ANALIZA III

1. MNOZNIKI LAGRANGE’A

1.1. Przestrzen styczna. Niech ey, ..., e, bedzie bazg R", a x = x1e1 + ... + 26, =

(1, ...,x,) € R™ Niech f:R" — R bedzie funkcja taka, ze dla kazdego i istnieje

o (z) = lim flette) = flo)
ox; t—0 t
Gradient V f funkcji f zdefiniowany jest nastepujaco:

Vi(z) = (g—i(x),...,gi@)).

Definicja 1.1. Mowimy, ze funkcja [ jest klasy C*(R™), gdy dla kazdego i

(1.2) g;f jest funkcjq cigglq.

Piszemy 68_92 e C(R™), f € CHR™).
Oznaczenie. Dlg v,w € R", vow =Y ", v;w; oznacza iloczyn skalarny.

Definicja 1.3. Mowimy, ze funkcja f : R™ — R jest rozniczkowalna, gdy

" B~ @) Vi@ o]
' h—0 Al

Warunek (1.2) implikuje (1.4). Zauwazmy, ze z (1.4) wynika, ze
(1.5) flx+h)=f(x)+ Vf(x)oh+o(h),
gdzie o(h) jest funkcja o wlasnosci

. o(h
i G =
Istotnie,
fl@+h) = f(x) = Vf(x)oh=o(h),

Jesli chcemy przyblizyé¢ f(x + h) mozemy wiec napisac
(1.6) flx+h)=~ f(x)+ Vf(x)oh.
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Przyklad 1.7. Znalesé w prayblizeniu wartosé /(6,02)2 + (8,01)2.

Rozwazamy f(z,y) = /2% +y? w punkcie (6,8) dla h = (0,02;0,01). Wtedy
£(6,8) =10 ¢

]
ox I(

- - )(6,8) N

68) /22 +y2les) 5 Oyles) /2?2 + y?

4
)

3 4
£(6.02:8,01) ~ 10+ = 0,02+ = - 0,01

W dalszym ciagu u bedzie oznaczalo dowolny element R". Bedziemy pisali
U= (Ury .o, Up) = (U, up).
Wykresem funkcji f : R*™! — R nazywamy zbior
S={(z f(z):zeR""}.

Definicja 1.8. Przestrzeniq styczng T, do S w punkcie v = (z, f(Z)) nazywamy
hiperptaszczyzne

(1.9) T,={ueR":u,— f(z)=Vf(@)o(u—1=x)}.
Zauwazmy, ze rownanie (1.9) mozna rownowaznie napisac
(= () (1) + V() 0 (a — ) = 0
czyli wektory (Vf(z),—1) 1w — (z, f(Z)) sa prostopadte. Mozna tez zapisaé¢
o — V(@) 0= [(2) — V(z) 07
lub

X @ = ) @) 0

Przyklad 1.10. Niech f : R — R, f' € C(R). W tym przypadku przypadku prze-
strzeri styczna jest prostq styczng w punkcie (z1, f(x1)) @ ma rdwnanie

up — fla1) = f'(21)(ur — 1)
lub réewnowaznie

up = f'(21) (w1 — 1) + f(21).

Mamy réwnanie prostej o nachyleniu f'(x1) przechodzqcej przez punkt (1, f(x1)).
Wektor kierunkowy prostej to (1, f'(x1)), ktory jest prostopadty do (f'(z1),—1).
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Przyklad 1.11. Niech [ : R*? — R, f € CYR?). W tym przypadku przypadku
przestrzen styczna jest plaszezyzng styczng w punkcie (Z, f(Z)) @ ma réwnanie

us — f(z) = j—;”l(as)(ul e+ g’—;‘;m )

lub réwnowaznie

uz = V[f(z)(a—7) + f(2).
W konkretnym przypadku f(z) = z3 + 23, mamy Vf(Z) = (2z1,222) 1 réwnanie
Ti1,0,1) Jest nastepujgce

ug—1=1(2,0)0(a—2) =2(u; — x1).
Niech
(1.12) Ly ={v=(0,v,) €R" : v, = V[(z) 0 0},

gdzie v = (v, v,). Wektor v jest prostopadty do (Vf(z),—1). Zauwazmy, ze L, jest
przestrzenia liniowa i

Ty = Ly + (2, (7)) = {v + (2, [(2)) s v € La}.

v jest tutaj elementem R™, ale traktowanym jako wektor czyli element przestrzeni
liniowej. O u € R™ my$limy jak o punkcie.

1.2. Zbiory otwarte i domkniete w R". Dla z € R" niech

Kula (kula otwarta) o srodku w 2 € R™ i promieniu r nazywamy zbior

By(z) ={y e R": |ly — x| <r}.

Definicja 1.13. Zbior U C R" nazywamy otwartym jesli dla kazdego x € U istnieje
r > 0 takie, ze B,(x) C U.

Przyktady zbioréw otwartych
o B,(x)
e {reR*:0<z <1, 5<uaxy<10}
° {.TER”ICM < x; <bi, ’ZIL,TL}
e {reR":2;,>0,i=1,..,n}
e {z eR*:0<x <1, 9 < f(x1)}, gdzie f : [0,1] = (0,00) jest funkcja
ciggly.
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Zauwazmy, ze na zbiorze otwartym dobrze definiuje sie roézniczkowanie, bo dla
x € U, i dostatecznie malego t > 0, x +te; € U i f(x + te;), a co za tym idzie

ﬁ(m) ~ lim flx +te;) — f(z)

0x; t—0 t

jest dobrze zdefiniowane.

Definicja 1.14. Zbior F' C R™ nazywamy domknietym jesli R™ \ F' jest otwarty.

Twierdzenie 1.15. Zbior F' C R" jest domkniety wtedy i tylko wtedy, gdy dla kazdego
clQgu T, € F z2bieznego do x € R™ mamy x € F'.

Dowdd powyzszego twierdzenie bedzie wkrotce na Analizie i Topologii.

Przyklady zbioré6w domknietych
e {reR*:0< <1, 5<zy <10}
® {.Z'ER”ICLZ' le Sbl, 1= 1,...,71}
e {reR":2;,>20,i=1,..,n}
e {r €R?:0 <z < 1,19 = f(x1)}, gdzie f : [0,1] — R jest funkcja ciagta
(wykres funkcji)
o {1 eR?*:0< 2 <1,m9 < f(x1)}, gdzie f:[0,1] — R jest funkcja ciggla
o B.(x)={y e R": ||y —z|]| <r} (kula domknicta).

Poza () i R™ zaden zbior w R™ nie jest jednoczesnie otwarty i domkniety.
Definicja 1.16. Zbior K C R" nazywamy zwartym jesli jest domkniety i ograniczony.

Na wykladzie topologii, zbiér zwarty w przestrzeni metrycznej byt zdefiniowany
nieco inaczej. W szczegolnym przypadku R™ wychodzac z ogolnej definicji mozna
pokazaé, ze K C R” jest zwarty wtedy i tylko wtedy gdy jest domkniety i ograni-
czony. Tak wiec powyzsza definicja jest raczej twierdzeniem. Bedziemy jej uzywali,
bo pozwala tatwo sprawdzi¢, ze zbioér jest zwarty.

Przyktady zbioréw zwartych

e {reR*:0<x<1, 5< 1y <10}
e {reR":q;<x; <b;, i=1,..,n,a; b € R}
o {1 eR?*:0<mx < 1,9 = f(x1)}, gdzie f:]0,1] — R jest funkcja ciggla.
® Bi(x)={y eR": [ly — | <r}

Zbior

{reR":2;,>0,i=1,..,n}
jest domkniety, ale nie jest zwarty.
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Definicja 1.17. Funkcje f okreslong na zbiorze D nazywamy ciqgtq jesli dla kazdego
ciggu T, € D takiego, Ze x,, — x € D mamy, ze f(x,,) — f(z).

Dla przypomnienia: x,, — = wtedy i tylko wtedy, gdy ||z,, — z| — 0.

Twierdzenie 1.18. Funkcja ciggta [ okreslona na zbiorze zwartym K C R™ jest
ograniczona 1 przyjmuje kresy tzn. istniejq punkty xi, o € K takie, Ze

f(z1) :géi[r{lf(y), f(x2) :gleagf(y)-

Dowdd powyzszego twierdzenia takze powinien by¢ na na Analizie i Topologii. Jest
ono odpowiednikiem twierdzenia z teorii jednej zmiennej méwiacego, ze funkcja ciagta
na odcinku domknietym przyjmuje kresy.

1.3. Twierdzenie o mnoznikach Lagrange’a. U jest otwartym podzbiorem R",
g jest funkcja, a

(1.19) S={zeU: g(x)=c}.

Np. gdy g(z, vy, 2) = 2> +y*+2%1ic > 0, otrzymujemy sfere. Gdy g(z) = h(Z)—xp, z =
(Z,z,)1c=0, S jest wykresem funkcji h. Istotnie g(z) = 0 wtedy i tylko wtedy, gdy
x, = h(Z).

Zaktadamy, ze funkcja f jest okreslona na S.

Definicja 1.20. Mdowimy, ze [ przyjmuje minimum (maksimum) lokalne w xq jesli
istnieje r > 0 takie, ze

fa) = v f@) (Sl = _max f@).

2€SNBy(z0) x€SNBy(

Twierdzenie 1.21 (Lagrange). Zatdzmy, Ze funkcje f : U CR* - Rig: U C
R" — R sq klasy C*. Niech S = {x € U : g(x) = c}. Jesli funkcja f‘s przyjmuje
minimum lub maksimum lokalne w punkcie xy oraz Vg(xo) # 0, to V f(x9) = AVg(zo)
dla pewnej statej X. Tzn. gradienty V f(xq) i Vg(xo) s¢ réwnolegte.

Jesli S jest zwarta, to f przyjmuje maksimum i minimum, a wiec posrod tak zna-
lezionych punktow beda punkty, gdzie jest maksimum i minimum, a posrod otrzy-
manych wartosci funkeji najwieksza i najmniejsza.
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Trzeba znalez¢ punkt x € U i stala A takie, ze

of dg
— ceXp) = A=——(x1,70,...,1,
e (71,22, .., Tp) I (1,22, .., Tp)
B ' 9
81{;@1,372,...,%1) = )\ajn(:vl,xg,...,wn)
g(x1,29,...,2,) = ¢
Mamy uktad n 4+ 1 réwnan z n 4+ 1 niewiadomymi xq, x2,..., T, i A.

Przyklad 1.22. Niech S = {(z,y) e R? : 22 + y?> = 1}, a f(z,y) = 2* — y*. Wiedy

Vf(r,y) = (2z,—2y) = AVg(z,y) = A2z, 2y).

Wiec x = Ax, y = —Ay. Czyli © =0 lub X = 1. W pierwszym przypadku y = £1, a
w drugim y =0 ¢ x = 1. Mamy wiec

F0,+£1)=—1, f(+1,0)=1

i 8¢ to nagmniejsza i najwieksza wartosé funkcji na sferze.

Przyklad 1.23. f(z,y,2) =z + 2, S={(z,y,2) : 2* +y* + 2? = 1}. Mamy
Vfi(x,y,z)=(1,0,1), Vg(z,y,z2) = (2z,2y,2z).

Wektory te sq réwnolegte, gdy y = 0 oraz z = x. Zatem 22* = 1. Otrzymujemy dwa

rozwigzania £ \/LT 0, \/Li oraz

Przyklad 1.24. Na sferze 22 + y* + 22 = 4 znalesé punkt najblizszy i najdalszy od
punktu (3,1, —1).

Rozwazmy kwadrat odlegtosci: f(z,y,2) = ||(z,y,2) — (3,1, =1)||? = (x — 3)* +
(y — 1)? + (2 + 1)%. Wtedy

Vf(z,y,2) =2(x -3,y — 1,2+ 1) = A\Vyg(z,y,2) = 2\ (z,y, 2).
Mamy do dyspozycji réwnania
(1.25) r—3=Xx, y—1l=X\y, z+1=Xz, i 2°+9°+22=4
lub réwnowaznie

(1.26)  z(1-XN) =3, y1-N=1, z1-XN)=-1, i 22+y*+22=4
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Zauwazmy, ze A # 1. Stad,
r=31-N" y=01-XN"" z=—-1-)N"L
Wstawiajac te wartosci do rownania sfery otrzymujemy

11 V11
- =4, 1A=+t
(1— )2 2

6 2 —2 V11
P1 = ) y ) dla A=1-
V11 11 /11
V11

p2 = —p1 dla )\:14—7.

Z (1.25) wynika, ze f(z,y,z) = N(2? + y> + 2%) = 4)?, co dla p; daje odlegtos¢
2|1 = 2L, & dia p; odieglosc 2 (1+ ¥1).

i dwa punkty

Przyklad 1.27. Rozwazmy macierz symetryczng A wymiaru n X n. Okreslamy

n

flx) = (Az,z) = Z a; Tt T = (T1,Ta,...,Ty).

ij=1
Cheemy znalezé ekstrema funkcji f(x) na
S={(x1,29,...,2,) ER" : g(x) =23+ 25+ ...+ 22 =1}
Mamy
of =
87(1’) = Z Q55 + Z A;1Tq + 26kaZL’k =2 Z AT,
F ik i#k j=1
bo ay; = aj,. Dalej
dg

Otrzymujemy wiec uktad réwnan

n
E ajr; = Mg,
i=1

n
E Qo5 = )\%2,
J=1

n
E ApjTj = ATp.
Jj=1
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To oznacza, ze Axr = Ax. Czyli x jest wektorem wlasnym o dltugosci 1. Uporzadkujmy
wartosci wltasne macierzy A wedtug wielkosci: A\ < Ay < ... < \,. Niech vy, v9,...,0,
oznaczaja odpowiadajace wektory wlasne o dtugosci 1. Wtedy

f(Uk) = (Avk,vk) = /\k(vk,vk) = /\k

Reasumujac

”rr‘l‘iEll(Ax, T) = A, ﬁ?jﬁ(Aw’ z) = Ap.

Przyktad 1.28. Na zbiorze S = {z € R3: 2y +x0+a5 =1, 2; > 0} znajdziemy
najmniejszq i najwiekszq wartosé funkeji f(x) = (14 21)(1 + z2)(1 + x3).

Zauwazmy, ze S nie jest zbiorem postaci S = {z € U : g(z) = ¢} dla U otwartego,
ale S jest zwarte i mozemy szuka¢ najmniejszej i najwieksze] wartosci funkcji. 7
rOwnania na gradienty mamy

Stad x1 = @9 = x3 = 1/3 i f(%,%, %) = (%)3 = g—‘;. Ale to dziala tylko na zbiorze
{z1 + x5+ 23 =1, x; > 0}, bo w Twierdzeniu Lagrange’a U jest otwarty.

Musimy wiec zalozy¢, ze jedna zmienna jest zero, np. xy; = 0, rozwazy¢ zbior
{za +x3 =1, x9,23 > 0} i funkcje f(x) = (1 + x9)(1 + x3). Postepujac jak wyzej i
ograniczajac si¢ do zo > 0,3 > 0 otrzymujemy xo = x3 = % i f(0, %, 3) = (%) = %.

W koncu, musimy jeszcze uwzgledni¢ punkty, gdzie dwie wspolrzedne sie zeruja,
co daje f(0,0,1) = 2. Ze wzgledu na symetrie zmiennych sa to wszystkie przypadki.
Stad g—;‘ jest najwiekszg wartodcia, a 2 najmniejszg.

Przyklad 1.29. Przy warunku z+y+ 2z = 48 znajdziemy najmniejszq funkcji f(x) =
2% 4+ + 22

7 Twierdzenia Lagrange’a mamy (2z,2y,2z) = A(1,1,1). Stad x =y =2 =161
f(16,16,16) = 768. Ale zbiér opisany warunkiem nie jest zwarty

Dlaczego jest to minimum? Zauwazmy, ze f(x,y, z) — 00, gdy x — 0o wiec nie ma
najwickszej wartosci. Powierzchnia jest niezwarta, wiec musimy wykazac, ze wartosé
minimalna jest przyjeta. Rozwazmy kotko

S ={(z,y,2): 2° +y* + 2% <1000, +y + z = 48}.

f przyjmuje na S maksimum = 1000 i jakie§ minimum, a poza S funkcja f jest
wieksza niz 1000.

W sytuacji, gdy mamy zbiér zwarty o niepustym wnetrzu i brzegu za-
danym jako poziomica (1.19), procedura znajdowania wartosci najwiekszej
i najmniejszej funkcji jest nastepujaca
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1. Znalez¢ punkty krytyczne funkcji wewnatrz zbioru, tzn. punkty stacjonarne
oraz punkty, w ktérych nie mozna obliczy¢ pochodnych czastkowych.
2. Znalez¢ punkty krytyczne funkcji obcietej do brzegu zbioru, np. metoda
mnoznikoéw Lagrange’a.
. Obliczy¢ wartosci funkeji w znalezionych punktach.
4. Wybra¢ wartos¢ najwiekszg i najmniejsza.

wo

1.4. Charakteryzacja przestrzeni stycznej przy pomocy krzywych. Niech
I = (a,b), gdzie —0o0 < a < b < 00, co znaczy, ze I moze by¢ odcinkiem, poétprosta,
calym R. Dla wygody rézniczkowania przyjmujemy, ze [ jest otwarty.

Definicja 1.30. Odwzorowanie v : I — R™ klasy C' nazywamy krzywq. Piszemy
V() = (n(t), - m(t))-

Klasy C! oznacza, ze dla kazdego i

dr
vi(t) = dvtl (t) jest funkcja ciagla.

Oznaczmy
V() = (10, 70(0)
Rozwazmy x € S (S = {x € U : g(x) = ¢}) 1 zbior krzywych

I,={y: I—=R", 0el, v(0)==xz, V,~(t) € S}.

Na poczatek ograniczymy sie do S bedacego wykresem funkcji.
Twierdzenie 1.31. Zatozmy, ze S jest wykresem funkcji f tzn.
S={(z f(@):zeR"}={zeR": 2, — f(T) =0}
Wtedy
L,={v: 3ier,, v=7(0)}.

Dowod. Zwroéémy uwage, ze L, byto zdefiniowane jako przestrzen wektoréw prosto-
padlych do (Vf(Z), —1). Zapiszmy x = (Z,z,) 1

¥(t) = (1), (1), gdzie 5(t) € R* .
Jesli v € Iy to yn(t) = f(3(2)) cayli7(t) = (3(1), f(7(1)))

Doty =Y oL G0 e,

a wiec
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Stad 4'(0) € L,. Zalozmy teraz, ze v = (v,v,) € L, czyli o wtasnosci v, = V f(Z)ov.
i rozwazmy krzywa
~v(t) = (z + ot, f(T + vt)).
Na przyktad dla n = 3 mamy
Y(t) = (x1 + vit, Ta + vot, f(z1 + v1t, T2 + vat)) .
vyel,i

+(0) = (vl, o, %f(f + m)(()))

Powyzsze twierdzenie jest prawdziwe takze w ogolnej sytuacji
S={zreU:g(x)=c}
Wtedy definiujemy
L,={v:Vg(x)ov =0}
Zwroémy uwage, ze gdy S jest wykresem funkeji f obie definicje L, pokrywaja sie.
Istotnie, dla g(z) = f(Z) — x, = 0 mamy

Vy(z) = (Vf(2),-1).

Twierdzenie 1.32. Niech S ={z € U : g(z) = ¢}, Vg(z) # 0. Wtedy
L,={v: 3er,, v=90)}.

Powyzsze twierdzenie zostanie udowodnione za kilka wyktadow.

1.5. Dow6d Twierdzenia Lagrange’a o mnoznikach. Zalozmy, ze funkcje f :
UCR" 5 Rig:UCR" = R sq klasy C'. Niech S = {x € U : g(x) = c}. Jesli
funkcja f‘s przyjmugje minimum lub maksimum lokalne w punkcie xo oraz Vg(xo) #
0, to Vf(zg) = AVg(xo) dla pewnej statej \. Tzn. gradienty V f(xo) i Vg(zo) sq
rownolegte.

Dowdd. Niech o(t) : (—1,1) — S bedzie krzywa klasy C' przechodzacy przez zo w
chwili ¢ = 0, tzn. o(0) = xy. Wtedy funkcja ztozona f(o(t)) przyjmuje ekstremum
lokalne w chwili ¢ = 0. Zatem

0= SHe)] = View) oW = Vi) oo(0)

t=0 t=0
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Ponadto ¢’(0) jest wektorem stycznym do S w punkcie xy. Co wiecej z Twierdzenia
1.32 wynika, ze zbiér tych wektoréw jest tozsamy z L,, a wiec tworzy podprzestrzen
liniowa wymiaru n — 1. Tzn. gradient V f(z) jest prostopadly do kazdego wektora
stycznego do S w punkcie . Zatem V f(xq) jest prostopadty do przestrzeni stycznej
do S w punkcie zg. Ale Vg(zo) # 0 jest tez prostopadly do tej przestrzeni stycznej.
To oznacza, ze V f(xo) i Vg(xo) sa rownolegle. O

1.6. Metoda mnoznikéw Lagrange’a przy kilku warunkach. Zalézmy, ze po-
wierzchnia S C R" jest okreslona przez k warunkow

91(551751327---,1%) = (1,
g2(x1, 29, ..., 1) = Ca,
ge(T1, Tay .oy Ty) = Ck.

Twierdzenie 1.33. Zaldzmy, ze wektory Vgi(xo), Vga(xo), ..., Var(xo) s¢ liniowo
niezalezne. Jesli funkcja f‘s postada ekstremum w punkcie xg € S, to

Vf<SEQ) = )\1Vg1 (xo) + )\gvgg(xo) + ...+ )\ngk(:co)
dla pewnych statych Ay, Aa, ..., Ag.

Uwaga. Aby znalez¢ punkt xzq trzeba rozwigzac¢ n + k rownan przy n + k niewia-
domych: n wspoétrzednych i k£ lambd.

Przyklad 1.34. Znalezé ekstrema funkcji f(x,y,2) =y + z przy warunkach
24+ =10y*+ 22 =4
Mozemy przyjaé¢ gi(z,y,2) = 2% + y? oraz go(z,y,2) = y*> + 22 Rozwiazujemy
rownanie Vf = A\ Vg + A\Vge. Otrzymujemy 3 rownania
0= 2)\137,
1= 2)\2y,
1= 2)\12 + 2/\22
Rozpatrzymy dwa przypadki.
(a) x = 0. Wtedy z = &1 oraz y = +/3.
(b) A1 = 0. Wtedy y = 2, zatem 22 = 2. Otrzymujemy sprzeczno$¢ z warunkiem
2, .2 _
x4+ z2¢ =1
Wartos¢ najwicksza jest osiggnieta w punkecie (0,1/3,1) a warto$¢ najmniejsza w

(0, /3, —1).
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Przyklad 1.35. Znalezié ekstrema funkcji f(x,y,z) = x + 2y + 3z przy warunkach
2?2+l =1liz—y+z=1

Mozemy przyjaé¢ gi(x,y,z) = ¥ —y + 2 oraz gs(x,y,2) = 2% + y>. Rozwiazujemy
rownanie Vf = A\Vg; + uVgo. Otrzymujemy 3 réwnania

1=+ 2pux,
2=—-XA+2uy,
3=\

Stad

1
—2=2ur xr=—— (I —11I)
i
5
5b=2 =—— 1T+ 111
mWoy=—g, (II+1I)
Wstawiajac to do pierwszego warunku mamy

1 25 V29

2y T TR
i
- 2 n 5
r=F— =+—.
v YT TR
7 drugiego warunku
7
z=14+—

V29
flz,y,2) =3+ V/29.

Ze wzgledu na to, ze zbiér opisany przez warunki jest zwarty otrzymujemy w ten
sposob najwieksza i najmniejsza wartosc funkcji f.

Dowdd Twierdzenia 1.33. Niech o(t) bedzie krzywa klasy C! lezaca w powierzchni S
taka, ze 0(0) = z. Mamy

gj(o(t)) =¢;, dlaj=1,2... k.
Zatem

4o (0(t) = Vgy(o(t) o o'(2).

0=2
Y

Dla t = 0 otrzymujemy
Vygij(x9) 0c'(0) =0, dlaj=1,2,... k.
To oznacza, ze wektor o’(0) jest prostopadly do wektorow

Vagi(zo), Vga(xg), ..., Var(x).
Wektor ¢’(0) jest styczny do powierzchni S w punkcie x.
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Podobnie jak dla k = 1 wymiar przestrzeni liniowej Vi rozpietej przez wszystkie
wektory styczne o’ (0) wynosi n — k.

Z kolei wymiar przestrzeni V; rozpietej przez wektory Vi (o), Vga(xo), - .., Vgr(xo)
wynosi k, o ile gradienty sa liniowo niezalezne. Ale V] i V5 sa do siebie prostopadte,
zatem V- = V,. Rozwazmy funkcje t — f(o(t)). Funkcja ta osiaga ekstremum dla
t =0. Czyli

d /
0= Ef(g(t)) o V f(xo) 00’ (0),

dla dowolnej wyzej opisanej krzywej o. Zatem V f(zo) € V5 = Va. d

2. TWIERDZENIE O FUNKCJI UWIKELANEJ

Z teorii funkcji jednej zmiennej y = f(z) wiemy, ze jesli f jest klasy C' oraz
f'(xo) # 0, to rownanie f(z) = y dla y w poblizu yo = f(z9) ma jednoznaczne
rozwiazanie * = f~'(y) lezace w poblizu zy. Rzeczywiscie, rozwazmy przypadek
f'(xo) > 0. Zatem f'(x) > 0 dla z w pewnym przedziale wokot zg, np. w (xo—0d, zo+96).
Wtedy f(x) jest $cisle rosnaca w (xg—0, xo+9). Zatem posiada funkcje odwrotng x =
g(y). Proces odwracania jest mozliwy i wazny rowniez dla funkcji wielu zmiennych.
Do tego dojdziemy, ale najpierw zajmiemy si¢ rozwigzywaniem roéwnar.

Rozwazmy réownanie F(z,y,z) = 0. Przypusémy, ze F(xq,yo,20) = 0. Interesuje
nas obliczenie zmiennej z z rownania w poblizu (xg, 3o, 20). Tzn. chcemy, aby dla
(x,y) blisko (zo,yo) znalez¢ z blisko zy tak, aby F'(z,y,z) = 0. Np. niech
F(z,y,2) =2* +y*+ 2? — 1 oraz F(0,0,1) = 0. Wtedy

z=1-a?—y* = g(z,y)

jest rozwiagzaniem rownania. g(z,y) jest funkcja klasy C' na zbiorze B;(0,0) =
{(z,y) : 2* + y? < 1}. Ponadto jesli oznaczymy S = {(z,y,2) : 22 +y?> + 2> — 1 =0}
to

Sn{(z,y,2) 12> 0} ={(z, 5, 9(z,9)) : (z,y) € B:(0,0)}.
Pokazalismy, ze istnieje otoczenie {(z,vy, 2) : z > 0} punktu (0,0, 1) i funkcja g klasy
O takie, ze przekrdj powierzchni z tym otoczeniem jest doktadnie wykresem funkcji
g. Podobnie dla F'(0,0, —1) rozwiazaniem jest

z2=—y/1—2%—19y%
Z kolei dla F (\/Li, \/Li’ 0) mamy dwa rozwiazania
z =41 — 22— >

jesli 22 + 4% < 1 lub brak rozwigzan, jesli 22 + y? > 1. W tym przypadku nie ma
otoczenia punktu (\%, \%), na ktorym z(z,y) byloby funkcja klasy C1.
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Rozwazmy S zadane nieco bardziej skomplikowanym réwnaniem:
F(z,y,z) =ay+2z+322" —4=0

w otoczeniu B.(1,0) x (1 —4,1—0) punktu (1,0, 1) bedacego jego rozwiazaniem. Czy
przekrdj S ze zbiorem otwartym B.(1,0) X (1—4,1—J) jest wykresem pewnej funkcji
g klasy C'? tzn. czy

SN (B:(1,0) x (1 =6,1=19)) = {(z,9,9(z,y)) : (x,9) € B-(1,0)} dla g € C'?
W tym przypadku nie jest juz tak tatwo wyliczy¢ z jako funkcje z,y.

Twierdzenie 2.1. Zatozmy, ze funkcja F : R® — R jest klasy C'. Zatdzimy, ze

oF
F(xo,yo,zo) =0, oraz g(xoyyo, Zo) # 0.

Wtedy réwnanie F(x,y, z) = 0 ma jednoznaczne rozwigzanie w poblizu (xo, Yo, 20). Co
wiecej, z mozna jednoznacznie wyznaczyé jako funkcje (x,y) i funkcja ta jest klasy
Cl. Doktadniej, istnieje kula otwarta U C R? o Srodku w (x0,y0), przedzial otwarty
I wokdt zy oraz funkcja

g: U1, geCYU),
taka, ze
Fz,y,9(2,y)) =0, (z,y) €U
oraz jesli (x,y,z) € U x I i F(x,y,z) =0 to z = g(x,y). Inaczej mowigc

{F(z,y,2) =0} NU X T ={(z,y,9(z,y)) : (z,y) € U}.
Zwroémy uwage, ze dla F(x,y,2) = 2° + y* + 2> — 1 mamy

oF oF 1 1
- 1) =2 (= —0) =
(001) =2 a <ﬂﬂ0) 0,

co uzasadnia warunek %—f(xo, Yo, 20) 7 0.

Przyklady.

(a) F(z,y) = z*y—y? = (2 —y)y. Rozwazmy punkt (zg,yo) = (0,0). F(z,y) =0
wtedy i tylko wtedy, gdy y = 2% lub y = 0. W poblizu punktu (0,0) mamy
wiec dwa rozwigzania. Nie mozna przedstawi¢ y jako funkcji zmiennej x.
Mamy dwie funkcje. Zauwazmy, ze VF(z,y) = (2zy, 2> — 2y) czyli
VF(0,0) = (0,0).

Sytuacja jest zupelnie inna w punkcie (xo,70) = (1,1). W poblizu punktu
(1,1), F(z,y) = 0 wtedy i tylko wtedy, gdy y = 2%, mamy wiec jedno roz-
wigzanie. W tym przypadku mozemy wzia¢ U = (1/2,3/2), I = (1/4,9/4).
Zauwazmy, ze VF(1,1) = (2,—1).
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(b) Rozwazmy walec F(x,y,2) = 2>+ y*> —1 =01 punkt

(20, 40, 20) = (1/+/2,1/+/2,5). Mamy

Nie mozna przedstawic¢ z jako funkcji zmiennych z,y, ale mozna przedstawic
x jako funkcje zmiennych y, z stalg w kierunku zmiennej z. Mozemy wziaé

= (1/vV2=06,1/V240) xR (y,2), (1/V2—e,1/V24¢) =15z

Twierdzenie pozwala nam tez na liczenie pochodnych funkcji ¢ mimo, ze nie mamy
na nig jawnego wzoru.

Wiemy, ze zo = g(xo,y0) oraz F(z,y,g(z,y)) = 0 dla (z,y) € U. Zatem

0 OF OF dg
0= a—xF(%y,g(rC,y)) = a—x(x,%g(fv,y)) + g(fv,%g(w,y))%(x,y)'

Otrzymujemy

9 (2, y, g(x, ~
(2.2) %(:@, ):—%Emzzéxzii (z,y) € U C U.

Z zalozenia % (0, yo, 20) # 0, zatem 9= (z,y, g(z, y)) # 0, dla (z,y) w poblizu (zo, yo),
bo funkcje F i g sa klasy C1. Podstaw1amy (x O,yo) aby otrzyma¢

dg 9E (20, 40, 20)
(2.3) (0 p) = —gF———
Ox %—F(fﬂoayo,zo)
Przyktlady.
(a) Rozwazamy rownanie F(x,y,2) = xy + z + 322° = 4 i rozwiazanie (1,0,1).
Wtedy
OF
—(1,0,1) = 1+ 1522* =16
82< s Uy ) + Tz (1,0,1) ’
OF
——(1,0,1) =y + 32° =3,
ox ( )=y : (1,0,1)
F
OF 1 0.1y = = 1.
dy (1,0,1)
Na podstawie wzoru (2.10) otrzymujemy
dg 3 dg 1

%(’):_E’ gy(?):_ﬁ'
g—i jako funkcja na otoczeniu (1,0, 1) jest dana wzorem

dg y+32°
_— = - d =

czyli gdy jesteSmy na poziomicy (powierzchni).
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(b) Niech F(z,y,z) := a® + 3y* + 8x2? — 3y2* = 1. W poblizu jakich punktow
powierzchnia zadana réwnaniem moze by¢ przedstawiona jako wykres funkcji
z = g(z,y)? Obliczamy
oF
— =162z — 9y2* # 0.
0z
Zatem muszg by¢ spelnione warunki z # 0 oraz 162 — 9yz # 0.
Jesli chcemy obliczy¢ x = h(y, 2), to
oF 5 5
— = 32"+ 82 # 0.
Ox
Wystarczy zatem, aby x # 0 lub z # 0.

Przyklad 2.4. Znalesé lokalne ekstrema funkcji z na powierzchni x*>+1y*+22—3z = 0.

Mowimy o lokalnych ekstremach, bo powierzchnia jest nieograniczona. Mamy
22+ y* = =23+ 32. Gdy z dazy —oo, to zawsze najdziemy (z,y) spelniajace to
rownanie. Po pierwsze zauwazmy, gdzie mozna rozwiklaé z jako funkcje zmiennych
x,y.

oF
a—:3z2—37&0 = P #1
z
z = 1 daje 22 +y?> = 2, a z = —1 prowadzi do sprzecznosci 22 + y?> = —2. Poza

okregiem z = 1, 22+ y? = 2, mozemy 2 rozwiklaé i piszemy z = z(z,y). W otoczeniu
punktéw nalezacych do tego okregu nie mamy narzedzi do zbadania zachowania z.
Rozniczkujac obustronnie 2 + y* + 2% — 3z = 0 po z, otrzymujemy

0z 0z
2— —— =
2x + 3z B 38x 0
0z, o
hudd 1) = —
8x3(z ) 2z
0z —2z 0z —2y

or  3(22—1) dy 3(x2—1)
Powyzsze wzory maja sens o ile jesteSmy na powierzchni. g—;, % znikaja punkcie

r =0 y=0 Wtedy 2z = V3 lub z = 0. %—5 nie znika w tych punktach i
z = z(x,y). Roézniczkujac po x jeszcze raz mamy

92\’ 20?2 0%z
Pz, 92\’
Pz ., 422
huiiind —1)=—9—
8:1323(Z ) b 9(22 —1)?
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Ten wzo6r takze ma sens tylko na poziomicy. Ro6zniczkujac najpierw po x, a potem
po y mamy

9, 0z _0z 0z 0z 02z 02z
— (2 222 32 ) =6z—-= 2 - =
dy ( v ox 3837) 6281/8:5 3z Oyox 383/8:6 0
Stad
02z 0z 0z 4xy
2 — = — _— = — —_—
3 =Yg “oyor = ooy
Mamy

0%z 2 0%z 2
9= 5 o= 5 00V
A P
= 7 =
Oyox o Oyox

Hesjan z w punkcie (0,0,4/3) jest ujemnie okreslony (tzn. -Hesjan jest dodatnio
okreglony), wiec mamy lokalne maksimum. To samo w (0,0, —/3).

Pz 2 Pz 2
o =3 op 3 W00

32 —1) 0.

0%z
Oyox

Hesjan z w punkcie (0,0,0) jest dodatnio okreslony, wiec mamy lokalne minimum.

=0 w(0,0,0).

2.1. Hesjan. Korzystajac z rownania (2.2) mozemy policzy¢ Hesjan funkcji g o ile

F ma drugie pochodne. Roézniczkujac obustronnie réwnanie
@qxw:_%%L%M%w)

Ox & (9, 9(z,y))"

(x,y) € U.

jeszcze raz po T mamy

999 -9 o2,y g(x,y))
Ordx "’ oz \ 2L (z,y, g(z,y))

> , (x,y) eU.

Korzystajac z wzoru na pochodng ilorazu wyliczmy jej licznik

OPF  0*F 0g\ OF N OF ([ O*F n O?F dg

0r?  0z0x0x) 0z  Oxr \0xdz 022 0x)
Zwr6¢émy uwage, ze potrzebowali$émy tylko pierwszej pochodnej funkcji g, co pokazuje
przy okazji, ze z faktu, ze F' € C? (ciagle pochodne drugiego rzedu) dowodzimy, ze
g € C*(U). Wstawiajac

or _ 0gor
or  Ox 0z’
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O 0P og  OPF
0x? 020z Ox 822

w liczniku mamy

a w mianowniku (%—S)Q. Zalozmy, ze —g(mo,yo) 0= (xo,yo) Wtedy wyrazenie
upraszcza sie bardzo.

d%g _ (OF\ ' O°F

@(I()ay()) - = E or ) (x()vy()ag(x(]?y()))‘
Podobnie liczymy pozostale drugie pochodne i w koricu w punkcie (zg, yo) mamy

oF\ !
(2.5) Hess(pyy09 = — (6_> HessF,
2z

gdzie prawa strona jest wzieta w punkcie (xo, Yo, 9(Z0,%)) = (%o, Yo, 20), a HessF
jest czesciowym Hesjanem F' liczonym wzgledem zmiennych x,y. Doktadniej, Hessg
jest funkcja zmiennych (z,y), a prawa strona zmiennych (z,y, z). Rownos$¢ zachodzi
w (Zo, Y0, 20). Powyzszy wzor jest bardzo wygodny do stwierdzenia czy w punkcie
otrzymanym z zastosowania mnoznikéow Lagrange’a mamy lokalne ekstremum zmien-

nej z = g(x,y).

Jesli —(Io, Yo), 24 > (g, yo) nie zeruja sie, to wyrazenie na g 4 robi sie duzo bardziej
skomplikowane:
D%g
0x?
gdzie V, , F' = (85, ’aaF) jest wektorem, a Hess, .F' macierza 2 x 2 zastosowana do
tego wektora, a wszystko jest wziete w punkcie (z,vy, g(z,y)) = (x,y, 2) lezacym na
powierzchni. Prosze zwroci¢ uwage, ze zmienne x,z sa brane w innej kolejnosci w
Hesjanie i w gradiencie.

Wzo6r robi sie skomplikowany i nie bedziemy sie nim zajmowaé, ale warto wiedziec,
ze drugie pochodne czastkowe funkcji ¢ mozna wyrazi¢ przez pochodne czastkowe
funkcji F.

(2.6) (z,y) = —((Hess, . F) (V.o F), V.. F) (8F>

Mozemy tez postapic ogoélniej. Zaldézmy, ze na powierzchni S danej rownaniem
F(z) = 0, x € R", badamy ekstrema funkcji f. Jesli S jest nieograniczona, nie
mozemy od razu stwierdzié, ze jest to maksimum czy minimum. Wyobrazmy sobie,
ze umiemy F'(x) = 0 rozwikta¢ wzgledem jednej wspolrzednej. Niech to bedzie .
Wtedy lokalnie wokot punktu xy dla z spelniajacych F(z) = 0 mamy

T, =g(x1,...,xp1) dla (z1,...,2,-1) €U,

flx) = f(z1, ..., Tpn1,9(T1, o, Tp_1).
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Zeby rozstrzygnaé, czy punkt zo otrzymany z mnoznikow Lagrange’a jest ekstremum
potrzebujemy Hesjanu f, ktéry wyrazi nam sie przez pochodne czastkowe funkcji f i
F. F uzyjemy do wyliczenia pochodnych g. Mamy

%f 0 (af L of ag)

03 _8331 oxy Ox, 01y

_Pf L, O 99 [ Pf (09, 0f 0%
- 022 0r10x, Ory 02 \0Jxy or, O0x3
a %, aa_ai wyliczamy z Hesjanu F'. Wszystko musi by¢ wziete w punkcie otrzymanym
1

z mnoznikow Lagrange’a.

2.2. Dow6d Twierdzenia o funkcji uwiklanej. Napiszemy i udowodnimy to twier-
dzenie dla funkcji F' okreélonej na R™*!,

Twierdzenie 2.7. Zaldimy, ze funkcja F : R"™ — R jest klasy C'. Bedziemy
stosowaé oznaczenie (x,z) € R" x R = R""!. Zaldzmy, ze
OF
F(z9,29) =0, oraz a—(xo,zo) £ 0.
z

Wtedy réwnanie F(z,z) = 0 ma jednoznaczne rozwigzanie w poblizu (o, z). Tzn.
istnieje kula otwarta U C R™ o Srodku w xg oraz przedzial otwarty I wokdt zy takie,
ze dla dowolnego wyboru x € U istnieje jedyne rozwigzanie z € I takie, ze F(x,z) = 0.
Ponadto funkcja z = g(z) jest klasy C' na U. Inaczej mowigc

{(z,2) : F(z,2) =0} N (U x I) ={(x,9(z)) :x € U}.

Uwaga 2.8. F moze by okreslona na otwartym pod zbiorze R™™'. Dowdd przebiega
tak samo.

Analogicznie jak poprzednio wiele informacji o funkcji ¢ mozna uzyska¢ mimo
braku jawnego wzoru. Wiemy, ze zo = g(xo) oraz F(z, g(z)) =0 dla = € U. Zatem

0= - P, 6(0) = (o g(a)) + 5, 6(0) S ).

Otrzymujemy

dg o, (v, 9()) -

2. — _Oziy TN 7 ‘
(2.9) axl(@ oF reUcCU

Z zalozenia 95 (o, 29) # 0, zatem 25 (z, g(2)) # 0, dla = w poblizu zg, bo funkcje F i

g sa klasy C'. Ewentualnie zmniejszajac U na U mamy (2.9). Podstawiamy = = ),
aby otrzymac

dg %(ﬂfoa )
2.10 =t
( ) ox; (%) %—5(1’0, Zo)
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Whniosek 2.11. Jesli funkcja f(x1, 22, ..., x,) spetnia f(ay,as, ..., a,) =0 oraz
Vf(a,ag,...,a,) # 0, to z réwnania

flzy,29,...,2,) =0

mozna obliczyé jedng zmienng wzgledem pozostatych w poblizu (ay,as, . . ., ay,).

Dowdd twierdzenia. Z zalozenia mamy %—f(mo, 2p) # 0. Rozwazymy przypadek
%—f(xg,zo) > 0. Z ciagtosci pochodnych czastkowych mozna znalezé¢ U i I takie, ze

dla kazdego (z,2) e U x I
OF
0z

co oznacza, ze przy ustalonym x funkcja z — F(z, z) jest rosngca. Mamy

(z,2) >0,

OF
F(.Z‘(), 2o t+ h) = F(l’o, Zo) + 5([1)0, Zo)h + O(h)

Stad dla dostatecznie matego a > 0, F(xg, z0 + a) > 0, F(zo, 20 — a) < 0. Mozemy
ratozy¢, ze (z0 —a, zo+a) C 1. Jesli x jest dostatecznie blisko g, to F(x, zo+a) > 0,
F(z,20 — a) < 0. Zmniejszajac ewentualnie U mamy
F(z,z04+a) >0, F(x,zp—a)<0, dlazelU

OF

0z
Zatem dla kazdego x € U, istnieje dokladnie jedno z € (29 — a, 29 + a) takie, ze
F(z,z) = 0. Bedziemy pisali z = g(x).

Pokazemy teraz, ze g jest funkcja ciagta. Zatézmy nie wprost, ze x,, — x € U, ale

g(x,) nie dazy do g(z). Ciag g(z,,) jest ograniczony. Istnieje zatem podciag g(z,)
zbiezny do liczby Z # g(x) z przedziatu [zo — a, 29 + a]. Mamy

(x,2) >0, dla (z,2) €U X (29— a, 20+ a).

0 = iy, 9(wm) — F(.2).

Stad F(x,2) =0. Ale Z # zp + a, bo F(x,z9 + a) # 0. Czyli 2 lezy w przedziale
(20 — a, 20 + a). Mamy tez F(z,g(z)) = 0, wiec otrzymujemy sprzecznosé¢ z jedno-
znacznoscia rozwiazania.

Zanim przejdziemy do rézniczkowalnosci g, udowodnimy nastepujacy lemat

Lemat 2.12. Dla funkcji f : R™ — R klasy C' mamy
f(z) = f(xo) = V(2o + 0(x — 20)) o (¥ — 20)
dla pewnej liczby 6 = 0(x,x0), 0 < 0 < 1.

Dowdd lematu. Okreslamy funkcje g(t) = f(xo+t(x —x0)) przy ustalonych punktach
x 1 z9. Wtedy z twierdzenia Lagrange’a otrzymujemy

f(@) = f(wo) = g(1) — g(0) = ¢'(0) = V f(x0 + 0(x — x0)) o (¥ — ).
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Interesujemy sie tak naprawde odcinkiem miedzy tymi punktami. Z lematu mamy

F(z,z) = F(x,2) — F(xg, 20)
= VF(xg+0(x —x0),20 + 0(z — 20)) o (x — o, 2 — 20)

Oznaczmy
oF oF
$9:x0+0($—$0), ZOZZO+6(Z—20), VIF:<8_;L’1”8_Q;”>
Wtedy
OF
(2.13) F(x,z) = V,F(xg,z29) o (x — x0) + 5(5[]9, 29)(z — 20)-

Zbadamy rézniczkowalnosé funkeji g(x). Przyjmujemy x = xo + he;.
Wtedy © — z¢g = he; i

OF
aLCi
We wzorze (2.13) podstawiamy z = g(x) = g(xo + he;). Lewa strona wzoru zeruje sie.
Otrzymujemy wiec

V. F(xg,29) 0 (x —x0) = (g, 29)h.

oF OF
0= o (24, 20)h + %(m’ 20)(g(zo + he;) — g(xo))
czyli
N OF (3.
9(wo + hei) — g(zo) _ —33‘3'( 0, %0) dla  (29,2) € U x (20 — a, 20 + a).
h E(‘/E%Z@)

Mamy
xg = xo + 0(x — 20) = T + Ohe; — o,
h—0
29 = 20 + 0(z — 20) = g(x0) + Olg(x0 + he;) — g(w0)] 2 9(x0) = 20,

bo g jest ciagla. Zatem

8g( ) S—i(:ﬁo,z())

Tp) = —F0—.

8@- 0 %—f(l‘o,Zo)

Ten sam dowod daje
—(x) = —Fp—— dlaz e U,z € I,z = g(x).
8x,< ) %—I;(I,Z) z=g(x) g( )

Widzimy, ze pochodne czastkowe funkcji g sa ciaggle, zatem g jest funkcja klasy C*.
O
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2.3. Charakteryzacja przestrzeni stycznej. Uzywajac twierdzenia o funkcji uwi-
ktanej, udowodnimy teraz charakteryzacje przestrzeni stycznej do poziomicy
S={xeUCR": F(x) = c} w punkcie . Wtedy definiujemy

Ly, ={v:VF(xg)ov=0} i T,={u:VF(x)o(u—mxz) =0}
Twierdzenie 2.14. Niech S ={z € U : F(x) = ¢}, VF(xy) # 0. Wtedy
Loy = {v: Jyer,,, v=7"(0)}.
Przypomnijmy, ze
Ipy={7y: I—=R", 0€l, v(0) =z, Vs y(t) € S}.
oF

Dowdd. Tstnieje i takie, ze 57-(29) # 0. Dla ulatwienia zapisu mozemy przyjac, ze

i = n 1 bedziemy pisa¢ xg = (Zo, X0 ), © = (T, 2,). Z twierdzenia o funkcji uwiklanej
istnieje otoczenie U punktu Zg, przedzial I 3 zg,, i funkcja g € C*(U) takie, ze

SNUxI)=A{(z,9(z)):z € U}.

%= (L) Lz o)

o= (8 (v )= () o

gdzie wszystkie wartosci po prawej stronie sa wziete w (Z, g(z)). Warunek
VF(Zo, 9(Zo)) ov =0

nalezenia do L,,, zo = (Zg, 9(Zo)) jest wiec rownowazny

Ponadto

Stad

(2.15) (—Vg(Zp),1)ov=0 <= v,= U

Stad

n—1
99 -
WﬁGmmmmZ%MWM>
i=1 "
co jest rownowazne warunkowi (2.15). Ponadto majac dany wektor v = (v, v,) spel-
niajacy (2.15) mozemy wytworzy¢ krzywa styczng do niego kladac
v(t) = (zo + tv, g(zo + tV)).

Twierdzenie o funkcji uwiktanej daje nam taka mozliwos¢. Inaczej nie bardzo wia-
domo jak to zrobi¢. To konczy dowdd. 0
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2.4. Twierdzenie o funkcji uwiklanej dla wiekszej liczby warunkéw. Chcemy
obliczy¢ wielkoSci zq, 29, . .., 2z Z TOWNaN

Fl(flj'l,xz,...,ZEn;Zl,ZQ,...,Zm) = O,
(2.16) Fo(xy,z9, .. xn; 21,22, 0o 2m) = 0,
Fo(xy,zo,.. . xn; 21,22,y 2m) = 0,

i otrzymac rozwigzanie w postaci

21 = 91(331a$2a--->33n)>
(217) 22 = 92($1;$2a-~->ﬂ3n)>
Zm = gm(x1,Ta, ..., Tp).
Bedziemy stosowac zapis
r=(x1,T2,...,2,), 2= 1(21,22,-+,%m)-

Zatozmy, ze (xg, z0) € R” x R™ jest rozwiazaniem uktadu. Rozwazamy wyznacznik

88 (20; 20) 2—2@0;20) <o k(03 20)

g—ff(%;%) 88—2(550;20) gf:i(xo;zo)
A =

Bir(ro ) Gin(roiza) . 52 (roia)

Twierdzenie 2.18 (o funkcji uwiktanej). Zatdzmy, zZe funkcje Fy, Fy, ... F,, okre-
slone na zbiorze otwartym U C R™™™ sq klasy C*. Niech punkt (xq; 29) bedzie rozwig-
zaniem uktadu rownan (2.16) oraz A # 0. Wiedy istniejg liczby § > 0 i € > 0 takie,
ze dla ||x — || < & istnieje jedyny z spetniajgcy ||z — 2| < € taki, Ze (z,z) jest
rozwigzaniem uktadu réwnan (2.16). Ponadto funkcje gy, ..., gn sq klasy C.

Inaczej mowigce

(Bs(zo) X Be(20)) N{(z,2) : Fi(x,z) = ... = F(x,2) =0} = {(z,9(x)) : x € U},
gdzie g(x) = (g1(x), ..., gm(x)).
Wiedzac, ze

Fi(z,g(x)) =0, i=1,..m
otrzymujemy uktad m réwnan na podchodne czastkowe funkeji g;(x). Mianowicie
%) OF; . OF, dg;
0=—-— (E s > = 5 5. U == .
g (B(0:90) = 5,1 + 32 G o) 520

J]=
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Przyklad 2.19. Czy w poblizu (x,y;u,v) = (1,1;1,1) mozna obliczyé u i v z réwnan
ru+yur? = 2,
i’ 4yt = 2

jako funkcje zmiennych x iy

Przyjmujemy
Fy(z,y;u,v) = 2u + yuv® - 2,
Fy(a, y;u,0) = 20’ + y*o' — 2.
Mamy
_I—i—yUQ 2yuv 2 2_
A = 3.7}“;2 4y2v3 oLyt Lot 3 4 2 7£ 0.

Chcemy obliczy¢ %(1, 1) i %(1, 1). Stosujemy rozniczkowanie niejawne. Traktujac
u, v jako funkcje z,y, otrzymujemy

T P Ca
U4 — +yv? — u — =
or V" o TV on ’
ou v
3 2 2.3
3 — +4 — = 0.
u” + 3ru B + 4yv B
Podstawiamy x = 1,y = 1,v = 1,u = 1. Po uproszczeniu otrzymujemy
8u i ov ]
8:6 or ’
Ju v
3—+4— = —1.
8x ox
Zatem
‘—1 2‘ ‘2 —1‘
0 -1 4 0 3 —1 1
1) = = -1, 1= S
ox 2 2 Ox 2 2 2
3 4 3 4
To samo mozna zrobi¢ w otoczeniu punktu (1,1).
ou v
2
g — = —
(z+yv )893 + 2yuv Iz u,
, Ou v
3ru 4 2 3 - 3
oz Y B “
gdzie obie strony traktowane sa jako funkcje (z,y). Mozemy rozwiazaé¢ powyzszy
uktad rownan liniowych (A # 0 w otoczeniu (1,1)) 1 wyliczy¢ 6—“, % oile (z,y,u,v)

sa ze soba zwiazane tak, ze Fi(x,y,u,v) = 0, F5(z,y,u,v) = 0. Wtedy otrzymamy

gz, g“ jako funkcje (z, y)
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Szczegbdlnym przypadkiem twierdzenia o funkeji uwiktanej jest twierdzenie o funkcji
odwrotnej. Chcemy z ukladu réwnan

fl(ﬂfl,ﬂfg,...,ﬂj‘n) = Y,
(2.20) fol@r, @9, 2n) = v,
fn(xlaan-"7xn) = Yn,
obliczy¢ x1, 2o, ..., x,, jako funkcje od y1,ys,...,y,. Zalézmy, ze vt = a iy = b jest

rozwiazaniem ukladu. Rozwazamy

Fi(zy, ..ozt yn) = filxg, .o xn) —y1 =0,
F2<x17"'7xn;y1a"'7yn) = f2($17"'7xn)_y2:07

Fo(xy, .. xn;y1, -3 Yn) = folze, ..o xn) —y, = 0.

Teraz x4, ...,x, beda graly taka role jak zi, ..., 2, w twierdzeniu o funkcji uwiktane;j.
7 twierdzenia o funkcji uwiktanej badamy wyznacznik

OF or oft of1
oxry " Oxp ox1 °° Oxp
A= : = | :
OF, OF, Ofn Ofn
Ory T Ozp zz‘g Ory " Ozp lg=q
Wyznacznik
ofh f1
or1 =~ Oxn
Ofn O fn
or1 =~ Oxn
nazywamy jakobianem odwzorowan fi, fa,..., fn.

Twierdzenie 2.21 (o funkcji odwrotnej). Niech U C bedzie otwartym podzbiorem
przestrzeni R™. Rozwazamy funkcje fi, fo, ..., fn Klasy C' na U. Zatéimy, ze uktad
rownan (2.20) ma rozwigzanie x = a, y = b dla a € U. Jesli

df;
A = det L()%‘

)] #0

to uktad ma jednoznaczne rozwigzanie dla y w poblizu b © x w poblizu a. Tzn. istniejq
liczby d,¢ > 0 takie, ze dla ||y—0|| < 0 istnieje jedyny punkt x € U taki, Ze |[x—al| < €
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oraz x 1y sq¢ rozwigzaniem uktadu (2.20). Ponadto funkcje

T = gl(y17y27"'7yn)7
To = 92(?/17927--'7971)7

Tn = gn(yh Y2, ... 7yn)
sq klasy C*(Bs(b)).
Uwaga 2.22. Dowdd twierdzenia wynika natychmiast z twierdzenia o funkcyi vwikta-
nej. Teraz xy,...,x, grajq takq role jak 21, ..., 2y, w Tunerdzeniu 2.18.
Zavwazmy, ze A # 0 implikuje fakt, ze f = (f1,..., fn) jest réznowartoiciowa na
pewnym otoczeniu punktu a.

Przyklad 2.23. Rozwazmy uktad rownan

zt + ot
= u7
x
sinx +cosy = .

W poblizu jakich punktow mozemy obliczyé x iy wzgledem w i v ¢

Od razu zauwazamy, ze funkcja f(z,y) = ((x* + y")z~!,sinz + cosy) nie jest
roznowarto$ciowa wiec nie mozna jej odwrocié globalnie. Obliczamy jakobian
2 4 4 3
A=[3T 2 %
cosx  —siny
Powinien by¢ spelniony warunek A # 0. Wyznacznik jest niezerowy np. dla z = 7
iy =75 Wtedy A = —’;—2, u = %3, v = 1. Zatem mozna rozwigza¢ uktad w poblizu
U= %3 i v = 1. Rozwiazania beda lezaly w poblizu v = 7, y = 7.

Whiosek 2.24. Przy zatozeniach Twierdzenia 2.21 istniejq zbiory otwarte W 3 a 4
V > b takie, ze f W =V i f~1:V i W sq wzajemnie jednoznaczne i klasy Ct.

Dowdd. Tstotnie, wystarczy wzia¢ V = Bs(b) i W = f~4(V) N B.(0) = f~Y(Bs(b)) N
B.(0), gdzie f~'(V) oznacza przeciwobraz V. Powyzszy przyklad pokazuje, ze nie
mozna wzia¢ W = f~1(V), bo globalnie f nie musi byc odwracalna. Jako funkcje na

V, [~ =g, gdzie g(y) = (01 (y), . 9(y)). 0
Uwaga 2.25. Przedyskutujmy zatozenie A # 0. Niech

Df @ = ||

Wiemy, ze jesli wszystkie pochodne czgstkowe funkcji f sa ciggle, to

i 7@ 1) = f(0) = DF@D)]
h—0 Al

=0,
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€O 0ZNACZa, Z€

fla+h) = f(a)+ Df(a)(h)+ o([|n]]).
fla) + Df(a)(h) jest roznowartosciowe, a skoro o(||h||) jest mniejszego rzedu dla h
blisko 0, to intuicyjnie f(a)+ Df(a)(h)+ o(||h||) tez powinno takie byé.

Twierdzenie o funkcji odwrotnej mozna sformutowaé¢ w postaci zblizonej w zapisie

do twierdzenia dla jednej zmiennej. Dla funkcji fi, fo,..., fn : U — R tworzymy
funkcje f : U — R™ wzorem
fi(z)
falx
f(z) = 2€ ) e R", r = (21,22, ...,2,).
Wtedy uktad rownan w twierdzenia o funkcji odwrotnej ma posta¢ f(z) =y, gdzie
Y1
Y2
y=1 -
Yn

Zauwazmy, ze A = det(Df(a)) # 0. Zalozmy, ze f(a) = b dla a € U. Wtedy dla
y € Bs(b) istnieje jedyne rozwiazanie x w poblizu a. Ponadto = = g(y), g jest klasy
C'. i g jest funkcja odwrotng do funkcji f. Obliczmy Dg(y). Mamy

g(f(x))=2 dlaxeW.
Ro6zniczkujemy obie strony. Wtedy

Dg(f(x)) Df(x) =1,
czyli
Dg(y) = (Df(x))"", y= f(z).
Dla funkcji jednej zmiennej wzory maja posta¢ y = f(z), z = g(y) oraz
, 1
9(y) = )
Przyklad 2.26. W poblizu jakich punktow funkcja f : R* — R?

f(xay) = (‘T —y7ZL‘5 +y5)
jest odwracalna w sposob C'?
1 =1 ., 4. 4
Funkcja jest na pewno odwracalna na otoczeniu kazdego punktu innego niz (0,0).

Zavwazmy, ze f jest 1-1 na R?. Istotnie, jeslix —y =u, 2> +1y° =v, toy = —u
i 2° + (x —u)® = v. Niech h(z) = 2° + (z — u)®, wtedy I (z) = 52 + 5(x — u)* > 0.

det Df(z,y) =
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Wiec h : R — R jest wzajemnie jednoznaczne czyli majgc u,v mozna wyliczyé x, a
potem y. Ale nie wiemy czy =1 jest rézniczkowalna w (0,0).

f jest 1-1 globalnie, jest odwracalna w sposéb C* w otoczeniu kazdego punktu innego
niz (0,0) wiec f=1 jest dobrze okreslona i klasy C* na R?\ (0,0).

Pokazemy teraz jak z twierdzenia o funkcji odwrotnej wynika twierdze-
nie o funkcji uwiklanej. Dla uproszczenia zaldozmy, ze mamy dwa rownania, choé
dowod jest kompletnie og6lny.

(2.27) Fi(zy,...,xn;21,22) =0 Fy(xq, .., wp521,20) =0
czyli
F(I‘, Z) = (F1<.I', 2)7 F2(x7 Z))
F1<Cl,b) =0= Fg(d,b).

Rozwazmy wyznacznik

oF  oF
a=der| i i |
0z1 0z2

Przypomnijmy twierdzenie:
Twierdzenie 2.28 (o funkcji uwiklanej). Zatozmy, ze funkcje Fy, Fy sq klasy C1(U).
Zatdzmy, ze Fi(a,b) = 0 = Fy(a,b) oraz A # 0. Wtedy istniejq zbiory otwarte Uy 3 a
iV 3 b1 funkcje g1, g2 : Up — R klasy C! takie, ze (z,2) € Uy X V jest rozwigzaniem
uktadu réwnan (2.27) wtedy i tylko wtedy, gdy
21 = g1(xq, ..., ) 29 = go(x1, ..., Ty)
Uwaga 2.29. W oryginalnym sformutowaniu mielismy Uy = Bs(a),V = B.(b).
Dowdd. Rozwazmy funkcje f: R" x R? — R" x R?
fla,2) = (x, F(x, 2)).
f jest klasy C*. Niech

I 0 0
OF OF OF:
Df(x,z) = | |oa;] 02 o= |,

OFy | OFy OF
_81'7; 82’1 822

gdzie

3F1 -8F1 8F1

{axj} | 0xy Oz,

det Df(a,b) # 01 f(a,b) = (a,0). Istnieja wiec zbiory otwarte W; > (a,b),

Wy > (a,0) i funkcja h klasy C! taka, ze h : Wy — Wi i h jest odwrotna do f.
Wy, Wy C R*™2. W W, uzywamy wspolrzednych (z,y). Zmniejszajac ewentualnie
Wy mozemy zalozy¢, ze Wy = Uy x V. Jesli (z,y) € Wo iy = F(x,z), to

Wz, y) = bz, Fz, 2)) = M(f(z, 2)) = (z, 2).
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Stad
h(ﬂf,y) = (%,k’(.ﬁﬁ,y)) i ke Cl(WQ)

Zatozmy teraz, ze F(z,z) =0, x € U,z € V. Mamy f(z,z) = (z, F(z,2)) = («,0).
Naktadajac obustronnie h mamy

(x,2) = h(f(z,2)) = h(z,0) = (z,k(x,0)), wiec z=k(z,0)=g(z)

1g="(91,92) € CH(U7). O

Zastosowanie twierdzenia 2.18 do dowodu twierdzenia 1.33. Niech U C
R" x R™, F; : U — R beda funkcjami klasy C! i

S={(z,2) e U : Fi(z,z) = ... = F,(x,2z) = 0}.
Zatozmy, ze VFi(xq, 20), ..., VEn (20, 20) sa liniowo niezalezne i zdefiniujmy
Lizg,z) = {v € R"™ 1 (0, VF(xo, 2)) = 0,0 =1, ...,m}.
Wtedy dim L, .,y = n. Niech v : I — R™™, jak zwykle, oznacza krzywa klasy C1.
Zdefiniujmy
F(J»’(LZO) = {7/(()) : /y : ] = S?’Y<O) = ($07 ZO)}
Zauwazmy, ze
F(Io,zo) C L(SC(),ZO)'

Istotnie,

d
T dt
Na odwrot, majac istnienie funkcji g;(z) = z takich, ze Fi(z,g1(z),...,gm(z)) =01
dowolne v € R™ mozemy zdefiniowaé

0 (Fi(y(t))|i=0 = VFi(20, 20) ©7'(0), i=1,..,m.

fy(t) = (‘Z.O + t/ULgl(:CO + tU)J "'7gm('x0 + t’l))) C S
Wtedy
7'(0) = (v, Vgi(z0) 0 v, ..., Vg (o) 0 v).
Stqd dim F(xo,ZO) =ni
(2.30) F($07ZO) == L($07ZO)'

Korzystajac z (2.30) dowodzimy twierdzenia 1.33 tak samo jak twierdzenia Lagrange’a
przy jednym warunku.
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3. WzOR TAYLORA

Wzor Taylora dla funkcji wielu zmiennych mozna otrzymaé ze wzoru Taylora dla
jednej zmiennej. Zaczniemy od funkcji dwoch zmiennych. Postepujemy nastepujaco.
Zalozmy, ze f: R? — R jest funkcja klasy C™! (tzn. ma ciagte pochodne czastkowe
rzedu r + 1) w pewnym wypuklym otoczeniu U punktu (0,0) np. kuli otwarte;
Bs(0,0). Wybierzmy punkt (z,y) z tego otoczenia i okreslmy funkcje g : (—1,1) — R
wzorem

g9(t) = f(tz, ty).
Wtedy g jest klasy C"*! i korzystajac wielokrotnie z wzoru na pochodng funkcji
ztozonej dla punktéw t z tego rozdzialu otrzymujemy
of of

Jgt) = %(m, ty)x + a—y(tx,ty)y,

" 82]0 2 aZf a2f 2
= tr,t
g"(t) 92 (tw,ty)x +28$0y(t1’ S ty)zy + o -5 (tz, ty)y,

itd., ogodlnie

(3.1) ARIOEDY (m) —axi;nyi (ta, ty)x'y™ .

=0

Za chwile sprawdzimy (3.1) przez indukcje, ale najpierw zobaczmy jaki jest pozytek
7z tego wyrazenia. Mamy

r

) = o(1) = 3 ™0 + o0

—(r+1)9
r+1)! (6)

m=0

dla pewnego 6 € (0, 1) zaleznego od (z,y). Wstawimy teraz pochodne wyliczone w
(3.1) i otrzymujemy

(3.2) Zm,Z( ) j;y J; _(0,0)2"y™ " + Ry (z,y)

gdzie

r+1
+1 ar-ﬁ-lf i, r+1— 2
RT(IB, - 7~ +1 l Z ( ) xza r+1— 1(9.1' ey)

Zauwazmy, ze |R,(z,y)| < C(r, f)||(9c,y)||’”rl dla (z,y) € Bs(0,0) (pochodne f wspol-
nie ograniczone), wiec w szczegolnosci

i (@ y)

— 0.
@y)—0 ||(z, y)||"
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Wzor (3.2) wydaje sie¢ do§¢ nieprzyjemy, ale mozna go tez zapisaé jako

(3.3) }:2%‘1 oJ (0,0)z'y™ " + R.(z,7).

— i)l Oxioym—?

(3.3) sie lepiej uogolnia na wiecej zmiennych. Zajmiemy sie tym dalej, ale najpierw
udowodnimy (3.1). Mamy

g Zm: oy (tz, ty)x"y™
axz—i-laym 7

aerlf i, m—i
( )W(Ltwl’y .

Ms»

=0

Zobaczmy najpierw jaki mamy wspotczynnik przy xitly™= dla i = 0,...,m. Jest on

rowny
m m m+1
I o =1 .
7 1+ 1 1+ 1
i zostaje nam jeszcze wyraz 2'y™*! ze wspolczynnikiem 1. Otrzymujemy wiec

m+1
- m—+1\ o"tf i i
g =) < . )— — (ta, ty)x'y™

— 7 axzaym-‘rl i
Wzor (3.2) czy (3.3) nazywamy rozwinieciem Taylora rzedu r. Jest ono jedyne w
nastepujacym sensie
Twierdzenie 3.4. Niech f : R? — R bedzie funkcjq rézniczkowalng v + 1 krotnie.
Zatozmy, ze . 3
f(z) = W(z) + R.(z) = W(z) + R, (2),
gdzie W, W sq wielomianams dwoch zmiennych stopnia v, a R,, R, majq wlasnosé

tim ) o Z i R, ()

=0 ||z]|” =0 [l

Wiedy W = W.

Twierdzenie to jest zadaniem do rozwiazania. Wykorzystamy je w nastepujacym
przykladzie.

Przyklad 3.5. Rozwingé funkcje f(x,y) = sin(x? + y) we wzdr Taylora rzedu 2.

Mozemy liczy¢ pochodne czastkowe:

% = cos(z? + y)2x, Z_;; = cos(z® + y),
O’ f _ .2 2 2 *f _ o (2 o f - 2
Fre i sin(z*+y)(2x) +cos(z"+vy)2, a7 sin(z°+y), ooy sin(z*+y)2



32 ANALIZA 1II

Stad

af o0 f

ay( ) ) ’ axz( ? ) Y
a pozostale pochodne w zerze sg réwne 0 i

sin(z® +y) = 2% + y + Ra(z,y).

Mozemy tez postapié¢ inaczej. Z teorii jednej zmiennej wiemy, ze dla z € R

sinz = z4 Ry(z) i lim Rz(j) = 0.
z—0 Zz
Stad
. D_ (12
sin(z? +y) = 2° +y + Ro(2® +y) i lim fala” +y) =0

(@y)—(00) (22 +y)?
Zeby skorzysta¢ z Twierdzenia 3.4 musimy pokazaé, ze
Ry(2* +y)
oz = O
(200 [|(z,y)]]

Ale dla x dazacych do zera
(2% +9)* < 2(2" +y7) < 2(2” +y%) = 2l|(z, y)*,

co pokazuje, ze otrzymaliSmy wlasciwe rozwiniecie. Prosze zauwazy¢, ze przy rozwi-

nieciach wyzszego rzedu druga metoda jest jeszcze bardziej efektywna.
Wprowadzimy teraz pojecie wielowskaznikow i zapiszemy (3.3) nieco zreczniej.

r € R? zapisujemy teraz jako x = (x1,72), a wielowskaznikiem o nazywamy pare

a = (ag,a3), gdzie aq, a0 € N (0 € N). Niech

al:=aqlag!, a|l = a1 + s
olel f
(e — a1 Q9 DO[ — .
=t DY g
Wtedy (3.3)
- - 1 amf i, m—1
flay,mp) = 2 ; Wom = 9w gag= 0 07ied ™ + Bo(e).
zapisuje sie jako
1
(3.6) f(x) =D =D f(0,0)2% + Ry(x)
la| <7
i
1 « (6%
(3.7) R, (z) = Z aD f(0x, 0y)x™.
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Mamy analogiczne wzory dla funkcji d zmiennych. z € R? zapisujemy teraz jako
x = (x1,...,2q), a wielowskaznik o = (o, ..., ag), gdzie ay, ..., ay € N. Niech

al:=aol-ay! ol i=a+ .+ ag
olel f g% 0%
O .gll DOf = =2 . .
* 1 Td / Oz{'...0xy* Ozt 8xgdf
Wtedy
1
(3.8) fa) =Y —D*f(0)z" + Ri(x)
lof<r
i
1
(3.9) R(z)= ) — D f(0)x".
|a|=r+1 )
Dowdd (3.8) jest analogiczny do dowodu (3.6). Niech g(t) = f(tx). Wtedy
k!
(k) _ Vo o
(3.10) o0 = 30 D
Istotnie,
d
of
M () =
D=3 g
YR S SOf ’
t) = t = —5 (1t 2 t
g ( ) Pt axzaxj< x)xzxj Zzl 81‘?( x)xz + ; axlax]( x)xzx]

W ostatnim wzorze gdy o« = (0,...0,1,0,...,0,1,0,..0) to a! = 11 2 = 2, gdy
a=(0,..,0,2,0..,0), a! =2 i 2 = 1. Mamy

T

F@) = 9(1) = 3 30 ™(0) + 0 0)

m=0

dla pewnego 0 € (0,1). Wstawimy teraz pochodne wyliczone w (3.10) i otrzymujemy

B11) 7 =3 S0 D0+ Byle) = 30 (D)0 + By(a)
m=0 """ |a|]=m lo<r
gdzie
1 (T + 1)' a o 1 « o
R0 = D pene = Y (D))
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Zauwazmy, ze |R.(z)| < C(r, f)||z]|"™, x € B,(0), wigc w szczegdlnosci

li
20 HSCH

Mamy tez analogiczne twierdzenie o jednoznacznosci rozwiniecia.

Twierdzenie 3.12. Niech f : R — R bedzie funkcjg rézniczkowalng v + 1 krotnie.
Zatozmy, ze

f(x) = W(x) + R(z) = W(z) + R,(x),

gdzie W, W sq wielomianami d zmiennych stopnia r, a R,, R, majg wltasnosé

Wtedy W = w.

Rozwazmy teraz rozwiniecie w punkcie innym niz 0. Niech f,(z) = f(z + a).
Wtedy
D% fo(z) = (D*f)(x + a).
Istotnie, sprawdZzmy na jednej pochodne;j

0 0 0
G le@) = 5 ([t a) = (5-7) @ +a)
Mam wiec
(3.13) fo+a) = fule) = 30 (D L)) + Real02),

la|<r
gdzie 0 zalezy od a i x. Niech y = z +a czyli = y — a. Ponadto mamy (D f,)(0) =
(D*f)(a). Stad

F) = 3 DNy — @) + Rea(0)

| <r
Musimy jeszcze rozszyfrowaé R, ,(0x). Mamy

Real0r) = 3 (D" L) (00)e°

|a|=r+1
1 (0% [0
=) —(D)a+0(y = a))ly — a)* = Rraly),
|a|=r+1 ’
gdzie 0 < 6 < 11 zalezy od a iy. W koficu mamy

(3.14) F) = 32 (D" )(@)(y — 0)° + Realy)

o <r
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Przyktad 3.15. Wykorzystujgc wzor Taylora zanalizujemy teraz zachowanie funkcyi
f dwdch zmiennych w poblizu zera w sytuacyi, gdy pierwsze pochodne czgstkowe znikajq
w zerze.

Mamy
B of af
£(@) = F0) + (01 + 5-(0)as
0? 9 0*f 10%f 9
5(9_:17%<O> 1 + 8I18x2 (O)Ill’g + 58_x§(0)x2
B of af 1
= f(0)+ o, (0)zy + P (0)xs + 2<Aa:,x),
gdzie A oznacza hesjan f. W przyktadzie 1.27 pokazali$my, ze
(Az,z) > A,

gdzie \ jest mniejsza z warto$ci wlasnych. Jesli wiec obie wartosci wlasne hesjanu sa
Scisle dodatnie i pierwsze pochodne znikaja, to dla x # 0

(&) = 1(0) + 3 {Az,2) > £(0) + A > /(0).

Gdy jedna z wartosci jest dodatnia, a druga 0, to analogicznie f(x) > f(0). Jesli
A1 >0, a Ay <0, to zamieniajac zmienne x = C§¢ mamy

T~ | M 0
OAC_[O M}

(Az,z) = 27 Ax = ETOTACE = \E + M6,
Niech ¢ = (£,,0),z = C¢ Stad
(0 C)(&,0) =/(C(&,0)) = f(0) + 5hE} + Ro(CE)

1 1
=f(0) + &1 (M = 2R2(COE) > £(0) + 7€M
dla dostatecznie malych &;. Podobnie dla x = C¢ = C(0, &)

(F 0 C)(0,8&) ={(C(0,)) = f(0) + a8} + Ro(CE)

=(0) + 38 (% + 2RACOG?) < F(0) + 1

dla dostatecznie matych &. Jesli chcemy te kierunki przettumaczyé na x musimy
wyliczy macierz C. Przy wiekszej iloSci zmiennych mamy wiecej mozliwosci.

W kazdym przypadku modelujemy funkcje na zachowaniu wielomianu drugiego
stopnia. Gdy wszystkie drugie pochodne znikaja musimy wziac pod uwage kolejne
pochodne (jesli istnieja) i wielomiany wyzszych stopni.
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Przypomnijmy twierdzenie o pochodnej jednostajnie zbieznego ciggu funkcji.

Twierdzenie 3.16. Funkcje f,(x) sq rdzniczkowalne w sposdb ciqgly w przedziale
la,b]. Zatdzimy, ze ciggi fn.(x) i f!(x) sa jednostajnie zbieine odpowiednio do f(z) i
g(x). Wtedy f'(xz) = g(z) (na korcach przedziatu pochodne jednostronne). Tzn.

(lim fu(@)) = lim f(x).
n—oo n—oo
Czyli pochodna granicy ciggu funkcji jest granicg pochodnych.
7 Twierdzenia 3.16 wynika analogiczne dla wielu zmiennych.

Twierdzenie 3.17. Funkcje f,(z) sq rdzniczkowalne w sposéb ciggly na zbiorze
otwartym U C R, Zalozmy, ze dla wszystkich wielowskasnikow o o diugosci mniej-
szej rownej m, ciagi fn,(x) i D*f,(x) sa jednostajnie zbiezne odpowiednio do f(x) i
9o () na kazdym przedziale [ay,b1] X ... X [ag,by] C U. Wtedy D*f(x) = go(x) dla
la| <m. Tzn.

D*(lim f,(z)) = lim D f,(z).
n—o0 n—oo
Czyli pochodne czgstkowe granicy ciggu funkcji sq granicami pochodnych.

Dowdd. Niech x € (a1,b1) X ... X (ag,by). Rozwazmy ciag g—ﬁ(xl, ., Tq), ktory zbiega

jednostajnie do gn,.0) 1 ustalmy (xa,...,24). Wtedy f,(t,22,...,24) jako funkcja
zmiennej t zbiega jednostajnie do g(t, xa, ..., x4) na [ay, b;]. Podobnie %fn(t, T, .oy Tq)
jako funkcja zmiennej t zbiega jednostajnie do g, 0)(t, T2,...,xq) DA [ay,b1]. Z
Twierdzenia 3.16 otrzymujemy, ze g(10,.0)(t, T2, ..., Zq) = %f(zf,m7 ..., xq). Dalej po-
stepujemy indukcyjnie po dtugosci wielowskaznika. Np. zeby zrobi¢ to dla pochod-
nych drugiego rzedu, musimy wiedzie¢, ze pochodne pierwszego rzedu s jednostajnie
zbiezne. O

Uwaga 3.18. Tuk naprawde twierdzenie 3.16 mozna ostabic: zbieznosé jednostajna
ciggu funkcji f, nie jest potrzebna. Jesli to wiemy, to analogicznie mozna ostabié
turerdzenie 3.17.

Twierdzenia 3.16 i 3.17 mozna w standardowy sposoéb zastosowaé do jednostajnie
zbieznych szeregéw funkeji i otrzyma odpowiednie konkluzje. Jesli bowiem mamy
jednostajnie zbiezny szereg >~ | f,, to sumy czesciowe s, = fi+...+ f,, sa jednostajnie
zbiezne. Twierdzenie 3.17 zostanie wykorzystane do rozwigzania niektorych zadan.

4. CALKI PODWOJNE

Niech R bedzie prostokatem [a,b] X [c,d]. Rozwazamy nieujemna funkcje f(x,y)
okreslong na R. Wykres ma posta¢ powierzchni lezacej nad R. Powierzchnia z =
f(x,y) oraz cztery pionowe plaszczyzny x = a, © = b, y = ¢ iy = d ograniczaja
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obszar tréjwymiarowy B. Chcemy obliczy¢ objetosé tego obszaru. Jesli f jest ciagla,

to
d b

j jf@wdrc@:mM%:/ /f@m@/dm

C

Powyzsze calki liczymy jako iterowane, po kolei.

Przyktlady.
(a) f(z,y) =k, k > 0. Obszar jest prostopadloscianem o wysokosci k.

Lijk@dyzﬂb—@@—d.

(b) f(z,y)=1—2,0<z<1,0<y < 1. Obszar jest polowa szescianu o boku 1.

11 .
//(1—x)dxdy:§.
00

Bedziemy sie starali zdefiniowa¢ catke podwojna tak by dla funkcji ciaglej f
d

(4.1) bﬁ}mwmwszﬁwMM>@=/ ijmydm

C

4.1. Zasada Cavalieriego. Przy bardziej ztozonych funkcjach f(z,y) mozemy za-
stosowaé zasade Cavalieriego. Zal6zmy, ze bryta ma wlasnosé, ze pola przekroju
plaszczyznami réwnolegltymi do ustalonej ptaszczyzny, w odlegtosci x od tej plasz-
czyzny, wynosza A(x). Bryla miesci si¢ pomiedzy plaszczyznami x = aix = b. Wtedy
zasada Cavalieriego mowi, ze

b

V:/M@m.

Uzasadnijmy to nieco staranniej. Rozwazmy nieujemna funkcje f(z,y) na [a,b] X
[, d]. Pole przekroju ptaszczyzna pionowa x = xg wynosi

A@wz/ﬂmwwy

Zatem objeto$¢ bryly wynosi
d

V:j /ﬂ@w@ dz.

C



38 ANALIZA 1II

Mozna tez zastosowac ciecia plaszczyznami rownolegtymi do plaszezyzny pionowej

y = 0. Wtedy
d [/ b

vz/ /ﬂ@wm dy.

C

Przyklad 4.2. Uzywajgc reguty Cavalieriego policzymy objeto$é potkuli. Ustalmy x
i przetniymy potkule ptaszczyzng rownolegtq do ost y. Wtedy otrzymujemy potkole o
promieniu /1 — z2. Wiedy A(x) = sm(1 — x%). Zatem objetosé wynosi

/i%ﬂ1—ﬁ)=wén1—ﬁ):§m

4.2. Sciste okreslenie calki podwoéjnej Riemanna. Podzialem prostokata R =
la,b] x [c,d] nazywamy pare P = (Py, Ps), gdzie P; jest podziatem przedziatu [a, b],
a P, podziatem przedziatu |c, d]:

Plz{xmml?"'axn}a 7)2:{2/073/17---7%1}-
Podprzedziatem nazywamy kazdy z prostokatow
Sij = [Tic1, ms] X [yj-1, 9]

Rozwazamy funkcje f(x,y) okreslona na R (dowolna, niekoniecznie ciagly). Dla
podprzedziatu S niech
ms(f)= inf f(z,y),  Ms(f)= sup f(z,y)
(z,y)es (z,y)€S

Symbolem AS oznaczamy pole powierzchni prostokata S. Sumy dolne i gorne sa
zdefiniowane wzorami

L(P.f)=)_ms(f)AS,  UP.f)=)  Ms(f)AS.

SeP SeP

Jesli f(z,y) > 0, to objetos¢ obszaru pod wykresem miesci pomiedzy liczbami
L(P, f)1U(P, [).

Podzial P = (P, P5) nazywamy rozdrobnieniem podziatu P = (Py,P2), jesli
Py jest rozdrobnieniem P, a Pj rozdrobnieniem P,. Kazdy prostokat podziatu P’
zawiera sie w jakimg§ prostokacie podziatu P.

Majac dwa podzialy P’ i P’ zawsze znajdziemy P, ktory jest rozdrobnieniem
obu. Wystarczy wzia¢ P = (Py, Ps) taki, ze P; jest rozdrobnieniem P!, P/ czyli np.
P =P UP.

Lemat 4.3. Jesli P’ jest rozdrobnieniem P, to

L(P,f) < L(P",[),  UP,f)zU(P,[).
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Dowdd. Jesli R, S sg prostokatami, R € P, S C R, S € P’ jego podzialem, to
> Ms(f)AS <Y Ma(f)AS

SCR SCR
= Mp(f) Y AS = Mg(f)AR
SCR
Analogicznie
> ms(f)AS =Y mp(f)AS
SCR SCR
=mp(f) > AS=mg(f)AR
SCR

Okreslamy catki dolng i gébrna wzorami
JI sevaty=swr@.n, [] seoia=wioe.
P
Moéwimy, ze funkcja f(x,y) jest catkowalna jesli

//fxydxdy—/ f(z,y) dz dy.

Na razie ta definicja nie ma nic wspoélnego 7 calka iterowana (4.1).

Twierdzenie 4.4. Funkcja ograniczona f(x,y) na prostokgcie R jest catkowalna
wtedy 1 tylko wtedy, gdy dla dowolnej liczby € > 0 mozna znaleZé podzial P spetniajqcy

UP,f)—L(P, f) <e
Dowdd. Zaloimy, ze U(P, f) — L(P, f) < e. Wtedy

L(P, f) < //fxydwdy</ Fo,y) ddy < U(P, )

Wf(a;,y) da:dy—/_f(x,y) dr dy < e.

Zalozmy teraz, ze funkcja jest catkowalna. Istniejg podziaty P’, P” takie, ze
> / flz,y)dxdy — e

UP", f / flz,y)dedy + €.
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Niech P bedzie wspélnym rozdrobnieniem podzialow P’ i P”. Wtedy
L(P,f) > L(P', f) > //f(x,y)dxdy—s

UP, f) < UP", ) < / / f(z,y) dedy +e.
Stad
U(P,f)— L(P, f) < 2e.
]

Lemat 4.5. Kazda funkcja ciggla f(z), o wartoiciach liczbowych, okreslona na zwar-
tym podzbiorze R C R? jest jednostajnie ciggta, tzn. gdy dwa argumenty funkcji sq
potozone blisko siebie, to rowniez wartosci funkeji lezq blisko siebie. Czyli

Ve>030>0Ve,yc R (|lz—y|| <d=|f(x) - fly) <e).

Dowdd nie wprost. Zalozmy, ze istnieje (ztosliwa) liczba ¢ > 0 taka, ze dla 4, = %

istnieja punkty z, i y, w R spelniajace

e —wall <% 1) = Slu)] 2

Z ciagu x,, mozna wybra¢ zbiezny podciag x,,. Niech z,, T) xo. Wtedy

1
1Y = woll < e = il + Nl = woll < 7=+ flm, = o] = 0.

Ozyli yn, — wo. Zatem f(zn,) — f(wo) oraz f(yn,) — f(ao). Otrzymujemy

sprzecznosé, bo | f(xn,) — f(yn,)| > €.

Jak wybieramy podciag? Piszemy x, = (2,1, Zn2), wybieramy najpierw ciag ng
taki, ze x,, 1 jest zbiezny, a potem wybieramy podciag z ny, tak by druga wspotrzedna
tez zbiegata. O

Twierdzenie 4.6. Funkcja ciggta f jest catkowalna na prostokgcie R.

Dowdd. 7 jednostajnej ciaglosci, jesli podzial P jest wystarczajaco drobny tzn. taki,
ze dla kazdego S € P, Ms(f) —ms(f) <e/AR ,to U(P,f) — L(P, f) < e. O

Twierdzenie 4.7. Rozwazmy dwie funkcje f i g, catkowalne na prostokgcie R. Wtedy
Q) [[(f+g)dxdy= [[ fdxdy+ [[gdxdy.
(ii) ffcfdxdy:cff]]jdmdy. *
(iii) ,};eéli flz,y) < g?x,y) na R, to

/ fdxdyg//gda;dy.

R R
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(iv) Niech R;, i = 1,2,...,n, bedg prostokgtami o bokach réwnolegtych do osi
takimi, ze R = R1U...UR,, i wnelrza prostokglow R; sq roztgczne pomiedzy
sobg. Zatozmy, ze [ jest catkowalna na kazdym z nich to f jest catkowalna

na R oraz
//fdxdyzgg/fdxdy.

R

Ponadto jesli f jest catkowalna na R, to jest catkowalna na kazdym R;.

Dowdd. Prostokaty R;, j = 1,2,...,n, nie muszg tworzy¢ podziatu prostokata R. Ale
mozna rozdrobnié¢ kazdy z prostokatow R;, aby uzyska¢ podzial P prostokata R. Istot-
nie, niech PY) bedzie podziatem prostokata R;. Bierzemy P = <U] 2 U; Pé”).

Zalézmy, ze f jest catkowalna na R, a PU) jest podzialem takim, ze U(PY), f) —
L(PY, f) < e/n. Wtedy takze

U(P7f> R]) - L(P>f7 Rj) < 5/n7

gdzie ostatnie wyrazenie oznacza ograniczenie podziatu P do prostokata R;. Stad

UP, f) = L(P, f) <> (UP, f,R;)) = L(P, f, R;)) < &.

J

Zalozmy teraz, ze f jest calkowalna na R. Jesli mamy podzial P taki, ze U(P, f) —
L(P, f) < e, to dodajac wspolrzedne wierzcholkow prostokatow R; otrzymamy jego
rozdrobnienie P’, ktére ograniczone do prostokata R; jest jego podzialem. Bierzemy
P; = PrUA{ay, by, ...,a,,b,} 1 Py = PoU{cy,dy, ..., Cnydy }, gdzie a;, b; sa z-owymi
wspotrzednymi wierzchotkow, a ¢;, d; y-owymi. Wtedy

UP', f,R;)— L(P, f,R;) <U(P', f)— L(P', f) <,

bo
Yo (Ms(f) = ms(f)AS <Y (Ms(f) —ms(f)AS
SCR;,SeP! Sep!
i kazdy wyraz sumy po lewej i po prawej jest nieujemny. U

Twierdzenie 4.8 (Fubini). Zaldzmy, Ze funkcja f(x,y) jest ciggta na prostokgcie
[a,b] X [c,d]. Wtedy

//Rf(x’y)d‘”dy:/ab (/Cdf(%y)dy) d:L“:/cd (/abf(:v,y)dx) dy.
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Dowdd. Rozwazamy podzialty a = v < 21 < ... <z, =bic=y <y < ... <
Ym = d.

/(jpfxyﬁodx—EZ/ (2: fxydadx

>y (/ fxydy>dx_zz/

i=1 j=1 =1 j=1

Fj (l‘)

F;(z) jest funkcja ciagla na [x;_q, x;], co wynika z lematu ponizej.

Lemat 4.9. Dla funkcji f(x,y) ciggtej na [a,b] X [c,d] funkcja F(x f flz,y)d

jest ciggta na |a,b].
/fml, )dy — /frc% dy‘ /Ifxl, f(za,y)| dy.

7 jednostajnej cigglosci dla ¢ > 0 mozna znalez¢ liczbe 0 > 0 taka, ze
€

d—
Wtedy dla |2y — 25| < 0 mamy |f(z1,y) — f(22,y)| < z=. Ostatecznie

Dowdd lematu.

[P (2 F(zy)| =

[(@1,91) — (22, 92) | <6 = [f(21,01) — f22,92)] <
|F(a1) — F(z2)| < ﬁ(d - c) —c.

Z twierdzenia o wartosci Sredniej dla calki istnieja punkty ;;, dla ktorych
/$i Fj(z)dx = Fj(§;) Ay, w1 <& < i
Dalej Hy_
Fi(&;) = /y J & y) dy = f(&is i) Ay i1 < i < Y5,
i1

dla pewnych punktow 7;;. Zatem

/ (/ flw.y dy) dm_iif&w% AmAy]a

=1 j=1

gdzie Sy = [zi1, ] x [yj_1.y;]. Punkt (§;,m5) lezy w Sy, msij(f) < f(&jrmij) <

Ms,;(f). Stad o
MPﬁSA([fww@)MSWPﬂ
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gdzie P jest podzialem wyznaczonym przez prostokaty S;;. Ale

L(P.f) < / /R f(x.y) dzdy < U(P, f).

Funkcja F jest catkowalna, wiec mozna wybrac¢ podziat P taki, ze U(P, f)—L(P, f) <

e. Wtedy
‘//Rf(x,y)dwdy—/ab (/cdf(x,y)dy> dx

4.3. Calkowalno$é. Niekiedy bedziemy musieli obliczaé¢ catki z funkeji nieciggtych,
np. przy wyznaczaniu objetosci bryl, ktorych podstawa nie jest prostokatem.

< E.

U

Przyktad 4.10. Niech f(x,y) bedzie nieuwjemng funkcjq ciggta okreslong w kole 2 +
y? < 1. Cheemy obliczyé objetosé obszaru pod wykresem. Wktadamy koto w kwadrat
[—1,1] x [—1,1] i okreslamy funkcje

r - f(x,y) $2+y2§1a
fley) = {0 22+ > 1

Wtedy V = f[_l X[~ 1.1] f(ﬁ,y) dx dy. Zawwazmy, ze f moze nie byé ciggta na brzegu
kota. Ogdlnie, jesli chcemy obliczyé catke fc f(x,y) dx dy, gdzie C C R?, to wktadamy
C w prostokgt R o bokach rownoleglych do osi © obliczamy

/ [z, y)lo(z,y) dv dy.
R

Pojawia sie problem catkowalnosci funkcji f(z,y)lc(x,y), bo moze nie byé ciggla
na 0C. Jesli Tc(x,y) jest catkowalna a f(x,y) jest ciggta, to iloczyn jest funkcjq
catkowalng, bo iloczyn funkcyi catkowalnych jest catkowalny lub inny arqument: zbior
punktow nieciggtosci sie nie powicksza.

Dia C = {(z,y) : 2>+ y* < 1.} funkcja To(x,y) jest nieciggta w punktach okregu
22 +y* = 1. Ogdlnie funkcja To(x,y) jest nieciggta na brzegu zbioru C oznaczanym
symbolem OC.

Definicja 4.11. Mdéwimy, ze zbidr A C R* ma miare zero, jesli dla dowolnej liczby
e > 0 istniejg prostokaty {R,}>2, takie, ze

AC GR"’ iARn<5.

n=1 n=1
Przyktlady.
(a) Punkt ma miare zero. Skoriczony zbior punktoéw ma miare zero.

(b) Przeliczalny zbior punktéw ma miare zero. W szczegolnosei zbior punktow w
kwadracie [0,1]? o obu wspdtrzednych wymiernych ma miare zero.
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(¢) Poziomy odcinek ma miare zero. Rowniez uko$ny odcinek ma miare zero.

(d) Kwadrat [0,1]? nie ma miary zero. Ogolniej prostokat [a,b] X [c,d], a # b,
¢ # d nie ma miary zero.

(e) Zbior punktow kwadratu [0, 1]> o obu wspétrzednych niewymiernych nie ma
miary zero.

(f) Okrag ma miare zero.

Prostokaty zdefiniowaliSmy wczesniej tak, ze ich boki sa réwnolegte do osi. W po-
wyzsze]j definicji to nie jest wazne. Warto wiedzie¢, ze nastepujace warunki sa row-
nowazne:

e dla dowolnej liczby € > 0 istnieja prostokaty { R}, (o bokach niekoniecznie
rownolegtych do osi) takie, ze

AC [OJR”, iARn<5.
n=1

n=1

e dla dowolnej liczby £ > 0 istnieja prostokaty { R, }2; (o bokach réwnoleglych
do osi) takie, ze

AC GRH, iARn<g.
n=1

n=1

e dla dowolnej liczby € > 0 istnieja kule {B,,}>°, takie, ze

AC DB"’ iABn<5.
n=1

n=1

Nie ma znaczenia czy R,, B, sa otwarte czy domkniete. Zbiory miary zero zostana
starannie przerobione na Analizie i topologii i Teorii miary.

Twierdzenie 4.12. Ograniczona funkcja na prostokgcie jest catkowalna wtedy i tylko
wtedy, gdy zbior jej punktow nieciggto$ci ma miare zero.

Twierdzenie 4.13 (Fubini). Niech [ bedzie funkcjq catkowalng na prostokgcie R =
la,b] X [c,d]. Dla a < x < b niech

d —d
/ fla.y) dy = L(x) <U(x) = / f(.y) dy.

Wtedy funkcje L(x) i U(z) sq catkowalne na [a,b] oraz

//Rf(a:,y)dxdy:/abﬁ(ﬂc)dx:/abb{(x)dx.

Uwagi.
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1. Jesli funkcja y — f(z,y) jest catkowalna na [c,d] dla a < x <b, to

//f(x,wdxdy:/ab </Cdf(:r,y)dy) dr.

2. Zamieniajac rolami z i y i przyjmujac, ze funkcja z — f(x,y) jest catkowalna
na [a,b] dla ¢ <y < d, otrzymamy

//f(x,y)dxdy—/cd (/abﬂ:c,y)dx) dy.

3. Zauwazmy, ze f(x,-) moze nie by¢ calkowalna, ale funkcje L(z) i U(x) nie
sa takie zle, sa catkowalne i nie réznia sie za bardzo. W szczeg6dlnosci maja
zbiory punktéw nieciagtosci miary zero i catki z £,U sa rowne.

Dowdd. Niech P = (Py,P2) bedzie podziatem prostokata R. Rozwazmy jeden pro-
stokat podziatu § = 57 x S;. Mamy

ms(f) = ms,xs,(f) <mg,(f(x,-)), dlazesS;.

Zatem

Z m51><52(f)A52 < Z m52(f(x7'))ASQ

So€P2 SoE€P>
d
~ LPo f(e) < [ Fop)dy= L), dlaze s,
Po wzieciu kresu dolnego wzgledem x € S7 otrzymujemy
> msixs,())ASy < ms,(£).
So€Po

Zatem

LP.f)= > ) msus(f)ASIAS,

S1EP1 S2€P>

=y (Z mslxsg(f)A52> ASy

S1€EP1 \S26P2

< Y mg (L)AS; = L(Py, L).

S1€P1
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Podobnie pokazujemy, ze U(P, f) > U(P1,U). Istotnie, ustalmy S; i wezmy z € S

Z MS1><52(f)A52 > Z MSz(f(xv ))AS?

S2€P2 Sa€P2
(P27 €, / f T y dy = U( ), dla x € 5;.
Biorac kres gorny po x mamy

D Ms,us,(f)ASy > Ms, (U)
S2E€P2

= Z Z MSlXSz(f)A‘SlAS2

S1€P1 S2€P2

=y (Z M51X52(f)ASg) AS,

S1€EP1 \S26P2

> Y Mg, (U)AS, = U(PU).
Si1€P1

Reasumujac otrzymujemy

L(P,f) < L(P1, L) <U(Py, L) SUPL,U) <U(P, f).

L(P,f) < L(P1, L) < L(P,U) <UP,U) <U(P, f).

Z zalozenia f(x,y) jest catkowalna wiec wybieramy P tak, ze U(P, f) — L(P, f) <e
Stad wynika, ze L(x),U(z) sa catkowalne na [a, b]. Ponadto

L(P.f) < / /R f(a,y) dedy < U(P, f),
b

L(P.f) < / L(x)de < U(P, f)

(P, f) < / U(x)de < U(P, f).

Zatem [[. f(z,y dxdy—f L(x dx:fabL{(:U)dx. O
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Przyklad 4.14. D = {(z,y) : 2*>+y* < 1}. ZnaleZ¢ objetosé obszaru pod wykresem
funkeji f(x,y) = 2x +y+ 5 na D. Obliczamy

/ flz,y d:cdy—// (2x +y +5)lp(z,y) dedy
[~1,1]2

:/ (/ 2z +y+5)1p(x, y)dy)dx—// (22 4+y+5)dydx
1 —1 —/1—22
1
:2/ (2x+5)\/1—x2d9€:10/ V1 —22dx = b5m.
—1 -1

Catkowalnodé 2z + y + 5)Ip(x,y) wynika z twierdzen 4.15 i 4.12.

Twierdzenie 4.15. Niech y = f(x) bedzie funkcjq cigglte na [a,b]. Wtedy wykres
funkcji f ma miare zero.

Dowdd. Ustalmy € > 0. Mozna znalez¢ liczbe naturalng N taka, ze

]_V = ’f(l’)—f(.fﬁ/” < 4([)—&)

Dzielimy przedzial [a,b] na N rownych czesci punktami a = 2o < x1 < ... < zy = b.

Kazdy z punktow z przedziatu [a,b] lezy w jednym z przedzial()w (xi_1,741) dla
i=1,2,...,N—=1. Jesli z € (w;_1,i41), to |f(z) — f(x;)] < by Lo oznacza, ze

Zatem wykres jest zawarty w zbiorze

|z — 2’| <

€

U s aie) < (00~ g5 700+ 575 )

i=1
Suma pol sktadnikéw tego zbioru wynosi
2(b—a) €
N 2(b—a)

= E&.

(N=1)
0

Dla ograniczonego podzbioru D C R? takiego, ze D ma miare zero okre§lamy

://Ddxdy://R]ID(x,y)dxdy,

gdzie R jest prostokatem zawierajagcym D. Niech P bedzie podziatem prostokata R.
Wtedy

L(P,1p) = st (Ip)A UP,1p) = ZMS (Ip)A
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Wielkos¢ L(P, Ip) jest suma pol prostokatow podziatu catkowicie zawartych w D,
natomiast U (P, 1p) jest suma pol prostokatow podzialu majacych czesé wspolng z
D. Polem wewnetrznym nazywamy kres gorny liczb L(P, Ip) a polem zewnetrznym
kres dolny liczb U(P, 1p). Mowimy, ze obszar D ma pole, jesli pole wewnetrzne jest
rowne polu zewnetrznemu. Odpowiednio catka goérna i dolna z Ip sg rowne czyli Ip
jest catkowalna czyli 0D ma miare zero. Tak wiec obszar D ma pole wtedy i tylko
wtedy, gdy 0D ma miare zero. Méwimy wtedy, ze obszar jest mierzalny w sensie
Jordana.

Twierdzenie 4.16. Jesli f(z,y) jest funkcjg ciggla w prostokgcie R i D C R jest
mierzalny w sensie Jordana, to catka

/ [ @) dzay

jest dobrze okreslona.

Dowad.
//fa:y dxdy—//fxy]Iny)dxdy

Funkcja f(z,y)1Ip(x,y) moze by¢ nieciagla tylko w punktach 0D. 0

Twierdzenie 4.17. Niech D, i Dy bedg ograniczonymi roztgcznymi podzbiorami R?
mierzalnymi w sensie Jordana. Dla funkcji f(x,y) ciggtej na Dy U Dy mamy

//Dlwzf(x’y) dxdy:/Dl f(z,y) dxdy+/D2f(x,y) dz dy.

Dowdd. Wktadamy D, i Dy w prostokat R. Wtedy

// fdxdy://f]IDluD2dxdy://f[]ID1+]ID2]dxdy
D1UDo R R
//f]IDlda:der/ f]IDzdxdy:/ fd:):dy+/ fdxdy.
R R Dy Do

W szczegolnoéci Dy U Dy jest mierzalny w sensie Jordana. O

Przyklad 4.18. Dwa boki rownolegltoboku D znajdujq sie na poziomach y = c i
= d. Dolny bok miesci sie pomiedzy * = a i x = b a gorny pomiedzy a' i b oraz
a' > a. Wktadamy D w prostokqt R = [a,b'] X [c,d]. Wtedy

D= [[ totegyeas = [ ( /j L(z.9) dx) &

Przy ustalonej wartosci y funkcja Ip(z,y) jest réwna 1 na przedziale diugosci b — a.
Zatem

A(D) :/ (b—a)dy = (b—a)(d—c).
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Przyklad 4.19. Zmiana kolejnosci catkowania Rozwazmy calke iterowang

a Va?2—z2

// \/@2—y2dydx—// Va2 —y?dxdy
o Jo D

a prfai—y?
I

3 2 5

\/az—y2dxdy:/ (a® —y*) dy = a® — T2
0 3 3
Przy zmienionej kolejnosci catkowania obliczenia okazaty sie tatwiejsze. Warto za-
uwazyé ze
D={(z,y):0<2<a 0<y<Va?—a?} ={(z,9):0<z,y, 2>+y* <a’}.
Podobnie

2 log x log 2 2
/ / (:1:—1)\/1+269dyd$:/ / (x — 1)V1+2e¥dxdy
1 0 0 eY

log 2

1
= V14 2eY (2—ey)§(1+ey—1)dy.

0

Witedy
D={(z,y):1<z<2, 0<y<logz}={(z,y):0<y<log2, e <uzx<2}
W ostatniej catce wykonujemy podstawienie u = 1 + 2e¥. Wtedy

u—1
2

/35\/6 (z—ugl)zlldu.

4.4. Zamiana zmiennych 1.

e’ = du = 2¢e¥ dy.

Otrzymujemy

Twierdzenie 4.20 (o zamianie zmiennych). Niech U i U* bedg zbiorami otwartyms
w R*(R"). Zatézmy, ze T : U* — U jest odwzorowaniem réznowartodciowym klasy
C! takim, ze T(U*) = U i det DT (u) # 0 dla wszystkich u € U*. Wtedy dla funkcji

f(x) catkowalnej okreslonej na U mamy
[ #aris = [ 5wl
U U+

gdzie Jr(u) = det DF(u) jest jakobianem odwzorowania T w punkcie .

Na razie nie wiemy, co to jest calka po zbiorze otwartym, ale wiemy, co to jest catka
po ograniczonym zbiorze otwartym D mierzalnym w sensie Jordana. Twierdzenie jest
prawdziwe tak jak stoi, ale dla naszych celow powinnismy dorzuci¢ zatozenie, ze zbiory
D, D*, po ktérych catkujemy, sg ograniczone, a ich brzegi maja miare zero.
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Twierdzenie 4.21 (o zamianie zmiennych). Niech D i D* bedg zbiorami mierzalnymi
w sensie Jordana otwartymi w R*(R™). Zalézmy, ze T : IntD* — D jest odwzorowa-
niem réznowartosciowym klasy C takim, ze T(IntD*) = IntD i det DT (u) # 0 dla
wszystkich w € IntD*. Wtedy dla funkcji f(x) catkowalnej okreslonej na D mamy

/Df (z) do = /D F(T(w)) |2 ()| ds,

gdzie Jp(u) = det DF'(u) jest jakobianem odwzorowania T w punkcie u.

Uwaga 4.22. Nie jest wazne co sie dzieje na brzegach D, D* 1 czy w ogole T jest
tam okreslone. To nie wplywa na catke.

Jesli T' o wlasnosciach jak w Twierdzenie 4.20 jest okreslone na pewnym otoczeniu
U zbioru D* i D* jest mierzalny w sensie Jordana, to D tez taki jest. Podobnie, jesli
f jest catkowalna na D (lub réwnowaznie na D, bo 0D ma miare zero) to f o T jest
catkowalna na D*. To ostatnie wynika z faktu, ze

T~ (Dis(f)) = Dis(f o T),

gdzie Dis(f) jest zbiorem punktow nieciggtosci funkeji f. To wszystko sprawia, ze
mozemy napisaé

Twierdzenie 4.23 (o zamianie zmiennych). Niech U i U* bedg zbiorami otwartymi
w RE(R™). Zatézmy, ze T : U* — U jest odwzorowaniem réznowartosciowym klasy
C* takim, ze det DT (u) # 0 dla wszystkich u € U*. Niech D C U bedzie zbiorem
mierzalnym w sensie Jordana i T(D*) = D. Wtedy dla funkcji f(z) catkowalnej na
D mamy

[ o= [ )]
D D+
gdzie Jp(u) jest jakobianem odwzorowania T w punkcie u.
Uwaga 4.24. Dla v’ blisko uw mamy

T(u') ~ T(u) + DT (u)(u' — u),

czyli odwzorowanie T zachowuje sie w przyblizeniu jak ztozenie dwu przesunieé i prze-
ksztatcenia liniowego o macierzy DT (u). Przy takim przeksztatceniu objetosé obrazu
matego przedziatu S obliczamy wzorem

AT(S) ~ AS|Jr(u)|, gdzie u e S.

Przyklad 4.25. Policzmy catke ffooo e dx.
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Mamy

/ e dy = 2/ e dx
—00 0
R 2 R 2 1/2 2,2 1/2
:2llim (/ e ” dx) (/ e VY dy)} :2[1im // e @) d dy
R—oo 0 0 R—o0 [O,R]Q

Niech Dy = {(z,y) : z,y >0, 2®+y? < R?} oznacza czes$é kola o srodku w poczatku
uktadu i promieniu R lezaca w pierwszej ¢wiartce. Wtedy

/ / e~ ) da dy < / / e @) da dy < / / e @Y da dy.
Dr [0,R]? b

RV2
Uzyjemy wspotrzednych biegunowych

T =Tcosp, y=rsingp, nggg, 0<r<R.

To znaczy
T(r,p) = (reos,rsing) = (z,y).

Mamy

dz Oz :

ar g cosy —rsing

J pu— . pu— . =
9y Oy singp rcosp
or Oy

Prostokat [0, R] x [0, 5] jest przeksztalcony na Dpg, a prostokat (0,R) x (0,75) na
wnetrze ¢wiartki kota
IntDg = {(z,y) : z,y >0, 2* +9* < R?},

i T' okreslone na (0, R) x (0, ;) wszystkie potrzebne wlasnodci. Zatem

R ,T
// e~ @) dy dy = // e " rdodr :/ /2 e " rdodr
Dr [0,R]x[0, 5] o Jo
2

R
1 R
= g/o e rdr = g (—567’ ) = z(1 —e )y — T

0
W $wietle tych obliczenn otrzymujemy

/ e dy = N

[e.o]

Uwaga 4.26. Wspotrzedne biegunowe sq uzyteczne, gdy funkcja podcatkowa zawiera
22 + 9% a obszar catkowania jest kotem lub fragmentem kota. Rozwazmy catke

ffD log(z%+4y?) dx dy, gdzie D jest wycinkiem kota opisanym przez warunkia <r <b
10 < < 7. Po zamianie zmiennych otrzymujemy

b oI S
/ / log(r?) rdr = 5/ log(r?®) r dr.
a JO a
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Niekiedy warto uzyé wspotrzednych biegunowych mimo, ze obszar nie jest "wygodny".

Przyklad 4.27. Rozwazmy catke

// Va2 4+ y?dx dy.
0,1

[0,1]2
Ze wzgledu na symetrie mamy

// \/ch-I—y?dxdy:Q/[ i Va2 +y?dedy.
[01]2 0,1

Mamy 0 < ¢ < 7§ oraz 0 <rcosp < 1. Ten. 0 <r < ——. Tulaj mmax = 7(p) 2zalezy
od kqla. Otrzymwemy wiec

T [ 2 (1 dp 2 [1 COs ¢
/2+2dd—2// Qdd__/ _—/—d.
//[;)71}2 . yraray 0 0 roarae 3 0 COS3 (2 3 0 (1 — Sin2 @)2 $

W ostatniej catce po podstawieniu u = cos ¢ otrzymamy catke z funkcji wymiernej.

Definicja 4.28. Obszar D C R? nazywamy tukowo spdjnym, jesli dla dowolnych
dwdch punktow (x1,y1) @ (22, y2) w D mozna znaleZé funkcje ciggtq ¢ : [0,1] — D
takqg, ze p(0) = (x1,y1) oraz (1) = (2,y2).

Twierdzenie 4.29 (o wartosci $redniej). Niech f(z,y) bedzie funkcjq ciggle na zwar-
tym obszarze D C R? mierzalnym w sensie Jordana i tukowo spdjnym. Wtedy

J[ s ddy= s m)am)
D
dla pewnego punktu (xo,yo) w D.

Dowadd. Mamy

m = min f(a:,y) :f(xlvyl)u M = max f(a%ZJ) :f(332792)
(z,y)eD (z,y)€D

dla pewnych punktow (z1,y1) i (z2,92) w D. Dalej
/ flz,y)dxdy < M A(D).

Jesli A(D) =0, to teza jest spetniona. Niech A(D) > 0. Wtedy

Fan ) =m < ﬁ/[)f(fc,y) drdy < M = f(rs.0),

Niech ¢ bedzie funkcja ciagla taka, ze ¢ : [0,1] — D oraz ¢(0) = (z1,v1), ¢(1) =
(22, y2). Rozwazmy funkcje g(t) = f(p(t)). Wtedy g jest funkcja ciagly oraz ¢(0) =
flz1,y1) 1 g(1) = f(z1,21). Ponadto g(0) < a < ¢g(1). Z wlasnosci Darboux mamy
g(ty) = avdla pewnej wartosci 0 < ¢ty < 1. Tzn. f(p(to)) = aoraz ¢(ty) = (2o, y). O
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4.5. Calki potréjne i wielokrotne. Przedzialem R C RY nazywamy iloczyn kar-
tezjanski

R = [(Il,bl] X [ag,bg] X ... X [CLN,bN].
Objetoscia przedziatu jest wielkosé

AR == (bl - al)(bg - CLQ) . (bN — CLN>.

Podzial P przedzialu R oznacza rodzine podzialow P = (P1,Pa, ..., Pn), gdzie P;
jest podziatem przedziatu [a;, b;] na k; czesci. W ten sposob otrzymujemy podzial R
na kiko ... ky czesci (podprzedziatléw). Dla podprzedziatu S okreslmy

ms(f) = inf f@),  Ms(f) =sup f(a)

z€eS

gdzie f(x) jest funkcja ograniczong na przedziale R. Sumy dolne, gorne, calke dolng i
gbrna oraz calke okreslamy tymi samymi wzorami co dla funkcji jednej i dwu zmien-
nych. Ma ona analogiczne wtasnos$ci. Mozna podobnie udowodni¢, ze funkcje ciggte
sg catkowalne.

Definicja 4.30. Mcowimy, ze zbior A C RN jest miary zero, jesli istnieje ciqg prze-
dziatow S, taki, ze

ACGSn iASn<57

n=1 n=1

dla dowolnie wczesniej ustalonej liczby dodatniej €.

Twierdzenie 4.31. Ograniczona funkcja f okreslona na przedziale R C RY jest
catkowalna wtedy 1 tylko wtedy, gdy zbior jej punktow nieciggto$ci ma miare zero.

Twierdzenie 4.32 (Fubini). Niech A C RY i B C RM™ bedg przedziatami. Zatézmy,
ze funkcja f okreslona na A x B C RN x RM jest catkowalna. Dla x € A niech

£u>=/"ﬂmyww, U@%=/Eﬂ%wd%

gdzie (z,y) jest punktem z RN x RM x € RN y € RM. Wtedy funkcje L(x) i U(x)
sq catkowalne na A oraz

fag)dedy = [

A

L(x) dx:/AZ/{(x) dx

:/XZJ@”@»MiLOQ“”@>“

Jesli funkcja f(x,y) jest ciagla, to mozna pomingé znaki catki dolnej i gornej.

AxB
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Przyktad 4.33. Rozwazimy funkcjcg trzech zmiennych f(x,y, z) ciggltg na R = [ay, by] x
[ag, ba] x [as, bs]. Okreslmy A = [ay,b1] X [as, bs] @ B = [ag, bo]. Wiedy

///fxy dxdydz-//( ey, )dy> de d=
:/b (/b( ajzf(x,y,z) dy) dz> dz.

Moglismy zamienié¢ catke podwding po A na catke iterowang bo catkowana funkcja
zalezy w sposob ciqglty od x i z. Przy funkcji trzech zmiennych mamy szesé mozliwosci
zamiany na catke ilerowang.

Uwaga 4.34. Inny zapis catki iterowanej to:

b1 b3 bQ bl b3 b2
[ [ fewapizie= [ an [*ax [ sy
al as az al as a2

Twierdzenie 4.35. Dla funkcji ciggtej p okreslonej na przedziale R C RN~1 wykres
funkeji o, czyli zbior D = {(z, ¢(z)) : © € R} jest miary zero w RY.

Jegli D C RY nie jest przedzialem, to okreslamy

[ t@is = [ p@tpta)ds

dla przedzialu R zawierajacego D. Zalozmy, ze f(x) jest funkcja ciagla. Wtedy
funkcja f(x)Tp(z) moze byc nieciagta tylko w punktach brzegu 0D. Jedli 9D ma
miare zero, to f(z)1p(x) jest catkowalna, np. gdy zbior 9D jest suma kilku wykresow
funkcji ciaglych N — 1 zmiennych.
Przyklad 4.36. W jest obszarem w R?® okreslonym przez warunki x,y > 0 oraz
2? +y? < z < 2. Cheemy obliczy¢ [[[ xdx dydz.

W

Niech D bedzie obszarem w plaszezyznie (z,y) okreslonym przez x,y > 01 z2+y? <
2. Wtedy

2
///xdmdydz:// dxdy/ xdz:// r(2 — 2% — ) dr dy
D 2492 D
w
V2 V2—a? V2 1
:/ dx/ x(2—$2—y2)dy:/ [m(2—x2)3/2—§x(2—x2)3/2} dx
0 0 0

V2

2 2 V2 8
_Z 9 2232y — — (9 _ 25/2’ _° /5
/0 #(2=a*f P dw = — (2 -2 = zV2

3

Sciste uzasadnienie przejs¢ do calek iterowanych jest nastepujace. Mamy

W C [0,V2] x [0,v2] x [0,2] =: R.
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Wiec

2
///xda:dydz = ///x]lw(x,y,z)dxdydz: // dxdy/ xly (x,y,2)dz
w R (0.v2)? 0

2 2
= // dx dy/ vlp(z,y) X Tgopy20(2) dz = // dx dy/ zlp(x,y)dz
[0,v/2]2 0 0,v/2)2 22442
V2 V2—z2
:// x(2—x2—y2)ﬂp(x,y)dxdy:/ daz/ r(2 — 2% —9?) dy.
[0,v/2]2 0 0

4.6. Twierdzenie o zamianie zmiennych 2. Dane sa dwa zbiory D i D* w R" i od-
wzorowanie T : R" — R" klasy C', roznowartosciowe oraz T(D*) = D, det DT (u) #
0, u e R™. Zakladamy, ze D i D* sa mierzalne w sensie Jordana. Chcemy wyrazié
Wlelkosc [, [z, y) dx dy jako calke po zbiorze D* z funkcji ztozonej f o T.

Zaczniemy od przypadku f = 1. Tzn. chcemy obliczy¢ [[, dedy = A(D) za
pomocy calki po obszarze D* z funkcji 1 ewentualnie domnozonej przez jakas$ funkcje
zalezng od T.

Napiszmy twierdzenie o zamianie zmiennych dla f = 1.

w  aw = [[ s [ aar [ it

zalozmy, ze D* jest prostokatem i sprobujmy uzasadni¢ (4.37). Bedziemy rozwazac
sytuacje dwuwymiarowa, ale rozumowanie dla R" jest analogiczne.

Wiemy, ze jesli T' jest odwzorowaniem rozniczkowalnym w (ug, vg), to dla odwzo-
rowania liniowego DT (ug, v) zadanego macierza

9u (Uo, Uo) %(Uo, Uo))

gu (U07 Uo) %(Uo, Uo)

DT (ug,v9) = (

mamy

T(u,v) =~ T(ug,vo) + DT (ug, vo) (iZ) =: f(u, V) = Thyp o (U, v),

gdzie Au = u—ug oraz Av = v—uvy. Zatdézmy, ze mamy podzial P prostokata D*. Jesli
S jest malym prostokatem z tego podziatu, ktérego dolnym lewym wierzchotkiem jest
punkt (ug,vg), to obraz T'(S) jest w przyblizeniu rownolegtobokiem T'(S) oraz

//T(S) du dy = A(T(5)) ~ A(Tv(s» = |Jr(ug,vo)| A(S),

gdzie Jr(ug,vg) = det DT (ug, vg). Ostatnia rownosé¢ wynika z definicji T. Wtedy

// Z//T dzdy =) | Jr(uo, vo IAS—>// | Jr(w, v)|du dv,

SepP SePpP
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gdy srednica P dazy do 0. Kluczowe jest by wiedzie¢, ze

> AT(S) = > AT(S) =0

SeP SeP

gdy srednica podziatu dazy do zera. Analogicznie postepujemy, gdy obszar D* jest
dowolny i zostal wlozony w prostokat R, ktory nastepnie podzieliliSmy na mate pro-
stokaty Si. Rozwazamy tylko prostokaty S, catkowicie zawarte w D*. Gdy $rednica
P — 0 przyblizaja one D* coraz lepiej. Niech (ug, vg) oznacza lewy dolny wierzchotek
prostokata Si. Wtedy

// drdy = A(D) = A(T(D")) = A(T(D*)) = Y _ |Jr(ux, vi)| AS}.
D k
W granicy, gdy Srednica podziatu dazy do zera, otrzymamy

// dacdy—// | Jr(u,v)| dudv.

Dotézmy teraz funkcje f. Oznaczmy (z, yx) = T'(ug,vy). Mamy

/ / gy dudy =~ Y Faepe) ATS) ~ 3 Flon ) AT(SY)
D k k

= 3 )l )| A — [ [ 1000 (o)l dud
k
Ostatecznie otrzymujemy wzor
(4.38) / flz,y)dxdy = / f(T(u,v)) |Jr(u,v)| dudv.
Nie jest to pelny d(fw()d, a raczej agitac?a.

3

Przyktad 4.39. [[[ @ +v'+%") " dx, dydz, gdzie D jest fragmentem kuli jednostko-
D
wej lezgeym w prerwszym oktancie.

Zastosujemy wspotrzedne sferyczne

xr = rsinpcosy,
(4.40) y = rsinpsiny,
Z = TCosp,

gdzie 0 < ¢, ¢ < 7, 0 < r < 1. Przyporzadkowanie (r,p,v) = (x,y,2) okreslone
wzorami wyzej nie jest réznowartosciowe na D* = [0,1] x [0, 7] x [0, 7], ale staje
sie takie, gdy r > 0. Okreslamy T'(r,¢,v) = (x,y, z) wg wzorow (4.40). Zalozenia

Twierdzenia 4.21 sg spetnione. Mamy

| Jr(r, ¢, )| = rsin .
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Dalej

/// @22 o dydz = /// e r? sin o dr dp diy
D D+
! 2 2 2 3 . ™ ! 2 13 2 . T .3 1 ™
= ree” sinpdpdipdr == [ r°e” dr sinpdp = —e"| =—(e—1).
o Jo Jo 2 Jo 0 6 lo 6

Przyklad 4.41. Obliczymy objetosé kuli D = {(z,y,2) : 2* + y* + 2* < R*}.

V:/V//dxdydz.

Przechodzimy do wspoétrzednych sferycznych.

T 27 R R i 4
V= / dgp/ d¢/ r?singdr = 27?/ r? dr / sinpdp = —TR>.
0 0 0 0 0 3

Obliczenia nie sa do konca $ciste, bo wspotrzedne nie sa jednoznaczne na pelnej kuli.
Zwroémy jednak uwage, ze

T:(0,R)x(0,7)x(0,27) — IntD\({(z,0,2) : > 0,2%+2* < R}U{(0,0,2) : |2| < R}),

Mamy

i na tak ograniczonej dziedzinie T ma wszystkie potrzebne wtasnoéci, a to co zostalo
wyrzucone z kuli ma miare zero.
Wspoélrzedne cylindryczne okreslone sg przez

7 COS ¢,

= rsinp,

ISEINSJ S

g Z’

co oznacza, ze w plaszczyznie (x,y) przechodzimy do wspoltrzednych biegunowych.
Wtedy

B(z,y, 2) cosp - sinp 0
J=—""—L=|sinp rcosp O0|=r.
A(r,p, 2 0 0 1

Przyklad 4.42. [ = [*do [V dy [ 2\/2% + g2 dz.

Obszar catkowania wzgledem z i y jest opisany warunkami 0 < z < 2, 0 <y <
V2z — 22, Po przeksztalceniu otrzymujemy 2? + y?> < 2x, y > 0. Rozpoznajemy
gorne potkole o promieniu 1 i srodku w punkeie (1,0). Po przejsciu do wspotrzednych
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biegunowych otrzymujemy warunki r < 2cose oraz 0 < ¢ < 7/2. Istotnie, przy
danym ¢, r = ry., spelnia réwnanie

(rcosp —1)% + (rsing)? =1
r? —2rcosp+ 1 =1

r = 208 .
Zatem
2cosg 2cosgo 4 2
I—/ dgp/ dr/ zr dz-—/ % cos® o dy
0
4a 1 5 8a?
:? i (1—81n (p)cosapdcp—?(smap—gsm gp) ’ :%

Gorne potkole sugeruje, ze podstawienie
r=14rcosp, y=rsinp, dla0<r<1, 0<p<m,

mogtoby by¢ przydatne. Jednak po takim podstawieniu otrzymujemy tieprzyjazna-
catke

™ 1 a 2 s 1
I:/ dgp/ dr/ zr\/TQ—l—Qrcosgo—{—ldz:%/ dgp/ /12 + 21 cosp + 1dr.
0 0 0 0 0

4.6.1. Srodek masy. W punktach Py, Ps,..., P, umieszczamy masy mq,ma, ..., M.
Srodek masy P ukladu spetnia

D i1 m:OP,
DM
Niech P; = (z;,y;, 2;), m =Y. m; oraz P = (T,7y,%Z). Wtedy

n n
1 _ 1 _ 1
= — E m;x;, Yy=— E m;Yy;, Z = — m;z;.
m < 1 m < 1 m <
1= 1=

Jesli masa jest roztozona w sposob ciagly w obszarze D 7z gestoscia masy o(z,y, z) w
punkcie (z,y, z), to srodek masy wyraza sie wzorem

fof zolz,y, 2) dx dy dz
f[[f o(z,y, 2)dedydz

OP =

gl

T =

Podobnie wzory mamy dla wspotrzednych 7 i Z.
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Przyklad 4.43. ZinalezZé Srodek masy gornej potkuli o promieniu 1, czyli obszaru
22+ + 22 < 1, 2 > 0. Prayjmujemy stalq gestosé masy o = 1. Ze wzgledu na
symetrie obszary srodek masy ma wspdtrzedne (0,0,Z). Obliczamy

2 1 1
///zdwdydz-—/ dgo/ dw/ rcosprisinpdr =3 - 1 5:2

4.6.2. Moment bezwtadnosci. Rozwazamy cialo D o gestosci masy o(z, y, z) w punkcie
(x,y, z). Moment bezwladnosci wzgledem osi « wyraza sie wzorem

I, = ///D(y2 + 2% o(x,y, 2) de dy d=.

Podobnie okresla si¢ momenty I, oraz I..

Przyktad 4.44. Obliczyé moment bezwtadnosci wzgledem osi z obszaru pomiedzy
paraboloidg z = x* + y?, cylindrem z* + y* = a® oraz plaszczyzng z = 0, przyjmujqc
o = 1. Obszar opisany jest warunkamsi

0§z§x2+y2§a2.

Uzyjemy wspdtrzednych cylindrycznych. Wiedy

2w a? a
]Z:///(x2+y2)dxdydz:/ dgp/ dz/ r?
J 0 0 NE

(l2 1 1
:27/ Lt = 2ydz = T (a8 = 2a8) = Do)
o 4 2 3 3

4.6.3. Potencjat grawitacyjny. W punkcie (x, y, ) umieszczamy mase M. Sita oddzia-
lywania na mase m umieszczong w punkcie (z1,y1, 21) jest gradientem potencjatu

GmM
Ve —z1)2+y—up)?+ (2 — 2)2

Zakladamy, ze masa jest rozmieszczona w obszarze D z gestoscia o(x,y, z). Wtedy
potencjal wyraza sie wzorem

V(w1 91, 21) /// Gme(x,y, 2) dx dy dz.
Ve —21)?2+ @y —n)?+(z—2)?

Sita oddzialywania na mase m umieszczona w punkcie (x1, 41, 21) jest rowna VV (xy, 1, 21).

V(xlv Yz, Zl) -

Przyklad 4.45. Zaldzmy, ze D jest obszarem zawartym pomiedzy sferami

2 2 2 2,2 2 2 2
Ay +2=r), Ty + 27 =13,

gdzie r1 < r9. Przyjmujemy o = 1 oraz m = 1. Obliczymy wartosé potencjatu w
punktach przestrzeni poza D.
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Ze wzgledu na niezmienniczo$¢ na obroty wzgledem poczatku uktadu wystarczy
obliczy¢ V (0,0, R). W obliczeniach uzyjemy wspotrzednych sferycznych.

—VO 0.R) /// dx dy dz
Va2 +y?+ (2 — R)?

2 r?sin r?sin
d / d / 7“_27'('/ dr/ d
/ v v /12 —2rRcosp + R2 /12 —2rRcosp + R2

W wewnetrznej calce stosujemy podstawienie

u=1?—2rRcosp+ R? du=2rRsinpdp.

R iy 2 [7?
—VOOR / / —du:—/ rir+ R —|r— R|]dr
G r1 (r—R)? \/ﬂ R r1

Zatozmy, ze R < r;. Wtedy

1 2 "2
EV(O,O,R) = %/r 2Rr dr = 27(r3 —ri).

7 kolei dla R > r, mamy

1 2 [T 4

—V(0,0,R) = — 2r? dr = —rd).

svoom =7 [ Ty

Reasumujac, wewnatrz obszaru potencjal jest staly (niezalezny od R) zatem nie ma
sity grawitacji. Z kolei na zewngtrz potencjal jest odwrotnie proporcjonalny do odle-
glosci punktu od poczatku uktadu. Zatem sita grawitacji jest odwrotnie proporcjo-
nalna do kwadratu tej odlegtosci.

1

1



