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Abstract. We construct the first examples of residually finite non-
exact groups.

1. Introduction

A finitely generated group is non-exact if its reduced C∗–algebra is non-
exact. Equivalently, it has no Guoliang Yu’s property A (see e.g. [Roe03,
Chapter 11.5]). Most classical groups are exact, that is, are not non-exact.
The first examples of non-exact groups were the so-called Gromov monsters
[Gro03]. In this paper we rely on author’s construction of groups containing
isometrically expanders [Osa14]. The isometric embedding of an expanding
family of graphs performed in the latter construction is possible thanks to
using a graphical small cancellation. That particular construction is crucial
for results in the current paper.

Main Theorem. There exist finitely generated residually finite non-exact
groups defined by infinite graphical small cancellation presentations.

This answers one of few questions from the Open Problems chapter of the
Brown-Ozawa book [BO08, Problem 10.4.6]. Some motivations for the ques-
tion can be found there. Our interest in the problem is twofold: First, we
plan to use residually finite non-exact groups constructed here for producing
other, essentially new examples of non-exact groups; Second, we believe that
our examples might be useful for constructing and studying metric spaces
with interesting new coarse geometric features. More precisely, let G be a
finitely generated infinite residually finite group, and let (Ni)

∞
i=1 be a se-

quence of its finite index normal subgroups with
⋂∞

i=1Ni = {1}. The box
space of G corresponding to (Ni) is the coarse disjoint union

⊔∞
i=1G/Ni,

with each G/Ni endowed with the word metric coming from a given finite
generating set for G. Properties of the group G are often related to coarse
geometric properties of its box space. For example, a group is amenable iff
its box space has property A [Roe03, Proposition 11.39]. Box spaces pro-
vide a powerful method for producing metric spaces with interesting coarse
geometric features (see e.g. [Roe03, Chapter 11.3]). The groups constructed
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in the current article open a way to studying box spaces of non-exact groups
and make the following questions meaningful.

Questions. What are coarse geometric properties of box spaces of non-
exact groups? Can non-exactness of a group be characterized by coarse
geometric properties of its box space?1

The idea of the construction of groups as in the Main Theorem is as
follows. The group is defined by an infinite graphical small cancellation
presentation. It is a limit of a direct sequence of groups Gi with surjective
bonding maps – each Gi has a graphical small cancellation presentation
being a finite chunk of the infinite presentation. Such finite chunks are
constructed inductively, using results of [Osa14], so that they satisfy the
following conditions. Each group Gi is hyperbolic and acts geometrically on
a CAT(0) cubical complex, hence it is residually finite.2 For every i, there
exists a map ϕi : Gi → Fi to a finite group such that no nontrivial element
of the i–ball around identity is mapped to 1. Every ϕi factors through the
quotient maps Gi � Gj so that it induces a map of the limit group G to
a finite group injective on a large ball. The residual finiteness of G follows.
Finally, G is non-exact since its Cayley graph contains a sequence of graphs
(relators) without property A.

In Section 2 we present preliminaries on graphical small cancellation pre-
sentations and we recall some results from [Osa14]. In Section 3 we present
the inductive construction of the infinite graphical small cancellation pre-
sentation proving the Main Theorem.

Acknowledgments. I thank Ana Khukhro and Kang Li for suggesting the
question. I am grateful to them, and to Thibault Pillon for useful remarks.
I thank Damian Sawicki for pointing out mistakes in the earlier version of
the manuscript. The author was partially supported by (Polish) Narodowe
Centrum Nauki, grant no. UMO-2015/18/M/ST1/00050. The paper was
written while visiting McGill University. The author would like to thank
the Department of Mathematics and Statistics of McGill University for its
hospitality during that stay.

2. Preliminaries

We follow closely (up to the notation) [Osa14].

2.1. Graphs. All graphs considered in this paper are simplicial, that is,
they are undirected, have no loops nor multiple edges. In particular, we will
consider Cayley graphs of groups, denoted Cay(G,S) – the Cayley graph

1After circulating the first version of the article I was informed that Thibault Pillon
introduced a notion of “fibred property A”, and proved that a finitely generated residually
finite group is exact iff its box space has this property (unpublished).

2Note that Pride [Pri89] constructed infinitely presented classical small cancellation
groups that are not residually finite. They are limits of hyperbolic CAT(0) cubical (hence
residually finite) groups.
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of G with respect to the generating set S. For a set S, an S–labelling of a
graph Θ is the assignment of elements of S∪S−1 (S−1 being the set of formal
inverses of elements of S) to directed edges (pairs of vertices) of Θ, satisfying
the following condition: If s is assigned to (v, w) then s−1 is assigned to
(w, v). All labellings considered in this paper are reduced : If s is assigned
to (v, w), and s′ is assigned to (v, w′) then s = s′ iff w = w′. For a covering

of graphs p : Θ̂ → Θ, having a labelling (Θ, l) we will always consider the

induced labelling (Θ̂, l̂): the label of an edge e in Θ̂ is the same as the label of
p(e). Speaking about the metric on a connected graph Θ we mean the metric

space (Θ(0), d), where Θ(0) is the set of vertices of Θ and d is the path metric.

The ball of radius i around v in Θ is Bi(v,Θ) := {w ∈ Θ(0) | d(w, v) 6 i}.
In particular, the metric on Cay(G,S) coincides with the word metric on G
given by S.

2.2. Graphical small cancellation. A graphical presentation is the fol-
lowing data: P = 〈S | (Θ, l)〉, where S is a finite set – the generating set,
and (Θ, l) is a graph Θ with an S–labelling l. We assume that Θ is a disjoint
(possibly infinite) union of finite connected graphs (Θi)i∈I , and the labelling
l restricted to Θi is denoted by li. We write (Θ, l) = (Θi, li)i∈I . A graphical
presentation P defines a group G := F (S)/R, where R is the normal closure
in F (S) of the subgroup generated by words in S∪S−1 read along (directed)
loops in Θ.

A piece is a labelled path occurring in two distinct connected components
Θi and Θj , or occurring in a single Θi in two places not differing by an

automorphism of (Θi, li). Observe that if (Θ̂i, l̂i) → (Θi, li) is a normal
covering then two lifts of a path in Θi differ by a covering automorphism. In
particular, if the covering corresponds to a characteristic subgroup of π1(Θi)
then a lift of a non-piece is a non-piece.

For λ ∈ (0, 1/6], the labelling (Θ, l) or the presentation P are called C ′(λ)–
small cancellation if length of every piece appearing in Θi is strictly less than
λgirth(Θi), where girth(Θi) is the length of a shortest simple cycle in Θi.
Such presentations define infinite groups. The introduction of graphical
small cancellation is attributed to Gromov [Gro03]. For more details see
e.g. [Wis,Osa14]. We will use mostly results proven already in [Wis,Osa14],
so we list only the most important features of groups defined by graphical
small cancellation presentations.

First, observe that if (Θ, l) is a C ′(λ)–small cancellation labelling, and

Θ̂i → Θi is a covering corresponding to a characteristic subgroup of π1(Θi),

for each i, then the induced labelling (Θ̂, l̂) is also C ′(λ)–small cancellation.
The following result was first stated by Gromov.

Lemma 2.1 ([Gro03]). Let G be the group defined by a graphical C ′(λ)–
small cancellation presentation P, for λ ∈ (0, 1/6]. Then, for every i, there
is an isometric embedding Θi → Cay(G,S).

The isometric embedding above is just an embedding of S–labelled graphs.
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2.3. Walls in graphs. A wall in a connected graph is a collection of edges
such that removing all interiors of these edges decomposes the graph in
exactly two connected components. There are many ways for defining walls
in finite graphs Θi. We would like however that such walls “extend” to walls
in Cay(G,S). We use a particular construction of walls in finite graphs. For

such graph Θi, let Θ̂i denote its Z2–homology cover, that is, a normal cover
corresponding to the kernel of the obvious map π1(Θi, v0) → H1(Θi;Z2).

Wise [Wis] observed that there is a natural structure of walls on Θ̂i: for every

edge of Θi its preimage is a wall in Θ̂i. We call these walls Z2–homology
cover walls. We will use results of Wise [Wis] to show that such walls,

defined for Θ̂1, . . . , Θ̂i give rise to walls in Cay(Ĝ, S), where Ĝ is the group

with the graphical presentation 〈S | (Θ̂1, l̂1), . . . , (Θ̂i, l̂i)〉, for l̂j being the

labeling induced from lj . Furthermore, we show that Ĝ acts geometrically
on the associated CAT(0) cube complex. We begin with a technical lemma.
All the walls here are Z2–homology cover walls.

Lemma 2.2. Let γ̂ be a geodesic in Θ̂i whose first and last edges, ê1 and ê2,
respectively, belong to walls w1 and w2. Suppose there is a wall w such that
one of its edges ê belongs to γ̂, and another edge ê′ is (girth (Θi)/24)–close
to ê2. Then there is a wall w′ separating ê1 and ê2 but such that no edge of
w′ is (girth (Θi)/24)–close to an edge of w1 or w2.

Proof. By definition w1, w2, and w consist of preimages of edges e1, e2, and
e in Θi, respectively. Since ê and ê′ are in the same wall, but distinct, it
follows that their distance is at least girth (Θi)− 1. Hence the length of γ̂ is
at least (girth (Θi)−1−girth (Θi)/24) > girth (Θi)/2. Consider a projection
γ of γ̂. It is a path (sequence of edges) of length (number of edges) at least
girth (Θi)/2, without back-tracks. Hence, there exists an edge f in γ that is
not (girth (Θi)/24)–close to e1 or e2 and that is passed by γ an odd number
of times. The wall w′ defined by f , that is, the wall consisting of preimages
of f is the desired wall separating ê1 and ê2. �

Remark. The above lemma is needed to use [Wis, Theorem 5.40 and Re-
mark 5.41]3 in the sequel. Wise’s work concerns the so-called cubical small
cancellation. It is a far-going generalization of the graphical small cancel-
lation used in the current article (see e.g. [Wis, 3.s. Examples on p. 72 or
Section 5.k. p. 124]). For example, in our case Wise’s hyperplanes reduce
just to edges, and there exist only cone pieces. Consequently, many assump-
tions appearing in formulations of results in [Wis] are easily satisfied in the
graphical small cancellation case.

Let λ ∈ (0, 1/24], and let (Θ1, l1), . . . , (Θi, li) be a C ′(λ)–small cancella-

tion labelling. Then we call the system of Z2–homology walls on (Θ̂1, l̂1), . . . ,

(Θ̂i, l̂i) a proper Z2–walling. The following lemma is our main tool for prov-
ing residual finiteness of intermediate steps in our construction.

3Here and everywhere we refer to the preprint version of [Wis] dated June 19, 2017.
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Lemma 2.3. Let (Θ̂1, l̂1), . . . , (Θ̂i, l̂i) be equipped with a proper Z2–walling.

Then the group Ĝ = 〈S | (Θ̂1, l̂1), . . . , (Θ̂i, l̂i)〉 acts geometrically on a
CAT(0) cubical complex.

Proof. We use [Wis, Theorem 5.40 and Remark 5.41] for proving that Ĝ
acts properly on a CAT(0) cubical complex. We verify that the graphical

presentation P := 〈S | (Θ̂1, l̂1), . . . , (Θ̂i, l̂i)〉 fulfills the conditions (1), (2),
and (3) from Theorem 5.40 there.

Condition (1) of [Wis, Theorem 5.40]. We have to show that P satisfies the
generalized B(6) condition of [Wis, Definition 5.1] and has short innerpaths.

[Wis, Lemma 3.67] shows that P has short innerpaths.
We now turn to [Wis, Definition 5.1]. Points (1), (2), and (5) in this

definition are obvious. For (3) and (4) observe that pieces in Θ̂j have length

at at most (girth (Θj)/24) and distinct edges in the same wall in Θ̂j are at
distance at least (girth (Θj)− 1) (compare the proof of Lemma 2.2 above).
Hence, (3) and (4) follow as in [Wis, Remark 5.2].

Condition (2) of [Wis, Theorem 5.40]. Observe that pieces in each Θ̂j have
length at most (girth (Θj)/24). Hence the condition follows immediately
from Lemma 2.2.

Condition (3) of [Wis, Theorem 5.40]. This condition is trivially satisfied

since every Θ̂j is finite.

Therefore, by [Wis, Theorem 5.40 and Remark 5.41] we conclude that Ĝ
acts metrically properly on the associated CAT(0) cubical complex.

Since Ĝ is hyperbolic, the cocompactness follows e.g. from [HW14, Lemma
7.2]. �

3. The construction

Fix λ ∈ (0, 1/24] and a natural number D > 3. Let (Θ, l) = (Θi, li)
∞
i=1

be a sequence of D–regular graphs with a labelling l satisfying the following
stronger version of C ′(λ)–small cancellation: every path in Θi of length
greater or equal to λgirth(Θi) has labelling different from any other path.
Such sequences are constructed in [Osa14].

We will construct a sequence (Θ̂, l̂) = (Θ̂i, l̂i)
∞
i=1 of normal covers of

(Θi, li)
∞
i=1 with the induced labelling l̂. By Gi we will denote the finitely pre-

sented group given by the graphical presentation Gi = 〈S | Θ̂1, Θ̂2, . . . , Θ̂i〉.
The associated quotient maps will be qji : Gi � Gj , with qi+1

i denoted qi. At

the same time we will construct maps to finite groups ϕj
i : Gi → Fj , for i > j

with ϕi
i denoted ϕi. We will denote G = lim−→(Gi, q

j
i ), with q∞i : Gi → G, and

ϕi
∞ : G→ Fi being the induced maps.

We require that the labelled graphs (Θ̂i, l̂i)
∞
i=1, and the maps ϕj

i : Gi → Fj

satisfy the following conditions:
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(A) (Θ̂1, l̂1), (Θ̂2, l̂2), . . . is a C ′(λ)–small cancellation labelling;

(B) (Θ̂1, l̂1), (Θ̂2, l̂2), . . . , (Θ̂i, l̂i) admits a proper Z2–walling for every i;
(C) ϕj(g) 6= 1, for every j and every g ∈ Bj(1,Cay(Gj , S)) \ {1};
(D) ϕj

l ◦ q
l
k = ϕj

k, for all j 6 k 6 l.

In particular, the diagram below is commutative.

G1 G2 G3 Gj Gj+1 Gi Gi+1 G

FjF1

ϕ1
2

ϕ1
3

ϕ1 ϕj
ϕj
j+1

ϕj
i

ϕj
∞

ϕj
i+1

q1 q2 q3 qj qj+1 qi qi+1

qj2
qij

q∞2

q∞i

We construct the graphs Θ̂i, the finite groups Fi, and the maps ϕj
i (j 6 i)

inductively, with respect to i.

3.1. Induction basis. Let Θ̂1 be the Z2–homology cover of Θ1 (such a cover
corresponds to a characteristic subgroup of π1(Θ1)). Then the following
conditions are satisfied:

(A1) (Θ̂1, l̂1), (Θ2, l2), (Θ3, l3), . . . is a C ′(λ)–small cancellation labelling;

(B1) (Θ̂1, l̂1) admits a proper Z2–walling W1.

Then G1 := 〈S | Θ̂1〉 is hyperbolic and, by Lemma 2.3, acts geometrically
on a CAT(0) cubical complex. Therefore, by results of Wise [Wis] and Agol
[Ago13] it is residually finite. Let ϕ1 : G1 → F1 be a map into a finite group
F1 such that:

(C1) ϕ1(g) 6= 1 for all g ∈ B1(1,Cay(G1, S)) \ {1}.

3.2. Inductive step. Assume that the graphs Θ̂1, Θ̂2, . . . , Θ̂i, the finite
groups F1, F2, . . . , Fi, and the maps ϕk

j : Gj → Fk, for k 6 j 6 i with
the following properties have been constructed.

(Ai) (Θ̂1, l̂1), . . . , (Θ̂i, l̂i), (Θi+1, li+1), (Θi+2, li+2), . . . is a C ′(λ)–small can-
cellation labelling;

(Bi) (Θ̂1, l̂1), . . . , (Θ̂i, l̂i) admits a proper Z2–walling;
(Ci) ϕj(g) 6= 1, for every j 6 i and every g ∈ Bj(1,Cay(Gj , S)) \ {1};
(Di) ϕ

j
l ◦ q

l
k = ϕj

k, for all j 6 k 6 l 6 i (that is, the part of the above
diagram with all indexes at most i is commutative).

Note that the condition (D1) is satisfied trivially.
Let Hi be a subgroup of Gi generated by (the images by F (S) � Gi

of) all the words read along cycles in (Θi+1, li+1). The subgroup Ki :=⋂
j6i ker(ϕj

i )CGi is of finite index. Therefore Hi∩Ki < Hi is of finite index

and we can find a finite normal cover Θi+1 of Θi+1 such that the normal
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closure in Gi of the subgroup generated by words read along (Θi+1, li+1)
is contained in Ki, where li+1 is the labelling of Θi+1 induced by li+1 via
the covering map. Labelled paths of length greater or equal λgirth(Θi+1)

in (Θi+1, li+1) do not appear in (Θ̂j , l̂j) for j 6 i, neither in (Θj , lj) for j >
i+2. Any two such paths in (Θi+1, li+1) differ by a covering automorphism.

Therefore, (Θ̂1, l̂1), . . . , (Θ̂i, l̂i), (Θi+1, li+1), (Θi+2, li+2), (Θi+3, li+3), . . . is a

C ′(λ)–small cancellation labelling. Let Θ̂i+1 be the Z2–homology cover of
Θi+1. Then the following properties are satisfied:

(Ai+1) (Θ̂1, l̂1), . . . , (Θ̂i, l̂i), (Θ̂i+1, l̂i+1), (Θi+2, li+2), (Θi+3, li+3), . . . is
a C ′(λ)–small cancellation labelling;

(Bi+1) (Θ̂1, l̂1), . . . , (Θ̂i, l̂i), (Θ̂i+1, l̂i+1) admits a proper Z2–walling,

where qi : Gi � Gi+1 := 〈S | (Θ̂1, l̂1), . . . , (Θ̂i+1, l̂i+1)〉 is the quotient map.
Observe that we have ker(qi) < Ki.

The groupGi+1 = 〈S | Θ̂1, Θ̂2, . . . , Θ̂i+1〉 is hyperbolic and, by Lemma 2.3,
acts geometrically on a CAT(0) cubical complex. Hence, by results of Wise
[Wis] and Agol [Ago13], it is residually finite. Therefore, we find a map
ϕi+1 : Gi+1 → Fi+1 into a finite group Fi+1 such that ϕi+1(g) 6= 1 for all
g ∈ Bi+1(1,Cay(Gi+1, S)). Hence, by (Ci), we have

(Ci+1) ϕj(g) 6= 1, for every j 6 i+ 1 and every g ∈ Bj(1,Cay(Gj , S)) \ {1}.

For j 6 i we define ϕj
i+1 : Gi+1 → Fj as ϕj

i+1(q
i+1
j (g)) = ϕj(g). This is a

well defined homomorphism: If qi+1
j (g) = qi+1

j (g′) then qij(gg
′−1) ∈ ker(qi),

and hence

ϕj
i+1(q

i+1
j (g))(ϕj

i+1(q
i+1
j (g′)))−1 = ϕj(g)ϕj(g

′)−1 =

= ϕj(gg
′−1) = ϕj

i (q
i
j(gg

′−1)) = 1,

by ker(qi) < Ki. By (Di) and the definition of ϕj
i+1 we have:

(Di+1) ϕ
j
l ◦ q

l
k = ϕj

k, for all j 6 k 6 l 6 i+ 1 (that is, the part of the above
diagram with all indexes at most i+ 1 is commutative).

This finishes the inductive step.

3.3. Proof of Main Theorem. The presentation 〈S | Θ̂1, Θ̂2, . . .〉 is a
graphical C ′(λ)–small cancellation presentation, by (A). Thus, the Cayley
graph Cay(G,S) contains isometrically embedded copies of all the graphs

Θ̂i, by Lemma 2.1. That is, Cay(G,S) contains a sequence of D–regular
graphs of growing girth, and hence G is non-exact, by [Wil11].

We show now that G is residually finite. Take a non trivial element g ∈ G.
Let i be such an integer that g ∈ Bi(1,Cay(G,S)). Then there exists g′ ∈ Gi

such that q∞i (g′) = g, and g′ ∈ Bi(1,Cay(Gi, S)). For the homomorphism
ϕi
∞ : G → Fi into the finite group Fi we have ϕi

∞(g) = ϕi
∞ ◦ q∞i (g′) =

ϕi(g
′) 6= 1, by (D) and (C). This shows that G is residually finite.
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