pi| ≥ 1 for 2 ≤ i ≤
n− 1.

(ii) If |P ′| ≤ 3, then set P1 to be the trivial path with (P1)− = (P1)+ = P ′+; otherwise, set

P1 = ZP−P
′. Similarly, if |P ′′| ≤ 3, then set Pn to be the trivial path with (Pn)− =

(Pn)+ = P ′′−; otherwise, set Pn = P ′′ZP+ . If |P ′| ≥ 4 (respectively, |P ′′| ≥ 4), then we
call P1 (respectively, Pn) an extended subpath of P .

It now follows from the construction that for 1 ≤ i ≤ n, the vertices (Pi)− and (Pi)+

are the only free vertices of Pi.

(iii) Let P̂ = P̂1P̂2 · · · P̂n be the path in Cay(G,X ∪H) such that, for 1 ≤ i ≤ n, P̂i is a path

of length ≤ 1 with (P̂i)− = (Pi)− and (P̂i)+ = (Pi)+, as follows.

(a) If (Pi)− = (Pi)+, then we set P̂i to be an empty path.
(b) If (Pi)− 6= (Pi)+ and all non-endpoint vertices of Pi are medial, then |Pi| = 2 and

(Pi)+ = ε(x)(Pi)− for some x ∈ X; we then set P̂i to be an edge labelled by x.
(c) Otherwise, all non-endpoint vertices of Pi are Hj-internal for some j, and (Pi)+ =

ε(h)(Pi)− for some h ∈ H̃j ; we then set P̂i to be an H̃j-edge labelled by h.

An example construction of P̂ is shown in Figure 3.

P

ZP− P1 P2 Pn−1

P ′ P ′′

P̂1 P̂2 P̂n−1

Figure 3. An example construction of a derived path P̂ ⊆ Cay(G,X∪H) given

a path P ⊆ Γ(N). In this case, |P ′| ≥ 4, |P ′′| ≤ 3, and the paths Pn and P̂n are
trivial.

3. Mapping geodesics to quasi-geodesics

In this section we prove Theorem 1.5. In order to do this, we proceed in two steps. We first
show that the word labelling a 2-local geodesic path in Cay(G,X∪H), that does not contain any
of the finitely many ‘strongly non-geodesic’ prohibited subwords, labels a (λ, c)-quasi-geodesic
that does not backtrack (for some fixed λ ≥ 1 and c ≥ 0): see Proposition 3.1. We then show
that for N big enough, if P is a 5-local geodesic in Γ(N) with no parabolic shortenings and with

no subpaths Q such that Q̂ is labelled by one of the aforementioned prohibited words, then P̂
satisfies the premise of Proposition 3.1.

3.1. Local geodesics are quasi-geodesics. We start by analysing 2-local geodesics in the
graph Cay(G,X ∪ H). The following result is a strengthening of a result of Y. Antoĺın and
L. Ciobanu [AC16, Theorem 5.2], and the proof given in [AC16] carries through to prove the
following Proposition after several minor modifications. Here, we say a word P over X ∪ H
vertex backtracks if P contains a subword Q representing an element of Hj (for some j) with
|Q| ≥ 2. Clearly, a word that does not vertex backtrack does not backtrack either.

Proposition 3.1. There exist constants λ ≥ 1, c ≥ 0, and a finite collection Φ̂ of words over
X ∪ H labelling paths Q ⊆ Cay(G,X ∪ H) with |Q| > 3

2dX∪H(Q−,Q+) such that the following
holds. Let P be a 2-local geodesic word in Cay(G,X ∪H) that does not contain any element of

Φ̂ as a subword. Then P is a (λ, c)-quasi-geodesic word that does not vertex backtrack.
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R ′Q ′

P ′

Q ′′

(a) A path P that vertex backtracks.

Q1 Q2 Qn

P1 P2 Pn

U0 T1 U1 T2 Un−1 Tn

S0 S1 Sn−1 Sn

R0

R1 Rn−1
Rn

(b) A non-(4, 3)-quasi-geodesic path P and a geodesic Q.

Figure 4. The proof of Proposition 3.1.

Proof. We use the following ‘local to global’ property of quasi-geodesics for a hyperbolic spaces
[CDP90, Chapter 3, Theorem 1.4]: given a hyperbolic metric space Y and constants λ′ ≥ 1
and c′ ≥ 0, there exist constants λ ≥ 1 and c, k ≥ 0 such that every k-local (λ′, c′)-quasi-
geodesic in Y is a (λ, c)-quasi-geodesic. In particular, since Cay(G,X ∪ H) is hyperbolic (see
Proposition 2.10(i)), we may use this property for λ′ = 4 and c′ = 3: there exist constants
λ ≥ 1 and c, k ≥ 0 such that every k-local (4, 3)-quasi-geodesic in Cay(G,X ∪ H) is a (λ, c)-
quasi-geodesic. We may further increase k if necessary to assume that k ≥ λ+ c.

Now let Ψ̂ be the set of cyclic paths Q in Cay(G,X∪H) that do not backtrack with |Q| < 5
3k.

By Proposition 2.8, there exists a finite subset Ω ⊆ G and a constant L ≥ 0 such that for any

Q ∈ Ψ̂ we have
n(Q)∑
i=1

|PQ,i|Ω <
5

3
kL,

where PQ,1, . . . ,PQ,n(Q) is the set of words labelling the components of Q. In particular, as X

and Ω are finite, it follows that the set of cyclic words labelling elements of Ψ̂ is finite.

We then define Φ̂ to be the set of words labelling a path Q in Cay(G,X∪H) such that QP ∈ Ψ̂
(in particular, Q− = P+ and Q+ = P−) and |Q| > 3

2 |P| for some path P in Cay(G,X ∪ H). It

is clear that Φ̂ is finite, and that every word in Φ̂ labels a path Q with |Q| > 3
2dX∪H(Q−,Q+).

Now let P be a 2-local geodesic word over X ∪H that does not contain any element of Φ̂ as
a subword. We claim that P is a k-local (4, 3)-quasi-geodesic that does not vertex backtrack.
This will imply the result. To show that P is a k-local (4, 3)-quasi-geodesic, we may assume,
without loss of generality, that |P| ≤ k. Let P ⊆ Cay(G,X ∪H) be a path labelled by P.

We first claim that P does not vertex backtrack. Indeed, if it did, then we would have
P = Q ′P ′Q ′′ where P ′ labels an element of Hj (for some j) and |P ′| ≥ 2. Without loss of
generality, suppose that P ′ is a minimal subpath with this property, and let R ′ be a geodesic

path with R ′± = P ′± (so that either |R ′| = 1 and R ′ is an H̃j-edge, or |R ′| = 0): see Figure 4(a).
As P is a 2-local geodesic, we have |P ′| ≥ 3; by minimality of P ′, no two components of P ′

are connected, and no component of P ′ is connected to the Hj-component R ′ (if |R ′| = 1). As

3 ≤ |P ′| ≤ |P| ≤ k and so |R ′| ≤ 1 < 2 ≤ 2
3k, it follows that |P ′R ′| < 5

3k and so P ′R ′ ∈ Ψ̂. But

as |R ′| ≤ 1, we have |P ′| ≥ 3 > 3
2 ≥

3
2 |R ′| and so P ′ is labelled by a word in Φ̂, contradicting

the choice of P.
Thus, P is a 2-local geodesic path of length |P| ≤ k that does not vertex backtrack. Suppose

for contradiction that P is not a (4, 3)-quasi-geodesic. By passing to a subpath of P if necessary,
we may assume that there exists a geodesic path Q in Cay(G,X ∪ H) such that Q− = P−,
Q+ = P+, and such that |P| > 4|Q|+ 3. As P does not vertex backtrack and as Q is a geodesic,
both P and Q do not backtrack. Also, as P and Q are 2-local geodesics, all components of P
and of Q are edges.

Now for some n ≥ 0, we may write P = R0P1R1 · · ·PnRn and Q = S0Q1S1 · · ·QnSn in such
a way that, for each i, Pi is a component of P connected to a component Qi of Q, and no
component of Ri is connected to a component of Si. Let Ti (respectively, Ui) be the geodesic
in Cay(G,X ∪ H) from (Ri)− to (Si)− (respectively, from (Ri)+ to (Si)+), so that either Ti
(respectively, Ui) has length 0, or it is an H-edge that is connected, as a component, to Pi and
Qi (respectively, Pi+1 and Qi+1); see Figure 4(b).
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If we had |Ri| ≤ 3
2(|Si|+ 2) for each i, then we would have

|P| = n+

n∑
i=0

|Ri| ≤ 4n+ 3 +
3

2

n∑
i=0

|Si| ≤ 4

(
n+

n∑
i=0

|Si|

)
+ 3 = 4|Q|+ 3,

contradicting the assumption that |P| > 4|Q|+ 3. Thus, there exists some i ∈ {0, . . . , n}, which
we fix from now on, such that |Ri| > 3

2(|Si|+ 2).
Now if |Ti| = 1 (as opposed to |Ti| = 0), since Ti is connected to a component Pi of P

and since P does not backtrack, it follows that Ti is not connected to any component of Ri.
Similarly, if |Ti| = 1 then Ti is not connected to any component of Si, and if |Ui| = 1 then Ui
is not connected to any component of Ri or of Si. Since P and Q do not backtrack, no two
components of Ri and no two components of Si are connected. By construction, no component
of Ri is connected to a component of Si, and if Ti was a component connected to a component
Ui then we would have |Ri| ≤ 1 (as P does not vertex backtrack), contradicting the fact that
|Ri| > 3

2(|Si|+ 2) ≥ 3.

It hence follows that all components of the cyclic path RiUiSi Ti are isolated. Moreover, since

k ≥ |P| ≥ |Ri| > 3
2(|Si| + 2) we have |RiUiSi Ti| = |Ri| + (|Si| + 2) < 5

3k. Thus RiUiSi Ti ∈ Ψ̂,

and as |Ri| > 3
2(|Si|+ 2) ≥ 3

2 |UiSi Ti|, the path Ri is labelled by a word in Φ̂, contradicting the
choice of P.

Thus, if P is a 2-local geodesic word in Cay(G,X ∪H) that does not contain any element of

Φ̂ as a subword, then P is a k-local (4, 3)-quasi-geodesic word and any subword of P of length
≤ k does not vertex backtrack. In particular, P is a (λ, c)-quasi-geodesic. If P did vertex
backtrack then we would have P = Q′P ′Q′′ where P ′ represents an element of some Hj and
|P ′| > k (cf Figure 4(a)); but k was chosen so that k ≥ λ + c, so this is impossible since P is
a (λ, c)-quasi-geodesic. Hence P is a (λ, c)-quasi-geodesic word that does not vertex backtrack,
as required. �

3.2. Local geodesics map to local geodesics. Throughout the remainder of this section,
we adopt the following assumption.

Assumption 3.2. We assume that each Γj is proper (as a metric space), and H̃j acts on Γj
geometrically. We furthermore assume that N ≥ 1 is chosen in such a way that the following
properties hold.

(i) The distance in Γj/H̃j between vj · H̃j and any other vertex is at most N .

(ii) For each word P ∈ Φ̂, where Φ̂ is the finite collection of words in Proposition 3.1, fix
a geodesic word UP over X ∪ H such that UP and P represent the same element of G.

Then for any j and any H̃j-letter h of UP , we have dΓj (vj , vj · h) ≤ N .
(iii) If P is a cyclic word over X ∪H of length |P| ≤ 3 with all its components single letters

that does not backtrack, and if h is an H̃j-letter of P, then dΓj (vj , vj · h) ≤ N .

Note that, under the assumption that the actions H̃j y Γj are all geometric, the points
(i)–(iii) in Assumption 3.2 will all be satisfied whenever N ≥ 1 is large enough. Indeed, since

H̃j acts on Γj geometrically (and so cocompactly), the graph Γj/H̃j is finite, and so (i) is

satisfied for N large enough. Furthermore, as the collection Φ̂ in Proposition 3.1 is finite, (ii)
is true when N is large enough. Finally, it follows from Proposition 2.8 that there are finitely
many cyclic words over X ∪H of length ≤ 3 that do not backtrack all of whose components are
single letters, and so (iii) is satisfied for large enough N . In fact, one can see from the proof of
Proposition 3.1 that (ii) implies (iii) – but both points are stated here for future reference.

In the following two lemmas, let P be a path in Γ(N) that has no parabolic shortenings and

at least one free vertex, and let P1, . . . , Pn ⊆ Γ(N) and P̂ = P̂1 · · · P̂n ⊆ Cay(G,X ∪ H) be as
in Definition 2.14.

Lemma 3.3. Suppose that P is a closed path, that P− = P+ is a free vertex, and that |P̂ | ≤ 3.

If, for some i, P̂i is an isolated component of P̂ , then |Pi| ≤ 3.
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e

P ′2

e′

g

(Hjg, u)

ε(h)g

(Hjg, w)

(a) Lemma 3.3: the path P2.

T
e1

T1
e2

T2

P−

(b) Lemma 3.4: the paths ZP− (green) and P ′ (blue).

Figure 5. The proofs of Lemmas 3.3 and 3.4. The red shaded area represents
a copy of Γj,N in Γ(N).

Proof. Note that since P− and P+ are free vertices, it follows from the construction in Defini-

tion 2.14 that P = P2 · · ·Pn−1, and that P1 and Pn are empty paths. Suppose that P̂i is an

isolated component of P̂ : without loss of generality, i = 2. Then the non-endpoint vertices of
P2 are either all Hj-internal (for some j) or all medial. In the latter case, we have |P2| = 2
and we are done. Thus, without loss of generality, suppose all non-endpoint vertices of P2 are

Hj-internal, and so P̂2 is labelled by an element h ∈ H̃j .
Now it follows from Assumption 3.2(iii) that dΓj (vj , vj · h) ≤ N . By construction, it also

follows that P2 = eP ′2e
′, where e and e′ are the connecting edges with e− = g, e′− = ε(h)g,

e+ = (Hj , vj) · g = (Hjg, u) and e′+ = (Hj , vj · h) · g = (Hjg, w) for some g ∈ G and some
u,w ∈ V (Γj) with dΓj (u,w) = dΓj (vj , vj · h) ≤ N , and all vertices of P ′2 are Hj-internal; see
Figure 5(a). Since P has no parabolic shortenings, it follows that P ′2 is a geodesic as a path in
the g-copy of Γj,N , and so

|P ′2| = dΓj,N (u,w) =

⌈
dΓj (u,w)

N

⌉
≤ 1.

Thus |P2| = 2 + |P ′2| ≤ 3, as required. �

Lemma 3.4. If, for some i ∈ {1, n}, Pi is an extended subpath of P , then P̂i is an H̃j-edge
(for some j) and, for any path Q in Γ(N) with Q− = (Pi)−, Q+ = (Pi)+ and all other vertices
of Q being Hj-internal, we have |Q| ≥ 4.

Proof. Suppose that i = 1, and so P1 is an extended subpath of P : the case i = n is similar.
By the construction described in Definition 2.14(ii), we have P1 = ZP−P

′, where P ′ is an initial
subpath of P with |P ′| ≥ 4. Here, ZP− is a shortest path in Γ(N) with (ZP−)− = P− and
(ZP−)+ a free vertex, and so it follows from Assumption 3.2(i) that |ZP− | ≤ 2.

More precisely, we know that ZP− = T1e1 and P ′ = T2e2, where e1 and e2 are connecting edges

and all edges on the path T1T2 are Hj-internal; see Figure 5(b). Since |T2|−|T1| ≥ 3−1 = 2 and
since P (and so its subpath T2) has no parabolic shortenings, it follows that any path between
(T1)+ and (T2)+ consisting only of internal edges has length ≥ 2. But a path Q satisfying the
conditions stated must be of the form Q = e1T e2, where T is a path between (T1)+ and (T2)+

consisting only of internal edges, and so we have |Q| = 2 + |T | ≥ 4, as required. �

We now show that local geodesics in Γ(N) with no parabolic shortenings are transformed to
local geodesics in Cay(G,X ∪H).

Proposition 3.5. Let P be a 5-local geodesic in Γ(N) which has no parabolic shortenings. Then

the derived path P̂ is a 2-local geodesic in Cay(G,X ∪H).

Proof. The conclusion is trivial if |P̂ | ≤ 1: we will thus assume that |P̂ | ≥ 2, and so P has

at least one free vertex. Let P1, . . . , Pn ⊆ Γ(N) and P̂ = P̂1 · · · P̂n ⊆ Cay(G,X ∪ H) be as in

Definition 2.14. Note that by the construction we have |P̂i| ≤ 1 for 1 ≤ i ≤ n.
Notice first that for 2 ≤ i ≤ n− 1, we have (Pi)− 6= (Pi)+. Indeed, by construction we have

|Pi| ≥ 1, and (Pi)− and (Pi)+ are the only free vertices of Pi. If we had (Pi)− = (Pi)+, then,
since P has no parabolic shortenings, it would follow that Pi = ee for some connecting edge e,

contradicting the fact that P is 2-local geodesic. Thus we have (Pi)− 6= (Pi)+, and so |P̂i| = 1,
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R′

P ′i P ′i+1

Pi
Pi+1

(a) General setup.

e1

T1

e2

T2

e3

(b) P̂ ′i , P̂
′
i+1 in the same component.

e1

T1

P ′i

e2

T2
e3

T

(c) P̂ ′i+1, R′ in the same component.

Figure 6. The proof of Proposition 3.5.

for 2 ≤ i ≤ n − 1. It follows, in particular, that any subpath of P̂ of length 2 is of the form

P̂iP̂i+1 for some i ∈ {1, . . . , n− 1}.
Now suppose for contradiction that P̂ is not a 2-local geodesic, and so there exists an i such

that |P̂i| = |P̂i+1| = 1 and dX∪H

(
(P̂i)−, (P̂i+1)+

)
≤ 1. Let R ⊆ Cay(G,X ∪ H) be a geodesic

with R− = (P̂i)− and R+ = (P̂i+1)+, so that |R| ≤ 1 and C := P̂iP̂i+1R is a closed path in
Cay(G,X ∪H) of length ≤ 3.

We now choose paths P ′i , P
′
i+1 and R′ in Γ(N) such that P ′iP

′
i+1R

′ is a closed path in Γ(N)
that has no parabolic shortenings whose derived path is C , as follows (see Figure 6(a)). For
i′ ∈ {i, i + 1} we take P ′i′ = Pi′ if Pi′ is not an extended subpath of P . Otherwise, Pi′ is an
extended subpath of P of the form e1T

′e2, where e1 and e2 are connecting edges and T ′ is
contained in a copy Γ0 ⊆ Γ(N) of Γj,N for some j ∈ {1, . . . ,m}; we then take P ′i′ = e1Te2,
where T is a geodesic in Γ0 with T− = T ′− and T+ = T ′+ (see Figure 5(a) for the case i′ = 1).

We take R′ to be a path such that R̂′ = R, so that R′ is a trivial path if |R| = 0, and R′ consists

of two free edges if R is labelled by an element of X; otherwise (if R is an H̃j-edge) R′ = eSe′

for some connecting edges e, e′ and a path S ⊆ Γ0 for some copy Γ0 of Γj,N in Γ(N) such that
S is geodesic in Γ0.

In order to obtain a contradiction, we now study the components of C .

If all components of C are isolated and of length 1: In this case, the subpath R is either
trivial (in which case |R′| = 0), or an edge labelled by an element of X (in which case
|R′| = 2), or an isolated component of C (in which case, by Lemma 3.3 and since the
path P ′iP

′
i+1R

′ has no parabolic shortenings, |R′| ≤ 3). Thus |R′| ≤ 3 in either case;

similarly, |P̂ ′i |, |P̂ ′i+1| ≤ 3. It then follows from Lemma 3.4 that neither Pi nor Pi+1 can
be an extended subpath of P : thus, it follows from our construction that P ′i = Pi and
P ′i+1 = Pi+1.

We therefore have |Pi|, |Pi+1|, |R′| ≤ 3. But since |P̂i| = 1, we have (Pi)− 6= (Pi)+,
and as both of these vertices are free and no two free vertices of Γ(N) are adjacent, it
follows that |Pi| ≥ 2; similarly, |Pi+1| ≥ 2. We thus have |R′| ≤ 3 < 4 ≤ |PiPi+1|, and
either |PiPi+1| ≤ 5 or |PiPi+1| = 6 ≥ |R′| + 3. As PiPi+1 is a subpath of P and as
R′± = (PiPi+1)±, this contradicts the fact that P is a 5-local geodesic.

If P̂i and P̂i+1 are in the same component of C : In this case we have P ′i = e1T1e2 and
P ′i+1 = e2T2e3 where e1, e2 and e3 are connecting edges, and T1, T2 ⊆ Γ0 for some
copy Γ0 of Γj,N in Γ(N): see Figure 6(b). By construction, we then have Pi = e1T

′
1e2

and Pi+1 = e2T
′
2e3 for some paths T ′1, T

′
2 ⊆ Γ0, and so e2e2 is a subpath of P . This

contradicts the fact that P is a 2-local geodesic.

Otherwise: It follows that either P̂i and R are connected components, or P̂i+1 and R belong to
the same component of C – but not both. Without loss of generality, suppose that the
latter is true. Then R′ = e1T1e3 and P ′i+1 = e2T2e3 where e1, e2 and e3 are connecting
edges, and T1, T2 ⊆ Γ0 for some copy Γ0 of Γj,N in Γ(N): see Figure 6(c). Moreover,
Pi is either an edge labelled by an element of X (in which case |P ′i | = 2) or an isolated
component of C (in which case, by Lemma 3.3, |P ′i | ≤ 3) – therefore, |P ′i | ≤ 3 in either



HELLY GROUPS, COARSELY HELLY GROUPS, AND RELATIVE HYPERBOLICITY 15

case. In particular, by Lemma 3.4 Pi cannot be an extended subpath of P , and so
P ′i = Pi.

Now let T ⊆ Γ0 be a geodesic in Γ0 with T− = (T1)− and T+ = (T2)−, and let
R′′ = e1Te2. Then C ′ := PiR′′ is a closed path in Γ(N) with no parabolic shortenings,

and R̂′′ is an isolated component of Ĉ ′: therefore, by Lemma 3.3, we have |R′′| ≤ 3,
and so |T | ≤ 1. Now consider the paths e1T and Pie2: we have (e1T )± = (Pie2)±,
and, by construction, Pie2 is a subpath of P . We have |Pie2| = |Pi| + 1 ≤ 4; on the
other hand, as (Pi)−, (Pi)+ are distinct free vertices of Γ(N), we have |Pi| ≥ 2 and so
|e1T | = 2 < 3 ≤ |Pie2|. This contradicts the fact that P is a 4-local geodesic. �

Finally, we show that a word that belongs to the set Φ̂ defined in Proposition 3.1 cannot
label the derived path of a geodesic in Γ(N).

Lemma 3.6. Let P ⊆ Γ(N) be a path such that P̂ is labelled by a word in Φ̂. Then P is not a
geodesic.

P ′
P2 Pn−1

P ′′ZP−

W ′
U1 Uk

W ′′

Figure 7. An example of the paths U (blue) and P (red) in the proof of
Lemma 3.6. In this case, P1 is an extended subpath of P , and Pn is trivial.

Proof. Note that, as Φ̂ only consists of non-geodesic words, we have |P̂ | ≥ 2, and so P contains
at least one free vertex. Let P = P ′P2 · · ·Pn−1P

′′, P1 and Pn be as in Definition 2.14, and

let P ∈ Φ̂ be the word labelling P̂ . Let UP be the word chosen in Assumption 3.2(ii), and let

UP ⊆ Cay(G,X ∪H) be a path labelled by UP with (UP)− = P̂− and (UP)+ = P̂+.
Now write UP = e1 · · · ek, where each ei is an edge in Cay(G,X ∪ H). We define a path

U ⊆ Γ(N) as U = W ′U1 · · ·UkW ′′, where (see Figure 7):

(i) W ′ = ZP− if P1 is an extended subpath of P , and W ′ = P ′ otherwise (i.e. if P1 is trivial);
(ii) for 1 ≤ i ≤ k, Ui is a path with no parabolic shortenings and with (Ui)− and (Ui)+ free

such that Ûi = ei: that is, Ui consists of two free edges if ei is labelled by some x ∈ X,

and all non-endpoint vertices of Ui are Hj-internal if ei is labelled by some h ∈ H̃j ;

(iii) W ′′ = ZP+ if Pn is an extended subpath of P , and W ′′ = P ′′ otherwise.

It follows from the construction that U± = P± and that Û = UP . We aim to show that
|U | < |P |.

Note first that for 1 ≤ i ≤ k, the edge ei is labelled either by an element of X (in which

case |Ui| = 2) or by some element h ∈ H̃j (in which case by Assumption 3.2(ii) we have
dΓj (vj , vj · h) ≤ N and hence, as Ui has no parabolic shortenings, |Ui| ≤ 3). Therefore, |Ui| ≤ 3
for each i. We thus have

(2) |U | = |W ′|+ |W ′′|+
k∑
i=1

|Ui| ≤ |W ′|+ |W ′′|+ 3k.

On the other hand, the path P1 is either an extended subpath of P (in which case, by the

construction in Definition 2.14, we have |P ′| ≥ 4, |P̂1| = 1, and |W ′| = |ZP− | ≤ 2: the latter

follows from Assumption 3.2(i)), or trivial (in which case we have |P ′| = |W ′| and |P̂1| = 0).

Therefore, we have |P ′| ≥ |W ′| + 2|P̂1| in either case; similarly, we have |P ′′| ≥ |W ′′| + 2|P̂n|.
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Moreover, since by construction we have |Pi| ≥ 1 for 2 ≤ i ≤ n − 1 and since (Pi)− and (Pi)+

are free, we actually have |Pi| ≥ 2 for 2 ≤ i ≤ n− 1. Therefore,

(3)
|P | = |P ′|+ |P ′′|+

n−1∑
i=2

|Pi| ≥
(
|W ′|+ 2|P̂1|

)
+
(
|W ′′|+ 2|P̂n|

)
+ 2(n− 2)

= |W ′|+ |W ′′|+ 2
(
|P̂1|+ (n− 2) + |P̂n|

)
≥ |W ′|+ |W ′′|+ 2|P̂ |,

where the last inequality follows since |P̂i| ≤ 1 for 2 ≤ i ≤ n− 1.

Finally, note that since P̂ is labelled by an element of Φ̂, it follows from Proposition 3.1 that

2|P̂ | > 3dX∪H(P̂−, P̂+) = 3|UP | = 3k. This implies, together with (2) and (3), that

|P | ≥ |W ′|+ |W ′′|+ 2|P̂ | > |W ′|+ |W ′′|+ 3k ≥ |U |.
Thus P is not a geodesic, as required. �

We now use Propositions 3.1 & 3.5 together with Lemma 3.6 to prove Theorem 1.5. In partic-
ular, the set Φ in Theorem 1.5 is constructed using Proposition 3.1, and shown to only contain
non-geodesic words using Lemma 3.6, after which the result follows from Propositions 3.1 & 3.5.

Proof of Theorem 1.5. Let λ ≥ 0, c ≥ 0 and Φ̂ be the constants and the set of words over X∪H
given in Proposition 3.1, and let N ≥ 1 be a constant such that Assumption 3.2 is true. Let
Φ0 = A ∪ B, where

(i) A is the set of paths P ⊆ Γ(N) with no parabolic shortenings such that P̂ is labelled

by a word in Φ̂, and
(ii) B is the set of non-geodesic paths P ⊆ Γ(N) of length |P | ≤ 5.

It is clear that both A and B are G-invariant. Moreover, note that, by Lemma 2.13, the
graph Γ(N) is proper (as a metric space) and the action Gy Γ(N) is geometric. Now it is easy
to see from Definition 2.14 that given a word Q over X ∪ H there is a bound on the lengths

of paths Q ⊆ Γ(N) without parabolic shortenings such that Q̂ is labelled by Q. As Φ̂ is finite,
this implies that A is a union of finitely many G-orbits. Similarly, we can see that B consists
of finitely many G-orbits, and so the orbit space Φ0/G is finite. We set Φ to be a (finite) set of
paths in Γ(N) consisting of one representative for each G-orbit in Φ0. By Lemma 3.6, none of
the paths in Φ0 (and so in Φ) are geodesic.

Now let P ⊆ Γ(N) be a path in Γ(N) that has no parabolic shortenings and does not contain
any G-translate of a path in Φ (i.e. any path in Φ0) as a subpath. It then follows that P is

5-local geodesic, and that P̂ does not have a subpath labelled by an element of Φ̂ (as, if it did,

any such subpath could be expressed as Q̂ for a subpath Q ⊆ P ). By Proposition 3.5, P̂ is a
2-local geodesic, and thus, by Proposition 3.1, it is a (λ, c)-quasi-geodesic that does not vertex
backtrack (and so does not backtrack). This establishes the result. �

4. Hellyness

In this section, we prove Proposition 4.5, implying immediately Theorem 1.2 and, conse-
quently, we prove Theorem 1.1. We first recall a few definitions, following [CCG+20].

Definition 4.1. Let Γ be a graph.

(i) Given β ≥ 1, we say Γ has β-stable intervals (or simply stable intervals) if for any
geodesic path P ⊆ Γ, any vertex w ∈ P and any u ∈ V (Γ) with dΓ(u, P−) = 1,
there exists a geodesic Q ⊆ Γ and a vertex v ∈ Q such that Q− = u, Q+ = P+ and
dΓ(w, v) ≤ β.

(ii) Given ρ ≥ 0 and w ∈ V (Γ), the ball Bρ(w) = Bρ(w; Γ) is the set of all u ∈ V (Γ) such
that dΓ(u,w) ≤ ρ. Given a constant ξ ≥ 0 and a collection B = {Bρi(wi) | i ∈ I} of
balls in Γ, we say B satisfies the ξ-coarse Helly property if

⋂
i∈I Bρi+ξ(wi) 6= ∅. We

say Γ is coarsely Helly (respectively, Helly) if there exists a constant ξ ≥ 0 such that
every collection of pairwise intersecting balls in Γ satisfies the ξ-coarse Helly property
(respectively, the 0-coarse Helly property).
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(iii) A group G is said to be Helly (respectively, coarsely Helly) if it acts geometrically,
that is, properly discontinuously and cocompactly, by graph automorphisms on a Helly
(respectively, coarsely Helly) graph.

The merit of these definitions is supported by the following result.

Theorem 4.2 ([CCG+20, Theorem 1.2]). If G is a group acting geometrically on a coarsely
Helly graph that has stable intervals, then G is Helly.

We now start our proof of Theorem 1.1. Throughout the remainder of this section, we adopt
the following terminology.

Let G be a finitely generated group (with a finite generating set X, say), and suppose that
G is hyperbolic relative to a collection of its subgroups. As G is finitely generated, such a

collection is finite (see [Osi06, Corollary 2.48]): H1, . . . ,Hm, say. Let H̃1, . . . , H̃m be isomorphic

copies of H1, . . . ,Hm (respectively), ε : F (X) ∗ (∗mj=1H̃j) → G the canonical surjection, and

H =
⊔m
j=1(H̃j \ {1}), as in Section 2.2.

Furthermore, let Γ1, . . . ,Γm be proper graphs such that H̃j acts on Γj geometrically (for each
j); let vj ∈ V (Γj) be (fixed, but arbitrarily chosen) basepoints. We fix constants λ,N ≥ 1 and
c ≥ 0 given by Theorem 1.5, and construct the graphs Γj,N (respectively, Γ(N)) with geometric

actions of H̃j (respectively, G) as in Section 2.3.
The idea of our proof of Theorem 1.1 is to first use Theorem 1.5 to transform geodesics in

Γ(N) into (λ, c)-quasi-geodesics in Cay(G,X∪H), and then use Theorem 2.6 or Proposition 2.10
to show that if each Γj is coarsely Helly (respectively, has stable intervals), then Γ(N) is coarsely
Helly (respectively, has stable intervals) as well. Theorem 1.1 will then follow from Theorem 4.2.

4.1. Stable intervals. Here we show that if each Γj has stable intervals then so does Γ(N). We
start by taking a geodesic P ⊆ Γ(N) and vertices w ∈ P , u ∈ V (Γ(N)) as in Definition 4.1(i),
and choosing any geodesic R ⊆ Γ(N) with R− = u and R+ = P+. Then, by Theorem 1.5, the

derived paths P̂ and R̂ are quasi-geodesics that do not backtrack. If w is ‘close’ to a free vertex
of P , then we can use Theorem 2.6 to show that w is also ‘close’ to a vertex of R. Otherwise,
w is in a copy Γ0 of some Γj,N , and S := R ∩ Γ0 is a non-empty subpath by Theorem 2.6; we
may then use the stable interval property in Γ0 to replace the geodesic subpath S ⊆ Γ0 of R by
another geodesic subpath containing a vertex that is ‘close’ to w in Γ0.

We first show how we can pass the stable interval property from Γj to Γj,N , as follows.

Lemma 4.3. Let β ≥ 1. If Γj has β-stable intervals, then Γj,N has (3β + 1)-stable intervals.

Q

R′

R e

S

w

v′

v(∈ R)

v(∈ S)

(a) The proof of the claim.

Q′1 w

Q′`

Q′k

P ′

v0

P1

v

Pn

u
w′

vn

(b) The paths R (red) and Q′ (blue) in Γj .

Figure 8. The proof of Lemma 4.3.

Proof. We first prove the following Claim.

Claim. Let k ≥ 0. If P ⊆ Γj is a path of length dΓj (P−, P+) + k and v ∈ P is a vertex, then
there exists a geodesic Q ⊆ Γj with Q± = P± and a vertex w ∈ Q such that dΓj (v, w) ≤ βk.

Proof of Claim. By induction on k. The base case, k = 0, is trivial.
Suppose that the claim holds for k ≤ r − 1, for some r ≥ 1. Let P ⊆ Γj be a path of length

dΓj (P−, P+) + r, and let v ∈ P be a vertex. Let R ⊆ P be the longest geodesic subpath of P
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with R− = P−. Thus Re ⊆ P is a non-geodesic subpath for an edge e ⊆ P . Let S ⊆ P be the
subpath such that P = ReS; see Figure 8(a).

Suppose first that v /∈ R. Then we have v ∈ S, and so v ∈ R′S, where R′ ⊆ Γj is any geodesic
with R′± = (Re)±. Moreover, we have

(4) |R′S| = |R′|+ |S| ≤ |Re| − 1 + |S| = |P | − 1 = dΓj ((R
′S)−, (R

′S)+) + (r − 1).

Thus, by the inductive hypothesis, there exists a geodesic Q ⊆ Γj with Q± = (R′S)± = P± and
a vertex w ∈ Q with dΓj (v, w) ≤ β(r − 1) < βr, as claimed.

Suppose now that v ∈ R. Since Γj has β-stable intervals, there exists a geodesic R′ ⊆ Γj
with R′± = (Re)± and a vertex v′ ⊆ R′ such that dΓj (v, v

′) ≤ β. By (4), we can apply the
inductive hypothesis to R′S; in particular, since v′ ∈ R′S, there exists a geodesic Q ⊆ Γj with
Q± = (R′S)± = P± and a vertex w ∈ Q with dΓj (v

′, w) ≤ β(r − 1). It then follows that
dΓj (v, w) ≤ dΓj (v, v

′) + dΓj (v
′, w) ≤ βr, as claimed. �

Now let P ⊆ Γj,N be a geodesic, let u ∈ V (Γj,N ) be a vertex with dΓj,N (u, P−) = 1, and let
v ∈ P be any vertex. Let n = |P | and let P− = v0, . . . , vn = P+ be the vertices of P , so that
dΓj,N (vi−1, vi) = 1 for each i. By construction, it then follows that u, v0, . . . , vn are in V (Γj),
and that there exist paths P ′, P1, . . . , Pn ⊆ Γj such that we have (Pi)− = vi−1, (Pi)+ = vi and
|Pi| ≤ N for each i, as well as P ′− = u, P ′+ = v0 and |P ′| ≤ N .

Consider the path R = P ′P1 · · ·Pn ⊆ Γj . By construction, v ∈ R, and |R| = |P ′|+
∑n

i=1 |Pi| ≤
(n+ 1)N . On the other hand, since P ⊆ Γj,N is a geodesic, we have n = |P | = dΓj,N (v0, vn) =⌈
dΓj (v0, vn)/N

⌉
; therefore, dΓj (v0, vn) > (n− 1)N . It thus follows that

dΓj (R−, R+) ≥ dΓj (v0, vn)− dΓj (u, v0) > (n− 1)N −N = (n− 2)N ≥ |R| − 3N.

Therefore, by the Claim, there exists a geodesic Q′ ⊆ Γj with Q′± = R± and a vertex w′ ∈ Q′
such that dΓj (v, w

′) ≤ 3βN ; see Figure 8(b).
Finally, we can write Q′ = Q′1 · · ·Q′k, where k = d|Q′|/Ne, with |Q′i| ≤ N for each i. By

construction, there exist edges e1, . . . , ek ⊆ Γj,N with (ei)± = (Q′i)± for each i. We have
|e1 · · · ek| = k =

⌈
dΓj (Q

′
−, Q

′
+)/N

⌉
since Q′ ⊆ Γj is a geodesic, and so Q := e1 · · · ek ⊆ Γj,N is a

geodesic. Moreover, since w′ ∈ Q′ we have w′ ∈ Q′` for some `, and so dΓj (w
′, w) ≤ |Q′`| ≤ N ,

where w = (Q′`)−; note that w is a vertex of Q. Thus Q is a geodesic in Γj,N with Q− = u and
Q+ = P+, and w ∈ Q is a vertex such that

dΓj (v, w) ≤ dΓj (v, w
′) + dΓj (w

′, w) ≤ 3βN +N,

and so dΓj,N (v, w) =
⌈
dΓj (v, w)/N

⌉
≤ 3β+1. This proves that Γj,N has (3β+1)-stable intervals,

as required. �

Proposition 4.4. If each Γj has stable intervals, then so does Γ(N).

Proof. Since each Γj,N is locally finite and the action H̃j y Γj,N is properly discontinuous, there

are finitely many elements h ∈ H̃j satisfying dΓj,N (vj , vj · h) ≤ 5. We may therefore choose a

constant k ≥ 1 such that dX(1, h) ≤ k whenever j ∈ {1, . . . ,m} and h ∈ H̃j are such that
dΓj,N (vj , vj · h) ≤ 5. Let ε = ε(λ, c, k) ≥ 0 be the constant given by Theorem 2.6. Furthermore,
since X is finite and, for each j, the homomorphism ε|

H̃j
is injective, there are finitely many

elements h ∈ H̃j such that dX(1, ε(h)) ≤ ε. We may thus choose a constant ε ≥ 0 such that we

have dΓj,N (vj , vj · h) ≤ ε whenever j ∈ {1, . . . ,m} and h ∈ H̃j are such that dX(1, ε(h)) ≤ ε.
Let β0 ≥ 1 be such that Γ1, . . . ,Γm all have β0-stable intervals. We set

β := max

{
ε

2
+ 2ε+ 5, (3β0 + 1)(2ε+ 4)

}
.

We aim to show that Γ(N) has β-stable intervals. In particular, let P ⊆ Γ(N) be a geodesic, let
w ∈ P be a vertex, and let x ∈ V (Γ(N)) be such that dΓ(N)(P−, x) = 1. We will find a geodesic
Q ⊆ Γ(N) with Q− = x and Q+ = P+ and a vertex v ∈ Q such that dΓ(N)(w, v) ≤ β.
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R− = [(P−, x)]

P− = P̂−

ε(x)P−

R̂−

Γ0

eP eR

R−

P− = P̂− R̂−

Γ0

eP eR
P− R−

P̂− R̂−

(a) Bounding dX(P̂−, R̂−): P− free, R− medial (left); P− free, R− ∈ Γ0 (centre); P−, R− ∈ Γ0 (right).

Γ0

e e′

f f ′

e0 P ′′i w e′0

R′i′

g hg

h0g h1g

(b) The paths Pi and Ri′ .

P ′′i
w

S′

v

S

T T ′

(c) ‘Moving’ along T and T ′.

Figure 9. The proof of Proposition 4.4. Colours are the same as in Figure 2.

Let P = P ′P2 · · ·Pn−1P
′′ and P1, Pn ⊆ Γ(N) be as in Definition 2.14. Let R ⊆ Γ(N)

be an arbitrary geodesic with R− = x and R+ = P+, and, similarly to the case of P , let
R = R′R2 · · ·R`−1R

′′ and R1, R` ⊆ Γ(N) be as in Definition 2.14.

Note first that since P and R are geodesics, by Theorem 1.5 the derived paths P̂ and R̂ are 2-

local geodesic (λ, c)-quasi-geodesics that do not backtrack. We furthermore claim that P̂ and R̂

are k-similar: that is, dX(P̂−, R̂−) ≤ k and dX(P̂+, R̂+) ≤ k. Indeed, we have dX(P̂−, R̂−) ≤ k
(see Figure 9(a)):

(i) If either P− or R− is a medial vertex, then the other one is free, and dX(P̂−, R̂−) ≤ 1
by the construction in Definition 2.14.

(ii) Otherwise, one of P− and R− is Hj-internal (for some j) – and so belongs to some
copy Γ0 of Γj,N in Γ(N) – and the other one is either in Γ0 as well or free. Then, by

construction, there exist connecting edges eP and eR in Γ(N) such that (eP )− = P̂−,

(eR)− = R̂− and (eP )+, (eR)+ ∈ Γ0. Moreover, if P− is Hj-internal, then by construction
dΓ0((eP )+, P−) ≤ 2, whereas if P− is free then (eP )+ = R−; similarly for R−. It follows

that dΓ0((eP )+, (eR)+) ≤ 5. Therefore, dX(P̂−, R̂−) ≤ k, as required.

A similar argument shows that dX(P̂+, R̂+) ≤ k. We may thus apply Theorem 2.6 to the paths

P̂ and R̂.
We argue in two parts, based on the minimal distance between w and a vertex of P̂ .

If dΓ(N)(w,w
′) ≤ ε

2 + 3 for some vertex w′ of P̂ : Since P̂ is a 2-local geodesic, all vertices of

P̂ are phase – in particular, w′ ∈ P̂ is phase. It then follows by Theorem 2.6(i) that

dX(w′, v′) ≤ ε for some phase vertex v′ of R̂. In particular, there is a path in Γ(N)
from w′ to v′ consisting of ≤ 2ε free edges, and so we have dΓ(N)(w

′, v′) ≤ 2ε. By

construction, every vertex of R̂ is distance ≤ 2 away (in Γ(N)) from a vertex of R, and
so dΓ(N)(v

′, v) ≤ 2 for some v ∈ R. Therefore,

dΓ(N)(w, v) ≤ dΓ(N)(w,w
′) + dΓ(N)(w

′, v′) + dΓ(N)(v
′, v) ≤

(
ε

2
+ 3

)
+ 2ε+ 2 ≤ β,

as required.
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Otherwise: Note that, by construction, any vertex of P that is not a vertex of P1 · · ·Pn must

be distance ≤ 3 away from either P̂− or P̂+. Since dΓ(N)(w, P̂±) > ε
2 + 3 ≥ 3, it

follows that w is a vertex of P1 · · ·Pn, and so w ∈ Pi for some i. By our construction

(see Definition 2.14), (Pi)− and (Pi)+ are vertices of P̂ , and either Pi is a path of
length ≤ 2 or all non-endpoint vertices of Pi are Hj-internal for some (fixed) j. But

|Pi| ≥ dΓ(N)((Pi)−, w)+dΓ(N)(w, (Pi)+) > 2( ε2 +3) > 4, and so we must have Pi = eP ′ie
′,

where e, e′ are connecting edges and P ′i is a path with |P ′i | > 2 lying in the g-copy Γ0 of
Γj,N for some g ∈ G. In particular, without loss of generality we have e = {g, (Hjg, u)}
and e′ = {hg, (Hjg, u

′)} for some h ∈ Hj and u, u′ ∈ V (Γj).
We now claim that dΓ(N)((P

′
i )−, (P

′
i )+) > ε. Indeed, let e0 and e′0 be the first and

the last edges of P ′i , so that P ′i = e0P
′′
i e
′
0 for some path P ′′i ⊆ Γ0; see Figure 9(b). By

Definition 2.14, P ′′i is a subpath of P and so a geodesic in Γ(N). Moreover, since
dΓ(N)(w, (Pi)±) > ε

2 + 3 > 1 we have w 6= (P ′i )±, and so w ∈ P ′′i ; furthermore,

dΓ(N)(w, (P
′′
i )±) > ε

2 + 1, implying that

dΓ(N)

(
(P ′i )−, (P

′
i )+

)
≥ dΓ(N)

(
(P ′′i )−, (P

′′
i )+

)
− dΓ(N)

(
(P ′i )−, (P

′′
i )−

)
− dΓ(N)

(
(P ′i )+, (P

′′
i )+

)
= |P ′′i | − 2 = dΓ(N)

(
(P ′′i )−, w

)
+ dΓ(N)

(
w, (P ′′i )+

)
− 2

> 2

(
ε

2
+ 1

)
− 2 = ε,

as claimed.
Since (P ′i )− = (Hjg, u) and (P ′i )+ = (Hjg, u

′), it follows that dΓj,N (u, u′) > ε. There-

fore, by the choice of ε, it follows that dX

(
(P̂i)−, (P̂i)+

)
= dX(g, hg) = dX(1, h) > ε.

Therefore, by Theorem 2.6(ii), P̂i is connected to a component of R̂, that is, to R̂i′ for

some i′ ∈ {1, . . . , `}. Furthermore, Theorem 2.6(iii) implies that dX

(
(P̂i)−, (R̂i′)−

)
≤ ε

and dX

(
(P̂i)+, (R̂i′)+

)
≤ ε. By the construction (Definition 2.14), we have Ri′ =

fR′i′f
′, where f = {h0g, (Hjg, t)} and f ′ = {h1g, (Hjg, t

′)} are connecting edges (here
h0, h1 ∈ Hj and t, t′ ∈ V (Γj)), and R′i′ ⊆ Γ0; see Figure 9(b). It then follows that
dX(1, h0) = dX(g, h0g) ≤ ε and so, by the choice of ε, we have dΓj,N (u, t) ≤ ε; conse-

quently, dΓ0

(
(P ′i )−, (R

′
i′)−

)
= dΓj,N (u, t) ≤ ε. Similarly, we have dΓ0

(
(P ′i )+, (R

′
i′)+

)
≤

ε.
Now by the construction, as the vertex (R′i′)− belongs to Γ0, it is distance ≤ 1 away

from some vertex s ∈ Γ0 ∩ R; similarly, dΓ0

(
(R′i′)+, s

′) ≤ 1 for some s′ ∈ Γ0 ∩ R.
Furthermore, there exists subpath S of R such that S ⊆ Γ0, S− = s and S+ = s′. Note
that we have

dΓ0

(
(P ′′i )−, S−

)
≤ dΓ0

(
(P ′′i )−, (P

′
i )−
)

+ dΓ0

(
(P ′i )−, (R

′
i′)−

)
+ dΓ0

(
(R′i′)−, S−

)
≤ 1 + ε+ 1 = ε+ 2,

and similarly dΓ0 ((P ′′i )+, S+) ≤ ε + 2. Hence there exist paths T, T ′ ⊆ Γ0 such that
T− = (P ′′i )−, T+ = S−, T ′− = (P ′′i )+, T ′+ = S+, and |T |, |T ′| ≤ ε+ 2.

Finally, note that the graph Γ0 is isomorphic to Γj,N . By Lemma 4.3 and the choice
of β0, it follows that Γ0 has (3β0 + 1)-stable intervals. Since P ′′i ⊆ Γ0 is a geodesic and
w ∈ P ′′i , we may use this fact |T | + |T ′| times, ‘moving’ the endpoints of a geodesic
joining a vertex of T to a vertex of T ′ along the paths T and T ′ (see Figure 9(c)), to
find a geodesic S′ ⊆ Γ0 and a vertex v ∈ S′ such that S′− = S−, S′+ = S+ and

dΓ0(w, v) ≤ (3β0 + 1)(|T |+ |T ′|) ≤ (3β0 + 1)(2ε+ 4) ≤ β.

Since S ⊆ Γ0 is a geodesic in Γ(N) (and so in Γ0), it follows that |S′| = |S|. If we express
the geodesic R ⊆ Γ(N) as R = S0SS1 for some paths S0, S1 ⊆ Γ(N), it then follows
that the path Q = S0S

′S1 ⊆ Γ(N) is a geodesic as well, and we have Q− = R− = w′

and Q+ = R+ = P+. Since v ∈ Q, this establishes the result. �
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4.2. The coarse Helly property. The remainder of this section is dedicated to a proof of the
following result which immediately implies Theorem 1.2. Using it, at the end of the subsection
we prove Theorem 1.1.

Proposition 4.5. If each Γj is coarsely Helly, then so is Γ(N).

In order to prove the Proposition, we start by taking a collection {Bρi(xi; Γ(N)) | i ∈ I}
of pairwise intersecting balls, picking a basepoint y ∈ Γ(N), and choosing an index I ∈ I
maximising dΓ(N)(xI , y)− ρI . We consider geodesic triangles with vertices y, xI and xi (where
i ∈ I \ {I}): by Theorem 1.5, the edges of such triangles correspond to quasi-geodesics in
Cay(G,X ∪H) that do not backtrack. The strategy of the proof depends on whether the point
z, located on a geodesic R ⊆ Γ(N) from y to xI and such that dΓ(N)(xI , z) = ρI , is ‘close’ to
a free vertex of R. If it is, we may use Proposition 2.10 and maximality of dΓ(N)(xI , z) − ρI
to find a universal upper bound for the numbers dΓ(N)(xi, z)− ρi: see Lemma 4.7. Otherwise,
z is in a copy Γ0 of some Γj,N , and we complete the proof by using Proposition 2.10 together
with the coarse Helly property in Γ0 for a collection of balls centered at vertices where geodesics
from xi to xI ‘enter’ Γ0 (where i ∈ I \ {I}), along with a ball centered at the vertex where R
‘leaves’ Γ0: see Lemma 4.8.

We start by making the following elementary observation.

Lemma 4.6. Let ξ ≥ 0. If Γj is ξ-coarsely Helly, then Γj,N is dξ/Ne-coarsely Helly.

Proof. Note that Bρ(w; Γj,N ) = BρN (w; Γj) for each w ∈ V (Γj) and ρ ≥ 0. Thus, for
any collection {Bρi(wi; Γj,N ) | i ∈ I} of pairwise intersecting balls in Γj,N , the collection
{BρiN (wi; Γj) | i ∈ I} is a collection of pairwise intersecting balls in Γj . By the ξ-coarse Helly
property, it follows that there exists v ∈ V (Γj) with dΓj (v, wi) ≤ ρiN + ξ for each i ∈ I. We
thus have dΓj,N (v, wi) ≤ d(ρiN + ξ)/Ne = ρi + dξ/Ne for each i ∈ I, proving the dξ/Ne-coarse
Helly property for the collection of balls in Γj,N . �

Now as before, let λ ≥ 1 and c ≥ 0 be constants such that for any geodesic P ⊆ Γ(N),

the path P̂ ⊆ Cay(G,X ∪H) is a 2-local geodesic (λ, c)-quasi-geodesic that does not backtrack:
such constants exist by Theorem 1.5. Let µ = µ(λ, c) be the constant given by Proposition 2.10.
Since X is finite and ε|

H̃j
is injective for each j, there are finitely many elements h ∈ H such

that |ε(h)|X ≤ µ. We may therefore choose a constant µ ≥ 0 such that dΓj,N (vj , vj · h) ≤ µ

whenever h ∈ H̃j satisfies |ε(h)|X ≤ µ.
For the remainder of this section, we assume that Γ1, . . . ,Γm are coarsely Helly. Let ξ0 ≥ 0

be such that Γ1, . . . ,Γm are all ξ0-coarsely Helly, and set

(5) ξ = max

{
µ

2
+ 4µ+ 5,

5µ

2
+

⌈
ξ0

N

⌉
+ 4

}
.

We aim to show that every collection of pairwise intersecting balls in Γ(N) satisfies the ξ-coarse
Helly property. This will establish Proposition 4.5.

Thus, let B′ =
{
Bρ′i(x

′
i; Γ(N))

∣∣∣ i ∈ I} be a collection of pairwise intersecting balls in Γ(N).

By the choice of N (see Assumption 3.2(i)), any vertex of Γ(N) is distance ≤ 2 away from a free
vertex, and so for each i ∈ I we may pick a free vertex xi ∈ V (Γ(N)) such that dΓ(N)(xi, x

′
i) ≤ 2.

By letting ρi = ρ′i + 2 (for all i ∈ I), we see that the collection B = {Bρi(xi; Γ(N)) | i ∈ I} of
balls in Γ(N) satisfies Bρi(xi) ⊇ Bρ′i(x

′
i) for all i ∈ I, and hence, as the balls in B′ have pairwise

non-empty intersections, so do the balls in B. Moreover, since Bρi+ξ−4(xi) = Bρ′i+ξ−2(xi) ⊆
Bρ′i+ξ(x

′
i) for each i, in order to show that B′ satisfies the ξ-coarse Helly property, it is enough

to show that B satisfies the (ξ−4)-coarse Helly property. We will show that the latter is indeed
the case.

Let y ∈ V (Γ(N)) be an arbitrary free vertex (y = 1G, say), and consider the set D =
{dΓ(N)(y, xi) − ρi | i ∈ I} ⊆ Z. Note that D is bounded from above: indeed, for any (fixed)
j ∈ I and any i ∈ I we have

dΓ(N)(y, xi) ≤ dΓ(N)(y, xj) + dΓ(N)(xj , xi) ≤ dΓ(N)(y, xj) + ρj + ρi
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since Bρj (xj)∩Bρi(xi) 6= ∅, and hence D ≤ dΓ(N)(y, xj) +ρj for any D ∈ D. We may therefore
fix an index I ∈ I such that dΓ(N)(y, xI)− ρI = maxD.

We pick a geodesic R ⊆ Γ(N) and, for each i ∈ I, geodesics Pi, Qi ⊆ Γ(N), such that
(Pi)+ = (Qi)− = xi, (Qi)+ = R− = y and R+ = (Pi)− = xI , so that PiQiR is a geodesic triangle
in Γ(N) with vertices xI , xi and y; note that we do not exclude the ‘degenerate’ cases when
xi ∈ {y, xI}. If |R| < ρI , it then follows that D < 0 for all D ∈ D and so y ∈

⋂
B∈B B, proving

the Helly property (and so the (ξ − 4)-coarse Helly property) for B. We may therefore without
loss of generality assume that |R| ≥ ρI . Let z ∈ R be the vertex such that dΓ(N)(xI , z) = ρI ;
see Figure 10.

R

QiPi

ρI

yzxI

xi

z′

vi(∈ Pi) vi(∈ Qi)

Figure 10. The proof of Proposition 4.5: general setup and Lemma 4.7.

Our proof of the (ξ − 4)-coarse Helly property for B splits into two cases, based on whether

or not z is ‘close’ to a vertex of R̂.

Lemma 4.7. If dΓ(N)(z, z
′) ≤ µ

2 + 1 for some vertex z′ ∈ R̂, then B satisfies the
(
µ
2 + 4µ+ 1

)
-

coarse Helly property.

Proof. Fix i ∈ I, and let P = Pi and Q = Qi. By Theorem 1.5, since P,Q,R ⊆ Γ(N)

are geodesics, P̂ , Q̂, R̂ ⊆ Cay(G,X ∪ H) are 2-local geodesic (λ, c)-quasi-geodesics that do not

backtrack; in particular, every vertex of R̂ is phase. Moreover, as the endpoints of P , Q and

R are free vertices, we have P̂± = P±, Q̂± = Q± and R̂± = R±, and so P̂ Q̂R̂ is a triangle in
Cay(G,X ∪H).

It then follows from Proposition 2.10(i) that there exists a vertex v = vi of P̂ or of Q̂

such that dX(z′, v) ≤ µ. Since vertices of P̂ (respectively, Q̂) are precisely the free vertices
of P (respectively, Q), it follows that either v ∈ P or v ∈ Q; see Figure 10. We claim that
dΓ(N)(xi, v) ≤ ρi + dΓ(N)(z, v).

If v ∈ P , then note that dΓ(N)(xI , v) ≥ dΓ(N)(xI , z) − dΓ(N)(z, v) = ρI − dΓ(N)(z, v). Since
BρI (xI) ∩Bρi(xi) 6= ∅, it follows that dΓ(N)(xi, xI) ≤ ρi + ρI , and so, as P is a geodesic,

dΓ(N)(xi, v) = dΓ(N)(xi, xI)− dΓ(N)(xI , v) ≤ (ρi + ρI)− (ρI − dΓ(N)(z, v)) = ρi + dΓ(N)(z, v),

as claimed.
On the other hand, if v ∈ Q, then note that dΓ(N)(y, z) = dΓ(N)(y, xI)−ρI ≥ dΓ(N)(y, xi)−ρi

by the choice of I. It follows that

dΓ(N)(y, v) ≥ dΓ(N)(y, z)− dΓ(N)(z, v) ≥ dΓ(N)(y, xi)− (ρi + dΓ(N)(z, v)),

and so, as Q is a geodesic, we have dΓ(N)(xi, v) = dΓ(N)(y, xi) − dΓ(N)(y, v) ≤ ρi + dΓ(N)(z, v),
as claimed.

Therefore, we have dΓ(N)(xi, v) ≤ ρi + dΓ(N)(z, v) in either case, and hence

(6) dΓ(N)(xi, z
′) ≤ dΓ(N)(xi, v) + dΓ(N)(z

′, v) ≤ ρi + dΓ(N)(z, v) + dΓ(N)(z
′, v).

Now since dX(z′, v) ≤ µ, there is a path in Γ(N) from z′ to v consisting of ≤ 2µ free edges, and

so dΓ(N)(z
′, v) ≤ 2µ. It follows that dΓ(N)(z, v) ≤ dΓ(N)(z, z

′) + dΓ(N)(z
′, v) ≤ µ

2 + 1 + 2µ, and

so (6) implies that dΓ(N)(xi, z
′) ≤ ρi + µ

2 + 4µ+ 1.
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Thus the intersection
⋂
i∈I Bρi+µ

2
+4µ+1(xi; Γ(N)) contains the vertex z′ and so is non-empty.

Therefore, B satisfies the
(
µ
2 + 4µ+ 1

)
-coarse Helly property, as required. �

Lemma 4.8. If dΓ(N)(z, z
′) > µ

2 + 1 for all z′ ∈ R̂, then B satisfies the
(

5µ
2 +

⌈
ξ0
N

⌉)
-coarse

Helly property.

R

QiPi

yxI

xi

rr′

pi

p′i

Γ0

(a) i ∈ JP \ JQ.

R

QiPi

yxI

xi

rr′

qi

q′i
Γ0

(b) i ∈ JQ \ JP .

R

QiPi

yxI

xi

rr′

pi

p′i
qi

q′i
Γ0

(c) i ∈ JP ∩ JQ.

R

QiPi

yxI

xi

z rr′

p′i

σ′ σ

ρi − τi

Γ0

(d) Definitions of σ, σ′ and τi.

S

Pi Pi′

xi xi′

xI

pi

p′i

pi′

p′i′

(e) The path S does not penetrate Γ0.

S

Pi Pi′

xi xi′

xI

pi

p′i

pi′

p′i′

s s′

(f) The path S penetrates Γ0.

Figure 11. The proof of Lemma 4.8.

Proof. Since by construction the vertices of R̂ are precisely the free vertices of R, it follows that
the vertex z ∈ R is distance > µ

2 + 1 ≥ 1 away from any free vertex of R. It follows that z is
Hj-internal (for some j), and so z ∈ Γ0, where Γ0 is the g-copy of Γj,N in Γ(N) for some g ∈ G.
In particular, R penetrates Γ0.

Throughout the proof, we adopt the following terminology. Suppose S ⊆ Γ(N) is a geodesic

that penetrates Γ0 such that S− and S+ are free vertices. By Theorem 1.5, Ŝ ⊆ Cay(G,X ∪H)
is then a 2-local geodesic that does not backtrack. It then follows that S = S0e0S

′e1S1, where
S′ = S ∩ Γ0, and e0 = {h0g, (Hjg, u0)}, e1 = {h1g, (Hjg, u1)} are connecting edges for some
h0, h1 ∈ Hj and u0, u1 ∈ V (Γj). In this case, we say S enters (respectively, leaves) Γ0 at

the vertex S′− (respectively, S′+). The path Ŝ ⊆ Cay(G,X ∪ H) then has an edge e ⊆ Ŝ with

e− = h0g and e+ = h1g such that e is an Hj-component of Ŝ; we say that e is the Hj-component

of Ŝ associated to Γ0.
The following observation follows from the choice of µ.
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Observation. Let S ⊆ Γ(N) be a geodesic that penetrates Γ0 with S± free, let u0 and u1 be

the vertices at which S enters and leaves Γ0, respectively, and let e be the Hj-component of Ŝ
associated to Γ0. If dX(e−, e+) ≤ µ, then dΓ0(u0, u1) ≤ µ (and therefore dΓ(N)(u0, u1) ≤ µ).

Let r and r′ be the vertices of Γ(N) at which R enters and leaves Γ0, respectively. Since r and

r′ are adjacent to free vertices of R, it follows from the premise that dΓ(N)(z, r), dΓ(N)(z, r
′) > µ

2 .
Therefore, as R is a geodesic, we have

(7) dΓ(N)(r, r
′) = dΓ(N)(r, z) + dΓ(N)(z, r

′) > µ.

Now for each i ∈ I, it follows from Theorem 1.5 that P̂iQ̂iR̂ is a non-backtracking (λ, c)-
quasi-geodesic triangle in Cay(G,X∪H). By (7) and the Observation, if e is the Hj-component

of R̂ associated to Γ0 then dX(e−, e+) > µ. Therefore, it follows from Proposition 2.10(ii) that

e is connected to an Hj-component of either P̂i or Q̂i, and by construction such a component
must be associated to Γ0. In particular, either Pi or Qi (or both) must penetrate Γ0.

Let JP ⊆ I (respectively, JQ ⊆ I) be the set of all i ∈ I such that Pi (respectively, Qi)
penetrates Γ0, so that I = JP ∪ JQ. For each i ∈ JP , let pi and p′i be the vertices of Γ(N) at
which Pi enters and leaves Γ0, respectively; similarly, for i ∈ JQ, let qi and q′i be the vertices of
Γ(N) at which Qi enters and leaves Γ0, respectively. By parts (iii) and (iv) of Proposition 2.10
and the choice of µ (cf the Observation above), it follows that

(a) If i ∈ JP \ JQ, then dΓ0(r′, pi) ≤ µ and dΓ0(p′i, r) ≤ µ.
(b) If i ∈ JQ \ JP , then dΓ0(r′, qi) ≤ µ and dΓ0(q′i, r) ≤ µ.
(c) If i ∈ JP ∩ JQ, then dΓ0(r′, pi) ≤ µ, dΓ0(p′i, qi) ≤ µ and dΓ0(q′i, r) ≤ µ.

This is depicted in parts (a), (b) and (c) of Figure 11.
Now let σ = dΓ(N)(z, r) and σ′ = dΓ(N)(z, r

′). For each i ∈ JP , let also τi = ρi−dΓ(N)(xi, p
′
i).

Consider the following collection of balls in Γ0:

B = {Bσ′(r′; Γ0)} ∪ {Bτi+ 5µ
2

(p′i; Γ0) | i ∈ JP }.

We claim that τi + 2µ ≥ 0 for each i ∈ JP and that the balls in B have pairwise non-empty
intersections.

τi + 2µ ≥ 0 for each i ∈ JP : Suppose first that i ∈ JP \ JQ; see Figure 11(a). By the point
(a) above we then have dΓ(N)(p

′
i, r) ≤ µ, and so

dΓ(N)(xI , p
′
i) ≥ dΓ(N)(xI , r)− dΓ(N)(p

′
i, r) ≥ ρI + σ − µ.

Since dΓ(N)(xi, xI) ≤ ρi + ρI and since Pi is a geodesic, we thus have

ρi − τi = dΓ(N)(xi, p
′
i) = dΓ(N)(xi, xI)− dΓ(N)(xI , p

′
i)

≤ (ρi + ρI)− (ρI + σ − µ) = ρi − (σ − µ).

Therefore, τi + 2µ ≥ σ + µ ≥ 0, as claimed.
Suppose now that i ∈ JP ∩ JQ; see Figure 11(c). It then follows from the point (c)

above that dΓ(N)(p
′
i, qi) ≤ µ and dΓ(N)(r, q

′
i) ≤ µ. Therefore, we have

(8) dΓ(N)(xi, qi) ≥ dΓ(N)(xi, p
′
i)− dΓ(N)(p

′
i, qi) ≥ ρi − τi − µ

and

dΓ(N)(y, q
′
i) ≥ dΓ(N)(y, xI)− dΓ(N)(xI , z)− dΓ(N)(z, r)− dΓ(N)(r, q

′
i)

≥ dΓ(N)(y, xI)− ρI − σ − µ ≥ dΓ(N)(y, xi)− ρi − σ − µ,

where the last inequality follows from the choice of I. As Qi is a geodesic, this implies
that

dΓ(N)(xi, q
′
i) = dΓ(N)(y, xi)− dΓ(N)(y, q

′
i) ≤ ρi + σ + µ,

and combining this with (8) gives

(9) dΓ(N)(qi, q
′
i) = dΓ(N)(xi, q

′
i)− dΓ(N)(xi, qi) ≤ (ρi + σ + µ)− (ρi − τi − µ) = σ + τi + 2µ.
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Suppose for contradiction that τi + 2µ < 0. We then get

dΓ(N)(xi, p
′
i) > ρi + 2µ

by the definition of τi. Moreover, (9) implies that dΓ(N)(qi, q
′
i) < σ, and so

dΓ(N)(xI , p
′
i) ≥ dΓ(N)(xI , r)− dΓ(N)(r, q

′
i)− dΓ(N)(q

′
i, qi)− dΓ(N)(qi, p

′
i)

> (ρI + σ)− µ− σ − µ = ρI − 2µ.

Therefore, as Pi is a geodesic, we get

dΓ(N)(xi, xI) = dΓ(N)(xi, p
′
i) + dΓ(N)(xI , p

′
i) > ρi + ρI ,

contradicting the fact that Bρi(xi) ∩ BρI (xI) 6= ∅. Thus we must have τi + 2µ ≥ 0, as
claimed.

Bσ′(r
′; Γ0) ∩Bτi+ 5µ

2
(p′i; Γ0) 6= ∅ for each i ∈ JP : As shown above, τi+2µ ≥ 0, and so both σ′

and τi +
5µ
2 are non-negative. It therefore suffices to show that dΓ0(r′, p′i) ≤ σ′+ τi +

5µ
2 .

It follows from the points (a) and (c) above that dΓ(N)(r
′, pi) ≤ dΓ0(r′, pi) ≤ µ, and

hence

dΓ(N)(xI , pi) ≥ dΓ(N)(xI , z)− dΓ(N)(z, r
′)− dΓ(N)(r

′, pi) ≥ ρI − σ′ − µ.
Since Pi is a geodesic and since dΓ(N)(xI , xi) ≤ ρI + ρi, we thus have

dΓ0(pi, p
′
i) = dΓ(N)(pi, p

′
i) = dΓ(N)(xI , xi)− dΓ(N)(xI , pi)− dΓ(N)(xi, p

′
i)

≤ (ρI + ρi)− (ρI − σ′ − µ)− (ρi − τi) = σ′ + τi + µ.

Therefore,

dΓ0(r′, p′i) ≤ dΓ0(r′, pi) + dΓ0(pi, p
′
i) ≤ µ+ (σ′ + τi + µ) ≤ σ′ + τi +

5µ

2
,

as required.
Bτi+ 5µ

2
(p′i; Γ0) ∩Bτi′+ 5µ

2
(p′i′ ; Γ0) 6= ∅ for all i, i′ ∈ JP : As shown above, τi, τi′ ≥ −2µ, and so

both τi + 5µ
2 and τi′ + 5µ

2 are non-negative. It is thus enough to show that we have
dΓ0(p′i, p

′
i′) ≤ τi + τi′ + 5µ. Let S ⊆ Γ(N) be a geodesic with S− = xi and S+ = xi′ .

We will apply Proposition 2.10 to the triangle P̂iŜP̂i′ ⊆ Cay(G,X ∪ H), which is a
non-backtracking (λ, c)-quasi-geodesic triangle by Theorem 1.5.

Suppose first that S does not penetrate Γ0; see Figure 11(e). It then follows from
Proposition 2.10(iii) (cf the point (a) above) that dΓ0(p′i, p

′
i′) ≤ µ. In particular, since

τi, τi′ ≥ −2µ we have

dΓ0(p′i, p
′
i′) ≤ µ ≤ µ+ (τi + 2µ) + (τi′ + 2µ) = τi + τi′ + 5µ,

as required.
Suppose now that S penetrates Γ0, and let s and s′ be the vertices at which S enters

and leaves Γ0, respectively; see Figure 11(f). It follows from Proposition 2.10(iv) (cf the
point (c) above) that dΓ(N)(s, p

′
i) ≤ dΓ0(s, p′i) ≤ µ and dΓ(N)(s

′, p′i′) ≤ dΓ0(s′, p′i′) ≤ µ.
In particular, we have

dΓ(N)(xi, s) ≥ dΓ(N)(xi, p
′
i)− dΓ(N)(s, p

′
i) ≥ ρi − τi − µ,

and similarly dΓ(N)(xi′ , s
′) ≥ ρi′−τi′−µ. Since S is a geodesic and since dΓ(N)(xi, xi′) ≤

ρi + ρi′ , it follows that

dΓ0(s, s′) = dΓ(N)(s, s
′) = dΓ(N)(xi, xi′)− dΓ(N)(xi, s)− dΓ(N)(xi′ , s

′)

≤ (ρi + ρi′)− (ρi − τi − µ)− (ρi′ − τi′ − µ) = τi + τi′ + 2µ.

Therefore,

dΓ0(p′i, p
′
i′) ≤ dΓ0(p′i, s) + dΓ0(s, s′) + dΓ0(s′, p′i′)

≤ µ+ (τi + τi′ + 2µ) + µ ≤ τi + τi′ + 5µ,

as required.
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We have thus shown that B is a collection of pairwise intersecting balls in Γ0. But since
Γ0 is isomorphic to Γj,N , it follows from Lemma 4.6 and the choice of ξ0 that Γ0 is dξ0/Ne-
coarsely Helly. Therefore, there exists a vertex z ∈ V (Γ0) such that dΓ0(r′, z) ≤ σ′ + dξ0/Ne
and dΓ0(p′i, z) ≤ τi + 5µ

2 + dξ0/Ne for all i ∈ JP . We claim that dΓ(N)(xi, z) ≤ ρi + 5µ
2 +

⌈
ξ0
N

⌉
for all i ∈ I: this will establish the

(
5µ
2 +

⌈
ξ0
N

⌉)
-coarse Helly property for B.

Suppose first that i ∈ JP . We then have

dΓ(N)(xi, z) ≤ dΓ(N)(xi, p
′
i) + dΓ(N)(p

′
i, z) ≤ (ρi − τi) +

(
τi +

5µ

2
+

⌈
ξ0

N

⌉)
= ρi +

5µ

2
+

⌈
ξ0

N

⌉
,

as claimed.
Suppose now that i /∈ JP ; since I = JP ∪ JQ, it follows that i ∈ JQ (see Figure 11(b)). By

the point (b) above, we have dΓ(N)(r
′, qi) ≤ µ. Therefore,

dΓ(N)(y, qi) ≥ dΓ(N)(y, xI)− dΓ(N)(xI , r
′)− dΓ(N)(r

′, qi) ≥ dΓ(N)(y, xI)− ρI + σ′ − µ
≥ dΓ(N)(y, xi)− ρi + σ′ − µ,

where the last inequality follows by the choice of I. As Qi is a geodesic, this implies that

dΓ(N)(xi, qi) = dΓ(N)(y, xi)− dΓ(N)(y, qi) ≤ ρi − σ′ + µ,

and hence

dΓ(N)(xi, z) ≤ dΓ(N)(xi, qi) + dΓ(N)(qi, r
′) + dΓ(N)(r

′, z) ≤ (ρi − σ′ + µ) + µ+

(
σ′ +

⌈
ξ0

N

⌉)
≤ ρi +

5µ

2
+

⌈
ξ0

N

⌉
,

as claimed.
We thus have dΓ(N)(xi, z) ≤ ρi + 5µ

2 +
⌈
ξ0
N

⌉
for all i ∈ I. Hence

⋂
i∈I Bρi+ 5µ

2
+
⌈
ξ0
N

⌉(xi; Γ(N))

contains z and so is non-empty, establishing the
(

5µ
2 +

⌈
ξ0
N

⌉)
-coarse Helly property for B. �

Finally, we deduce the conclusions of Proposition 4.5 and Theorem 1.1.

Proof of Proposition 4.5. By the choice of ξ in (5), it follows from Lemmas 4.7 and 4.8 that B
satisfies the (ξ− 4)-coarse Helly property, and so B′ satisfies the ξ-coarse Helly property. As B′
was an arbitrary collection of balls in Γ(N), the conclusion follows. �

Proof of Theorem 1.1. Suppose that the graphs Γ1, . . . ,Γm as above are Helly. Then they are
clearly coarsely Helly; moreover, by [CCG+20, Lemma 6.5], each Γj has 1-stable intervals. Thus,
the Theorem follows immediately from Propositions 4.4 and 4.5 together with Theorem 4.2. �

5. Quasiconvex subgroups of Helly groups

In this section, we prove Theorem 1.4 from the Introduction, that is, we show that if a
subgroup H of a (coarsely) Helly group G is, in a certain sense, quasiconvex in G, then H is
(coarsely) Helly.

Definition 5.1. Let Γ be a graph.

(i) Given λ ≥ 1 and c ≥ 0, we say a subset W ⊆ V (Γ) is (λ, c)-quasiconvex if there exists
k = k(λ, c) ≥ 0 such that every (λ, c)-quasigeodesic in Γ with endpoints in W is in the
k-neighbourhood of W .

(ii) Let G be a group acting on Γ geometrically. We say a subgroup H ≤ G is strongly
quasiconvex (respectively, semi-strongly quasiconvex ) with respect to Γ if some H-orbit
in Γ is (λ, c)-quasiconvex (respectively, (1, c)-quasiconvex) for any λ ≥ 1 and c ≥ 0.
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Throughout this section, we adopt the following terminology. Given a graph Γ and k ≥ 1, we
construct a (Vietoris–Rips) graph Γk with V (Γk) = V (Γ), such that v, w ∈ V (Γ) are adjacent
in Γk if and only if dΓ(v, w) ≤ k. Thus Γ1 = Γ.

Since the collection of balls in Γk is just a subcollection of the collection of balls in Γ (for any
k ≥ 1), the following result is immediate.

Lemma 5.2. If a graph Γ is Helly, then so is Γk for any k ≥ 1. �

In order to prove Theorem 1.4, we let G act on a coarsely Helly graph Γ geometrically, and
consider the full subgraph ∆ ⊆ Γk spanned by some H-orbit of vertices and their neighbours.
We show in Lemma 5.3 that (for k large enough) the graph ∆ is coarsely Helly. Since the
H-action on ∆ can be shown to be geometric, it follows that H is coarsely Helly.

Moreover, if Γ is Helly, then we consider the Hellyfication Θ = Helly(∆) of ∆ (see [CCG+20])
– the ‘smallest’ Helly graph containing ∆ as an isometrically embedded subgraph. We show in
Lemma 5.4 that (for k large enough) ∆ is an isometric subgraph of Γk, implying that Θ is a
subgraph of Γk as well (and so Θ is locally finite), whereas the fact that ∆ is coarsely Helly
implies that the induced action of H on Θ is cobounded, and consequently geometric. Thus H
is Helly.

Thus, our proof of Theorem 1.4 is based on the following two Lemmas.

Lemma 5.3. Let ξ ≥ 0, let Γ be a ξ-coarsely Helly graph, and W ⊆ V (Γ) a (1, 2ξ)-quasiconvex
subset. Let k ≥ 1 be such that every (1, 2ξ)-quasigeodesic in Γ with endpoints in W is contained
in the k-neighbourhood of W . Then the full subgraph ∆ of Γk spanned by

⋃
w∈W B1(w; Γk) is

(3 + dξ/ke)-coarsely Helly.

Proof. Let B = {Bρi(xi; ∆) | i ∈ I} be a collection of pairwise intersecting balls in ∆. By
the construction of ∆, for each i ∈ I there exists x′i ∈ W such that d∆(xi, x

′
i) ≤ 1, and in

particular Bρi(xi; ∆) ⊆ Bρi+1(x′i; ∆) ⊆ Bρi+1(x′i; Γk) = B(ρi+1)k(x
′
i; Γ). It follows that B′ =

{B(ρi+1)k(x
′
i; Γ) | i ∈ I} is a collection of pairwise intersecting balls.

Now fix any j ∈ I, and consider D = {dΓ(x′i, x
′
j) − (ρi + 1)k | i ∈ I} ⊆ Z; let δ = supD.

Since the balls in B′ have pairwise non-empty intersections, we have δ ≤ (ρj + 1)k (and in
particular δ = maxD). If δ ≤ 0, it then follows that dΓ(x′i, x

′
j) ≤ (ρi + 1)k for all i ∈ I;

therefore, since x′i, x
′
j ∈ W and in particular any geodesic in Γ between x′i and x′j is a path in

∆, d∆(x′i, x
′
j) = ddΓ(x′i, x

′
j)/ke ≤ ρi + 1 for all i ∈ I. Hence, x′j ∈

⋂
i∈I Bρi+2(xi; ∆), implying

that B satisfies the 2-coarse Helly property. Thus, we may assume that δ > 0.
By the choice of δ, we know that B′′ = {B(ρi+1)k(x

′
i; Γ) | i ∈ I \ {j}} ∪ {Bδ(x′j ; Γ)} is a

collection of pairwise intersecting balls. It follows by the ξ-coarse Helly property that there
exists y ∈ V (Γ) such that dΓ(y, x′i) ≤ (ρi + 1)k + ξ for all i ∈ I \ {j} and dΓ(y, x′j) ≤ δ + ξ.

Moreover, by the choice of δ, there exists ` ∈ I such that dΓ(x′j , x
′
`) = (ρ`+1)k+δ. Therefore,

dΓ(y, x′j) + dΓ(y, x′`)− dΓ(x′j , x
′
`)

≤ (δ + ξ) + [(ρ` + 1)k + ξ]− [(ρ` + 1)k + δ] = 2ξ,

and so y lies on a (1, 2ξ)-quasigeodesic in Γ from x′j to x′`; thus, y ∈ V (∆), implying that

dΓ(y, y′) ≤ k for some y′ ∈W .
By the choice of ∆, it follows that all geodesics in Γ between y′ and x′i are paths in ∆,

and so d∆(y′, x′i) = ddΓ(y′, x′i)/ke for each i ∈ I. Moreover, since δ ≤ (ρj + 1)k, we have
dΓ(y, x′i) ≤ (ρi + 1)k + ξ for each i ∈ I, and so

d∆(y′, x′i) ≤
⌈
dΓ(y′, y) + dΓ(y, x′i)

k

⌉
≤
⌈
k + [(ρi + 1)k + ξ]

k

⌉
= ρi + 2 +

⌈
ξ

k

⌉
for all i ∈ I. It follows that

d∆(y′, xi) ≤ d∆(y′, x′i) + d∆(x′i, xi) ≤ ρi + 3 +

⌈
ξ

k

⌉
,

which proves the (3 + dξ/ke)-coarse Helly property for B. �



28 DAMIAN OSAJDA AND MOTIEJUS VALIUNAS

In the next Lemma, we say a graph Γ is pseudo-modular if for every triple w1, w2, w3 ∈ V (Γ)
there exist geodesics P1, P2, P3, e1,2, e2,3, e3,1 in Γ, with |e1,2| = |e2,3| = |e3,1| ≤ 1, such that

(Pi)− = wi, (Pi)+ = (ei,i+1)− = (ei−1,i)+, and such that Piei,i+1Pi+1 is a geodesic in Γ for
i ∈ {1, 2, 3} (with indices taken modulo 3). It is well-known (see [BM86, Proposition 4])
that a connected graph Γ is pseudo-modular if and only if every triple {B′1, B′2, B′3} of pairwise
intersecting balls in Γ has non-empty intersection (that is, satisfies the 0-coarse Helly property).
In particular, every Helly graph is pseudo-modular.

Lemma 5.4. Let Γ be a pseudo-modular graph, and W ⊆ V (Γ) a (5, 0)-quasiconvex subset.
Let k ≥ 1 be such that every (5, 0)-quasigeodesic in Γ with endpoints in W is contained in
the k-neighbourhood of W . Then the full subgraph ∆ of Γk spanned by

⋃
w∈W B1(w; Γk) is

isometrically embedded in Γk.

P ′v

Pv

e1
e2

e3

Q

P ′w

Pw

f1

f2

f3

v′

v

w′

w

Figure 12. The proof of Lemma 5.4.

Proof. Suppose for contradiction that ∆ is not isometrically embedded in Γk. Thus, there exist
v, w ∈ V (∆) such that d∆(v, w) > dΓk(v, w); without loss of generality, assume that v and w
are chosen in such a way that dΓk(v, w) is as small as possible. By the definition of ∆, there
exist v′, w′ ∈W such that dΓ(v, v′) ≤ k and dΓ(w,w′) ≤ k.

Since Γ is pseudo-modular, there exist geodesics P ′ve1Pv, P
′
ve2Q

′ and Pve3Q
′ in Γ from v′ to

v, from v′ to w and from v to w, respectively, such that |e1| = |e2| = |e3| ≤ 1. Similarly, there
exist geodesics P ′wf1Pw, Qf2P

′
w and Qf3Pw in Γ from w′ to w, from Q′− to w′ and from Q′−

to w, respectively, such that |f1| = |f2| = |f3| ≤ 1: see Figure 12. Note that Q′ is a geodesic
in Γ with the same endpoints as the geodesic Qf3Pw: therefore, since P ′ve2Q

′ and Pve3Q
′ are

geodesics in Γ, so are P ′ve2Qf3Pw and Pve3Qf3Pw. In particular, the paths P ′ve1Pv, P ′wf1Pw,
P ′ve2Q, Qf2P

′
w and Pve3Qf3Pw are all geodesics in Γ.

Let p = dΓ(v, w)−k [dΓk(v, w)− 1], so that 1 ≤ p ≤ k. We claim that |Pve3| < |P ′ve2|−k+p.
Indeed, let u ∈ Pve3Qf3Pw be the vertex with dΓ(v, u) = p; it follows from the choice of p and
the fact that Pve3Qf3Pw is a geodesic in Γ that u lies on a geodesic in Γk between v and w.
Since u is adjacent to v in Γk and since ∆ is a full subgraph, it follows by the minimality of
dΓk(v, w) that u /∈ V (∆); therefore, dΓ(v′, u) > k. In particular, since dΓ(v′, v) ≤ k and since

P ′ve1Pv is a geodesic in Γ, this implies that u /∈ Pv and so u ∈ Qf3Pw. We thus have

k < dΓ(v′, u) ≤ |P ′ve2|+ dΓ(Q−, u) = |P ′ve2|+ (p− |Pve3|),

and so |Pve3| < |P ′ve2| − k + p, as claimed. Similarly, |f3Pw| < |f2P
′
w| − k + p.

We now claim that |Q| ≥ k
2 . Indeed, since p ≤ k and |e2| ≤ 1, the previous paragraph implies

that |Pve3| ≤ |P ′v|, and hence

2|Pve3| ≤ |Pve3|+ |P ′v| = |Pv|+ |e1|+ |P ′v| = dΓ(v′, v) ≤ k

since P ′ve1Pv is a geodesic in Γ; similarly, 2|f3Pw| ≤ k. Therefore, if dΓ(v, w) ≥ 3k
2 then we have

|Q| = dΓ(v, w)− |Pve3| − |f3Pw| ≥
3k

2
− k

2
− k

2
=
k

2
,
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as claimed. On the other hand, suppose that dΓ(v, w) < 3k
2 . It then follows that dΓk(v, w) = 2

(as v and w cannot be adjacent in Γk), and so p < k
2 and dΓ(v, w) = k + p. Then, again by the

previous paragraph, we have

(10)

|Q| = dΓ(v, w)− |Pve3| − |f3Pw|
> (k + p)− (|P ′ve2| − k + p)− (|f2P

′
w| − k + p)

= 3k − p− |P ′ve2| − |f2P
′
w|.

Furthermore, we have |P ′ve2| = |P ′v|+ |e1| ≤ |P ′ve1Pv| = dΓ(v′, v) ≤ k since P ′ve1Pv is a geodesic
in Γ, and similarly |f2P

′
w| ≤ k. Therefore, (10) implies that |Q| > k − p. As p < k

2 , it follows

that |Q| ≥ k
2 , as claimed.

Finally, we claim that P ′ve2Qf2P
′
w is a (5, 0)-quasigeodesic in Γ. Indeed, let R ⊆ P ′ve2Qf2P

′
w

be a subpath: we thus claim that |R| ≤ 5dΓ(R−, R+). Since P ′ve2Q and Qf2P
′
w are geodesics

in Γ, we may assume, without loss of generality, that R+ ∈ f2P
′
w and R− ∈ P ′ve2. Moreover,

assume that dΓ(R+, Q+) ≤ dΓ(R−, Q−): the other case is analogous. We then have

dΓ(R−, R+) ≥ dΓ(R−, Q+)− dΓ(R+, Q+)

= dΓ(R−, Q−) + |Q| − dΓ(R+, Q+) ≥ |Q|

since P ′ve2Q is a geodesic in Γ. On the other hand, since P ′ve1Pv is a geodesic in Γ of length ≤ k,
we have |P ′ve2| = |P ′v|+ |e1| ≤ k, and similarly |f2P

′
w| ≤ k. It follows that |R| ≤ |P ′ve2Qf2P

′
w| =

|P ′ve2| + |Q| + |f2P
′
w| ≤ |Q| + 2k, and so, since |Q| ≥ k

2 , we have |R| ≤ |Q| + 2k ≤ 5|Q| ≤
5dΓ(R−, R+), as claimed.

But now, by the choice of k, it follows that P ′ve2Qf2P
′
w is in the k-neighbourhood of W in Γ,

and so, in particular, all the vertices of Q belong to ∆. Since P ′ve1Pv and P ′wf1Pw are geodesics
in Γ of length ≤ k, it also follows that all vertices of Pv and of Pw belong to ∆. Therefore, all
the vertices of Pve3Qf3Pw belong to ∆. But as Pve3Qf3Pw is a geodesic in Γ, there exists a
geodesic in Γk from v to w all of whose vertices are also vertices of Pve3Qf3Pw, and so of ∆.
This contradicts the choice of v and w.

Therefore, ∆ must be an isometrically embedded subgraph of Γk, as required. �

Proof of Theorem 1.4. We first make the following elementary observation.

Claim. Let Θ be a locally finite graph, and H a group acting on Θ. Suppose that there exists
x ∈ V (Θ) such that |StabH(x)| < ∞ and the H-orbit x · H is finite Hausdorff distance away
from V (Θ). Then the H-action on Θ is geometric.

Proof of Claim. Since Θ is locally finite, it is enough to show that the H-action is cocompact
and | StabH(y)| <∞ for all y ∈ V (Θ).

Let k < ∞ be the Hausdorff distance from x · H to V (Θ). If e ⊆ Θ is an edge, then there
exists h ∈ H such that dΘ(e′−, x) ≤ k, and so dΘ(e′±, x) ≤ k + 1, where e′ = e · h. But since
Θ is locally finite, there exist only finitely many edges e′ ⊆ Θ with dΘ(e′±, x) ≤ k + 1, and so
there are only finitely many of orbits of edges under the H-action on Θ. Thus the action is
cocompact, as required.

Now let y ∈ V (Θ). Then there exists h ∈ H such that dΘ(y′, x) ≤ k where y′ = y · h; in
particular, if g ∈ StabH(y′) then dΘ(y′, x · g) = dΘ(y′, x) ≤ k, and so x · g ∈ Bk(y′; Θ). Since Θ
is locally finite, this implies that

|StabH(y)| = |hStabH(y′)h−1| = |StabH(y′)| ≤ |Bk(y′; Θ)| × | StabH(x)| <∞,

as required. �

We now prove parts (i) and (ii) of the Theorem.

(i) By assumption, there exists x ∈ V (Γ) such that the orbit x · H ⊆ V (Γ) is (5, 0)-
quasiconvex. Let k ≥ 1 be a constant such that every (5, 0)-quasigeodesic with endpoints
in x ·H is in the k-neighbourhood of x ·H, and let ∆ be the full subgraph of Γk spanned
by
⋃
h∈H B1(x · h; Γk).
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Let Θ = Helly(∆) be the Hellyfication of ∆, as defined in [CCG+20, §4.2]. By
[CCG+20, Theorem 4.4], Θ is a Helly graph contained as a subgraph in every Helly
graph containing ∆ as an isometrically embedded subgraph. As Γ is Helly, it is also
pseudo-modular, and so by Lemma 5.4, ∆ is isometrically embedded in Γk; moreover,
by Lemma 5.2, Γk is Helly. It follows that Θ is (isomorphic to) a subgraph of Γk. But
since Γ is locally finite, so is Γk and therefore so is Θ. Thus, Θ is a locally finite Helly
graph, and so it is enough to show that H acts on Θ geometrically.

Now the G-action on Γ induces a G-action on Γk, with respect to which ∆ is clearly H-
invariant. Furthermore, the H-action on ∆ extends to an H-action on Θ: see [CCG+20].
By Lemma 5.3 (applied in this case with ξ = 0), ∆ is coarsely Helly. It follows by
[CCG+20, Proposition 3.12] that V (Θ) is Hausdorff distance ` < ∞ away from V (∆),
and so Hausdorff distance ≤ `+ 1 away from x ·H (in Θ). Moreover, since the action of
G on Γ, and so on Γk, is geometric, we have | StabH(x)| ≤ |StabG(x)| < ∞. It follows
from the Claim that the action of H on Θ is geometric, as required.

(ii) Let ξ ≥ 0 be such that Γ is ξ-coarsely Helly. By assumption, there exists x ∈ V (Γ) such
that the orbit W := x ·H ⊆ V (Γ) is (1, 2ξ)-quasiconvex. Let k ≥ 1 be the constant and
∆ ⊆ Γk the subgraph given by Lemma 5.3. Since Γ is locally finite, so is Γk; moreover,
the G-action on Γ induces a G-action on Γk. By construction, the subgraph ∆ ⊆ Γk
is H-invariant and is Hausdorff distance ≤ 1 away from the H-orbit W = x ·H. As a
subgraph of Γk, ∆ is also locally finite; furthermore, |StabH(x)| ≤ | StabG(x)| <∞. It
follows from the Claim that the H-action on ∆ is geometric. But by Lemma 5.3, ∆ is
coarsely Helly, as required. �
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