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Abstract

The main result of this paper is that the Banach-Mazur compacta are one point
compactifications of Q-manifolds. We also show that they are homeomorphic to
orbit spaces of some group actions on the Hilbert cube.
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1 Introduction

The Banach-Mazur compactum BM(n), for n = 2, 3, ..., is the space of isom-
etry classes of the n-dimensional Banach spaces and was introduced in [B].
A. PeÃlczyński posed the following two questions concerning the Banach-Mazur
compacta (see [We]):
Are BM(n)’s absolute retracts ? Are they Hilbert cubes ?
An affirmative answer to the first question was then given in [Fa] for the case
n = 2 and in [ABF], [An3] for the general case.
The second question remains open in the general case while for n = 2 it was
solved negatively in [An4] (compare also [AB]). The idea of the proof (follow-
ing the general idea of [TW]) is to show that the complement of the class of
the Euclidean space in BM(2) is not contractible while the complement of
one point in the Hilbert cube is (see for example [M]).
In connection with the above results there arises a question about the topol-
ogy of BM(n) \ {Eucl.}. In this paper we show that BM(n) \ {Eucl.} is a Q-
manifold for every n ≥ 2. It should be noticed that similar results have been al-
ready published ([An5] and [ABR]). In [AR] it is showed that BM(n)\{Eucl.}
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is a Q-manifold for n = 2. However our methods are different, seem to us more
elementary (we do not use the Slice Theorem to show the disjoint discs prop-
erty) and were developed independently (see [O]).
The proof is based on the characterization of Q-manifolds given by H. Toruńczyk
in [T]. We use another representations of Banach-Mazur compactum BM(n)
(see [An4]) as the quotient of the space C0(n) (of compact, convex and sym-
metric with respect to the origin, bodies in Rn, whose minimal volume ellipsoid
is the unit ball Bn) with the Hausdorff metric, by a natural O(n)-action.
Then we prove:

Theorem 1 Let K be a closed subgroup of the group O(n), n ≥ 2. Then
(C0(n) \ {Bn})/K is a Q-manifold.

As a corollary for K = O(n) we get the main result:

Corollary 2 The complement BM(n) \ {Eucl.} of the class of the Euclidean
space in the Banach-Mazur compactum is a Q-manifold, for n ≥ 2.

Referring to the Toruńczyk characterization of the Hilbert cube Q (see [T])
we also get the following

Corollary 3 For every finite subgroup K of O(n), C0(n)/K is homeomorphic
to the Hilbert cube.

And hence in the case K = {1} the following holds.

Corollary 4 For every n ≥ 2 the Banach-Mazur compactum BM(n) is home-
omorphic to some orbit space Q/O(n).

In Section 2 we give some basic definitions, notions and facts about Banach-
Mazur compacta. In the next Section we prove Theorem 1 and Corollary 3.
Then, in Section 4 we give some remarks about that proof and as a conclusion
we prove Corollary 3. In Section 5 we sketch another proof of Theorem 1 in
the case n = 2.

2 Preliminaries

In the rest of this paper we will denote by ‖ · ‖ the ordinary Euclidean norm

on Rn, i.e. ‖ x ‖=
√∑n

i=1 x2
i for any x = (x1, ..., xn) ∈ Rn, by Bn the unit,

closed ball: Bn = {x ∈ Rn :‖ x ‖≤ 1} and if we not say otherwise, by Br the
closed ball of radius r: Br = {x ∈ Rn :‖ x ‖≤ r} (where the value of n is clear
from the context). We will always consider the metric on Sn−1 ⊂ Rn induced
by the norm ‖ · ‖.
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For a given integer n ≥ 2 the Banach-Mazur compactum BM(n) is defined as
the space of isometry classes of n-dimensional Banach spaces with the metric:

d([E], [F ]) = ln inf
{
‖ T ‖ ‖ T−1 ‖: T : E → F is a lin. isomorphism

}
,

where [E] denotes the isometry class of a Banach space E.
It is easy to check that this formula defines a metric on BM(n).

Now let C(n) denote the set of all compact, convex, symmetric with respect
to the origin subsets of Rn with non empty interior, (we will call them bodies)
with the Hausdorff metric dH, defined by

dH(A,B) = inf {ε > 0 : A ⊆ Bε(B) and B ⊆ Bε(A)} ,

where A,B ∈ C(n) and Bε(A) = {x ∈ Rn :‖ x− y ‖< ε for some y ∈ A}.
With the natural action it is a GL(n)- space and it is well known (compare
[We]) that BM(n) is homeomorphic to the orbit space C(n)/GL(n). Moreover
according to [J] for every body A ∈ C(n) there exists a unique (closed) ellipsoid
of minimal volume j(A) containing A (the so called John ellipsoid (or Löwner
ellipsoid - see e.g. [L]). Let C0(n) be the subspace of C(n) consisting of bodies
whose John ellipsoid is the unit ball Bn. From the minimality of the volume
and from the uniquness it follows that C0(n) is O(n) invariant (compare [An4]).
One has the following representation of the Banach-Mazur compactum.

Theorem 5 ([An4], Corollary 1) The Banach-Mazur compactum
BM(n) is homeomorphic to the O(n)-orbit space C0(n)/O(n).

(Compare also [AR]).

Recall that a space X is a Q-manifold (or a manifold modelled on the Hilbert
cube - Q) iff it can be covered by open sets homeomorphic to open subsets of
the Hilbert cube.
The following characterization is due to Toruńczyk:

Theorem 6 (see [T]) A locally compact space X is a Q-manifold iff X is
an ANR and for each ε > 0 there exist two ε-close to the identity maps from
X to itself which have disjoint images.

3 The proof of the main theorem

The aim of this section is to prove Theorem 1 (see Introduction). For K = O(n)
it implies, by Theorem 5, the main result, i.e. Corollary 2.
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By Corollary 2 of [An4], and the 4.5 Corollary 1 of [V] C0(n) is a compact
K-AR. Then according to Theorem 8 of [An2] (see also [A]) the orbit space
C0(n)/K is an AR and, since an open subset of an AR is an ANR (compare
[M]), a complement of one point in it, (C0(n) \ {Bn})/K, is a locally compact
ANR. So according to Theorem 6 to prove that it is a Q-manifold it suffices
to show that there exist two maps from (C0(n) \ {Bn})/K to itself that are
ε-close to the identity and have disjoint images. To do this we will construct
two O(n)-equivariant maps from C0(n) \ {Bn} to itself, which are ε-close to
the identity and have disjoint images. Such maps clearly induce the desired
maps on (C0(n) \ {Bn})/K.

We will construct those two maps in Subsection 3.1 and 3.2. Before that we
will introduce the notion of a maximal set that leads to properties that will
distinguish the two maps.

Let C(Sn−1,R+) denote the space of continuous functions from Sn−1 to R+

endowed with the supremum metric and C0(S
n−1,R+) its subspace consisting

of functions bounded by 1 and symmetric with respect to the origin.
By C̃(n) we denote the space of all subsets of Rn that are compact, symmetric
with respect to the origin and with non-empty interior. We endow this space
with the Hausdorff metric dH. By C(n) we will understand, as before, the
subspace of C̃(n) consisting of convex bodies and by C0(n) a subspace of C(n)
consisting of those bodies whose minimal volume elipsoid (John elipsoid) is
the unit ball Bn.

Definition 7 Define a map B : C0(S
n−1,R+) → C̃(n)

by B(ϕ) = {0} ∪
{
x ∈ Rn \ {0} :‖ x ‖≤ ϕ( x

‖x‖)
}
, where ‖ · ‖ means the Eu-

clidean norm on Rn.
Denote also by % : im(B) → C0(S

n−1,R+) the radial function of a set given
by %(A)(x) = max {λ ∈ R+ : λ · x ∈ A}

Remark. Observe that C0(n) ⊂ im(B) and that for A ∈ C0(n) we have
%(A)(x) = 1

‖x‖A
, where ‖ · ‖A is the norm on Rn whose unit ball is A.

Lemma 8 a) For given ϕ, ψ ∈ C(Sn−1,R+)
if |ϕ− ψ| := max {|ϕ(x)− ψ(x)| : x ∈ Sn−1} < ε then dH(B(ϕ), B(ψ)) < ε.
b) The map B is a homeomorphism onto its image with inverse %.

PROOF. a) If λ · x ∈ B(ϕ) for some x ∈ Sn−1, λ > 0, then λ ≤ ϕ(x) <
ψ(x)+ ε hence there exists 0 < µ ≤ ψ(x) such that λ = µ+ ε′ with 0 < ε′ < ε.
But µ · x ∈ B(ψ) so that since ‖ λ · x− µ · x ‖< ε, we get B(ϕ) ⊆ Bε(B(ψ)).
Doing the same for points of B(ψ) we get dH(B(ϕ), B(ψ)) < ε.
b) It’s clear that B is a bijection on its image with % as its inverse. From a)
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we get the continuity of B. The continuity of % follows from the continuity of
the map B 7→‖ · ‖B and the above remark. 2

We will need the following

Definition 9 A maximal point of ϕ ∈ C(Sn−1,R+) is a point x ∈ Sn−1

satisfying the following condition: for every path γ : [0, 1] → Sn−1 such that
γ(0) = x and for any t ∈ (0, 1] such that ϕ(γ(t)) > ϕ(x) there exists t0 ∈ (0, t)
such that ϕ(γ(t0)) < ϕ(x). A maximal point of the radial function of a set A,
i.e.of %(A) will be called ”a maximal point of A”. A path connected component
of the set of maximal points of ϕ (or of A) will be called a maximal set of ϕ
(or of A).

Remark. Observe that a point x ∈ Sn−1 with ϕ(x) = max {ϕ(y) : y ∈ Sn−1}
is a maximal point of ϕ . The next two lemmas show some basic technical
properties of maximal sets.

Lemma 10 For x, y ∈ Sn−1 belonging to the same maximal set of ϕ we have
ϕ(x) = ϕ(y).

PROOF. Suppose ϕ(x) < ϕ(y). Let γ : [0, 1] → Sn−1 be a curve with
γ(0) = x, γ(1) = y consisting of maximal points. Choose t0 ∈ [0, 1) such
that ϕ(γ(t0)) = min {ϕ(γ(t)) : t ∈ [0, 1]}. Then for the curve γ′(t) = γ(t0 +
t · (1 − t0)), t ∈ [0, 1], for which γ′(0) = γ(t0) and γ′(1) = γ(1) = y, we have
for t ∈ [0, 1], ϕ(γ′(t)) ≥ ϕ(γ′(0)) < ϕ(γ′(1)) = ϕ(y) which contradicts the
maximality of γ′(0) = γ(t0).
Hence ϕ(x) = ϕ(y). 2

Lemma 11 Let x ∈ Sn−1 be a maximal point of ϕ and let
A = {y ∈ Sn−1 : ϕ(y) = ϕ(x)}. Then any point in the same (as x) path-
connected component of the set A is maximal.

PROOF. Suppose we have a non-maximal y ∈ A and a path γ : [0, 1] → A
with γ(0) = x and γ(1) = y. Then there exists a path σ : [0, 1] → Sn−1

with σ(0) = y such that ∀t∈[0,1]ϕ(σ(t)) ≥ ϕ(y) and ϕ(y) < ϕ(σ(1)). Hence the
existence of the curve

γ̃(t) =





γ(2 · t) if t ∈ [0, 1
2
]

σ(2 · t− 1) if t ∈ [1
2
, 1]

contradicts the maximality of x. 2
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We will also need the following technical lemma

Lemma 12 There exists a constant C > 1 such that for each A ∈ C0(n) and
for any two points x, y ∈ Sn−1, |ϕ(A)(x)− ϕ(A)(y)| ≤ C· ‖ x− y ‖.

PROOF. Suppose there is no such constant. By compactness of Sn−1 we
could then find a sequence of pairs of points {(xi, yi)}∞i=0 ⊂ Sn−1 × Sn−1

converging to some (x, y) and a sequence {Ai}∞i=0 of bodies in C0(n) such that
|%(Ai)(xi)− %(Ai)(yi)| > i· ‖ xi − yi ‖.
In what follows for a point xi ∈ Sn−1 we will denote by x̃i the corresponding
point of the boundary of Ai that is x̃ = x · %(Ai)(x) ∈ Rn.
Consider the triangle 4(0, x̃i, ỹi) (0 - the origin of Rn). As i →∞, ‖ xi− yi ‖
tends to 0 because all %(Ai)’s are uniformly bounded by 1. Without loss of
generality we can assume that %(Ai)(xi) < %(Ai)(yi). Then, for some ai ∈ Ai,

dist(x̃i, line 0ỹi) = ‖ x̃i − ai ‖≤‖ xi − yi ‖<
<

1

i
(‖ ỹi ‖ − ‖ x̃i ‖) ≤ 1

i
(‖ ỹi ‖ − ‖ ai ‖).

It follows that the angle 6 (0ỹix̃i) tends to 0 as i tends to infinity , hence there
exists k > 0 such that for i > k the line x̃iỹi intersects the interior of the ball
B√

n which is contained in every Ai (see [H, Lemma 1.4.3]). Let ẑi ∈ B√
n be

such a point of intersection. Then there exists λ > 1 such that zi = λ· ẑi ∈ B√
n

and hence zi belongs to Ai. By convexity the point vi of intersection of lines
ziỹi and 0xi belongs to Ai and we have ‖ vi ‖>‖ x̃i ‖, that contradicts the fact
that x̃i = x · ϕ(Bi)(x). This finishes the proof. 2

In the next two subsections we will construct two maps from C0(n) \ {Bn} to
itself that were mentioned at the beginning of Section 3. The image of the first
map will consist of bodies with finitely many maximal sets and the image of
the second one will consist of bodies with infinitely many maximal sets each.

3.1 Construction of the first map

Let ε > 0 be given. We shall construct an ε-close to the identity map
G : C0(n) \ {Bn} → C0(n) \ {Bn} whose image consists of bodies with finitely
many maximal sets each.
First for a given body A ∈ C0(n) \ {Bn} define δ′(A) as
1
2
max {δ > 0 : ∃Bδ⊆Sn−1∀x∈Bδ

%(A)(x) ≤ 1− δ} where Bδ is the ball of radius δ
in Sn−1 - remember (see the beginning of Section 2) that metric on Sn−1 is
that induced by the Euclidean norm on Rn.
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Lemma 13 The map A 7→ δ′(A) is continuous and δ′(A) > 0.

PROOF. By Lemma 8 the map A 7→ %(A) is continuous and the continuity of
the map %(A) 7→ δ′(A) follows easily from the definition. The second assertion
is clear. 2

Let δ(A) = 1
C
·min

{
1
4
δ′(A), ε

}
, where C is the constant of Lemma 12

Now define a function G̃(A) : Sn−1 → R+ by

G̃(A)(x) = max
{
%(A)(y) : y ∈ Bδ(A)(x)

}
,

where Bδ(x) is the δ-ball centered at x.

Lemma 14 The function G̃(A) belongs to C0(S
n−1,R+)\{1} and every max-

imal point of G̃(A) belongs to some δ(A)-ball contained in the maximal set of
that point.

PROOF. The first assertion is clear in view of definitions of δ(A) and G̃(A).
For the second, let x ∈ Sn−1 be a maximal point of G̃(A). Then G̃(A)(x) =
%(A)(y) for some y ∈ Bδ(A)(x). But then for all z ∈ Bδ(A)(y), G̃(A)(z) =

%(A)(y), because G̃(A)(z) ≥ %(A)(y) by definition and if G̃(A)(z) > %(A)(y)
then, by the geodesic convexity of Bδ(A)(y) one could find a geodesic seg-
ment γ : [0, 1] → Sn−1, with γ(0) = x, γ(1) = z, for which we would have
G̃(A)(γ(t)) ≥ G̃(A)(x) < G̃(A)(z) for all t ∈ [0, 1], which contradicts the
maximality of x. Since x is maximal we get from Lemma 11 that Bδ(A)(y) is
contained in the same maximal set as x. 2

Lemma 15 The map A 7→ G̃(A) is continuous.

PROOF. Let ε̃ > 0 be given. By Lemmas 8 and 13 we can choose δ1 > 0, such
that for every D ∈ C0(n)\{Bn} with dH(A,D) < δ1, we have |%(D)−%(A)| < ε̃

2

and |δ(D)−δ(A)| < ε̃
4C

(C of Lemma 12). Now, for every x ∈ Sn−1 there exist

y ∈ Bδ(A)(x) ⊂ Sn−1, such that G̃(A)(x) = %(A)(y) and z ∈ B2·|δ(D)−δ(A)|(y),

such that G̃(D)(x) ≥ %(D)(z) (if δ(D) ≥ δ(A) take y = z; if not one can find
such z on the geodesic segment (x, y) ⊂ Sn−1) by the definition of G̃. Then
G̃(A)(x) − G̃(D)(x) ≤ %(A)(y) − %(D)(z) = %(A)(y) − %(D)(y) + %(D)(y) −
%(D)(z) ≤ ε̃

2
+ C· ‖ z − y ‖≤ ε̃

2
+ C · ε̃

2C
≤ ε̃. Similarly we have G̃(D)(x) −

G̃(A)(x) ≤ ε̃ which finishes the proof. 2

Definition 16 Define the map G : C0(n) \ {Bn} → C0(n) \ {Bn} by G(A) =
conv(B(G̃(A))), where conv(A) means convex hull of A.
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Lemma 17 Every maximal point of G(A) belongs to some δ(A)-ball contained
in the same maximal set as that point.

PROOF. For y ∈ Sn−1 we will denote by ỹ the point y · %(G(A))(y) ∈ Rn,
where · means the standard product by scalar in Rn.
First, we shall show that if x ∈ Sn−1 is a maximal point of %(G(A)), then
%(G(A))(x) = G̃(A)(x).

Suppose %(G(A))(x) 6= G̃(A)(x). Then x̃ ∈ G(A) \ B(G̃(A)), so that x̃ =
λ1 · y1 + ... + λl · yl, for some l ∈ N , y1, ..., yl ∈ B(G̃(A)) and λ1, ..., λl ∈ (0, 1)
with λ1+...+λl = 1. But then there exists i ∈ {1, ..., l} such that ‖ yi ‖>‖ x̃ ‖.
If now there is a point y′i lying on the segment (x̃, yi) ⊂ Rn such, that
‖ y′i ‖≤‖ x̃ ‖ then x̃ ∈ conv {y1, ..., yi−1, y

′
i, yi+1, ..., yl}. Then again there

exists j ∈ {1, ..., i− 1, i + 1, ..., l} such that ‖ yj ‖>‖ x̃ ‖ and if there is
y′j ∈ (x̃, yj) ⊂ Rn satisfying ‖ y′j ‖≤‖ x̃ ‖ then again

x̃ ∈ conv
{
y1, ..., yj−1, y

′
j, yj+1, ..., yi−1, y

′
i, yi+1, ..., yl

}
. We could repeat this pro-

cedure but it is not possible that x̃ ∈ conv {y′1, ..., y′l} for y′i 6= x̃ such that
‖ y′i ‖≤‖ x̃ ‖, i = 1, ..., l. Hence there exists i ∈ {1, ..., l} such that ‖ yi ‖>‖ x̃ ‖
and for all z ∈ (x̃, yi] , ‖ z ‖>‖ x̃ ‖, which contradicts the maximality of x.
Now, since %(G(A)) ≥ G̃(A), x has to be a maximal point of B(G̃(A)) and, if
Bδ(A) ⊂ Sn−1 is a δ(A)- ball, containing x and contained in the same maximal

set of B(G̃(A)) as x(see Lemma 14), then for all y ∈ Bδ(A) we must have

%(G(A))(y) = G̃(A)(y) and, in view of Lemma 11, every such y is a maximal
point of G(A). 2

Lemma 18 The map G is an O(n)- equivariant, continuous, ε-close to the
identity map from C0(n) \ {Bn} to itself, whose image consists of bodies with
finitely many maximal sets.

PROOF. It’s clear, that G(A) ∈ C0(n) \ {Bn} for A ∈ C0(n) \ {Bn}, and, in
view of Lemma 17, that G(A) has only finitely many maximal sets.
Since |%(A)− G̃(A)| ≤ ε, in view of definitions of the constant C from Lemma
12, of δ(A) and of G̃(A), we get dH(A,B(G̃(A))) ≤ ε, by Lemma 8.
Now, to show, that G is ε-close to the identity, it’s enough to show, that if
dH(A,D) ≤ ε, for A,D ⊂ Rn, then dH(conv(A), conv(D)) ≤ ε.
We will show only that for each x ∈ conv(A) there exists y ∈ conv(D) such
that, ‖ x−y ‖≤ ε since analogously one has the same for A and D interchanged.
Let x = λ1 ·x1+...+λk ·xk, for some k ∈ N , x1, ..., xk ∈ A and λ1, ..., λk ∈ [0, 1]
with λ1 + ...+λk = 1. Then, by the assumption,we can find y1, ..., yk ∈ D such
that ‖ xi − yi ‖≤ ε, for i = 1, ..., k. Hence y = λ1 · y1 + ... + λk · yk ∈ conv(D)
and ‖ x− y ‖≤ ε.
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From Lemma 15 we get the continuity of the map A 7→ B(G̃(A)), so that
the continuity of G follows from the continuity of the map conv(·), which is
obvious, in view of what was shown above.

The O(n)- equivariance follows easily from the definition of G(A) and the
equivariance of Euclidean norm ‖ · ‖. 2

3.2 Construction of the second map

Let ε > 0 be given. We will construct a map F : C0(n)\{Bn} → C0(n)\{Bn}
which is ε-close to the identity and such that for A ∈ C0(n) \ {Bn}, there are
infinitely many maximal sets of F (A).
To get that, given a body A ∈ C0(n) \ {Bn} we will construct an ascending
sequence {Fk(A)}∞0 of bodies in C0(n) \ {Bn} such that F (A) will be the clo-
sure of the union of Fk(A)’s, and sequences {Fk(A)min}∞0 of subsets of Sn−1,
and {%k(A)min}∞0 of positive numbers.

First, we define

F0(A) = A,

%0(A)min = min
{
%(A)(x) : x ∈ Sn−1

}

and

F0(A)min =
{
x ∈ Sn−1 : %(A)(x) = %0(A)min

}
.

Then we shall proceed recursively. Assume, that for k ≥ 1,
F0(A), ..., Fk−1(A), F0(A)min, ..., Fk−1(A)min and %0(A)min, ..., %k−1(A)min

are defined.
Let %0(A)max = 1 and %k−1(A)max = min {%(Fk−1(A))(x) : x ∈ Fk−2(A)min},
for k ≥ 2.
For k > 0 set also δk = 4−kmin {ε, %k−1(A)max − %k−1(A)min, 1− %0(A)min}.
Finally, if we denote by (∗) the condition

(∗) %(Fk−1(A))(x) ≥ %k−1(A)min + δk

we can define a function F̃k(A) on Sn−1 by

F̃k(A)(x) =





%(Fk−1(A))(x) if (∗)
2 · (%k−1(A)min + δk)− %(Fk−1(A))(x) if ¬(∗).
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Then
Fk(A) = conv(B(F̃k(A))),

%k(A)min = min
{
%(Fk(A))(x) : x ∈ Sn−1

}

and
Fk(A)min =

{
x ∈ Sn−1 : %(Fk(A))(x) = %k(A)min

}
.

Remark. Notice that F̃k(A) is a function and Fk(A) is a body.
Observe, that by the above definitions we have F̃k(A) ≥ F̃k−l(A) and hence
Fk−l(A) ⊆ Fk(A).

Definition 19 Let F (A) be the closure (with respect to the Euclidean norm
on Rn) of the union of all Fk(A)’s:

F (A) =
∞⋃

k=0

Fk(A).

It’s quite easy to observe that points of Fk(A)min are ”minimal” points of
Fk(A) in a sense analogous to the def. 9 of maximal points. Consequently they
become maximal points of F̃k+1(A) which is a kind of ”reflection” of ϕ(Fk(A))
with respect to the sphere of radius %k(A)min +δk+1. In a few following lemmas
we shall see that they are indeed maximal points of all Fk+l(A), for l ≥ 1.

Lemma 20 For every k = 0, 1, 2..., if x ∈ Fk(A)min, then:
a) F̃k+1(A)(x) = %(Fk+m(A))(x) = %(F (A))(x), for m = 1, 2, 3, ...,
b) there exists γ > 0 such that if y ∈ Sn−1 satisfies ‖ x − y ‖< γ, then
%(F (A))(x) ≥ %(F (A))(y), and if additionally F̃k+1(A))(x) > F̃k+1(A))(y)
then %(F (A))(x) > %(F (A))(y).

PROOF. a) Let x̃ = %(Fk(A))(x) · x ∈ Rn be a point of a border of Fk(A)
corresponding to x. Let H ⊂ Rn be a hyperplane perpendicular to x and
containing x̃ (as a point), and H−, H+ denote, respectively the two closed half-
spaces (into which H separates Rn), the first containing 0. By the convexity
of Fk(A) and by definition of Fk(A)min we have Fk(A) ⊂ H−. Now, by the
definition of F̃k+1(A) one can see, that B(F̃k+1(A)) ⊂ H− ∪ B%k(A)min+2·δk+1

,

hence B(F̃k+1(A)) ⊂ (H + 2δk+1)
−, where H + 2δk ⊂ H+ is the hyperplane

parallel to H and at distance 2δk from it, and (H + 2δk)
− - the corresponding

half-space, containing 0. But then Fk+1(A) = conv(B(F̃k+1(A))) ⊂ (H +
2δk+1)

−, hence F̃k+1(A)(x) = %(Fk+1(A))(x).

This implies that %k+1(A)max = F̃k+1(A)(x) = %k(A)min+2 ·δk+1 and hence, by
definition of δk+2 we get F̃k+1(A)(x) = %k(A)min+2·δk+1 ≥ %k+1(A)min+2·δk+2

for all k > 0 and hence, by induction:

F̃k+1(A)(x) = %k(A)min + 2 · δk+1 ≥ %l(A)min + 2 · δl+1, (1)
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for l ≥ k. This implies that for l ≥ k, Fl+1(A) ⊂ conv(Fl(A)∪BF̃k+1(A)(x)) and

hence, by induction Fl+1(A) ⊂ (H +2δk+1)
−, for all l ≥ k+1. This shows that

F̃k+1(A)(x) = %(Fk+m(A))(x) for m ≥ 1 and that F̃k+1(A)(x) = %(F (A))(x).

b) Following the notations from a) we can similarily observe, that
B(F̃k+1(A)) ⊂ (H− ∩Bn) ∪B%k(A)min+2·δk+1

and, that
H ∩ ((H− ∩Bn) ∪B%k(A)min+2·δk+1

) = {(%k(A)min + 2 · δk+1) · x}. One can now
find a positive ν such, that for y ∈ Sn−1 with ‖ x−y ‖≤ ν one has Hy∩((H−∩
Bn)∪B%k(A)min+2·δk+1

) = {(%k(A)min + 2 · δk+1) · y}, where Hy is the hyperplane
perpendicular to y and containing (%k(A)min+2·δk+1)·y (it is enough to choose
ν such that then Hy ∩ (H− ∩Bn) = ∅). As in a) we have Fl(A) ⊂ H−

y (where
H−

y is the corresponding closed half-space containing 0) for all l ≥ k and hence
F (A) ⊂ H−

y which means, that %(F (A))(x) ≥ %(F (A))(y).

Now, if F̃k+1(A)(x) > F̃k+1(A)(y), then Hy ∩ B(F̃k+1(A)) = ∅ and, hence
there exists α > 0 such, that B(F̃k+1(A)) ⊂ (Hy − α)−, where Hy − α ⊂ H−

y

is the hyperplane parallel to Hy lying at distance α from it, and (Hy − α)− is
the corresponding halfspace containing 0. This means that %(Fk+1(A))(x) >
%(Fk+1(A))(y).

Now observe that if δi+1 > 0 then for any α > 0 one can find x ∈ Fi(A)min

and y ∈ Sn−1 satisfying ‖ x− y ‖≤ α and F̃i+1(A)(x) > F̃i+1(A)(y). Hence as
above %(Fi+1(A))(x) > %(Fi+1(A))(y) and consequently δi+2 > 0. Since δ1 > 0
we get by induction δi > 0 for all i > 0.

By definition of δi it follows that we have strict inequality in formula (1), i.e.:

F̃k+1(A)(x) = %k(B)min + 2 · δk+1 > %l(B)min + 2 · δl+1, (2)

for l ≥ k.
Thus there exists β > 0 such that Fk+1(A) ∪ B%k+1(A)min+2·δk+2

⊂ (Hy − β)−.
By the same ineqality for k + 1 instead of k we have Fl(A) ⊂ conv(Fl−1(A) ∪
B%k+1(A)min+2·δk+2

), for l > k + 1 hence, by induction Fl(A) ⊂ (Hy − β)−, for
all l > k + 1. It follows that F (A) ⊂ (Hy − β)−, which implies %(F (A))(x) >
%(F (A))(y). 2

Lemma 21 The function A 7→ F (A) is an ε-close to the identity, continuous
function from C0(n) \ {Bn} into itself.

PROOF. First realize, that |F̃k(A)− F̃k+1(A)| ≤ δk and hence
dH(Fk(A), Fk+1(A)) ≤ δk by arguments of the proof of Lemma 18. It follows
that dH(Fk(A), Fk+l(A)) ≤ ε

2k for every k, l ≥ 0 and hence, that F is ε-close
to the identity.
Similarly we have |F̃k(A) − 1| ≥ 1−%0(A)min

2
, for every k ≥ 0 so, that F (A) ∈

11



C0(n) \ {Bn}.
Now we shall show the continuity of F . Because of the above observations
and since

⋃k
i=0 Fi(A) = Fk(A), it’s enough to prove that maps A 7→ Fk(A) are

continuous for all k ∈ N .
Let’s proceed inductively.
For k = 0 the assertion is clear.
Now if we know that A 7→ Fi(A) is continuous for i = 0, 1, ..., k − 1 then
%k−1(A)min depends continuously on A, because of its definition. By the above
Lemma 20 we have %k−1(A)max = %k−2(A)min +2 · δk−1 for k > 1, so that it is a
continuous function of A (in the case k = 1 it is obvious and further we assume
by induction that δk−1 is a continous function of A - for k = 2 it is clear) and
hence δk depends continuously on A. It follows that A 7→ F̃k(A) 7→ Fk(A) is
continuous. 2

Lemma 22 If x ∈ Fk(A)min for some k = 0, 1, 2..., then x is a maximal point
of F (A).

PROOF. Let γ : [0, 1] → Sn−1 be a path with γ(0) = x. Assume, there
exists such a t0 ∈ (0, 1], that %(F (A))(γ(t0)) > %(F (A))(x). Then we have to
show, that there exists t1 ∈ (0, t0) satisfying %(F (A))(γ(t1)) < %(F (A))(x).
According to Lemma 20 a) %(F (A))(x) = F̃k+1(A)(x). As is easy to observe
and as it has been already pointed out x is a maximal point of F̃k+1(A), hence
either for all t ∈ [0, 1] F̃k+1(A)(γ(t)) = F̃k+1(A)(x), which is impossible in
view of Lemma 20 a) and of our assumption for t0, or there is t2 ∈ (0, t0) such,
that for all t ∈ [0, t2] F̃k+1(A)(γ(t)) = F̃k+1(A)(x) and for every t > t2 there
exists s ∈ (t2, t) such, that F̃k+1(A)(γ(s)) < F̃k+1(A)(x). But then, by Lemma
20 b) we can find s ∈ (0, t0) such, that %(F (A))(γ(s)) < %(F (A))(x) which
ends the proof by setting s = t1. 2

Lemma 23 The map F is an O(n)- equivariant, continuous, ε-close to the
identity map from C0(n) \ Bn to itself, whose image consists of bodies with
infinitely many maximal sets.

PROOF. By Lemma 21, F is continuous and ε-close to the identity and it
follows easily from construction of F (A) that it’s O(n)-equivariant.
Now, by Lemma 20, for each k > 0 if x ∈ Fk(A)min then x is a maximal
point of F (A) with %(F (A))(x) = F̃k+1(A)(x). If l > k and y ∈ Fl(A)min, then
F̃l(A)(y) < F̃k(A)(x), as in the proof of Lemma 20. Hence, by Lemma 10, x
and y belong to distinct maximal sets of F (A). In conclusion we get infinitely
many maximal sets of F (A) - at least one contained in each Fk(A)min (in fact
at least two, by symmetry of F (A)). 2
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4 Remarks and corollaries

In this section we give some remarks and corollaries concerning the proof from
the previous section. In particular we show that for any finite subgroup K of
O(n) the space C0(n)/K is homeomorphic to the Hilbert cube Q (Corollary 3).

4.1 Remarks

There is also another characterization of Q-manifolds (compare Theorem 6),
which states that a locally compact ANR X is a Q-manifold iff for each n ∈ N
any two maps f, g : Bn → X may be approximated by maps with disjoint
images (see [T], Remark 3).
Hence in order to prove that (C0(n)\{Bn})/K is a Q-manifold for each closed
subgroup K of O(n) it suffices to show that for every compact subset Y ⊆
C0(n) \ {Bn} and every ε > 0 there exist two O(n)-equivariant, continuous,
ε-close to the identity maps F, G : Y → C0(n) \ {Bn} with disjoint images
(because then the two compositions F ◦ f and G◦ g would approximate f and
g and have disjoint images).
If now one reminds the constructions of the maps G and F in Sections 3.1 and
3.2 one can notice that if we assume they both are defined on a compact set Y
then the function A 7→ δ(A) (see the definition in Section 3.1) can be chosen
to be constant δ(A) ≡ δ so that there exist m ∈ N such that, for every A ∈ Y ,
G(A) consists of bodies with less than m maximal sets . Then, according
to what was shown in Section 3.2 one could redefine the map F as follows:
F (A) = Fm(A), getting (see the proof of Lemma 23) that im(F )∩ im(G) = ∅.

4.2 The proof of Corollary 3

Let K be a finite subgroup of O(n). Choose z0 ∈ Sn−1.
Let now ε > 0 be given. As in the previous section we shall construct two
K-equivariant, ε-close to the identity maps from C0(n) to itself, with disjoint
images. To do that we use the maps F and G from the previous section as
follows.
For α ∈ [0, 1) and z ∈ Sn−1 denote by Hz − α the hyperplane perpendicular
to z (in a sense of an euclidean structure on Rn) and at a distance 1 − α
from the origin. Let α0 ∈ (0, 1) be such, that for all y 6= z, both belonging to
{kz0 : k ∈ K} ∪ {k(−z0) : k ∈ K}, one has (Hz − α)∩ (Hy − α)∩Bn = ∅, for
every α ≤ α0.
For α ∈ [0, 1) and A ∈ C0(n) define
J̃α(A) = A ∩⋂

k∈K(Hkz0 − α)− ∩⋂
k∈K(Hk(−z0) − α)−, where (Hz − α)− is one
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of the closed half-spaces , the one containing the origin, into which (Hz − α)
divides Rn.
Clearly J̃α(A) is a continuous function of A and α.
Unfortunately J̃α(A) does not have to belong to C0(n). But according the
John ellipsoid j(J̃α(A)) depends continuously on A and α (compare [ABF]).
Hence if k ∈ O(n) maps the axes of j(J̃α(A)) onto the coordinate axes of Rn

so that k(j(J̃α(A))) =
{
(x1, ..., xn) ∈ Rn :

∑n
i=1

x2
i

a2
i

}
then the map (stretching

of A along axes of it’s John ellipsoid):

(0, 1)× C0(n) 3 (α, A) 7→ Jα(A) ∈ C0(n),

where

Jα(A) = k−1




a−1
1 0 . . . 0

0 a−1
2 . . . 0

...
...

. . .
...

0 0 . . . a−1
n




k(J̃α(A))

is well defined (does not depend on a choice of k), continuous, because of the
continuity of the map j (compare [ABF]) and K-equivariant (as K acts on A).
Morover Jα(A) 6= Bn if α ∈ (0, α0) since if it were equal then J̃α(A) would be
an ellipsoid and hence J̃α(A) ∩ (

⋃
k∈K(Hkz0 − α) ∪ ⋃

k∈K(Hk(−z0) − α)) would

be finite. But if A 6= J̃α(A) this intersection can’t, clearly, be finite and if
A = J̃α(A) then A would not belong to C0(n) which would contradict our
assumptions.
Now since for every A ∈ C0(n), J0(A) = A by continuity and the compactness
of C0(n) one can choose δ ∈ (0, α0) such that dH(A, Jδ(A)) ≤ ε

2
for every

A ∈ C0(n).
Now let F and G be the ε

2
-close to the identity maps from C0(n) \ {Bn} to

itself constructed in subsections 3.1 and 3.2. Then by Lemmas 18 and 23 and
because of what was shown above we get

Lemma 24 The two maps A 7→ F (Jδ(A)) and A 7→ G(Jδ(A)) are two contin-
uous, ε-close to the identity, K-equivariant maps from C0(n) to itself, having
disjoint images.

These two maps induce two continuous, ε-close to the identity, maps from
C0(n)/K into itself, having disjoint images. Since C0(n) is compact the orbit
space C0(n)/K is compact too. Since C0(n)/K is an AR using the Torunczyk
characterization of the Hilbert cube ([T]) we proved Corollary 3 and in par-
ticular, for K = {1} we get Corollary 4.
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5 Another proof in the case n = 2

In this section we will give a sketch of another proof of Theorem 1 in the case
n = 2, which probably can be extended to an arbitrary n ≥ 2.

As previously it suffices to construct two maps from C0(2) \ {B2} to itself
that are O(2)-equivariant, ε-close to the identity, one of them having an image
consisting of bodies with differentiable boundaries and the other with a disjoint
image. Those maps induce two maps from BM(2)\{B2} to itself which satisfy
the assumptions of Theorem 6. Since, as was shown in Section 3, BM(2)\{B2}
is a locally compact ANR, this will finish the proof of Theorem 1 in the case
n = 2.

In general we follow the notation of Section 3.
Let, in addition C1(S1,R+) denote the subspace of C(S1,R+) consisting of
differentiable functions from S1 to R+.

Let now ε > 0 be given.

5.1 Construction of the first map

Definition 25 Define the map F : C0(2) \ {B2} → C0(2) \ {B2} by:

F (A) = a(A)(Bδ(A)(A)),

where the map

a(A) = k−1




a−1
1 0

0 a−1
2


 k ∈ GL(2,R),

k ∈ O(2), is a right ”stretching” as defined in Section 4.2;

i.e. F (A) is the ”stretching” of the closure of the δ(A)-neighbourhood of A in
R2; here δ(A) = min {δ′(A), ε} for δ′(A) given in Section 3.1.
By fact 13 and the properties of δ-neighbourhood we obtain

Lemma 26 The map F is an O(2)-equivariant, continuous, ε-close to the
identity map from C0(2)\{B2} into (C0(2)\{B2})∩B(C1(S1,R+)), i.e. into
the subset of C0(2) \ {B2} consisting of bodies with differentiable boundaries.
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5.2 Construction of the second map

First define a function p : R → S1 ⊂ R2 by p(t) = (cos t, sin t).
Let again A ∈ C0(2) and G : C0(2)\{B2} → C0(2)\{B2} be the ε

4
-close to the

identity map of subsection 3.1. Then, by Lemma 18, G(A) has only finitely
many, let us say k maximal sets. Let m1 < n1 < m2 < n2 < .... < mk <
nk be numbers such that the images p([m1, n1]), ..., p([mk, nk]) are pairwise
distinct (and hence all) maximal sets of G(A). Define now p∗(A) : R → R+

by p∗(A)(t) = %(G(A))(p(t)), where % is the map defined in Section 3.
Now let us define:

R(A, x, y) =

y∫

x

(max{p∗(A)(x)− p∗(A)(s) : x ≤ s ≤ t})dt

L(A, x, y) =

y∫

x

(max{p∗(A)(y)− p∗(A)(s) : t ≤ s ≤ y})dt

r(A, x, y) =

y∫

x

(max{p∗(A)(s)− p∗(A)(x) : x ≤ s ≤ t})dt

l(A, x, y) =

y∫

x

(max{p∗(A)(s)− p∗(A)(y) : t ≤ s ≤ y})dt

and for i = 1, 2, ..., k let xi ∈ R be such, that L(A, xi,mi) = 7, yi ∈ R such
that R(A, ni, yi) = 7 (such numbers clearly exist by definition of maximal
points and because B 6= B2 and we choose 7 to assure that we integrate over
an interval of length greater than the period 2π).
Let s be the homeomorphism: R+∪{∞} → (0, 1] given by s(t) = 2

π
arctan(t),

for t ∈ R+ and s(∞) = 1.
For i as above define:

z+
i = inf

{
s

(
R(A, ni, y)

r(A, ni, y)

)
: ni < y < yi

}

z−i = inf

{
s

(
L(A, x, mi)

l(A, x, mi)

)
: xi < x < mi

}

(with the convention: c/0 = ∞ for c > 0) and:

zi = min{z+
i , z−i }.

Then we define a 2π-periodic function H̃(A) : R → R+:

H̃(A)(t) =





p∗(A)(t) + zi · ε
4

if t = xi + 2nπ or t = yi + 2nπ

for some i ∈ {1, ..., k} and n ∈ Z

p∗(A)(t) in other cases
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This function induces a function Ĥ(A) on S1 by the formula Ĥ(A)(x) =
H̃(A)(t), where t is an arbitrary number such that p(t) = x. Unfortunately
Ĥ(A)(x) is not always ≤ 1, hence B(Ĥ(A)) (where the map B was defined
at the begining of Section 3) does not need to be contained in B2 but we can
”stretch” it using the method of Section 4:

Definition 27 Define the map H : C0(2) \ {B2} → C0(2) \ {B2} by:

H(A) = ã(A)(conv(B(Ĥ(A)))),

where the map

ã(A) = k−1




a−1
1 0

0 a−1
2


 k ∈ GL(2,R),

k ∈ O(2), is a right ”stretching” as defined in Section 4.

Lemma 28 The map H is an O(2)-equivariant, continuous, ε-close to the
identity map from (C0(2) \ {B2}) to C0(2) \ B(C1(S1,R+)), i.e. its image is
disjoint with that of F .

A sketch of a proof of the last lemma can be found in [O].
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