
ANALIZA III

1. Mno»niki Lagrange'a

1.1. Przestrze« styczna. Niech e1, ..., en b¦dzie baz¡ Rn, a x = x1e1 + ...+ xnen =
(x1, ..., xn) ∈ Rn. Niech f : Rn 7→ R b¦dzie funkcj¡ tak¡, »e dla ka»dego i istnieje

∂f

∂xi
(x) = lim

t→0

f(x+ tei)− f(x)

t
.

Gradient ∇f funkcji f zde�niowany jest nast¦puj¡co:

∇f(x) =

(
∂f

∂x1

(x), ...,
∂f

∂xn
(x)

)
.

De�nicja 1.1. Mówimy, »e funkcja f jest klasy C1(Rn), gdy dla ka»dego i

(1.2)
∂f

∂xi
jest funkcj¡ ci¡gª¡.

Piszemy ∂f
∂xi
∈ C(Rn), f ∈ C1(Rn).

Oznaczenie. Dla v, w ∈ Rn, v ◦ w =
∑n

i=1 viwi oznacza iloczyn skalarny.

De�nicja 1.3. Mówimy, »e funkcja f : Rn 7→ R jest ró»niczkowalna, gdy

(1.4) lim
h→0

|f(x+ h)− f(x)−∇f(x) ◦ h|
‖h‖

= 0.

Warunek (1.2) implikuje (1.4). Zauwa»my, »e z (1.4) wynika, »e

(1.5) f(x+ h) = f(x) +∇f(x) ◦ h+ o(h),

gdzie o(h) jest funkcj¡ o wªasno±ci

lim
h→0

o(h)

‖h‖
= 0.

Istotnie,
f(x+ h)− f(x)−∇f(x) ◦ h = o(h),

Je±li chcemy przybli»y¢ f(x+ h) mo»emy wi¦c napisa¢

(1.6) f(x+ h) ≈ f(x) +∇f(x) ◦ h.
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Przykªad 1.7. Znale¹¢ w przybli»eniu warto±¢
√

(6, 02)2 + (8, 01)2.

Rozwa»amy f(x, y) =
√
x2 + y2 w punkcie (6, 8) dla h = (0, 02; 0, 01). Wtedy

f(6, 8) = 10 i

∂f

∂x

∣∣∣
(6,8)

=
x√

x2 + y2

∣∣∣
(6,8)

=
3

5
,

∂f

∂y

∣∣∣
(6,8)

=
y√

x2 + y2

∣∣∣
(6,8)

=
4

5

i

f(6, 02; 8, 01) ≈ 10 +
3

5
· 0, 02 +

4

5
· 0, 01.

W dalszym ci¡gu u b¦dzie oznaczaªo dowolny element Rn. B¦dziemy pisali

u = (u1, ..., un) = (ū, un).

Wykresem funkcji f : Rn−1 7→ R nazywamy zbiór

S = {(x̄, f(x̄)) : x̄ ∈ Rn−1}.

De�nicja 1.8. Przestrzeni¡ styczn¡ Tx do S w punkcie x = (x̄, f(x̄)) nazywamy
hiperpªaszczyzn¦

(1.9) Tx = {u ∈ Rn : un − f(x̄) = ∇f(x̄) ◦ (ū− x̄)}.

Zauwa»my, »e równanie (1.9) mo»na równowa»nie napisa¢

(un − f(x̄))(−1) +∇f(x̄) ◦ (ū− x̄) = 0

czyli wektory (∇f(x̄),−1) i u− (x̄, f(x̄)) s¡ prostopadªe. Mo»na te» zapisa¢

un −∇f(x̄) ◦ ū = f(x̄)−∇f(x̄) ◦ x̄

lub

un −
n−1∑
i=1

∂f

∂xi
(x̄)ui = f(x̄)−∇f(x̄) ◦ x̄.

Przykªad 1.10. Niech f : R 7→ R, f ′ ∈ C(R). W tym przypadku przypadku prze-
strze« styczna jest prost¡ styczn¡ w punkcie (x1, f(x1)) i ma równanie

u2 − f(x1) = f ′(x1)(u1 − x1)

lub równowa»nie
u2 = f ′(x1)(u1 − x1) + f(x1).

Mamy równanie prostej o nachyleniu f ′(x1) przechodz¡cej przez punkt (x1, f(x1)).
Wektor kierunkowy prostej to (1, f ′(x1)), który jest prostopadªy do (f ′(x1),−1).
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Przykªad 1.11. Niech f : R2 7→ R, f ∈ C1(R2). W tym przypadku przypadku
przestrze« styczna jest pªaszczyzn¡ styczn¡ w punkcie (x̄, f(x̄)) i ma równanie

u3 − f(x̄) =
∂f

∂x1

(x̄)(u1 − x1) +
∂f

∂x2

(x̄)(u2 − x2)

lub równowa»nie
u3 = ∇f(x̄)(ū− x̄) + f(x̄).

W konkretnym przypadku f(x̄) = x2
1 + x2

2, mamy ∇f(x̄) = (2x1, 2x2) i równanie
T(1,0,1) jest nast¦puj¡ce

u3 − 1 = (2, 0) ◦ (ū− x̄) = 2(u1 − x1).

Niech

(1.12) Lx = {v = (v̄, vn) ∈ Rn : vn = ∇f(x̄) ◦ v̄},

gdzie v = (v̄, vn). Wektor v jest prostopadªy do (∇f(x̄),−1). Zauwa»my, »e Lx jest
przestrzeni¡ liniow¡ i

Tx = Lx + (x̄, f(x̄)) = {v + (x̄, f(x̄)) : v ∈ Lx}.

v jest tutaj elementem Rn, ale traktowanym jako wektor czyli element przestrzeni
liniowej. O u ∈ Rn my±limy jak o punkcie.

1.2. Zbiory otwarte i domkni¦te w Rn. Dla x ∈ Rn niech

‖x‖ =

√√√√ n∑
i=1

x2
i .

Kul¡ (kul¡ otwart¡) o ±rodku w x ∈ Rn i promieniu r nazywamy zbiór

Br(x) = {y ∈ Rn : ‖y − x‖ < r}.

De�nicja 1.13. Zbiór U ⊂ Rn nazywamy otwartym je±li dla ka»dego x ∈ U istnieje
r > 0 takie, »e Br(x) ⊂ U .

Przykªady zbiorów otwartych

• Br(x)
• {x ∈ R2 : 0 < x < 1, 5 < x2 < 10}
• {x ∈ Rn : ai < xi < bi, i = 1, ..., n}
• {x ∈ Rn : xi > 0, i = 1, ..., n}
• {x ∈ R2 : 0 < x1 < 1, x2 < f(x1)}, gdzie f : [0, 1] 7→ (0,∞) jest funkcj¡
ci¡gª¡.
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Zauwa»my, »e na zbiorze otwartym dobrze de�niuje si¦ ró»niczkowanie, bo dla
x ∈ U , i dostatecznie maªego t > 0, x+ tei ∈ U i f(x+ tei), a co za tym idzie

∂f

∂xi
(x) = lim

t→0

f(x+ tei)− f(x)

t

jest dobrze zde�niowane.

De�nicja 1.14. Zbiór F ⊂ Rn nazywamy domkni¦tym je±li Rn \ F jest otwarty.

Twierdzenie 1.15. Zbiór F ⊂ Rn jest domkni¦ty wtedy i tylko wtedy, gdy dla ka»dego
ci¡gu xm ∈ F zbie»nego do x ∈ Rn mamy x ∈ F .
Dowód powy»szego twierdzenie b¦dzie wkrótce na Analizie i Topologii.

Przykªady zbiorów domkni¦tych

• {x ∈ R2 : 0 ≤ x ≤ 1, 5 ≤ x2 ≤ 10}
• {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, ..., n}
• {x ∈ Rn : xi ≥ 0, i = 1, ..., n}
• {x ∈ R2 : 0 ≤ x1 ≤ 1, x2 = f(x1)}, gdzie f : [0, 1] 7→ R jest funkcj¡ ci¡gª¡
(wykres funkcji)
• {x ∈ R2 : 0 ≤ x1 ≤ 1, x2 ≤ f(x1)}, gdzie f : [0, 1] 7→ R jest funkcj¡ ci¡gª¡
• Br(x) = {y ∈ Rn : ‖y − x‖ ≤ r} (kula domkni¦ta).

Poza ∅ i Rn »aden zbiór w Rn nie jest jednocze±nie otwarty i domkni¦ty.

De�nicja 1.16. Zbiór K ⊂ Rn nazywamy zwartym je±li jest domkni¦ty i ograniczony.

Na wykªadzie topologii, zbiór zwarty w przestrzeni metrycznej byª zde�niowany
nieco inaczej. W szczególnym przypadku Rn wychodz¡c z ogólnej de�nicji mo»na
pokaza¢, »e K ⊂ Rn jest zwarty wtedy i tylko wtedy gdy jest domkni¦ty i ograni-
czony. Tak wi¦c powy»sza de�nicja jest raczej twierdzeniem. B¦dziemy jej u»ywali,
bo pozwala ªatwo sprawdzi¢, »e zbiór jest zwarty.

Przykªady zbiorów zwartych

• {x ∈ R2 : 0 ≤ x ≤ 1, 5 ≤ x2 ≤ 10}
• {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, ..., n, ai, bi ∈ R}
• {x ∈ R2 : 0 ≤ x1 ≤ 1, x2 = f(x1)}, gdzie f : [0, 1] 7→ R jest funkcj¡ ci¡gª¡.
• Br(x) = {y ∈ Rn : ‖y − x‖ ≤ r}

Zbiór
{x ∈ Rn : xi ≥ 0, i = 1, ..., n}

jest domkni¦ty, ale nie jest zwarty.
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De�nicja 1.17. Funkcj¦ f okre±lon¡ na zbiorze D nazywamy ci¡gª¡ je±li dla ka»dego
ci¡gu xm ∈ D takiego, »e xm → x ∈ D mamy, »e f(xm)→ f(x).

Dla przypomnienia: xm → x wtedy i tylko wtedy, gdy ‖xm − x‖ → 0.

Twierdzenie 1.18. Funkcja ci¡gªa f okre±lona na zbiorze zwartym K ⊂ Rn jest
ograniczona i przyjmuje kresy tzn. istniej¡ punkty x1, x2 ∈ K takie, »e

f(x1) = min
y∈K

f(y), f(x2) = max
y∈K

f(y).

Dowód powy»szego twierdzenia tak»e powinien by¢ na na Analizie i Topologii. Jest
ono odpowiednikiem twierdzenia z teorii jednej zmiennej mówi¡cego, »e funkcja ci¡gªa
na odcinku domkni¦tym przyjmuje kresy.

1.3. Twierdzenie o mno»nikach Lagrange'a. U jest otwartym podzbiorem Rn,
g jest funkcj¡, a

(1.19) S = {x ∈ U : g(x) = c}.

Np. gdy g(x, y, z) = x2+y2+z2 i c > 0, otrzymujemy sfer¦. Gdy g(x) = h(x̄)−xn, x =
(x̄, xn) i c = 0, S jest wykresem funkcji h. Istotnie g(x) = 0 wtedy i tylko wtedy, gdy
xn = h(x̄).
Zakªadamy, »e funkcja f jest okre±lona na S.

De�nicja 1.20. Mówimy, »e f przyjmuje minimum (maksimum) lokalne w x0 je±li
istnieje r > 0 takie, »e

f(x0) = min
x∈S∩Br(x0)

f(x)

(
f(x0) = max

x∈S∩Br(x0)
f(x)

)
.

Twierdzenie 1.21 (Lagrange). Zaªó»my, »e funkcje f : U ⊆ Rn → R i g : U ⊆
Rn → R s¡ klasy C1. Niech S = {x ∈ U : g(x) = c}. Je±li funkcja f

∣∣
S
przyjmuje

minimum lub maksimum lokalne w punkcie x0 oraz ∇g(x0) 6= 0, to ∇f(x0) = λ∇g(x0)
dla pewnej staªej λ. Tzn. gradienty ∇f(x0) i ∇g(x0) s¡ równolegªe.

Je±li S jest zwarta, to f przyjmuje maksimum i minimum, a wi¦c po±ród tak zna-
lezionych punktów b¦d¡ punkty, gdzie jest maksimum i minimum, a po±ród otrzy-
manych warto±ci funkcji najwi¦ksza i najmniejsza.
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Trzeba znale¹¢ punkt x ∈ U i staª¡ λ takie, »e

∂f

∂x1

(x1, x2, . . . , xn) = λ
∂g

∂x1

(x1, x2, . . . , xn)

...
...

∂f

∂xn
(x1, x2, . . . , xn) = λ

∂g

∂xn
(x1, x2, . . . , xn)

g(x1, x2, . . . , xn) = c

Mamy ukªad n+ 1 równa« z n+ 1 niewiadomymi x1, x2, . . . , xn i λ.

Przykªad 1.22. Niech S = {(x, y) ∈ R2 : x2 + y2 = 1}, a f(x, y) = x2 − y2. Wtedy

∇f(x, y) = (2x,−2y) = λ∇g(x, y) = λ(2x, 2y).

Wi¦c x = λx, y = −λy. Czyli x = 0 lub λ = 1. W pierwszym przypadku y = ±1, a
w drugim y = 0 i x = ±1. Mamy wi¦c

f(0,±1) = −1, f(±1, 0) = 1

i s¡ to najmniejsza i najwi¦ksza warto±¢ funkcji na sferze.

Przykªad 1.23. f(x, y, z) = x+ z, S = {(x, y, z) : x2 + y2 + z2 = 1}. Mamy

∇f(x, y, z) = (1, 0, 1), ∇g(x, y, z) = (2x, 2y, 2z).

Wektory te s¡ równolegªe, gdy y = 0 oraz z = x. Zatem 2x2 = 1. Otrzymujemy dwa

rozwi¡zania ±
(

1√
2
, 0, 1√

2

)
oraz

f

(
1√
2
, 0,

1√
2

)
=
√

2, f

(
− 1√

2
, 0,− 1√

2

)
= −
√

2.

Przykªad 1.24. Na sferze x2 + y2 + z2 = 4 znale¹¢ punkt najbli»szy i najdalszy od
punktu (3, 1,−1).

Rozwa»my kwadrat odlegªo±ci: f(x, y, z) = ‖(x, y, z) − (3, 1,−1)‖2 = (x − 3)2 +
(y − 1)2 + (z + 1)2. Wtedy

∇f(x, y, z) = 2(x− 3, y − 1, z + 1) = λ∇g(x, y, z) = 2λ(x, y, z).

Mamy do dyspozycji równania

(1.25) x− 3 = λx, y − 1 = λy, z + 1 = λz, i x2 + y2 + z2 = 4

lub równowa»nie

(1.26) x(1− λ) = 3, y(1− λ) = 1, z(1− λ) = −1, i x2 + y2 + z2 = 4.
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Zauwa»my, »e λ 6= 1. St¡d,

x = 3(1− λ)−1, y = (1− λ)−1, z = −(1− λ)−1.

Wstawiaj¡c te warto±ci do równania sfery otrzymujemy

11

(1− λ)2
= 4, 1− λ = ±

√
11

2

i dwa punkty

p1 =

(
6√
11
,

2√
11
,− −2√

11

)
, dla λ = 1−

√
11

2

p2 = −p1 dla λ = 1 +

√
11

2
.

Z (1.25) wynika, »e f(x, y, z) = λ2(x2 + y2 + z2) = 4λ2, co dla p1 daje odlegªo±¢

2
∣∣∣1− √11

2

∣∣∣, a dla p2 odlegªo±¢ 2
(

1 +
√

11
2

)
.

Przykªad 1.27. Rozwa»my macierz symetryczn¡ A wymiaru n× n. Okre±lamy

f(x) = (Ax, x) =
n∑

i,j=1

aijxixj, x = (x1, x2, . . . , xn).

Chcemy znale¹¢ ekstrema funkcji f(x) na

S = {(x1, x2, . . . , xn) ∈ Rn : g(x) = x2
1 + x2

2 + . . .+ x2
n = 1}.

Mamy
∂f

∂xk
(x) =

∑
j 6=k

akjxj +
∑
i 6=k

aikxi + 2akkxk = 2
n∑
j=1

akjxj,

bo akj = ajk. Dalej
∂g

∂xk
(x) = 2xk.

Otrzymujemy wi¦c ukªad równa«
n∑
j=1

a1jxj = λx1,

n∑
j=1

a2jxj = λx2,

...
n∑
j=1

anjxj = λxn.
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To oznacza, »e Ax = λx. Czyli x jest wektorem wªasnym o dªugo±ci 1. Uporz¡dkujmy
warto±ci wªasne macierzy A wedªug wielko±ci: λ1 ≤ λ2 ≤ . . . ≤ λn. Niech v1, v2, . . . , vn
oznaczaj¡ odpowiadaj¡ce wektory wªasne o dªugo±ci 1. Wtedy

f(vk) = (Avk, vk) = λk(vk, vk) = λk.

Reasumuj¡c
min
‖x‖=1

(Ax, x) = λ1, max
‖x‖=1

(Ax, x) = λn.

Przykªad 1.28. Na zbiorze S = {x ∈ R3 : x1 + x2 + x3 = 1, xi ≥ 0} znajdziemy
najmniejsz¡ i najwi¦ksz¡ warto±¢ funkcji f(x) = (1 + x1)(1 + x2)(1 + x3).

Zauwa»my, »e S nie jest zbiorem postaci S = {x ∈ U : g(x) = c} dla U otwartego,
ale S jest zwarte i mo»emy szuka¢ najmniejszej i najwi¦kszej warto±ci funkcji. Z
równania na gradienty mamy

∇f = ((1 + x2)(1 + x3), (1 + x1)(1 + x3), (1 + x1)(1 + x2)) = λ(1, 1, 1).

St¡d x1 = x2 = x3 = 1/3 i f(1
3
, 1

3
, 1

3
) =

(
4
3

)3
= 64

27
. Ale to dziaªa tylko na zbiorze

{x1 + x2 + x3 = 1, xi > 0}, bo w Twierdzeniu Lagrange'a U jest otwarty.
Musimy wi¦c zaªo»y¢, »e jedna zmienna jest zero, np. x1 = 0, rozwa»y¢ zbiór
{x2 + x3 = 1, x2, x3 ≥ 0} i funkcj¦ f(x) = (1 + x2)(1 + x3). Post¦puj¡c jak wy»ej i
ograniczaj¡c si¦ do x2 > 0, x3 > 0 otrzymujemy x2 = x3 = 1

2
i f(0, 1

2
, 1

2
) =

(
3
2

)2
= 9

4
.

W ko«cu, musimy jeszcze uwzgl¦dni¢ punkty, gdzie dwie wspóªrz¦dne si¦ zeruj¡,
co daje f(0, 0, 1) = 2. Ze wzgl¦du na symetri¦ zmiennych s¡ to wszystkie przypadki.
St¡d 64

27
jest najwi¦ksz¡ warto±ci¡, a 2 najmniejsz¡.

Przykªad 1.29. Przy warunku x+y+z = 48 znajdziemy najmniejsz¡ funkcji f(x) =
x2 + y2 + z2.

Z Twierdzenia Lagrange'a mamy (2x, 2y, 2z) = λ(1, 1, 1). St¡d x = y = z = 16 i
f(16, 16, 16) = 768. Ale zbiór opisany warunkiem nie jest zwarty
Dlaczego jest to minimum? Zauwa»my, »e f(x, y, z)→∞, gdy x→∞ wi¦c nie ma

najwi¦kszej warto±ci. Powierzchnia jest niezwarta, wi¦c musimy wykaza¢, »e warto±¢
minimalna jest przyj¦ta. Rozwa»my kóªko

S = {(x, y, z) : x2 + y2 + z2 ≤ 1000, x+ y + z = 48}.
f przyjmuje na S maksimum = 1000 i jakie± minimum, a poza S funkcja f jest
wi¦ksza ni» 1000.

W sytuacji, gdy mamy zbiór zwarty o niepustym wn¦trzu i brzegu za-
danym jako poziomica (1.19), procedura znajdowania warto±ci najwi¦kszej
i najmniejszej funkcji jest nast¦puj¡ca
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1. Znale¹¢ punkty krytyczne funkcji wewn¡trz zbioru, tzn. punkty stacjonarne
oraz punkty, w których nie mo»na obliczy¢ pochodnych cz¡stkowych.

2. Znale¹¢ punkty krytyczne funkcji obci¦tej do brzegu zbioru, np. metod¡
mno»ników Lagrange'a.

3. Obliczy¢ warto±ci funkcji w znalezionych punktach.
4. Wybra¢ warto±¢ najwi¦ksz¡ i najmniejsz¡.

1.4. Charakteryzacja przestrzeni stycznej przy pomocy krzywych. Niech
I = (a, b), gdzie −∞ ≤ a < b ≤ ∞, co znaczy, »e I mo»e by¢ odcinkiem, póªprost¡,
caªym R. Dla wygody ró»niczkowania przyjmujemy, »e I jest otwarty.

De�nicja 1.30. Odwzorowanie γ : I 7→ Rn klasy C1 nazywamy krzyw¡. Piszemy
γ(t) = (γ1(t), ..., γn(t)).

Klasy C1 oznacza, »e dla ka»dego i

γ′i(t) =
dγi
dt

(t) jest funkcj¡ ci¡gª¡.

Oznaczmy
γ′(t) = (γ′1(t), ..., γ′n(t))

Rozwa»my x ∈ S (S = {x ∈ U : g(x) = c}) i zbiór krzywych
Γx = {γ : I 7→ Rn, 0 ∈ I, γ(0) = x, ∀t γ(t) ∈ S} .

Na pocz¡tek ograniczymy si¦ do S b¦d¡cego wykresem funkcji.

Twierdzenie 1.31. Zaªó»my, »e S jest wykresem funkcji f tzn.

S = {(x̄, f(x̄)) : x̄ ∈ Rn−1} = {x ∈ Rn : xn − f(x̄) = 0}
Wtedy

Lx = {v : ∃γ∈Γx , v = γ′(0)} .

Dowód. Zwró¢my uwag¦, »e Lx byªo zde�niowane jako przestrze« wektorów prosto-
padªych do (∇f(x̄),−1). Zapiszmy x = (x̄, xn) i

γ(t) = (γ̄(t), γn(t)) , gdzie γ̄(t) ∈ Rn−1.

Je±li γ ∈ Γx to γn(t) = f(γ̄(t)) czyli γ(t) = (γ̄(t), f(γ̄(t)))

dγn
dt

(t) =
n−1∑
i=1

∂f

∂xi
(γ̄(t)) · dγi

dt
(t),

a wi¦c
dγn
dt

(0) = ∇f(x̄) ◦ γ̄′(0).
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St¡d γ′(0) ∈ Lx. Zaªó»my teraz, »e v = (v̄, vn) ∈ Lx czyli o wªasno±ci vn = ∇f(x̄)◦ v̄.
i rozwa»my krzyw¡

γ(t) = (x̄+ v̄t, f(x̄+ v̄t)) .

Na przykªad dla n = 3 mamy

γ(t) = (x1 + v1t, x2 + v2t, f(x1 + v1t, x2 + v2t)) .

γ ∈ Γx i

γ′(0) =

(
v1, ..., vn−1,

d

dt
f(x̄+ v̄t)(0)

)
=

(
v1, ..., vn−1,

n−1∑
i=1

∂f

∂xi
(x̄) · vi

)
= (v̄,∇f(x̄) ◦ v̄) = v,

�

Powy»sze twierdzenie jest prawdziwe tak»e w ogólnej sytuacji

S = {x ∈ U : g(x) = c}.
Wtedy de�niujemy

Lx = {v : ∇g(x) ◦ v = 0}.
Zwró¢my uwag¦, »e gdy S jest wykresem funkcji f obie de�nicje Lx pokrywaj¡ si¦.
Istotnie, dla g(x) = f(x̄)− xn = 0 mamy

∇g(x) = (∇f(x̄),−1).

Twierdzenie 1.32. Niech S = {x ∈ U : g(x) = c}, ∇g(x) 6= 0. Wtedy

Lx = {v : ∃γ∈Γx , v = γ′(0)} .

Powy»sze twierdzenie zostanie udowodnione za kilka wykªadów.

1.5. Dowód Twierdzenia Lagrange'a o mno»nikach. Zaªó»my, »e funkcje f :
U ⊆ Rn → R i g : U ⊆ Rn → R s¡ klasy C1. Niech S = {x ∈ U : g(x) = c}. Je±li
funkcja f

∣∣
S
przyjmuje minimum lub maksimum lokalne w punkcie x0 oraz ∇g(x0) 6=

0, to ∇f(x0) = λ∇g(x0) dla pewnej staªej λ. Tzn. gradienty ∇f(x0) i ∇g(x0) s¡
równolegªe.

Dowód. Niech σ(t) : (−1, 1) → S b¦dzie krzyw¡ klasy C1 przechodz¡c¡ przez x0 w
chwili t = 0, tzn. σ(0) = x0. Wtedy funkcja zªo»ona f(σ(t)) przyjmuje ekstremum
lokalne w chwili t = 0. Zatem

0 =
d

dt
f(σ(t))

∣∣∣
t=0

= ∇f(σ(t)) ◦ σ′(t)
∣∣∣
t=0

= ∇f(x0) ◦ σ′(0)
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Ponadto σ′(0) jest wektorem stycznym do S w punkcie x0. Co wi¦cej z Twierdzenia
1.32 wynika, »e zbiór tych wektorów jest to»samy z Lx, a wi¦c tworzy podprzestrze«
liniow¡ wymiaru n − 1. Tzn. gradient ∇f(x0) jest prostopadªy do ka»dego wektora
stycznego do S w punkcie x0. Zatem ∇f(x0) jest prostopadªy do przestrzeni stycznej
do S w punkcie x0. Ale ∇g(x0) 6= 0 jest te» prostopadªy do tej przestrzeni stycznej.
To oznacza, »e ∇f(x0) i ∇g(x0) s¡ równolegªe. �

1.6. Metoda mno»ników Lagrange'a przy kilku warunkach. Zaªó»my, »e po-
wierzchnia S ⊂ Rn jest okre±lona przez k warunków

g1(x1, x2, . . . , xn) = c1,

g2(x1, x2, . . . , xn) = c2,

...

gk(x1, x2, . . . , xn) = ck.

Twierdzenie 1.33. Zaªó»my, »e wektory ∇g1(x0),∇g2(x0), . . . ,∇gk(x0) s¡ liniowo
niezale»ne. Je±li funkcja f

∣∣
S
posiada ekstremum w punkcie x0 ∈ S, to

∇f(x0) = λ1∇g1(x0) + λ2∇g2(x0) + . . .+ λk∇gk(x0)

dla pewnych staªych λ1, λ2, . . . , λk.

Uwaga. Aby znale¹¢ punkt x0 trzeba rozwi¡za¢ n+ k równa« przy n+ k niewia-
domych: n wspóªrz¦dnych i k lambd.

Przykªad 1.34. Znale¹¢ ekstrema funkcji f(x, y, z) = y + z przy warunkach
x2 + z2 = 1 i y2 + z2 = 4.

Mo»emy przyj¡¢ g1(x, y, z) = x2 + y2 oraz g2(x, y, z) = y2 + z2. Rozwi¡zujemy
równanie ∇f = λ1∇g1 + λ2∇g2. Otrzymujemy 3 równania

0 = 2λ1x,

1 = 2λ2y,

1 = 2λ1z + 2λ2z.

Rozpatrzymy dwa przypadki.

(a) x = 0. Wtedy z = ±1 oraz y = ±
√

3.
(b) λ1 = 0. Wtedy y = z, zatem z2 = 2. Otrzymujemy sprzeczno±¢ z warunkiem

x2 + z2 = 1.

Warto±¢ najwi¦ksza jest osi¡gni¦ta w punkcie (0,
√

3, 1) a warto±¢ najmniejsza w
(0,−

√
3,−1).
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Przykªad 1.35. Znale¹¢ ekstrema funkcji f(x, y, z) = x + 2y + 3z przy warunkach
x2 + y2 = 1 i x− y + z = 1.

Mo»emy przyj¡¢ g1(x, y, z) = x − y + z oraz g2(x, y, z) = x2 + y2. Rozwi¡zujemy
równanie ∇f = λ∇g1 + µ∇g2. Otrzymujemy 3 równania

1 = λ+ 2µx,

2 = −λ+ 2µy,

3 = λ.

St¡d

−2 = 2µx x = − 1

µ
(I − III)

5 = 2µy y = − 5

2µ
(II + III)

Wstawiaj¡c to do pierwszego warunku mamy

1

µ2
+

25

4µ2
= 1, µ = ±

√
29

2
.

i
x = ∓ 2√

29
, y = ± 5√

29
.

Z drugiego warunku

z = 1± 7√
29

i
f(x, y, z) = 3±

√
29.

Ze wzgl¦du na to, »e zbiór opisany przez warunki jest zwarty otrzymujemy w ten
sposób najwi¦ksz¡ i najmniejsz¡ warto±c funkcji f .

Dowód Twierdzenia 1.33. Niech σ(t) b¦dzie krzyw¡ klasy C1 le»¡c¡ w powierzchni S
tak¡, »e σ(0) = x0. Mamy

gj(σ(t)) = cj, dla j = 1, 2, . . . , k.

Zatem

0 =
d

dt
gj(σ(t)) = ∇gj(σ(t)) ◦ σ′(t).

Dla t = 0 otrzymujemy

∇gj(x0) ◦ σ′(0) = 0, dla j = 1, 2, . . . , k.

To oznacza, »e wektor σ′(0) jest prostopadªy do wektorów

∇g1(x0), ∇g2(x0), . . . , ∇gk(x0).

Wektor σ′(0) jest styczny do powierzchni S w punkcie x0.
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Podobnie jak dla k = 1 wymiar przestrzeni liniowej V1 rozpi¦tej przez wszystkie
wektory styczne σ′(0) wynosi n− k.

Z kolei wymiar przestrzeni V2 rozpi¦tej przez wektory∇g1(x0),∇g2(x0), . . . ,∇gk(x0)
wynosi k, o ile gradienty s¡ liniowo niezale»ne. Ale V1 i V2 s¡ do siebie prostopadªe,
zatem V ⊥1 = V2. Rozwa»my funkcj¦ t 7→ f(σ(t)). Funkcja ta osi¡ga ekstremum dla
t = 0. Czyli

0 =
d

dt
f(σ(t))

∣∣∣
t=0

= ∇f(x0) ◦ σ′(0),

dla dowolnej wy»ej opisanej krzywej σ. Zatem ∇f(x0) ∈ V ⊥1 = V2. �

2. Twierdzenie o funkcji uwikªanej

Z teorii funkcji jednej zmiennej y = f(x) wiemy, »e je±li f jest klasy C1 oraz
f ′(x0) 6= 0, to równanie f(x) = y dla y w pobli»u y0 = f(x0) ma jednoznaczne
rozwi¡zanie x = f−1(y) le»¡ce w pobli»u x0. Rzeczywi±cie, rozwa»my przypadek
f ′(x0) > 0. Zatem f ′(x) > 0 dla x w pewnym przedziale wokóª x0, np. w (x0−δ, x0+δ).
Wtedy f(x) jest ±ci±le rosn¡ca w (x0−δ, x0 +δ). Zatem posiada funkcj¦ odwrotn¡ x =
g(y). Proces odwracania jest mo»liwy i wa»ny równie» dla funkcji wielu zmiennych.
Do tego dojdziemy, ale najpierw zajmiemy si¦ rozwi¡zywaniem równa«.

Rozwa»my równanie F (x, y, z) = 0. Przypu±¢my, »e F (x0, y0, z0) = 0. Interesuje
nas obliczenie zmiennej z z równania w pobli»u (x0, y0, z0). Tzn. chcemy, aby dla
(x, y) blisko (x0, y0) znale¹¢ z blisko z0 tak, aby F (x, y, z) = 0. Np. niech
F (x, y, z) = x2 + y2 + z2 − 1 oraz F (0, 0, 1) = 0. Wtedy

z =
√

1− x2 − y2 = g(x, y)

jest rozwi¡zaniem równania. g(x, y) jest funkcj¡ klasy C1 na zbiorze B1(0, 0) =
{(x, y) : x2 + y2 < 1}. Ponadto je±li oznaczymy S = {(x, y, z) : x2 + y2 + z2 − 1 = 0}
to

S ∩ {(x, y, z) : z > 0} = {(x, y, g(x, y)) : (x, y) ∈ B1(0, 0)}.
Pokazali±my, »e istnieje otoczenie {(x, y, z) : z > 0} punktu (0, 0, 1) i funkcja g klasy
C1 takie, »e przekrój powierzchni z tym otoczeniem jest dokªadnie wykresem funkcji
g. Podobnie dla F (0, 0,−1) rozwi¡zaniem jest

z = −
√

1− x2 − y2.

Z kolei dla F ( 1√
2
, 1√

2
, 0) mamy dwa rozwi¡zania

z = ±
√

1− x2 − y2

je±li x2 + y2 ≤ 1 lub brak rozwi¡za«, je±li x2 + y2 > 1. W tym przypadku nie ma
otoczenia punktu ( 1√

2
, 1√

2
), na którym z(x, y) byªoby funkcj¡ klasy C1.
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Rozwa»my S zadane nieco bardziej skomplikowanym równaniem:

F (x, y, z) = xy + z + 3xz5 − 4 = 0

w otoczeniu Bε(1, 0)× (1−δ, 1−δ) punktu (1, 0, 1) b¦d¡cego jego rozwi¡zaniem. Czy
przekrój S ze zbiorem otwartym Bε(1, 0)× (1−δ, 1−δ) jest wykresem pewnej funkcji
g klasy C1? tzn. czy

S ∩ (Bε(1, 0)× (1− δ, 1− δ)) = {(x, y, g(x, y)) : (x, y) ∈ Bε(1, 0)} dla g ∈ C1?

W tym przypadku nie jest ju» tak ªatwo wyliczy¢ z jako funkcj¦ x, y.

Twierdzenie 2.1. Zaªó»my, »e funkcja F : R3 → R jest klasy C1. Zaªó»my, »e

F (x0, y0, z0) = 0, oraz
∂F

∂z
(x0, y0, z0) 6= 0.

Wtedy równanie F (x, y, z) = 0 ma jednoznaczne rozwi¡zanie w pobli»u (x0, y0, z0). Co
wi¦cej, z mo»na jednoznacznie wyznaczy¢ jako funkcj¦ (x, y) i funkcja ta jest klasy
C1. Dokªadniej, istnieje kula otwarta U ⊂ R2 o ±rodku w (x0, y0), przedziaª otwarty
I wokóª z0 oraz funkcja

g : U 7→ I, g ∈ C1(U),

taka, »e

F (x, y, g(x, y)) = 0, (x, y) ∈ U
oraz je±li (x, y, z) ∈ U × I i F (x, y, z) = 0 to z = g(x, y). Inaczej mówi¡c

{F (x, y, z) = 0} ∩ U × I = {(x, y, g(x, y)) : (x, y) ∈ U}.

Zwró¢my uwag¦, »e dla F (x, y, z) = x2 + y2 + z2 − 1 mamy

∂F

∂z

(
0, 0, 1

)
= 2, a

∂F

∂z

(
1√
2
,

1√
2
, 0

)
= 0,

co uzasadnia warunek ∂F
∂z

(x0, y0, z0) 6= 0.

Przykªady.

(a) F (x, y) = x2y−y2 = (x2−y)y. Rozwa»my punkt (x0, y0) = (0, 0). F (x, y) = 0
wtedy i tylko wtedy, gdy y = x2 lub y = 0. W pobli»u punktu (0, 0) mamy
wi¦c dwa rozwi¡zania. Nie mo»na przedstawi¢ y jako funkcji zmiennej x.
Mamy dwie funkcje. Zauwa»my, »e ∇F (x, y) = (2xy, x2 − 2y) czyli
∇F (0, 0) = (0, 0).
Sytuacja jest zupeªnie inna w punkcie (x0, y0) = (1, 1). W pobli»u punktu

(1, 1), F (x, y) = 0 wtedy i tylko wtedy, gdy y = x2, mamy wi¦c jedno roz-
wi¡zanie. W tym przypadku mo»emy wzi¡¢ U = (1/2, 3/2), I = (1/4, 9/4).
Zauwa»my, »e ∇F (1, 1) = (2,−1).
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(b) Rozwa»my walec F (x, y, z) = x2 + y2 − 1 = 0 i punkt
(x0, y0, z0) = (1/

√
2, 1/
√

2, 5). Mamy

∂F

∂z

(
1√
2
,

1√
2
, 5

)
= 0,

∂F

∂x

(
1√
2
,

1√
2
, 5

)
=
√

2

Nie mo»na przedstawi¢ z jako funkcji zmiennych x, y, ale mo»na przedstawi¢
x jako funkcj¦ zmiennych y, z staª¡ w kierunku zmiennej z. Mo»emy wzi¡¢
U = (1/

√
2− δ, 1/

√
2 + δ)× R 3 (y, z), (1/

√
2− ε, 1/

√
2 + ε) = I 3 x.

Twierdzenie pozwala nam te» na liczenie pochodnych funkcji g mimo, »e nie mamy
na ni¡ jawnego wzoru.
Wiemy, »e z0 = g(x0, y0) oraz F (x, y, g(x, y)) = 0 dla (x, y) ∈ U. Zatem

0 =
∂

∂x
F (x, y, g(x, y)) =

∂F

∂x
(x, y, g(x, y)) +

∂F

∂z
(x, y, g(x, y))

∂g

∂x
(x, y).

Otrzymujemy

(2.2)
∂g

∂x
(x, y) = −

∂F
∂x

(x, y, g(x, y))
∂F
∂z

(x, y, g(x, y))
, (x, y) ∈ Ũ ⊂ U.

Z zaªo»enia ∂F
∂z

(x0, y0, z0) 6= 0, zatem ∂F
∂z

(x, y, g(x, y)) 6= 0, dla (x, y) w pobli»u (x0, y0),
bo funkcje F i g s¡ klasy C1. Podstawiamy (x0, y0) aby otrzyma¢

(2.3)
∂g

∂x
(x0, y0) = −

∂F
∂x

(x0, y0, z0)
∂F
∂z

(x0, y0, z0)
.

Przykªady.

(a) Rozwa»amy równanie F (x, y, z) = xy + z + 3xz5 = 4 i rozwi¡zanie (1, 0, 1).
Wtedy

∂F

∂z
(1, 0, 1) = 1 + 15xz4

∣∣∣
(1,0,1)

= 16,

∂F

∂x
(1, 0, 1) = y + 3z5

∣∣∣
(1,0,1)

= 3,

∂F

∂y
(1, 0, 1) = x

∣∣∣
(1,0,1)

= 1.

Na podstawie wzoru (2.10) otrzymujemy

∂g

∂x
(1, 0) = − 3

16
,

∂g

∂y
(1, 0) = − 1

16
.

∂g
∂x

jako funkcja na otoczeniu (1, 0, 1) jest dana wzorem

∂g

∂x
(x, y) =

y + 3z5

1 + 15xz4
gdy z = g(x, y)

czyli gdy jeste±my na poziomicy (powierzchni).
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(b) Niech F (x, y, z) := x3 + 3y2 + 8xz2 − 3yz3 = 1. W pobli»u jakich punktów
powierzchnia zadana równaniem mo»e by¢ przedstawiona jako wykres funkcji
z = g(x, y)? Obliczamy

∂F

∂z
= 16xz − 9yz2 6= 0.

Zatem musz¡ by¢ speªnione warunki z 6= 0 oraz 16x− 9yz 6= 0.
Je±li chcemy obliczy¢ x = h(y, z), to

∂F

∂x
= 3x2 + 8z2 6= 0.

Wystarczy zatem, aby x 6= 0 lub z 6= 0.

Przykªad 2.4. Znale¹¢ lokalne ekstrema funkcji z na powierzchni x2+y2+z3−3z = 0.

Mówimy o lokalnych ekstremach, bo powierzchnia jest nieograniczona. Mamy
x2 + y2 = −z3 + 3z. Gdy z d¡»y −∞, to zawsze najdziemy (x, y) speªniaj¡ce to
równanie. Po pierwsze zauwa»my, gdzie mo»na rozwikªa¢ z jako funkcj¦ zmiennych
x, y.

∂F

∂z
= 3z2 − 3 6= 0 ⇐⇒ z2 6= 1.

z = 1 daje x2 + y2 = 2, a z = −1 prowadzi do sprzeczno±ci x2 + y2 = −2. Poza
okr¦giem z = 1, x2 +y2 = 2, mo»emy z rozwikªa¢ i piszemy z = z(x, y). W otoczeniu
punktów nale»¡cych do tego okr¦gu nie mamy narz¦dzi do zbadania zachowania z.
Ró»niczkuj¡c obustronnie x2 + y2 + z3 − 3z = 0 po x, otrzymujemy

2x+ 3z2 ∂z

∂x
− 3

∂z

∂x
=0

∂z

∂x
3(z2 − 1) =− 2x

∂z

∂x
=

−2x

3(z2 − 1)
,

∂z

∂y
=

−2y

3(z2 − 1)
.

Powy»sze wzory maj¡ sens o ile jeste±my na powierzchni. ∂z
∂y
, ∂z

∂x
znikaj¡ punkcie

x = 0, y = 0. Wtedy z = ±
√

3 lub z = 0. ∂F
∂z

nie znika w tych punktach i
z = z(x, y). Ró»niczkuj¡c po x jeszcze raz mamy

2 + 6z

(
∂z

∂x

)2

+ 3z2 ∂
2z

∂x2
− 3

∂2z

∂x2
=0

∂2z

∂x2
3(z2 − 1) =− 2− 6x

(
∂z

∂x

)2

∂2z

∂x2
3(z2 − 1) =− 2− 6x · 4x2

9(z2 − 1)2
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Ten wzór tak»e ma sens tylko na poziomicy. Ró»niczkuj¡c najpierw po x, a potem
po y mamy

∂

∂y

(
2x+ 3z2 ∂z

∂x
− 3

∂z

∂x

)
=6z

∂z

∂y

∂z

∂x
+ 3z2 ∂2z

∂y∂x
− 3

∂2z

∂y∂x
= 0

St¡d

3(z2 − 1)
∂2z

∂y∂x
= −6z

∂z

∂y

∂z

∂x
= −6z

4xy

9(z2 − 1)2

Mamy

∂2z

∂x2
= −2

6
,

∂2z

∂y2
= −2

6
w (0, 0,

√
3)

3(z2 − 1)
∂2z

∂y∂x
= 0, czyli

∂2z

∂y∂x
= 0.

Hesjan z w punkcie (0, 0,
√

3) jest ujemnie okre±lony (tzn. -Hesjan jest dodatnio
okre±lony), wi¦c mamy lokalne maksimum. To samo w (0, 0,−

√
3).

∂2z

∂x2
=

2

3
,

∂2z

∂y2
=

2

3
w (0, 0, 0)

∂2z

∂y∂x
= 0 w (0, 0, 0).

Hesjan z w punkcie (0, 0, 0) jest dodatnio okre±lony, wi¦c mamy lokalne minimum.

2.1. Hesjan. Korzystaj¡c z równania (2.2) mo»emy policzy¢ Hesjan funkcji g o ile
F ma drugie pochodne. Ró»niczkuj¡c obustronnie równanie

∂g

∂x
(x, y) = −

∂F
∂x

(x, y, g(x, y))
∂F
∂z

(x, y, g(x, y))
, (x, y) ∈ U.

jeszcze raz po x mamy

∂

∂x

∂g

∂x
(x, y) = − ∂

∂x

(
∂F
∂x

(x, y, g(x, y))
∂F
∂z

(x, y, g(x, y))

)
, (x, y) ∈ U.

Korzystaj¡c z wzoru na pochodn¡ ilorazu wyliczmy jej licznik(
−∂

2F

∂x2
− ∂2F

∂z∂x

∂g

∂x

)
∂F

∂z
+
∂F

∂x

(
∂2F

∂x∂z
+
∂2F

∂z2

∂g

∂x

)
.

Zwró¢my uwag¦, »e potrzebowali±my tylko pierwszej pochodnej funkcji g, co pokazuje
przy okazji, »e z faktu, »e F ∈ C2 (ci¡gªe pochodne drugiego rz¦du) dowodzimy, »e
g ∈ C2(U). Wstawiaj¡c

∂F

∂x
= −∂g

∂x

∂F

∂z
,
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w liczniku mamy (
−∂

2F

∂x2
− 2

∂2F

∂z∂x

∂g

∂x
− ∂2F

∂z2

(
∂g

∂x

)2
)
∂F

∂z

a w mianowniku
(
∂F
∂z

)2
. Zaªó»my, »e ∂g

∂x
(x0, y0) = 0 = ∂g

∂x
(x0, y0). Wtedy wyra»enie

upraszcza si¦ bardzo.

∂2g

∂x2
(x0, y0) = −

(
∂F

∂z

)−1
∂2F

∂x2
(x0, y0, g(x0, y0)).

Podobnie liczymy pozostaªe drugie pochodne i w ko«cu w punkcie (x0, y0) mamy

(2.5) Hess(x0,y0)g = −
(
∂F

∂z

)−1

HessF,

gdzie prawa strona jest wzi¦ta w punkcie (x0, y0, g(x0, y0)) = (x0, y0, z0), a HessF
jest cz¦±ciowym Hesjanem F liczonym wzgl¦dem zmiennych x, y. Dokªadniej, Hessg
jest funkcj¡ zmiennych (x, y), a prawa strona zmiennych (x, y, z). Równo±¢ zachodzi
w (x0, y0, z0). Powy»szy wzór jest bardzo wygodny do stwierdzenia czy w punkcie
otrzymanym z zastosowania mno»ników Lagrange'a mamy lokalne ekstremum zmien-
nej z = g(x, y).

Je±li ∂g
∂x

(x0, y0), ∂g
∂y

(x0, y0) nie zeruj¡ si¦, to wyra»enie na ∂2g
∂x2

robi si¦ du»o bardziej
skomplikowane:

(2.6)
∂2g

∂x2
(x, y) = −

〈
(Hessx,zF )(∇z,xF ),∇z,xF

〉(∂F
∂z

)−3

gdzie ∇z,xF =
(
∂F
∂z
, −∂F
∂x

)
jest wektorem, a Hessx,zF macierz¡ 2× 2 zastosowan¡ do

tego wektora, a wszystko jest wzi¦te w punkcie (x, y, g(x, y)) = (x, y, z) le»¡cym na
powierzchni. Prosz¦ zwróci¢ uwag¦, »e zmienne x, z s¡ brane w innej kolejno±ci w
Hesjanie i w gradiencie.
Wzór robi si¦ skomplikowany i nie b¦dziemy si¦ nim zajmowa¢, ale warto wiedziec,

»e drugie pochodne cz¡stkowe funkcji g mo»na wyrazi¢ przez pochodne cz¡stkowe
funkcji F .

Mo»emy te» post¡pic ogólniej. Zaªó»my, »e na powierzchni S danej równaniem
F (x) = 0, x ∈ Rn, badamy ekstrema funkcji f . Je±li S jest nieograniczona, nie
mo»emy od razu stwierdzi¢, ze jest to maksimum czy minimum. Wyobra¹my sobie,
»e umiemy F (x) = 0 rozwikªa¢ wzgl¦dem jednej wspóªrz¦dnej. Niech to b¦dzie xn.
Wtedy lokalnie wokóª punktu x0 dla x speªniaj¡cych F (x) = 0 mamy

xn = g(x1, ..., xn−1) dla (x1, ..., xn−1) ∈ U,

f(x) = f(x1, ..., xn−1, g(x1, ..., xn−1).
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�eby rozstrzygn¡¢, czy punkt x0 otrzymany z mno»ników Lagrange'a jest ekstremum
potrzebujemy Hesjanu f , który wyrazi nam si¦ przez pochodne cz¡stkowe funkcji f i
F . F u»yjemy do wyliczenia pochodnych g. Mamy

∂2f

∂x2
1

=
∂

∂x1

(
∂f

∂x1

+
∂f

∂xn

∂g

∂x1

)
=
∂2f

∂x2
1

+ 2
∂2f

∂x1∂xn
· ∂g
∂x1

+
∂2f

∂x2
n

·
(
∂g

∂x1

)2

+
∂f

∂xn
· ∂

2g

∂x2
1

a ∂2g
∂x21
, ∂g
∂x1

wyliczamy z Hesjanu F . Wszystko musi by¢ wzi¦te w punkcie otrzymanym
z mno»ników Lagrange'a.

2.2. Dowód Twierdzenia o funkcji uwikªanej. Napiszemy i udowodnimy to twier-
dzenie dla funkcji F okre±lonej na Rn+1.

Twierdzenie 2.7. Zaªó»my, »e funkcja F : Rn+1 → R jest klasy C1. B¦dziemy
stosowa¢ oznaczenie (x, z) ∈ Rn × R = Rn+1. Zaªó»my, »e

F (x0, z0) = 0, oraz
∂F

∂z
(x0, z0) 6= 0.

Wtedy równanie F (x, z) = 0 ma jednoznaczne rozwi¡zanie w pobli»u (x0, z0). Tzn.
istnieje kula otwarta U ⊂ Rn o ±rodku w x0 oraz przedziaª otwarty I wokóª z0 takie,
»e dla dowolnego wyboru x ∈ U istnieje jedyne rozwi¡zanie z ∈ I takie, »e F (x, z) = 0.
Ponadto funkcja z = g(x) jest klasy C1 na U. Inaczej mówi¡c

{(x, z) : F (x, z) = 0} ∩ (U × I) = {(x, g(x)) : x ∈ U}.

Uwaga 2.8. F mo»e by okre±lona na otwartym pod zbiorze Rn+1. Dowód przebiega
tak samo.

Analogicznie jak poprzednio wiele informacji o funkcji g mo»na uzyska¢ mimo
braku jawnego wzoru. Wiemy, »e z0 = g(x0) oraz F (x, g(x)) = 0 dla x ∈ U. Zatem

0 =
∂

∂xi
F (x, g(x)) =

∂F

∂xi
(x, g(x)) +

∂F

∂z
(x, g(x))

∂g

∂xi
(x).

Otrzymujemy

(2.9)
∂g

∂xi
(x) = −

∂F
∂xi

(x, g(x))
∂F
∂z

(x, g(x))
x ∈ Ũ ⊂ U.

Z zaªo»enia ∂F
∂z

(x0, z0) 6= 0, zatem ∂F
∂z

(x, g(x)) 6= 0, dla x w pobli»u x0, bo funkcje F i
g s¡ klasy C1. Ewentualnie zmniejszaj¡c U na Ũ mamy (2.9). Podstawiamy x = x0,
aby otrzyma¢

(2.10)
∂g

∂xi
(x0) = −

∂F
∂xi

(x0, z0)
∂F
∂z

(x0, z0)
.
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Wniosek 2.11. Je±li funkcja f(x1, x2, . . . , xn) speªnia f(a1, a2, . . . , an) = 0 oraz
∇f(a1, a2, . . . , an) 6= 0, to z równania

f(x1, x2, . . . , xn) = 0

mo»na obliczy¢ jedn¡ zmienn¡ wzgl¦dem pozostaªych w pobli»u (a1, a2, . . . , an).

Dowód twierdzenia. Z zaªo»enia mamy ∂F
∂z

(x0, z0) 6= 0. Rozwa»ymy przypadek
∂F
∂z

(x0, z0) > 0. Z ci¡gªo±ci pochodnych cz¡stkowych mo»na znale¹¢ U i I takie, »e
dla ka»dego (x, z) ∈ U × I

∂F

∂z
(x, z) > 0,

co oznacza, »e przy ustalonym x funkcja z 7→ F (x, z) jest rosn¡ca. Mamy

F (x0, z0 + h) = F (x0, z0) +
∂F

∂z
(x0, z0)h+ o(h).

St¡d dla dostatecznie maªego a > 0, F (x0, z0 + a) > 0, F (x0, z0 − a) < 0. Mo»emy
zaªo»y¢, »e (z0−a, z0 +a) ⊂ I. Je±li x jest dostatecznie blisko x0, to F (x, z0 +a) > 0,
F (x, z0 − a) < 0. Zmniejszaj¡c ewentualnie U mamy

F (x, z0 + a) > 0, F (x, z0 − a) < 0, dla x ∈ U
∂F

∂z
(x, z) > 0, dla (x, z) ∈ U × (z0 − a, z0 + a).

Zatem dla ka»dego x ∈ U , istnieje dokªadnie jedno z ∈ (z0 − a, z0 + a) takie, »e
F (x, z) = 0. B¦dziemy pisali z = g(x).
Poka»emy teraz, »e g jest funkcj¡ ci¡gª¡. Zaªó»my nie wprost, »e xm → x ∈ U, ale

g(xm) nie d¡»y do g(x). Ci¡g g(xm) jest ograniczony. Istnieje zatem podci¡g g(xmk)
zbie»ny do liczby z̃ 6= g(x) z przedziaªu [z0 − a, z0 + a]. Mamy

0 = F (xmk , g(xmk)) −→
k

F (x, z̃).

St¡d F (x, z̃) = 0. Ale z̃ 6= z0 ± a, bo F (x, z0 ± a) 6= 0. Czyli z̃ le»y w przedziale
(z0 − a, z0 + a). Mamy te» F (x, g(x)) = 0, wi¦c otrzymujemy sprzeczno±¢ z jedno-
znaczno±ci¡ rozwi¡zania.
Zanim przejdziemy do ró»niczkowalno±ci g, udowodnimy nast¦puj¡cy lemat

Lemat 2.12. Dla funkcji f : Rn → R klasy C1 mamy

f(x)− f(x0) = ∇f(x0 + θ(x− x0)) ◦ (x− x0)

dla pewnej liczby θ = θ(x, x0), 0 < θ < 1.

Dowód lematu. Okre±lamy funkcj¦ g(t) = f(x0 + t(x−x0)) przy ustalonych punktach
x i x0. Wtedy z twierdzenia Lagrange'a otrzymujemy

f(x)− f(x0) = g(1)− g(0) = g′(θ) = ∇f(x0 + θ(x− x0)) ◦ (x− x0).

�
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Interesujemy si¦ tak naprawd¦ odcinkiem mi¦dzy tymi punktami. Z lematu mamy

F (x, z) = F (x, z)− F (x0, z0)

= ∇F (x0 + θ(x− x0), z0 + θ(z − z0)) ◦ (x− x0, z − z0)

Oznaczmy

xθ = x0 + θ(x− x0), zθ = z0 + θ(z − z0), ∇xF =

(
∂F

∂x1

, . . . ,
∂F

∂xn

)
.

Wtedy

(2.13) F (x, z) = ∇xF (xθ, zθ) ◦ (x− x0) +
∂F

∂z
(xθ, zθ)(z − z0).

Zbadamy ró»niczkowalno±¢ funkcji g(x). Przyjmujemy x = x0 + hei.
Wtedy x− x0 = hei i

∇xF (xθ, zθ) ◦ (x− x0) =
∂F

∂xi
(xθ, zθ)h.

We wzorze (2.13) podstawiamy z = g(x) = g(x0 +hei). Lewa strona wzoru zeruje si¦.
Otrzymujemy wi¦c

0 =
∂F

∂xi
(xθ, zθ)h+

∂F

∂z
(xθ, zθ)(g(x0 + hei)− g(x0))

czyli

g(x0 + hei)− g(x0)

h
= −

∂F
∂xi

(xθ, zθ)
∂F
∂z

(xθ, zθ)
dla (xθ, zθ) ∈ U × (z0 − a, z0 + a).

Mamy

xθ = x0 + θ(x− x0) = x0 + θhei −→
h→0

x0,

zθ = z0 + θ(z − z0) = g(x0) + θ[g(x0 + hei)− g(x0)] −→
h→0

g(x0) = z0,

bo g jest ci¡gªa. Zatem

∂g

∂xi
(x0) = −

∂F
∂xi

(x0, z0)
∂F
∂z

(x0, z0)
.

Ten sam dowód daje

∂g

∂xi
(x) = −

∂F
∂xi

(x, z)
∂F
∂z

(x, z)

∣∣∣
z=g(x)

dlax ∈ U, z ∈ I, z = g(x).

Widzimy, »e pochodne cz¡stkowe funkcji g s¡ ci¡gªe, zatem g jest funkcj¡ klasy C1.
�
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2.3. Charakteryzacja przestrzeni stycznej. U»ywaj¡c twierdzenia o funkcji uwi-
kªanej, udowodnimy teraz charakteryzacj¦ przestrzeni stycznej do poziomicy
S = {x ∈ U ⊂ Rn : F (x) = c} w punkcie x0. Wtedy de�niujemy

Lx0 = {v : ∇F (x0) ◦ v = 0} i Tx = {u : ∇F (x0) ◦ (u− x0) = 0}.

Twierdzenie 2.14. Niech S = {x ∈ U : F (x) = c}, ∇F (x0) 6= 0. Wtedy

Lx0 =
{
v : ∃γ∈Γx0

, v = γ′(0)
}
.

Przypomnijmy, »e

Γx0 = {γ : I 7→ Rn, 0 ∈ I, γ(0) = x0, ∀t γ(t) ∈ S} .

Dowód. Istnieje i takie, »e ∂F
∂xi

(x0) 6= 0. Dla uªatwienia zapisu mo»emy przyj¡¢, »e
i = n i b¦dziemy pisa¢ x0 = (x̄0, x0,n), x = (x̄, xn). Z twierdzenia o funkcji uwikªanej
istnieje otoczenie U punktu x̄0, przedziaª I 3 x0,n i funkcja g ∈ C1(U) takie, »e

S ∩ (U × I) = {(x̄, g(x̄)) : x̄ ∈ U}.
Ponadto

∂g

∂xi
(x̄) = −

(
∂F

∂xn

)−1
∂F

∂xi
(x̄, g(x̄).)

St¡d

(−∇g(x̄), 1) =

(
∂F

∂xn

)−1(
∇x̄F,

∂F

∂xn

)
=

(
∂F

∂xn

)−1

∇F,

gdzie wszystkie warto±ci po prawej stronie s¡ wzi¦te w (x̄, g(x̄)). Warunek

∇F (x̄0, g(x̄0)) ◦ v = 0

nale»enia do Lx0 , x0 = (x̄0, g(x̄0)) jest wi¦c równowa»ny

(2.15) (−∇g(x̄0), 1) ◦ v = 0 ⇐⇒ vn =
n−1∑
i=1

∂g

∂xi
vi.

Krzywa γ ∈ Γx0 jest postaci (γ̄(t), γn(t)) = (x̄, g(x̄)) czyli

γn(t) = g(γ̄(t)).

St¡d

γ′(t) =

(
γ′1(t), ..., γ′n−1(t),

n−1∑
i=1

∂g

∂xi
(γ̄(t))γ′i(t)

)
,

co jest równowa»ne warunkowi (2.15). Ponadto maj¡c dany wektor v = (v̄, vn) speª-
niaj¡cy (2.15) mo»emy wytworzy¢ krzyw¡ styczn¡ do niego kªad¡c

γ(t) = (x0 + tv̄, g(x0 + tv̄)).

Twierdzenie o funkcji uwikªanej daje nam tak¡ mo»liwo±¢. Inaczej nie bardzo wia-
domo jak to zrobi¢. To ko«czy dowód. �
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2.4. Twierdzenie o funkcji uwikªanej dla wi¦kszej liczby warunków. Chcemy
obliczy¢ wielko±ci z1, z2, . . . , zm z równa«

F1(x1, x2, . . . , xn; z1, z2, . . . , zm) = 0,

F2(x1, x2, . . . , xn; z1, z2, . . . , zm) = 0,(2.16)
...

Fm(x1, x2, . . . , xn; z1, z2, . . . , zm) = 0,

i otrzyma¢ rozwi¡zanie w postaci

z1 = g1(x1, x2, . . . , xn),

z2 = g2(x1, x2, . . . , xn),(2.17)
...

zm = gm(x1, x2, . . . , xn).

B¦dziemy stosowa¢ zapis

x = (x1, x2, . . . , xn), z = (z1, z2, . . . , zm).

Zaªó»my, »e (x0, z0) ∈ Rn × Rm jest rozwi¡zaniem ukªadu. Rozwa»amy wyznacznik

∆ =

∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂z1
(x0; z0) ∂F1

∂z2
(x0; z0) . . . ∂F1

∂zm
(x0; z0)

∂F2

∂z1
(x0; z0) ∂F2

∂z2
(x0; z0) . . . ∂F2

∂zm
(x0; z0)

...
... . . .

...
∂Fm
∂z1

(x0; z0) ∂Fm
∂z2

(x0; z0) . . . ∂Fm
∂zm

(x0; z0)

∣∣∣∣∣∣∣∣∣∣∣
Twierdzenie 2.18 (o funkcji uwikªanej). Zaªó»my, »e funkcje F1, F2, . . . Fm okre-
±lone na zbiorze otwartym U ⊂ Rn+m s¡ klasy C1. Niech punkt (x0; z0) b¦dzie rozwi¡-
zaniem ukªadu równa« (2.16) oraz ∆ 6= 0. Wtedy istniej¡ liczby δ > 0 i ε > 0 takie,
»e dla ‖x − x0‖ < δ istnieje jedyny z speªniaj¡cy ‖z − z0‖ < ε taki, »e (x, z) jest
rozwi¡zaniem ukªadu równa« (2.16). Ponadto funkcje g1, ..., gn s¡ klasy C1.
Inaczej mówi¡c

(Bδ(x0)×Bε(z0)) ∩ {(x, z) : F1(x, z) = ... = Fm(x, z) = 0} = {(x, g(x)) : x ∈ U},
gdzie g(x) = (g1(x), ..., gm(x)).

Wiedz¡c, »e
Fi(x, g(x)) = 0, i = 1, ...,m

otrzymujemy ukªad m równa« na podchodne cz¡stkowe funkcji gj(x). Mianowicie

0 =
∂

∂xk

(
Fi(x, g(x))

)
=
∂Fi
∂xk

(x, g(x)) +
m∑
j=1

∂Fi
∂zj

(x, g(x))
∂gj
∂xk

(x).
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Przykªad 2.19. Czy w pobli»u (x, y;u, v) = (1, 1; 1, 1) mo»na obliczy¢ u i v z równa«

xu+ yuv2 = 2,

xu3 + y2v4 = 2

jako funkcje zmiennych x i y

Przyjmujemy

F1(x, y;u, v) = xu+ yuv2 − 2,

F2(x, y;u, v) = xu3 + y2v4 − 2.

Mamy

∆ =

∣∣∣∣x+ yv2 2yuv
3xu2 4y2v3

∣∣∣∣
x=1,y=1,u=1,v=1

=

∣∣∣∣2 2
3 4

∣∣∣∣ = 2 6= 0.

Chcemy obliczy¢ ∂u
∂x

(1, 1) i ∂v
∂x

(1, 1). Stosujemy ró»niczkowanie niejawne. Traktuj¡c
u, v jako funkcje x, y, otrzymujemy

u+ x
∂u

∂x
+ yv2 ∂u

∂x
+ 2yuv

∂v

∂x
= 0,

u3 + 3xu2 ∂u

∂x
+ 4y2v3 ∂v

∂x
= 0.

Podstawiamy x = 1, y = 1, v = 1, u = 1. Po uproszczeniu otrzymujemy

2
∂u

∂x
+ 2

∂v

∂x
= −1,

3
∂u

∂x
+ 4

∂v

∂x
= −1.

Zatem

∂u

∂x
(1, 1) =

∣∣∣∣−1 2
−1 4

∣∣∣∣∣∣∣∣2 2
3 4

∣∣∣∣ = −1,
∂v

∂x
(1, 1) =

∣∣∣∣2 −1
3 −1

∣∣∣∣∣∣∣∣2 2
3 4

∣∣∣∣ =
1

2
.

To samo mo»na zrobi¢ w otoczeniu punktu (1, 1).

(x+ yv2)
∂u

∂x
+ 2yuv

∂v

∂x
= −u,

3xu2 ∂u

∂x
+ 4y2v3 ∂v

∂x
= −u3,

gdzie obie strony traktowane s¡ jako funkcje (x, y). Mo»emy rozwi¡za¢ powy»szy
ukªad równa« liniowych (∆ 6= 0 w otoczeniu (1, 1)) i wyliczy¢ ∂u

∂x
, ∂v
∂x

o ile (x, y, u, v)
sa ze sob¡ zwi¡zane tak, »e F1(x, y, u, v) = 0, F2(x, y, u, v) = 0. Wtedy otrzymamy
∂u
∂x
, ∂v
∂x

jako funkcje (x, y).
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Szczególnym przypadkiem twierdzenia o funkcji uwikªanej jest twierdzenie o funkcji
odwrotnej. Chcemy z ukªadu równa«

f1(x1, x2, . . . , xn) = y1,

f2(x1, x2, . . . , xn) = y2,(2.20)
...

fn(x1, x2, . . . , xn) = yn,

obliczy¢ x1, x2, . . . , xn, jako funkcje od y1, y2, . . . , yn. Zaªó»my, »e x = a i y = b jest
rozwi¡zaniem ukªadu. Rozwa»amy

F1(x1, . . . , xn; y1, . . . , yn) = f1(x1, . . . , xn)− y1 = 0,

F2(x1, . . . , xn; y1, . . . , yn) = f2(x1, . . . , xn)− y2 = 0,
...

Fn(x1, . . . , xn; y1, . . . , yn) = fn(x1, . . . , xn)− yn = 0.

Teraz x1, ..., xn b¦d¡ graªy tak¡ rol¦ jak z1, ..., zm w twierdzeniu o funkcji uwikªanej.
Z twierdzenia o funkcji uwikªanej badamy wyznacznik

∆ =

∣∣∣∣∣∣∣
∂F1

∂x1
. . . ∂F1

∂xn
...

...
∂Fn
∂x1

. . . ∂Fn
∂xn

∣∣∣∣∣∣∣
x=a
y=b

=

∣∣∣∣∣∣∣
∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn

∣∣∣∣∣∣∣
x=a

Wyznacznik ∣∣∣∣∣∣∣
∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn

∣∣∣∣∣∣∣
nazywamy jakobianem odwzorowa« f1, f2, . . . , fn.

Twierdzenie 2.21 (o funkcji odwrotnej). Niech U ⊂ b¦dzie otwartym podzbiorem
przestrzeni Rn. Rozwa»amy funkcje f1, f2, . . . , fn klasy C1 na U. Zaªó»my, »e ukªad
równa« (2.20) ma rozwi¡zanie x = a, y = b dla a ∈ U. Je±li

∆ = det

[
∂fi
∂xj

(a)

]
6= 0,

to ukªad ma jednoznaczne rozwi¡zanie dla y w pobli»u b i x w pobli»u a. Tzn. istniej¡
liczby δ, ε > 0 takie, »e dla ‖y−b‖ < δ istnieje jedyny punkt x ∈ U taki, »e ‖x−a‖ < ε
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oraz x i y s¡ rozwi¡zaniem ukªadu (2.20). Ponadto funkcje

x1 = g1(y1, y2, . . . , yn),

x2 = g2(y1, y2, . . . , yn),
...

xn = gn(y1, y2, . . . , yn)

s¡ klasy C1(Bδ(b)).

Uwaga 2.22. Dowód twierdzenia wynika natychmiast z twierdzenia o funkcji uwikªa-
nej. Teraz x1, ..., xn graj¡ tak¡ rol¦ jak z1, ..., zm w Twierdzeniu 2.18.
Zauwa»my, »e ∆ 6= 0 implikuje fakt, »e f = (f1, ..., fn) jest ró»nowarto±ciowa na

pewnym otoczeniu punktu a.

Przykªad 2.23. Rozwa»my ukªad równa«

x4 + y4

x
= u,

sinx+ cos y = v.

W pobli»u jakich punktów mo»emy obliczy¢ x i y wzgl¦dem u i v ?

Od razu zauwa»amy, »e funkcja f(x, y) = ((x4 + y4)x−1, sinx + cos y) nie jest
ró»nowarto±ciowa wi¦c nie mo»na jej odwróci¢ globalnie. Obliczamy jakobian

∆ =

∣∣∣∣3x2 − y4

x2
4y3

x
cosx − sin y

∣∣∣∣
Powinien by¢ speªniony warunek ∆ 6= 0. Wyznacznik jest niezerowy np. dla x = π

2

i y = π
2
. Wtedy ∆ = −π2

2
, u = π3

4
, v = 1. Zatem mo»na rozwi¡za¢ ukªad w pobli»u

u = π3

4
i v = 1. Rozwi¡zania b¦d¡ le»aªy w pobli»u x = π

2
, y = π

2
.

Wniosek 2.24. Przy zaªo»eniach Twierdzenia 2.21 istniej¡ zbiory otwarte W 3 a i
V 3 b takie, »e f : W 7→ V i f−1 : V 7→ W s¡ wzajemnie jednoznaczne i klasy C1.

Dowód. Istotnie, wystarczy wzi¡¢ V = Bδ(b) i W = f−1(V ) ∩ Bε(0) = f−1(Bδ(b)) ∩
Bε(0), gdzie f−1(V ) oznacza przeciwobraz V . Powy»szy przykªad pokazuje, ze nie
mo»na wzi¡¢ W = f−1(V ), bo globalnie f nie musi byc odwracalna. Jako funkcje na
V , f−1 = g, gdzie g(y) = (g1(y), ..., gn(y)). �

Uwaga 2.25. Przedyskutujmy zaªo»enie ∆ 6= 0. Niech

Df(a) =

[
∂fi
∂xj

(a)

]
.

Wiemy, ze je±li wszystkie pochodne cz¡stkowe funkcji f s¡ ci¡gªe, to

lim
h→0

‖f(a+ h)− f(a)−Df(a)(h)‖
‖h‖

= 0,
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co oznacza, »e
f(a+ h) = f(a) +Df(a)(h) + o(‖h‖).

f(a) + Df(a)(h) jest ró»nowarto±ciowe, a skoro o(‖h‖) jest mniejszego rz¦du dla h
blisko 0, to intuicyjnie f(a) +Df(a)(h) + o(‖h‖) te» powinno takie by¢.

Twierdzenie o funkcji odwrotnej mo»na sformuªowa¢ w postaci zbli»onej w zapisie
do twierdzenia dla jednej zmiennej. Dla funkcji f1, f2, . . . , fn : U → R tworzymy
funkcj¦ f : U → Rn wzorem

f(x) =


f1(x)
f2(x)
...

fn(x)

 ∈ Rn, x = (x1, x2, . . . , xn).

Wtedy ukªad równa« w twierdzenia o funkcji odwrotnej ma posta¢ f(x) = y, gdzie

y =


y1

y2
...
yn

 .

Zauwa»my, »e ∆ = det(Df(a)) 6= 0. Zaªó»my, »e f(a) = b dla a ∈ U. Wtedy dla
y ∈ Bδ(b) istnieje jedyne rozwi¡zanie x w pobli»u a. Ponadto x = g(y), g jest klasy
C1. i g jest funkcj¡ odwrotn¡ do funkcji f. Obliczmy Dg(y). Mamy

g(f(x)) = x dla x ∈ W.
Ró»niczkujemy obie strony. Wtedy

Dg(f(x))Df(x) = I,

czyli
Dg(y) = (Df(x))−1, y = f(x).

Dla funkcji jednej zmiennej wzory maj¡ posta¢ y = f(x), x = g(y) oraz

g′(y) =
1

f ′(x)
.

Przykªad 2.26. W pobli»u jakich punktów funkcja f : R2 → R2

f(x, y) = (x− y, x5 + y5)

jest odwracalna w sposób C1?

detDf(x, y) =

∣∣∣∣ 1 −1
5x4 5y4

∣∣∣∣ = 5(x4 + y4).

Funkcja jest na pewno odwracalna na otoczeniu ka»dego punktu innego ni» (0, 0).
Zauwa»my, »e f jest 1-1 na R2. Istotnie, je±li x− y = u, x5 + y5 = v, to y = x− u

i x5 + (x− u)5 = v. Niech h(x) = x5 + (x− u)5, wtedy h′(x) = 5x4 + 5(x− u)4 > 0.
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Wi¦c h : R 7→ R jest wzajemnie jednoznaczne czyli maj¡c u, v mo»na wyliczy¢ x, a
potem y. Ale nie wiemy czy f−1 jest ró»niczkowalna w (0, 0).
f jest 1-1 globalnie, jest odwracalna w sposób C1 w otoczeniu ka»dego punktu innego

ni» (0, 0) wi¦c f−1 jest dobrze okre±lona i klasy C1 na R2 \ (0, 0).

Poka»emy teraz jak z twierdzenia o funkcji odwrotnej wynika twierdze-
nie o funkcji uwikªanej. Dla uproszczenia zaªó»my, »e mamy dwa równania, cho¢
dowód jest kompletnie ogólny.

(2.27) F1(x1, ..., xn; z1, z2) = 0 F2(x1, ..., xn; z1, z2) = 0

czyli
F (x, z) = (F1(x, z), F2(x, z)).

F1(a, b) = 0 = F2(a, b).

Rozwa»my wyznacznik

∆ = det

[ ∂F1

∂z1

∂F1

∂z2
∂F2

∂z1

∂F2

∂z2

]
Przypomnijmy twierdzenie:

Twierdzenie 2.28 (o funkcji uwikªanej). Zaªó»my, »e funkcje F1, F2 s¡ klasy C1(U).
Zaªó»my, »e F1(a, b) = 0 = F2(a, b) oraz ∆ 6= 0. Wtedy istniej¡ zbiory otwarte U1 3 a
i V 3 b i funkcje g1, g2 : U1 7→ R klasy C1 takie, »e (x, z) ∈ U1×V jest rozwi¡zaniem
ukªadu równa« (2.27) wtedy i tylko wtedy, gdy

z1 = g1(x1, ..., xn) z2 = g2(x1, ..., xn)

Uwaga 2.29. W oryginalnym sformuªowaniu mieli±my U1 = Bδ(a), V = Bε(b).

Dowód. Rozwa»my funkcj¦ f : Rn × R2 7→ Rn × R2

f(x, z) = (x, F (x, z)).

f jest klasy C1. Niech

Df(x, z) =


I 0 0[
∂F1

∂xj

]
∂F1

∂z1

∂F1

∂z2[
∂F2

∂xi

]
∂F2

∂z1

∂F2

∂z2

 ,
gdzie [

∂F1

∂xj

]
=

[
∂F1

∂x1

· · · ∂F1

∂xn

]
.

detDf(a, b) 6= 0 i f(a, b) = (a, 0). Istniej¡ wi¦c zbiory otwarte W1 3 (a, b),
W2 3 (a, 0) i funkcja h klasy C1 taka, »e h : W2 7→ W1 i h jest odwrotna do f .
W1,W2 ⊂ Rn+2. W W2 u»ywamy wspóªrz¦dnych (x, y). Zmniejszaj¡c ewentualnie
W1 mo»emy zaªo»y¢, »e W1 = U1 × V . Je±li (x, y) ∈ W2 i y = F (x, z), to

h(x, y) = h(x, F (x, z)) = h(f(x, z)) = (x, z).
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St¡d

h(x, y) = (x, k(x, y)) i k ∈ C1(W2).

Zaªó»my teraz, »e F (x, z) = 0, x ∈ U1, z ∈ V . Mamy f(x, z) = (x, F (x, z)) = (x, 0).
Nakªadaj¡c obustronnie h mamy

(x, z) = h(f(x, z)) = h(x, 0) = (x, k(x, 0)), wi¦c z = k(x, 0) = g(x)

i g = (g1, g2) ∈ C1(U1). �

Zastosowanie twierdzenia 2.18 do dowodu twierdzenia 1.33. Niech U ⊂
Rn × Rm, Fi : U 7→ R b¦d¡ funkcjami klasy C1 i

S = {(x, z) ∈ U : F1(x, z) = ... = Fm(x, z) = 0}.

Zaªó»my, »e ∇F1(x0, z0), ...,∇Fm(x0, z0) s¡ liniowo niezale»ne i zde�niujmy

L(x0,z0) = {v ∈ Rn+m : 〈v,∇Fi(x0, z0)〉 = 0, i = 1, ...,m}.

Wtedy dimL(x0,z0) = n. Niech γ : I 7→ Rn+m, jak zwykle, oznacza krzyw¡ klasy C1.
Zde�niujmy

Γ(x0,z0) = {γ′(0) : γ : I 7→ S, γ(0) = (x0, z0)}.

Zauwa»my, »e

Γ(x0,z0) ⊂ L(x0,z0).

Istotnie,

0 =
d

dt
(Fi(γ(t)))|t=0 = ∇Fi(x0, z0) ◦ γ′(0), i = 1, ...,m.

Na odwrót, maj¡c istnienie funkcji gi(x) = z takich, »e Fi(x, g1(x), ..., gm(x)) = 0 i
dowolne v ∈ Rn mo»emy zde�niowa¢

γ(t) = (x0 + tv, g1(x0 + tv), ..., gm(x0 + tv)) ⊂ S.

Wtedy

γ′(0) = (v,∇g1(x0) ◦ v, ...,∇gm(x0) ◦ v).

St¡d dim Γ(x0,z0) = n i

(2.30) Γ(x0,z0) = L(x0,z0).

Korzystaj¡c z (2.30) dowodzimy twierdzenia 1.33 tak samo jak twierdzenia Lagrange'a
przy jednym warunku.
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3. Wzór Taylora

Wzór Taylora dla funkcji wielu zmiennych mo»na otrzyma¢ ze wzoru Taylora dla
jednej zmiennej. Zaczniemy od funkcji dwóch zmiennych. Post¦pujemy nast¦puj¡co.
Zaªó»my, »e f : R2 7→ R jest funkcj¡ klasy Cr+1 (tzn. ma ci¡gªe pochodne cz¡stkowe
rz¦du r + 1) w pewnym wypukªym otoczeniu U punktu (0, 0) np. kuli otwartej
Bs(0, 0). Wybierzmy punkt (x, y) z tego otoczenia i okre±lmy funkcj¦ g : (−1, 1) 7→ R
wzorem

g(t) = f(tx, ty).

Wtedy g jest klasy Cr+1 i korzystaj¡c wielokrotnie z wzoru na pochodn¡ funkcji
zªo»onej dla punktów t z tego rozdziaªu otrzymujemy

g′(t) =
∂f

∂x
(tx, ty)x+

∂f

∂y
(tx, ty)y,

g′′(t) =
∂2f

∂x2
(tx, ty)x2 + 2

∂2f

∂x∂y
(tx, ty)xy +

∂2f

∂y2
(tx, ty)y2,

itd., ogólnie

(3.1) g(m)(t) =
m∑
i=0

(
m

i

)
∂mf

∂xi∂ym−i
(tx, ty)xiym−i.

Za chwil¦ sprawdzimy (3.1) przez indukcj¦, ale najpierw zobaczmy jaki jest po»ytek
z tego wyra»enia. Mamy

f(x, y) = g(1) =
r∑

m=0

1

m!
g(m)(0) +

1

(r + 1)!
g(r+1)(θ)

dla pewnego θ ∈ (0, 1) zale»nego od (x, y). Wstawimy teraz pochodne wyliczone w
(3.1) i otrzymujemy

(3.2) f(x, y) =
r∑

m=0

1

m!

m∑
i=0

(
m

i

)
∂mf

∂xi∂ym−i
(0, 0)xiym−i +Rr(x, y)

gdzie

Rr(x, y) =
1

(r + 1)!

r+1∑
i=0

(
r + 1

i

)
∂r+1f

∂xi∂yr+1−i (θx, θy)xiyr+1−i.

Zauwa»my, »e |Rr(x, y)| ≤ C(r, f)‖(x, y)‖r+1 dla (x, y) ∈ Bs(0, 0) (pochodne f wspóª-
nie ograniczone), wi¦c w szczególno±ci

lim
(x,y)→0

Rr(x, y)

‖(x, y)‖r
→ 0.
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Wzór (3.2) wydaje si¦ do±¢ nieprzyjemy, ale mo»na go te» zapisa¢ jako

(3.3) f(x, y) =
r∑

m=0

m∑
i=0

1

i!(m− i)!
∂mf

∂xi∂ym−i
(0, 0)xiym−i +Rr(x, y).

(3.3) si¦ lepiej uogólnia na wi¦cej zmiennych. Zajmiemy si¦ tym dalej, ale najpierw
udowodnimy (3.1). Mamy

g(m+1)(t) =
m∑
i=0

(
m

i

)
∂m+1f

∂xi+1∂ym−i
(tx, ty)xi+1ym−i

+
m∑
i=0

(
m

i

)
∂m+1f

∂xi∂ym−i+1
(tx, ty)xiym−i+1.

Zobaczmy najpierw jaki mamy wspóªczynnik przy xi+1ym−i dla i = 0, ...,m. Jest on
równy (

m

i

)
+

(
m

i+ 1

)
=

(
m+ 1

i+ 1

)
i zostaje nam jeszcze wyraz x0ym+1 ze wspóªczynnikiem 1. Otrzymujemy wi¦c

g(m+1)(t) =
m+1∑
i=0

(
m+ 1

i

)
∂m+1f

∂xi∂ym+1−i (tx, ty)xiym+1−i.

Wzór (3.2) czy (3.3) nazywamy rozwini¦ciem Taylora rz¦du r. Jest ono jedyne w
nast¦puj¡cym sensie

Twierdzenie 3.4. Niech f : R2 7→ R b¦dzie funkcj¡ rózniczkowaln¡ r + 1 krotnie.
Zaªó»my, »e

f(x) = W (x) +Rr(x) = W̃ (x) + R̃r(x),

gdzie W, W̃ s¡ wielomianami dwóch zmiennych stopnia r, a Rr, R̃r maj¡ wªasno±¢

lim
x→0

Rr(x)

‖x‖r
= 0 = lim

x→0

R̃r(x)

‖x‖r
.

Wtedy W = W̃ .

Twierdzenie to jest zadaniem do rozwi¡zania. Wykorzystamy je w nast¦puj¡cym
przykªadzie.

Przykªad 3.5. Rozwin¡¢ funkcj¦ f(x, y) = sin(x2 + y) we wzór Taylora rz¦du 2.

Mo»emy liczy¢ pochodne cz¡stkowe:

∂f

∂x
= cos(x2 + y)2x,

∂f

∂y
= cos(x2 + y),

∂2f

∂x2
= − sin(x2+y)(2x)2+cos(x2+y)2,

∂2f

∂y2
= − sin(x2+y),

∂2f

∂x∂y
= − sin(x2+y)2x.
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St¡d
∂f

∂y
(0, 0) = 1,

∂2f

∂x2
(0, 0) = 2,

a pozostaªe pochodne w zerze s¡ równe 0 i

sin(x2 + y) = x2 + y +R2(x, y).

Mo»emy te» post¡pi¢ inaczej. Z teorii jednej zmiennej wiemy, »e dla z ∈ R

sin z = z + R̃2(z) i lim
z→0

R̃2(z)

z2
= 0.

St¡d

sin(x2 + y) = x2 + y + R̃2(x2 + y) i lim
(x,y)→(0,0)

R̃2(x2 + y)

(x2 + y)2
= 0.

�eby skorzysta¢ z Twierdzenia 3.4 musimy pokaza¢, »e

lim
(x,y)→(0,0)

R̃2(x2 + y)

‖(x, y)‖2
= 0.

Ale dla x d¡»¡cych do zera

(x2 + y)2 ≤ 2(x4 + y2) ≤ 2(x2 + y2) = 2‖(x, y)‖2,

co pokazuje, »e otrzymali±my wªa±ciwe rozwini¦cie. Prosz¦ zauwa»y¢, »e przy rozwi-
ni¦ciach wy»szego rz¦du druga metoda jest jeszcze bardziej efektywna.
Wprowadzimy teraz poj¦cie wielowska¹ników i zapiszemy (3.3) nieco zr¦czniej.

x ∈ R2 zapisujemy teraz jako x = (x1, x2), a wielowska¹nikiem α nazywamy par¦
α = (α1, α2), gdzie α1, α2 ∈ N (0 ∈ N). Niech

α! : = α1!α2!, |a| := α1 + α2

xα : = xα1
1 x

α2
2 , Dαf =

∂|α|f

∂xα1
1 ∂x

α2
2

.

Wtedy (3.3)

f(x1, x2) =
r∑

m=0

m∑
i=0

1

i!(m− i)!
∂mf

∂xi1∂x
m−i
2

(0, 0)xi1x
m−i
2 +Rr(x).

zapisuje si¦ jako

(3.6) f(x) =
∑
|α|≤r

1

α!
Dαf(0, 0)xα +Rr(x)

i

(3.7) Rr(x) =
∑
|α|=r+1

1

α!
Dαf(θx, θy)xα.
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Mamy analogiczne wzory dla funkcji d zmiennych. x ∈ Rd zapisujemy teraz jako
x = (x1, ..., xd), a wielowska¹nik α = (α1, ..., αd), gdzie α1, ..., αd ∈ N. Niech

α! : = α1! · · ·αd! |a| := α1 + ...+ αd

xα : = xα1
1 · · ·x

αd
d , Dαf =

∂|α|f

∂xα1
1 ...∂x

αd
d

=
∂α1

∂xα1
1

...
∂αd

∂xαdd
f.

Wtedy

(3.8) f(x) =
∑
|α|≤r

1

α!
Dαf(0)xα +Rr(x)

i

(3.9) Rr(x) =
∑
|α|=r+1

1

α!
Dαf(θx)xα.

Dowód (3.8) jest analogiczny do dowodu (3.6). Niech g(t) = f(tx). Wtedy

(3.10) g(k)(t) =
∑
|α|=k

k!

α!
(Dαf)(tx)xα.

Istotnie,

g(1)(t) =
d∑
i=1

∂f

∂xi
(tx)xi.

g(2)(t) =
d∑

i,j=1

∂2f

∂xi∂xj
(tx)xixj =

d∑
i=1

∂2f

∂x2
i

(tx)x2
i +

∑
i<j

2
∂2f

∂xi∂xj
(tx)xixj.

W ostatnim wzorze gdy α = (0, ...0, 1, 0, ..., 0, 1, 0, ...0) to α! = 1 i 2!
α!

= 2, gdy
α = (0, ..., 0, 2, 0..., 0), α! = 2 i 2!

α!
= 1. Mamy

f(x) = g(1) =
r∑

m=0

1

m!
g(m)(0) +

1

(r + 1)!
g(r+1)(θ)

dla pewnego θ ∈ (0, 1). Wstawimy teraz pochodne wyliczone w (3.10) i otrzymujemy

(3.11) f(x) =
r∑

m=0

1

m!

∑
|α|=m

m!

α!
(Dαf)(0)xα +Rr(x) =

∑
|α|≤r

1

α!
(Dαf)(0)xα +Rr(x)

gdzie

Rr(x) =
1

(r + 1)!

∑
|α|=r+1

(r + 1)!

α!
(Dαf)(θx)xα =

∑
|α|=r+1

1

α!
(Dαf)(θx)xα
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Zauwa»my, »e |Rr(x)| ≤ C(r, f)‖x‖r+1, x ∈ Bs(0), wi¦c w szczególno±ci

lim
x→0

Rr

‖x‖r
→ 0.

Mamy te» analogiczne twierdzenie o jednoznaczno±ci rozwini¦cia.

Twierdzenie 3.12. Niech f : Rd 7→ R b¦dzie funkcj¡ ró»niczkowaln¡ r + 1 krotnie.
Zaªó»my, »e

f(x) = W (x) +Rr(x) = W̃ (x) + R̃r(x),

gdzie W, W̃ s¡ wielomianami d zmiennych stopnia r, a Rr, R̃r maj¡ wªasno±¢

lim
x→0

Rr(x)

‖x‖r
= 0 = lim

x→0

R̃r(x)

‖x‖r
.

Wtedy W = W̃ .

Rozwa»my teraz rozwini¦cie w punkcie innym ni» 0. Niech fa(x) = f(x + a).
Wtedy

Dαfa(x) = (Dαf)(x+ a).

Istotnie, sprawd¹my na jednej pochodnej

∂

∂x1

fa(x) =
∂

∂x1

(
f(x+ a)

)
=
( ∂

∂x1

f
)

(x+ a).

Mam wi¦c

(3.13) f(x+ a) = fa(x) =
∑
|α|≤r

1

α!
(Dαfa)(0)xα +Rr,a(θx),

gdzie θ zale»y od a i x. Niech y = x+ a czyli x = y− a. Ponadto mamy (Dαfa)(0) =
(Dαf)(a). St¡d

f(y) =
∑
|α|≤r

1

α!
(Dαf)(a)(y − a)α +Rr,a(θx).

Musimy jeszcze rozszyfrowa¢ Rr,a(θx). Mamy

Rr,a(θx) =
∑
|α|=r+1

1

α!
(Dαfa)(θx)xα

=
∑
|α|=r+1

1

α!
(Dαf)(a+ θ(y − a))(y − a)α =: Rr,a(y),

gdzie 0 < θ < 1 i zale»y od a i y. W ko«cu mamy

(3.14) f(y) =
∑
|α|≤r

1

α!
(Dαf)(a)(y − a)α +Rr,a(y).
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Przykªad 3.15. Wykorzystuj¡c wzór Taylora zanalizujemy teraz zachowanie funkcji
f dwóch zmiennych w pobli»u zera w sytuacji, gdy pierwsze pochodne cz¡stkowe znikaj¡
w zerze.

Mamy

f(x) = f(0) +
∂f

∂x1

(0)x1 +
∂f

∂x2

(0)x2

+
1

2

∂2f

∂x2
1

(0)x2
1 +

∂2f

∂x1∂x2

(0)x1x2 +
1

2

∂2f

∂x2
2

(0)x2
2

= f(0) +
∂f

∂x1

(0)x1 +
∂f

∂x2

(0)x2 +
1

2
〈Ax, x〉,

gdzie A oznacza hesjan f . W przykªadzie 1.27 pokazali±my, »e

〈Ax, x〉 ≥ λ,

gdzie λ jest mniejsz¡ z warto±ci wªasnych. Je±li wi¦c obie warto±ci wªasne hesjanu s¡
±ci±le dodatnie i pierwsze pochodne znikaj¡, to dla x 6= 0

f(x) = f(0) +
1

2
〈Ax, x〉 ≥ f(0) + λ‖x‖2 > f(0).

Gdy jedna z warto±ci jest dodatnia, a druga 0, to analogicznie f(x) ≥ f(0). Je±li
λ1 > 0, a λ2 < 0, to zamieniaj¡c zmienne x = Cξ mamy

CTAC =

[
λ1 0
0 λ2

]
i

〈Ax, x〉 = xTAx = ξTCTACξ = λ1ξ
2
1 + λ2ξ

2
2 .

Niech ξ = (ξ1, 0), x = Cξ St¡d

(f ◦ C)(ξ1, 0) =f(C(ξ1, 0)) = f(0) +
1

2
λ1ξ

2
1 +R2(Cξ)

=f(0) +
1

2
ξ2

1

(
λ1 − 2R2(Cξ)ξ−2

1

)
> f(0) +

1

4
ξ2

1λ1

dla dostatecznie maªych ξ1. Podobnie dla x = Cξ = C(0, ξ2)

(f ◦ C)(0, ξ2) =f(C(0, ξ2)) = f(0) +
1

2
λ2ξ

2
2 +R2(Cξ)

=f(0) +
1

2
ξ2

2

(
λ2 + 2R2(Cξ)ξ−2

2

)
< f(0) +

1

4
ξ2

2λ2.

dla dostatecznie maªych ξ2. Je±li chcemy te kierunki przetªumaczy¢ na x musimy
wyliczy macierz C. Przy wi¦kszej ilo±ci zmiennych mamy wi¦cej mo»liwo±ci.
W ka»dym przypadku modelujemy funkcj¦ na zachowaniu wielomianu drugiego

stopnia. Gdy wszystkie drugie pochodne znikaj¡ musimy wzi¡c pod uwag¦ kolejne
pochodne (je±li istniej¡) i wielomiany wy»szych stopni.
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Przypomnijmy twierdzenie o pochodnej jednostajnie zbie»nego ci¡gu funkcji.

Twierdzenie 3.16. Funkcje fn(x) s¡ ró»niczkowalne w sposób ci¡gªy w przedziale
[a, b]. Zaªó»my, »e ci¡gi fn(x) i f ′n(x) sa jednostajnie zbie»ne odpowiednio do f(x) i
g(x). Wtedy f ′(x) = g(x) (na ko«cach przedziaªu pochodne jednostronne). Tzn.

( lim
n→∞

fn(x))′ = lim
n→∞

f ′n(x).

Czyli pochodna granicy ci¡gu funkcji jest granic¡ pochodnych.

Z Twierdzenia 3.16 wynika analogiczne dla wielu zmiennych.

Twierdzenie 3.17. Funkcje fn(x) s¡ ró»niczkowalne w sposób ci¡gªy na zbiorze
otwartym U ⊂ Rd. Zaªó»my, »e dla wszystkich wielowska¹ników α o dªugo±ci mniej-
szej równej m, ci¡gi fn(x) i Dαfn(x) sa jednostajnie zbie»ne odpowiednio do f(x) i
gα(x) na ka»dym przedziale [a1, b1] × ... × [ad, bd] ⊂ U . Wtedy Dαf(x) = gα(x) dla
|α| ≤ m. Tzn.

Dα( lim
n→∞

fn(x)) = lim
n→∞

Dαfn(x).

Czyli pochodne cz¡stkowe granicy ci¡gu funkcji s¡ granicami pochodnych.

Dowód. Niech x ∈ (a1, b1)× ...× (ad, bd). Rozwa»my ci¡g ∂fn
∂x1

(x1, ..., xd), który zbiega
jednostajnie do g(1,0,...,0) i ustalmy (x2, ..., xd). Wtedy fn(t, x2, ..., xd) jako funkcja
zmiennej t zbiega jednostajnie do g(t, x2, ..., xd) na [a1, b1]. Podobnie ∂

∂t
fn(t, x2, ..., xd)

jako funkcja zmiennej t zbiega jednostajnie do g(1,0,...,0)(t, x2, ..., xd) na [a1, b1]. Z
Twierdzenia 3.16 otrzymujemy, »e g(1,0,...,0)(t, x2, ..., xd) = ∂

∂t
f(t, x2, ..., xd). Dalej po-

st¦pujemy indukcyjnie po dªugo±ci wielowska¹nika. Np. zeby zrobi¢ to dla pochod-
nych drugiego rz¦du, musimy wiedzie¢, »e pochodne pierwszego rz¦du s¡ jednostajnie
zbie»ne. �

Uwaga 3.18. Tak naprawd¦ twierdzenie 3.16 mo»na osªabi¢: zbie»no±¢ jednostajna
ci¡gu funkcji fn nie jest potrzebna. Je±li to wiemy, to analogicznie mo»na osªabi¢
twierdzenie 3.17.

Twierdzenia 3.16 i 3.17 mo»na w standardowy sposób zastosowa¢ do jednostajnie
zbie»nych szeregów funkcji i otrzyma odpowiednie konkluzje. Je±li bowiem mamy
jednostajnie zbie»ny szereg

∑∞
n=1 fn to sumy cz¦±ciowe sn = f1+...+fn s¡ jednostajnie

zbie»ne. Twierdzenie 3.17 zostanie wykorzystane do rozwi¡zania niektórych zada«.

4. Caªki podwójne

Niech R b¦dzie prostok¡tem [a, b] × [c, d]. Rozwa»amy nieujemn¡ funkcj¦ f(x, y)
okre±lon¡ na R. Wykres ma posta¢ powierzchni le»¡cej nad R. Powierzchnia z =
f(x, y) oraz cztery pionowe pªaszczyzny x = a, x = b, y = c i y = d ograniczaj¡
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obszar trójwymiarowy B. Chcemy obliczy¢ obj¦to±¢ tego obszaru. Jesli f jest ci¡gªa,
to

b∫
a

 d∫
c

f(x, y) dx

 dy = vol(B) =

d∫
c

 b∫
a

f(x, y) dy

 dx.

Powy»sze caªki liczymy jako iterowane, po kolei.

Przykªady.

(a) f(x, y) = k, k ≥ 0. Obszar jest prostopadªo±cianem o wysoko±ci k.
b∫

a

d∫
c

k dx dy = k(b− a)(d− c).

(b) f(x, y) = 1−x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Obszar jest poªow¡ sze±cianu o boku 1.

1∫
0

1∫
0

(1− x) dx dy =
1

2
.

B¦dziemy si¦ starali zde�niowa¢ caªk¦ podwójn¡ tak by dla funkcji ci¡gªej f

(4.1)
∫∫
R

f(x, y) dx dy =

b∫
a

 d∫
c

f(x, y) dx

 dy =

d∫
c

 b∫
a

f(x, y) dy

 dx.

4.1. Zasada Cavalieriego. Przy bardziej zªo»onych funkcjach f(x, y) mo»emy za-
stosowa¢ zasad¦ Cavalieriego. Zaªó»my, »e bryªa ma wªasno±¢, »e pola przekroju
pªaszczyznami równolegªymi do ustalonej pªaszczyzny, w odlegªo±ci x od tej pªasz-
czyzny, wynosz¡ A(x). Bryªa mie±ci si¦ pomi¦dzy pªaszczyznami x = a i x = b.Wtedy
zasada Cavalieriego mówi, »e

V =

b∫
a

A(x) dx.

Uzasadnijmy to nieco staranniej. Rozwa»my nieujemn¡ funkcj¦ f(x, y) na [a, b]×
[c, d]. Pole przekroju pªaszczyzn¡ pionow¡ x = x0 wynosi

A(x0) =

d∫
c

f(x0, y) dy.

Zatem obj¦to±¢ bryªy wynosi

V =

b∫
a

 d∫
c

f(x, y) dy

 dx.
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Mo»na te» zastosowa¢ ci¦cia pªaszczyznami równolegªymi do pªaszczyzny pionowej
y = 0. Wtedy

V =

d∫
c

 b∫
a

f(x, y) dx

 dy.

Przykªad 4.2. U»ywaj¡c reguªy Cavalieriego policzymy obj¦to±¢ póªkuli. Ustalmy x
i przetnijmy póªkul¦ pªaszczyzn¡ równolegª¡ do osi y. Wtedy otrzymujemy póªkole o
promieniu

√
1− x2. Wtedy A(x) = 1

2
π(1− x2). Zatem obj¦to±¢ wynosi∫ 1

−1

1

2
π(1− x2) = π

∫ 1

0

(1− x2) =
2

3
π.

4.2. �cisªe okre±lenie caªki podwójnej Riemanna. Podziaªem prostok¡ta R =
[a, b]× [c, d] nazywamy par¦ P = (P1,P2), gdzie P1 jest podziaªem przedziaªu [a, b],
a P2 podziaªem przedziaªu [c, d]:

P1 = {x0, x1, . . . , xn}, P2 = {y0, y1, . . . , ym}.
Podprzedziaªem nazywamy ka»dy z prostok¡tów

Sij = [xi−1, xi]× [yj−1, yj].

Rozwa»amy funkcj¦ f(x, y) okre±lon¡ na R (dowoln¡, niekoniecznie ci¡gª¡). Dla
podprzedziaªu S niech

mS(f) = inf
(x,y)∈S

f(x, y), MS(f) = sup
(x,y)∈S

f(x, y).

Symbolem ∆S oznaczamy pole powierzchni prostok¡ta S. Sumy dolne i górne s¡
zde�niowane wzorami

L(P , f) =
∑
S∈P

mS(f)∆S, U(P , f) =
∑
S∈P

MS(f)∆S.

Je±li f(x, y) ≥ 0, to obj¦to±¢ obszaru pod wykresem mie±ci pomi¦dzy liczbami
L(P , f) i U(P , f).
Podziaª P ′ = (P ′1,P ′2) nazywamy rozdrobnieniem podziaªu P = (P1,P2), je±li
P ′1 jest rozdrobnieniem P1, a P ′2 rozdrobnieniem P2. Ka»dy prostok¡t podziaªu P ′
zawiera si¦ w jakim± prostok¡cie podziaªu P .
Maj¡c dwa podziaªy P ′ i P ′′ zawsze znajdziemy P̃ , który jest rozdrobnieniem

obu. Wystarczy wzi¡¢ P̃ = (P̃1, P̃2) taki, »e P̃i jest rozdrobnieniem P ′i,P ′′i czyli np.
P̃i = P ′i ∪ P ′′i .

Lemat 4.3. Je±li P ′ jest rozdrobnieniem P , to
L(P , f) ≤ L(P ′, f), U(P , f) ≥ U(P ′, f).
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Dowód. Je±li R, S s¡ prostok¡tami, R ∈ P , S ⊂ R, S ∈ P ′ jego podziaªem, to∑
S⊂R

MS(f)∆S ≤
∑
S⊂R

MR(f)∆S

= MR(f)
∑
S⊂R

∆S = MR(f)∆R

Analogicznie ∑
S⊂R

mS(f)∆S ≥
∑
S⊂R

mR(f)∆S

= mR(f)
∑
S⊂R

∆S = mR(f)∆R

�

Okre±lamy caªki doln¡ i górn¡ wzorami∫∫
R

f(x, y) dx dy = sup
P
L(P , f),

∫∫
R

f(x, y) dx dy = inf
P
U(P , f).

Mówimy, »e funkcja f(x, y) jest caªkowalna je±li∫∫
R

f(x, y) dx dy =

∫∫
R

f(x, y) dx dy.

Na razie ta de�nicja nie ma nic wspólnego z caªk¡ iterowan¡ (4.1).

Twierdzenie 4.4. Funkcja ograniczona f(x, y) na prostok¡cie R jest caªkowalna
wtedy i tylko wtedy, gdy dla dowolnej liczby ε > 0 mo»na znale¹¢ podziaª P speªniaj¡cy

U(P , f)− L(P , f) < ε.

Dowód. Zaªó»my, »e U(P , f)− L(P , f) < ε. Wtedy

L(P , f) ≤
∫∫

f(x, y) dx dy ≤
∫∫

f(x, y) dx dy ≤ U(P , f)

i ∫∫
f(x, y) dx dy −

∫∫
f(x, y) dx dy < ε.

Zaªó»my teraz, »e funkcja jest caªkowalna. Istniej¡ podziaªy P ′,P ′′ takie, »e

L(P ′, f) >

∫∫
f(x, y) dx dy − ε

U(P ′′, f) <

∫∫
f(x, y) dx dy + ε.
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Niech P b¦dzie wspólnym rozdrobnieniem podziaªów P ′ i P ′′. Wtedy

L(P , f) ≥ L(P ′, f) >

∫∫
f(x, y) dx dy − ε

U(P , f) ≤ U(P ′′, f) <

∫∫
f(x, y) dx dy + ε.

St¡d
U(P , f)− L(P , f) < 2ε.

�

Lemat 4.5. Ka»da funkcja ci¡gªa f(x), o warto±ciach liczbowych, okre±lona na zwar-
tym podzbiorze R ⊂ R2 jest jednostajnie ci¡gªa, tzn. gdy dwa argumenty funkcji s¡
poªo»one blisko siebie, to równie» warto±ci funkcji le»¡ blisko siebie. Czyli

∀ε > 0 ∃δ > 0 ∀x, y ∈ R (‖x− y‖ < δ ⇒ |f(x)− f(y)| < ε) .

Dowód nie wprost. Zaªó»my, »e istnieje (zªo±liwa) liczba ε > 0 taka, »e dla δn = 1
n

istniej¡ punkty xn i yn w R speªniaj¡ce

‖xn − yn‖ <
1

n
, |f(xn)− f(yn)| ≥ ε.

Z ci¡gu xn mo»na wybra¢ zbie»ny podci¡g xnk . Niech xnk −→
k

x0. Wtedy

‖ynk − x0‖ ≤ ‖ynk − xnk‖+ ‖xnk − x0‖ ≤
1

nk
+ ‖xnk − x0‖ −→

k
0.

Czyli ynk −→
k

x0. Zatem f(xnk) −→
k

f(x0) oraz f(ynk) −→
k

f(x0). Otrzymujemy

sprzeczno±¢, bo |f(xnk)− f(ynk)| ≥ ε.
Jak wybieramy podci¡g? Piszemy xn = (xn,1, xn,2), wybieramy najpierw ci¡g nk

taki, »e xnk,1 jest zbie»ny, a potem wybieramy podci¡g z nk tak by druga wspóªrz¦dna
te» zbiegaªa. �

Twierdzenie 4.6. Funkcja ci¡gªa f jest caªkowalna na prostok¡cie R.

Dowód. Z jednostajnej ci¡gªo±ci, je±li podziaª P jest wystarczaj¡co drobny tzn. taki,
»e dla ka»dego S ∈ P , MS(f)−mS(f) < ε/∆R , to U(P , f)− L(P , f) < ε. �

Twierdzenie 4.7. Rozwa»my dwie funkcje f i g, caªkowalne na prostok¡cie R.Wtedy

(i)
∫∫
R

(f + g) dx dy =
∫∫
R

f dx dy +
∫∫
R

g dx dy.

(ii)
∫∫
R

cf dx dy = c
∫∫
R

f dx dy.

(iii) Je±li f(x, y) ≤ g(x, y) na R, to∫∫
R

f dx dy ≤
∫∫
R

g dx dy.
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(iv) Niech Ri, i = 1, 2, . . . , n, b¦d¡ prostok¡tami o bokach równolegªych do osi
takimi, »e R = R1 ∪ . . .∪Rn, i wn¦trza prostok¡tów Ri s¡ rozª¡czne pomi¦dzy
sob¡. Zaªó»my, »e f jest caªkowalna na ka»dym z nich to f jest caªkowalna
na R oraz ∫∫

R

f dx dy =
n∑
i=1

∫∫
Ri

f dx dy.

Ponadto je±li f jest caªkowalna na R, to jest caªkowalna na ka»dym Rj.

Dowód. Prostok¡ty Rj, j = 1, 2, . . . , n, nie musz¡ tworzy¢ podziaªu prostok¡ta R. Ale
mo»na rozdrobni¢ ka»dy z prostok¡tów Ri, aby uzyska¢ podziaª P prostok¡ta R. Istot-

nie, niech P(j) b¦dzie podziaªem prostok¡ta Rj. Bierzemy P =
(⋃

j P
(j)
1 ,
⋃
j P

(j)
2

)
.

Zaªó»my, »e f jest caªkowalna na Rj a P(j) jest podziaªem takim, »e U(P(j), f)−
L(P(j), f) < ε/n. Wtedy tak»e

U(P , f, Rj)− L(P , f, Rj) < ε/n,

gdzie ostatnie wyra»enie oznacza ograniczenie podziaªu P do prostok¡ta Rj. St¡d

U(P , f)− L(P , f) ≤
∑
j

(U(P , f, Rj)− L(P , f, Rj)) < ε.

Zaªó»my teraz, »e f jest caªkowalna na R. Je±li mamy podziaª P taki, »e U(P , f)−
L(P , f) < ε, to dodaj¡c wspóªrz¦dne wierzchoªków prostok¡tów Rj otrzymamy jego
rozdrobnienie P ′, które ograniczone do prostok¡ta Rj jest jego podziaªem. Bierzemy
P ′1 = P1 ∪ {a1, b1, ..., an, bn} i P ′2 = P2 ∪ {c1, d1, ..., cn, dn}, gdzie ai, bi s¡ x-owymi
wspóªrz¦dnymi wierzchoªków, a ci, di y-owymi. Wtedy

U(P ′, f, Rj)− L(P ′, f, Rj) ≤ U(P ′, f)− L(P ′, f) < ε,

bo ∑
S⊂Rj ,S∈P ′

(MS(f)−mS(f))∆S ≤
∑
S∈P ′

(MS(f)−mS(f))∆S

i ka»dy wyraz sumy po lewej i po prawej jest nieujemny. �

Twierdzenie 4.8 (Fubini). Zaªó»my, »e funkcja f(x, y) jest ci¡gªa na prostok¡cie
[a, b]× [c, d]. Wtedy∫∫

R

f(x, y) dx dy =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.



42 ANALIZA III

Dowód. Rozwa»amy podziaªy a = x0 < x1 < . . . < xn = b i c = y0 < y1 < . . . <
ym = d.∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

n∑
i=1

∫ xi

xi−1

(
m∑
j=1

∫ yj

yj−1

f(x, y) dy

)
dx

=
n∑
i=1

m∑
j=1

∫ xi

xi−1

(∫ yj

yj−1

f(x, y) dy

)
︸ ︷︷ ︸

Fj(x)

dx =
n∑
i=1

m∑
j=1

∫ xi

xi−1

Fj(x) dx.

Fj(x) jest funkcj¡ ci¡gª¡ na [xi−1, xi], co wynika z lematu poni»ej.

Lemat 4.9. Dla funkcji f(x, y) ci¡gªej na [a, b]× [c, d] funkcja F (x) =
∫ d
c
f(x, y) dy

jest ci¡gªa na [a, b].

Dowód lematu.

|F (x1)− F (x2)| =
∣∣∣∣∫ d

c

f(x1, y) dy −
∫ d

c

f(x2, y) dy

∣∣∣∣ ≤ ∫ d

c

|f(x1, y)− f(x2, y)| dy.

Z jednostajnej ci¡gªo±ci dla ε > 0 mo»na znale¹¢ liczb¦ δ > 0 tak¡, »e

‖(x1, y1)− (x2, y2)‖ < δ ⇒ |f(x1, y1)− f(x2, y2)| < ε

d− c
.

Wtedy dla |x1 − x2| < δ mamy |f(x1, y)− f(x2, y)| < ε
d−c . Ostatecznie

|F (x1)− F (x2)| ≤ ε

d− c
(d− c) = ε.

�

Z twierdzenia o warto±ci ±redniej dla caªki istniej¡ punkty ξij, dla których∫ xi

xi−1

Fj(x) dx = Fj(ξij)∆xi, xi−1 ≤ ξij ≤ xi.

Dalej

Fj(ξij) =

∫ yj

yj−1

f(ξij, y) dy = f(ξij, ηij)∆yj, yj−1 ≤ ηij ≤ yj,

dla pewnych punktów ηij. Zatem∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

n∑
i=1

m∑
j=1

f(ξij, ηij) ∆xi∆yj︸ ︷︷ ︸
∆Sij

,

gdzie Sij = [xi−1, xi] × [yj−1.yj]. Punkt (ξij, ηij) le»y w Sij, mSij(f) ≤ f(ξij, ηij) ≤
MSij(f). St¡d

L(P , f) ≤
∫ b

a

(∫ d

c

f(x, y) dy

)
dx ≤ U(P , f),
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gdzie P jest podziaªem wyznaczonym przez prostok¡ty Sij. Ale

L(P , f) ≤
∫∫

R

f(x, y) dx dy ≤ U(P , f).

Funkcja F jest caªkowalna, wi¦c mo»na wybra¢ podziaª P taki, »e U(P , f)−L(P , f) <
ε. Wtedy ∣∣∣∣∫∫

R

f(x, y) dx dy −
∫ b

a

(∫ d

c

f(x, y) dy

)
dx

∣∣∣∣ < ε.

�

4.3. Caªkowalno±¢. Niekiedy b¦dziemy musieli oblicza¢ caªki z funkcji nieci¡gªych,
np. przy wyznaczaniu obj¦to±ci bryª, których podstawa nie jest prostok¡tem.

Przykªad 4.10. Niech f(x, y) b¦dzie nieujemn¡ funkcj¡ ci¡gªa okre±lon¡ w kole x2 +
y2 ≤ 1. Chcemy obliczy¢ obj¦to±¢ obszaru pod wykresem. Wkªadamy koªo w kwadrat
[−1, 1]× [−1, 1] i okre±lamy funkcj¦

f̃(x, y) =

{
f(x, y) x2 + y2 ≤ 1,

0 x2 + y2 > 1.

Wtedy V =
∫

[−1,1]×[−1,1]
f̃(x, y) dx dy. Zauwa»my, »e f̃ mo»e nie by¢ ci¡gªa na brzegu

koªa. Ogólnie, je±li chcemy obliczy¢ caªk¦
∫
C
f(x, y) dx dy, gdzie C ⊂ R2, to wkªadamy

C w prostok¡t R o bokach równolegªych do osi i obliczamy∫
R

f(x, y)1IC(x, y) dx dy.

Pojawia si¦ problem caªkowalno±ci funkcji f(x, y)1IC(x, y), bo mo»e nie by¢ ci¡gªa
na ∂C. Je±li 1IC(x, y) jest caªkowalna a f(x, y) jest ci¡gªa, to iloczyn jest funkcj¡
caªkowaln¡, bo iloczyn funkcji caªkowalnych jest caªkowalny lub inny argument: zbiór
punktów nieci¡gªo±ci si¦ nie powi¦ksza.
Dla C = {(x, y) : x2 + y2 ≤ 1.} funkcja 1IC(x, y) jest nieci¡gªa w punktach okr¦gu

x2 + y2 = 1. Ogólnie funkcja 1IC(x, y) jest nieci¡gªa na brzegu zbioru C oznaczanym
symbolem ∂C.

De�nicja 4.11. Mówimy, »e zbiór A ⊂ R2 ma miar¦ zero, je±li dla dowolnej liczby
ε > 0 istniej¡ prostok¡ty {Rn}∞n=1 takie, »e

A ⊂
∞⋃
n=1

Rn,

∞∑
n=1

∆Rn < ε.

Przykªady.

(a) Punkt ma miar¦ zero. Sko«czony zbiór punktów ma miar¦ zero.
(b) Przeliczalny zbiór punktów ma miar¦ zero. W szczególno±ci zbiór punktów w

kwadracie [0, 1]2 o obu wspóªrz¦dnych wymiernych ma miar¦ zero.
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(c) Poziomy odcinek ma miar¦ zero. Równie» uko±ny odcinek ma miar¦ zero.
(d) Kwadrat [0, 1]2 nie ma miary zero. Ogólniej prostok¡t [a, b] × [c, d], a 6= b,

c 6= d nie ma miary zero.
(e) Zbiór punktów kwadratu [0, 1]2 o obu wspóªrz¦dnych niewymiernych nie ma

miary zero.
(f) Okr¡g ma miar¦ zero.

Prostok¡ty zde�niowali±my wcze±niej tak, »e ich boki s¡ równolegªe do osi. W po-
wy»szej de�nicji to nie jest wa»ne. Warto wiedzie¢, »e nast¦puj¡ce warunki s¡ rów-
nowa»ne:

• dla dowolnej liczby ε > 0 istniej¡ prostok¡ty {Rn}∞n=1 (o bokach niekoniecznie
równolegªych do osi) takie, »e

A ⊂
∞⋃
n=1

Rn,
∞∑
n=1

∆Rn < ε.

• dla dowolnej liczby ε > 0 istniej¡ prostok¡ty {Rn}∞n=1 (o bokach równolegªych
do osi) takie, »e

A ⊂
∞⋃
n=1

Rn,
∞∑
n=1

∆Rn < ε.

• dla dowolnej liczby ε > 0 istniej¡ kule {Bn}∞n=1 takie, »e

A ⊂
∞⋃
n=1

Bn,
∞∑
n=1

∆Bn < ε.

Nie ma znaczenia czy Rn, Bn s¡ otwarte czy domkni¦te. Zbiory miary zero zostan¡
starannie przerobione na Analizie i topologii i Teorii miary.

Twierdzenie 4.12. Ograniczona funkcja na prostok¡cie jest caªkowalna wtedy i tylko
wtedy, gdy zbiór jej punktów nieci¡gªo±ci ma miar¦ zero.

Twierdzenie 4.13 (Fubini). Niech f b¦dzie funkcj¡ caªkowaln¡ na prostok¡cie R =
[a, b]× [c, d]. Dla a ≤ x ≤ b niech∫ d

c

f(x, y) dy = L(x) ≤ U(x) =

∫ d

c

f(x, y) dy.

Wtedy funkcje L(x) i U(x) s¡ caªkowalne na [a, b] oraz∫∫
R

f(x, y) dx dy =

∫ b

a

L(x) dx =

∫ b

a

U(x) dx.

Uwagi.



ANALIZA III 45

1. Je±li funkcja y 7→ f(x, y) jest caªkowalna na [c, d] dla a ≤ x ≤ b, to∫∫
R

f(x, y) dx dy =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx.

2. Zamieniaj¡c rolami x i y i przyjmuj¡c, »e funkcja x 7→ f(x, y) jest caªkowalna
na [a, b] dla c ≤ y ≤ d, otrzymamy∫∫

R

f(x, y) dx dy =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

3. Zauwa»my, »e f(x, ·) mo»e nie by¢ caªkowalna, ale funkcje L(x) i U(x) nie
sa takie zªe, s¡ caªkowalne i nie ró»ni¡ si¦ za bardzo. W szczególno±ci maj¡
zbiory punktów nieci¡gªo±ci miary zero i caªki z L,U s¡ równe.

Dowód. Niech P = (P1,P2) b¦dzie podziaªem prostok¡ta R. Rozwa»my jeden pro-
stok¡t podziaªu S = S1 × S2. Mamy

mS(f) = mS1×S2(f) ≤ mS2(f(x, ·)), dla x ∈ S1.

Zatem∑
S2∈P2

mS1×S2(f)∆S2 ≤
∑
S2∈P2

mS2(f(x, ·))∆S2

= L(P2, f(x, ·)) ≤
∫ d

c

f(x, y) dy = L(x), dla x ∈ S1.

Po wzi¦ciu kresu dolnego wzgl¦dem x ∈ S1 otrzymujemy∑
S2∈P2

mS1×S2(f)∆S2 ≤ mS1(L).

Zatem

L(P , f) =
∑
S1∈P1

∑
S2∈P2

mS1×S2(f)∆S1∆S2

=
∑
S1∈P1

(∑
S2∈P2

mS1×S2(f)∆S2

)
∆S1

≤
∑
S1∈P1

mS1(L)∆S1 = L(P1,L).
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Podobnie pokazujemy, »e U(P , f) ≥ U(P1,U). Istotnie, ustalmy S1 i we¹my x ∈ S1∑
S2∈P2

MS1×S2(f)∆S2 ≥
∑
S2∈P2

MS2(f(x, ·))∆S2

= U(P2, f(x, ·)) ≥
∫ d

c

f(x, y) dy = U(x), dla x ∈ S1.

Bior¡c kres górny po x mamy∑
S2∈P2

MS1×S2(f)∆S2 ≥MS1(U)

i

U(P , f) =
∑
S1∈P1

∑
S2∈P2

MS1×S2(f)∆S1∆S2

=
∑
S1∈P1

(∑
S2∈P2

MS1×S2(f)∆S2

)
∆S1

≥
∑
S1∈P1

MS1(U)∆S1 = U(P1,U).

Reasumuj¡c otrzymujemy

L(P , f) ≤ L(P1,L) ≤ U(P1,L) ≤ U(P1,U) ≤ U(P , f).

i

L(P , f) ≤ L(P1,L) ≤ L(P1,U) ≤ U(P1,U) ≤ U(P , f).

Z zaªo»enia f(x, y) jest caªkowalna wi¦c wybieramy P tak, »e U(P , f)−L(P , f) < ε.
St¡d wynika, »e L(x),U(x) s¡ caªkowalne na [a, b]. Ponadto

L(P , f) ≤
∫∫

R

f(x, y) dx dy ≤ U(P , f),

L(P , f) ≤
∫ b

a

L(x) dx ≤ U(P , f)

(P , f) ≤
∫ b

a

U(x) dx ≤ U(P , f).

Zatem
∫∫

R
f(x, y) dx dy =

∫ b
a
L(x) dx =

∫ b
a
U(x) dx. �
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Przykªad 4.14. D = {(x, y) : x2 + y2 ≤ 1}. Znale¹¢ obj¦to±¢ obszaru pod wykresem
funkcji f(x, y) = 2x+ y + 5 na D. Obliczamy∫∫

D

f(x, y) dx dy =

∫∫
[−1,1]2

(2x+ y + 5)1ID(x, y) dx dy

=

∫ 1

−1

(∫ 1

−1

(2x+ y + 5)1ID(x, y) dy

)
dx =

∫ 1

−1

∫ √1−x2

−
√

1−x2
(2x+ y + 5) dy dx

= 2

∫ 1

−1

(2x+ 5)
√

1− x2 dx = 10

∫ 1

−1

√
1− x2 dx = 5π.

Caªkowalno±¢ (2x+ y + 5)1ID(x, y) wynika z twierdze« 4.15 i 4.12.

Twierdzenie 4.15. Niech y = f(x) b¦dzie funkcj¡ ci¡gª¡ na [a, b]. Wtedy wykres
funkcji f ma miar¦ zero.

Dowód. Ustalmy ε > 0. Mo»na znale¹¢ liczb¦ naturaln¡ N tak¡, »e

|x− x′| < b− a
N

⇒ |f(x)− f(x′)| < ε

4(b− a)
.

Dzielimy przedziaª [a, b] na N równych cz¦±ci punktami a = x0 < x1 < . . . < xN = b.
Ka»dy z punktów x przedziaªu [a, b] le»y w jednym z przedziaªów (xi−1, xi+1) dla
i = 1, 2, . . . , N − 1. Je±li x ∈ (xi−1, xi+1), to |f(x)− f(xi)| < ε

4(b−a)
. To oznacza, »e

f(x) ∈
(
f(xi)−

ε

4(b− a)
, f(xi) +

ε

4(b− a)

)
.

Zatem wykres jest zawarty w zbiorze
N−1⋃
i=1

(xi−1, xi+1)×
(
f(xi)−

ε

4(b− a)
, f(xi) +

ε

4(b− a)

)
.

Suma pól skªadników tego zbioru wynosi

(N − 1)
2(b− a)

N
· ε

2(b− a)
= ε.

�

Dla ograniczonego podzbioru D ⊂ R2 takiego, »e ∂D ma miar¦ zero okre±lamy

A(D) =

∫∫
D

dx dy =

∫∫
R

1ID(x, y) dx dy,

gdzie R jest prostokatem zawieraj¡cym D. Niech P b¦dzie podziaªem prostok¡ta R.
Wtedy

L(P , 1ID) =
∑
S

mS(1ID)∆S, U(P , 1ID) =
∑
S

MS(1ID)∆S.
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Wielko±¢ L(P , 1ID) jest sum¡ pól prostok¡tów podziaªu caªkowicie zawartych w D,
natomiast U(P , 1ID) jest sum¡ pól prostok¡tów podziaªu maj¡cych cz¦±¢ wspóln¡ z
D. Polem wewn¦trznym nazywamy kres górny liczb L(P , 1ID) a polem zewn¦trznym
kres dolny liczb U(P , 1ID). Mówimy, »e obszar D ma pole, je±li pole wewn¦trzne jest
równe polu zewn¦trznemu. Odpowiednio caªka górna i dolna z 1ID s¡ równe czyli 1ID
jest caªkowalna czyli ∂D ma miar¦ zero. Tak wi¦c obszar D ma pole wtedy i tylko
wtedy, gdy ∂D ma miar¦ zero. Mówimy wtedy, »e obszar jest mierzalny w sensie
Jordana.

Twierdzenie 4.16. Je±li f(x, y) jest funkcj¡ ci¡gª¡ w prostok¡cie R i D ⊂ R jest
mierzalny w sensie Jordana, to caªka∫∫

D

f(x, y) dx dy

jest dobrze okre±lona.

Dowód. ∫∫
D

f(x, y) dx dy =

∫∫
R

f(x, y)1ID(x, y) dx dy.

Funkcja f(x, y)1ID(x, y) mo»e by¢ nieci¡gªa tylko w punktach ∂D. �

Twierdzenie 4.17. Niech D1 i D2 b¦d¡ ograniczonymi rozª¡cznymi podzbiorami R2

mierzalnymi w sensie Jordana. Dla funkcji f(x, y) ci¡gªej na D1 ∪D2 mamy∫∫
D1∪D2

f(x, y) dx dy =

∫∫
D1

f(x, y) dx dy +

∫∫
D2

f(x, y) dx dy.

Dowód. Wkªadamy D1 i D2 w prostok¡t R. Wtedy∫∫
D1∪D2

f dx dy =

∫∫
R

f 1ID1∪D2 dx dy =

∫∫
R

f [1ID1 + 1ID2 ] dx dy∫∫
R

f 1ID1 dx dy +

∫∫
R

f 1ID2 dx dy =

∫∫
D1

f dx dy +

∫∫
D2

f dx dy.

W szczególno±ci D1 ∪D2 jest mierzalny w sensie Jordana. �

Przykªad 4.18. Dwa boki równolegªoboku D znajduj¡ si¦ na poziomach y = c i
y = d. Dolny bok mie±ci si¦ pomi¦dzy x = a i x = b a górny pomi¦dzy a′ i b′ oraz
a′ > a. Wkªadamy D w prostok¡t R = [a, b′]× [c, d]. Wtedy

A(D) =

∫∫
R

1ID(x, y) dx dy =

∫ d

c

(∫ b′

a

1ID(x, y) dx

)
dy.

Przy ustalonej warto±ci y funkcja 1ID(x, y) jest równa 1 na przedziale dªugo±ci b− a.
Zatem

A(D) =

∫ d

c

(b− a) dy = (b− a)(d− c).



ANALIZA III 49

Przykªad 4.19. Zmiana kolejno±ci caªkowania Rozwa»my caªk¦ iterowan¡∫ a

0

∫ √a2−x2
0

√
a2 − y2 dy dx =

∫∫
D

√
a2 − y2 dx dy

=

∫ a

0

∫ √a2−y2

0

√
a2 − y2 dx dy =

∫ a

0

(a2 − y2) dy = a3 − a3

3
=

2

3
a3.

Przy zmienionej kolejno±ci caªkowania obliczenia okazaªy si¦ ªatwiejsze. Warto za-
uwa»y¢ »e

D = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤
√
a2 − x2} = {(x, y) : 0 ≤ x, y, x2 + y2 ≤ a2}.

Podobnie∫ 2

1

∫ log x

0

(x− 1)
√

1 + 2ey dy dx =

∫ log 2

0

∫ 2

ey
(x− 1)

√
1 + 2ey dx dy

=

∫ log 2

0

√
1 + 2ey (2− ey)1

2
(1 + ey − 1) dy.

Wtedy

D = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ log x} = {(x, y) : 0 ≤ y ≤ log 2, ey ≤ x ≤ 2}.

W ostatniej caªce wykonujemy podstawienie u = 1 + 2ey. Wtedy

ey =
u− 1

2
du = 2ey dy.

Otrzymujemy ∫ 5

3

√
u

(
2− u− 1

2

)
1

4
du.

4.4. Zamiana zmiennych 1.

Twierdzenie 4.20 (o zamianie zmiennych). Niech U i U∗ b¦d¡ zbiorami otwartymi
w R2(Rn). Zaªó»my, »e T : U∗ 7→ U jest odwzorowaniem ró»nowarto±ciowym klasy
C1 takim, »e T (U∗) = U i detDT (u) 6= 0 dla wszystkich u ∈ U∗. Wtedy dla funkcji
f(x) caªkowalnej okre±lonej na U mamy∫

U

f(x) dx =

∫
U∗
f(T (u)) |JT (u)| du,

gdzie JT (u) = detDF (u) jest jakobianem odwzorowania T w punkcie u.

Na razie nie wiemy, co to jest caªka po zbiorze otwartym, ale wiemy, co to jest caªka
po ograniczonym zbiorze otwartym D mierzalnym w sensie Jordana. Twierdzenie jest
prawdziwe tak jak stoi, ale dla naszych celów powinni±my dorzuci¢ zaªo»enie, »e zbiory
D,D∗, po których caªkujemy, s¡ ograniczone, a ich brzegi maj¡ miar¦ zero.
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Twierdzenie 4.21 (o zamianie zmiennych). Niech D i D∗ b¦d¡ zbiorami mierzalnymi
w sensie Jordana otwartymi w R2(Rn). Zaªó»my, »e T : IntD∗ 7→ D jest odwzorowa-
niem ró»nowarto±ciowym klasy C1 takim, »e T (IntD∗) = IntD i detDT (u) 6= 0 dla
wszystkich u ∈ IntD∗. Wtedy dla funkcji f(x) caªkowalnej okre±lonej na D mamy∫

D

f(x) dx =

∫
D∗
f(T (u)) |JT (u)| du,

gdzie JT (u) = detDF (u) jest jakobianem odwzorowania T w punkcie u.

Uwaga 4.22. Nie jest wa»ne co si¦ dzieje na brzegach D,D∗ i czy w ogóle T jest
tam okre±lone. To nie wpªywa na caªk¦.

Je±li T o wªasno±ciach jak w Twierdzenie 4.20 jest okre±lone na pewnym otoczeniu
U zbioru D̄∗ i D∗ jest mierzalny w sensie Jordana, to D te» taki jest. Podobnie, je±li
f jest caªkowalna na D̄ (lub równowa»nie na D, bo ∂D ma miar¦ zero) to f ◦ T jest
caªkowalna na D∗. To ostatnie wynika z faktu, »e

T−1 (Dis(f)) = Dis(f ◦ T ),

gdzie Dis(f) jest zbiorem punktów nieci¡gªo±ci funkcji f . To wszystko sprawia, »e
mo»emy napisa¢

Twierdzenie 4.23 (o zamianie zmiennych). Niech U i U∗ b¦d¡ zbiorami otwartymi
w R2(Rn). Zaªó»my, »e T : U∗ 7→ U jest odwzorowaniem ró»nowarto±ciowym klasy
C1 takim, »e detDT (u) 6= 0 dla wszystkich u ∈ U∗. Niech D̄ ⊂ U b¦dzie zbiorem
mierzalnym w sensie Jordana i T (D∗) = D. Wtedy dla funkcji f(x) caªkowalnej na
D mamy ∫

D

f(x) dx =

∫
D∗
f(T (u)) |JT (u)| du,

gdzie JT (u) jest jakobianem odwzorowania T w punkcie u.

Uwaga 4.24. Dla u′ blisko u mamy

T (u′) ≈ T (u) +DT (u)(u′ − u),

czyli odwzorowanie T zachowuje si¦ w przybli»eniu jak zªo»enie dwu przesuni¦¢ i prze-
ksztaªcenia liniowego o macierzy DT (u). Przy takim przeksztaªceniu obj¦to±¢ obrazu
maªego przedziaªu S obliczamy wzorem

∆T (S) ≈ ∆S |JT (u)|, gdzie u ∈ S.

Przykªad 4.25. Policzmy caªk¦
∫∞
−∞ e

−x2 dx.
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Mamy∫ ∞
−∞

e−x
2

dx = 2

∫ ∞
0

e−x
2

dx

= 2

[
lim
R→∞

(∫ R

0

e−x
2

dx

)(∫ R

0

e−y
2

dy

)]1/2

= 2

[
lim
R→∞

∫∫
[0,R]2

e−(x2+y2) dx dy

]1/2

Niech DR = {(x, y) : x, y ≥ 0, x2+y2 ≤ R2} oznacza cz¦±¢ koªa o ±rodku w pocz¡tku
ukªadu i promieniu R le»¡c¡ w pierwszej ¢wiartce. Wtedy∫∫

DR

e−(x2+y2) dx dy ≤
∫∫

[0,R]2
e−(x2+y2) dx dy ≤

∫∫
DR
√

2

e−(x2+y2) dx dy.

U»yjemy wspóªrz¦dnych biegunowych

x = r cosϕ, y = r sinϕ, 0 ≤ ϕ ≤ π

2
, 0 ≤ r ≤ R.

To znaczy
T (r, ϕ) = (r cosϕ, r sinϕ) = (x, y).

Mamy

J =

∣∣∣∣∣
∂x
∂r

∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

∣∣∣∣∣ =

∣∣∣∣cosϕ −r sinϕ
sinϕ r cosϕ

∣∣∣∣ = r.

Prostok¡t [0, R] × [0, π
2
] jest przeksztaªcony na DR, a prostok¡t (0, R) × (0, π

2
) na

wn¦trze ¢wiartki koªa

IntDR = {(x, y) : x, y > 0, x2 + y2 < R2},
i T okre±lone na (0, R)× (0, π

2
) wszystkie potrzebne wªasno±ci. Zatem∫∫

DR

e−(x2+y2) dx dy =

∫∫
[0,R]×[0,π

2
]

e−r
2

r dϕ dr =

∫ R

0

∫ π
2

0

e−r
2

r dϕ dr

=
π

2

∫ R

0

e−r
2

r dr =
π

2

(
−1

2
e−r

2
∣∣∣R
0

)
=
π

4
(1− e−R2

) −→
R→∞

π

4
.

W ±wietle tych oblicze« otrzymujemy∫ ∞
−∞

e−x
2

dx =
√
π.

Uwaga 4.26. Wspóªrz¦dne biegunowe s¡ u»yteczne, gdy funkcja podcaªkowa zawiera
x2 + y2 a obszar caªkowania jest koªem lub fragmentem koªa. Rozwa»my caªk¦∫∫

D
log(x2+y2) dx dy, gdzie D jest wycinkiem koªa opisanym przez warunki a ≤ r ≤ b

i 0 ≤ ϕ ≤ π
2
. Po zamianie zmiennych otrzymujemy∫ b

a

∫ π
2

0

log(r2) r dr =
π

2

∫ b

a

log(r2) r dr.
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Niekiedy warto u»y¢ wspóªrz¦dnych biegunowych mimo, »e obszar nie jest "wygodny".

Przykªad 4.27. Rozwa»my caªk¦∫∫
[0,1]2

√
x2 + y2 dx dy.

Ze wzgl¦du na symetri¦ mamy∫∫
[0,1]2

√
x2 + y2 dx dy = 2

∫∫
[0,1]2

y≤x

√
x2 + y2 dx dy.

Mamy 0 ≤ ϕ ≤ π
4
oraz 0 ≤ r cosϕ ≤ 1. Tzn. 0 ≤ r ≤ 1

cosϕ
. Tutaj rmax = r(ϕ) zale»y

od k¡ta. Otrzymujemy wi¦c∫∫
[0,1]2

√
x2 + y2 dx dy = 2

∫ π
4

0

∫ 1
cosϕ

0

r2 dr dϕ =
2

3

∫ π
4

0

dϕ

cos3 ϕ
=

2

3

∫ π
4

0

cosϕ

(1− sin2 ϕ)2
dϕ.

W ostatniej caªce po podstawieniu u = cosϕ otrzymamy caªk¦ z funkcji wymiernej.

De�nicja 4.28. Obszar D ⊂ R2 nazywamy ªukowo spójnym, je±li dla dowolnych
dwóch punktów (x1, y1) i (x2, y2) w D mo»na znale¹¢ funkcj¦ ci¡gª¡ ϕ : [0, 1] → D
tak¡, »e ϕ(0) = (x1, y1) oraz ϕ(1) = (x2, y2).

Twierdzenie 4.29 (o warto±ci ±redniej). Niech f(x, y) b¦dzie funkcj¡ ci¡gª¡ na zwar-
tym obszarze D ⊂ R2 mierzalnym w sensie Jordana i ªukowo spójnym. Wtedy∫∫

D

f(x, y) dx dy = f(x0, y0)A(D)

dla pewnego punktu (x0, y0) w D.

Dowód. Mamy

m = min
(x,y)∈D

f(x, y) = f(x1, y1), M = max
(x,y)∈D

f(x, y) = f(x2, y2)

dla pewnych punktów (x1, y1) i (x2, y2) w D. Dalej

mA(D) ≤
∫∫

D

f(x, y) dx dy ≤M A(D).

Je±li A(D) = 0, to teza jest speªniona. Niech A(D) > 0. Wtedy

f(x1, y1) = m ≤ 1

A(D)

∫∫
D

f(x, y) dx dy︸ ︷︷ ︸
α

≤M = f(x2, y2).

Niech ϕ b¦dzie funkcj¡ ci¡gª¡ tak¡, »e ϕ : [0, 1] → D oraz ϕ(0) = (x1, y1), ϕ(1) =
(x2, y2). Rozwa»my funkcj¦ g(t) = f(ϕ(t)). Wtedy g jest funkcj¡ ci¡gª¡ oraz g(0) =
f(x1, y1) i g(1) = f(x1, y1). Ponadto g(0) ≤ α ≤ g(1). Z wªasno±ci Darboux mamy
g(t0) = α dla pewnej warto±ci 0 ≤ t0 ≤ 1. Tzn. f(ϕ(t0)) = α oraz ϕ(t0) = (x0, y0). �
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4.5. Caªki potrójne i wielokrotne. Przedziaªem R ⊂ RN nazywamy iloczyn kar-
tezja«ski

R = [a1, b1]× [a2, b2]× . . .× [aN , bN ].

Obj¦to±ci¡ przedziaªu jest wielko±¢

∆R = (b1 − a1)(b2 − a2) . . . (bN − aN).

Podziaª P przedziaªu R oznacza rodzin¦ podziaªów P = (P1,P2, . . . ,PN), gdzie Pi
jest podziaªem przedziaªu [ai, bi] na ki cz¦±ci. W ten sposób otrzymujemy podziaª R
na k1k2 . . . kN cz¦±ci (podprzedziaªów). Dla podprzedziaªu S okre±lmy

mS(f) = inf
x∈S

f(x), MS(f) = sup
x∈S

f(x),

gdzie f(x) jest funkcj¡ ograniczon¡ na przedziale R. Sumy dolne, górne, caªk¦ doln¡ i
górn¡ oraz caªk¦ okre±lamy tymi samymi wzorami co dla funkcji jednej i dwu zmien-
nych. Ma ona analogiczne wªasno±ci. Mo»na podobnie udowodni¢, »e funkcje ci¡gªe
s¡ caªkowalne.

De�nicja 4.30. Mówimy, »e zbiór A ⊂ RN jest miary zero, je±li istnieje ci¡g prze-
dziaªów Sn taki, »e

A ⊂
∞⋃
n=1

Sn

∞∑
n=1

∆Sn < ε,

dla dowolnie wcze±niej ustalonej liczby dodatniej ε.

Twierdzenie 4.31. Ograniczona funkcja f okre±lona na przedziale R ⊂ RN jest
caªkowalna wtedy i tylko wtedy, gdy zbiór jej punktów nieci¡gªo±ci ma miar¦ zero.

Twierdzenie 4.32 (Fubini). Niech A ⊂ RN i B ⊂ RM b¦d¡ przedziaªami. Zaªó»my,
»e funkcja f okre±lona na A×B ⊂ RN × RM jest caªkowalna. Dla x ∈ A niech

L(x) =

∫
B

f(x, y) dy, U(x) =

∫
B

f(x, y) dy,

gdzie (x, y) jest punktem z RN × RM , x ∈ RN , y ∈ RM . Wtedy funkcje L(x) i U(x)
s¡ caªkowalne na A oraz∫

A×B
f(x, y) dx dy =

∫
A

L(x) dx =

∫
A

U(x) dx

=

∫
A

(∫
B

f(x, y) dy

)
dx =

∫
A

(∫
B

f(x, y) dy

)
dx.

Je±li funkcja f(x, y) jest ci¡gªa, to mo»na pomin¡¢ znaki caªki dolnej i górnej.
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Przykªad 4.33. Rozwa»my funkcj¦ trzech zmiennych f(x, y, z) ci¡gª¡ na R = [a1, b1]×
[a2, b2]× [a3, b3]. Okre±lmy A = [a1, b1]× [a3, b3] i B = [a2, b2]. Wtedy∫∫∫

R

f(x, y, z) dx dy dz =

∫∫
A

(∫ b2

a2

f(x, y, z) dy

)
dx dz

=

∫ b1

a1

(∫ b3

a3

(∫ b2

a2

f(x, y, z) dy

)
dz

)
dx.

Mogli±my zamieni¢ caªk¦ podwójn¡ po A na caªk¦ iterowan¡ bo caªkowana funkcja
zale»y w sposób ci¡gªy od x i z. Przy funkcji trzech zmiennych mamy sze±¢ mo»liwo±ci
zamiany na caªk¦ iterowan¡.

Uwaga 4.34. Inny zapis caªki iterowanej to:∫ b1

a1

∫ b3

a3

∫ b2

a2

f(x, y, z) dy dz dx =

∫ b1

a1

dx

∫ b3

a3

dz

∫ b2

a2

f(x, y, z) dy.

Twierdzenie 4.35. Dla funkcji ci¡gªej ϕ okre±lonej na przedziale R ⊂ RN−1 wykres
funkcji ϕ, czyli zbiór D = {(x, ϕ(x)) : x ∈ R} jest miary zero w RN .

Je±li D ⊂ RN nie jest przedziaªem, to okre±lamy∫
D

f(x) dx =

∫
R

f(x)1ID(x) dx

dla przedziaªu R zawieraj¡cego D. Zaªó»my, »e f(x) jest funkcj¡ ci¡gª¡. Wtedy
funkcja f(x)1ID(x) mo»e byc nieci¡gªa tylko w punktach brzegu ∂D. Je±li ∂D ma
miar¦ zero, to f(x)1ID(x) jest caªkowalna, np. gdy zbiór ∂D jest sum¡ kilku wykresów
funkcji ci¡gªych N − 1 zmiennych.

Przykªad 4.36. W jest obszarem w R3 okre±lonym przez warunki x, y ≥ 0 oraz
x2 + y2 ≤ z ≤ 2. Chcemy obliczy¢

∫∫∫
W

x dx dy dz.

NiechD b¦dzie obszarem w pªaszczy¹nie (x, y) okre±lonym przez x, y ≥ 0 i x2+y2 ≤
2. Wtedy∫∫∫

W

x dx dy dz =

∫∫
D

dx dy

∫ 2

x2+y2
x dz =

∫∫
D

x(2− x2 − y2) dx dy

=

∫ √2

0

dx

∫ √2−x2

0

x(2− x2 − y2) dy =

∫ √2

0

[
x(2− x2)3/2 − 1

3
x(2− x2)3/2

]
dx

=
2

3

∫ √2

0

x(2− x2)3/2 dx = − 2

15
(2− x2)5/2

∣∣∣√2

0
=

8

15

√
2.

�cisªe uzasadnienie przej±¢ do caªek iterowanych jest nast¦puj¡ce. Mamy

W ⊂ [0,
√

2]× [0,
√

2]× [0, 2] =: R.
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Wi¦c∫∫∫
W

x dx dy dz =

∫∫∫
R

x1IW (x, y, z) dx dy dz =

∫∫
[0,
√

2]2
dx dy

∫ 2

0

x1IW (x, y, z) dz

=

∫∫
[0,
√

2]2
dx dy

∫ 2

0

x1ID(x, y)× 1I[x2+y2,2](z) dz =

∫∫
[0,
√

2]2
dx dy

∫ 2

x2+y2
x1ID(x, y) dz

=

∫∫
[0,
√

2]2
x(2− x2 − y2)1ID(x, y) dx dy =

∫ √2

0

dx

∫ √2−x2

0

x(2− x2 − y2) dy.

4.6. Twierdzenie o zamianie zmiennych 2. Dane s¡ dwa zbioryD iD∗ w Rn i od-
wzorowanie T : Rn → Rn klasy C1, ró»nowarto±ciowe oraz T (D∗) = D, detDT (u) 6=
0, u ∈ Rn. Zakªadamy, »e D i D∗ s¡ mierzalne w sensie Jordana. Chcemy wyrazi¢
wielko±¢

∫∫
D
f(x, y) dx dy jako caªk¦ po zbiorze D∗ z funkcji zªo»onej f ◦ T.

Zaczniemy od przypadku f ≡ 1. Tzn. chcemy obliczy¢
∫∫

D
dx dy = A(D) za

pomoc¡ caªki po obszarze D∗ z funkcji 1 ewentualnie domno»onej przez jak¡± funkcj¦
zale»n¡ od T.
Napiszmy twierdzenie o zamianie zmiennych dla f ≡ 1.

(4.37) A(D) =

∫∫
D

dx dy =

∫∫
T (D∗)

dx dy =

∫∫
D∗
|JT (u, v)| du dv,

zaªó»my, »e D∗ jest prostok¡tem i spróbujmy uzasadni¢ (4.37). B¦dziemy rozwa»a¢
sytuacj¦ dwuwymiarow¡, ale rozumowanie dla Rn jest analogiczne.
Wiemy, »e je±li T jest odwzorowaniem ró»niczkowalnym w (u0, v0), to dla odwzo-

rowania liniowego DT (u0, v0) zadanego macierz¡

DT (u0, v0) =

(
∂x
∂u

(u0, v0) ∂x
∂v

(u0, v0)
∂y
∂u

(u0, v0) ∂y
∂v

(u0, v0)

)
mamy

T (u, v) ≈ T (u0, v0) +DT (u0, v0)

(
∆u
∆v

)
=: T̃ (u, v) = T̃u0,v0(u, v),

gdzie ∆u = u−u0 oraz ∆v = v−v0. Zaªó»my, »e mamy podziaª P prostok¡taD∗. Je±li
S jest maªym prostok¡tem z tego podziaªu, którego dolnym lewym wierzchoªkiem jest
punkt (u0, v0), to obraz T (S) jest w przybli»eniu równolegªobokiem T̃ (S) oraz∫∫

T (S)

dx dy = A(T (S)) ≈ A(T̃ (S)) = |JT (u0, v0)|A(S),

gdzie JT (u0, v0) = detDT (u0, v0). Ostatnia równo±¢ wynika z de�nicji T̃ . Wtedy∫∫
T (D∗)

=
∑
S∈P

∫∫
T (S)

dx dy ≈
∑
S∈P

|JT (u0, v0)|∆S →
∫∫

D∗
|JT (u, v)|du dv,
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gdy ±rednica P d¡»y do 0. Kluczowe jest by wiedzie¢, »e∑
S∈P

A(T (S))−
∑
S∈P

A(T̃ (S))→ 0,

gdy ±rednica podziaªu d¡»y do zera. Analogicznie postepujemy, gdy obszar D∗ jest
dowolny i zostaª wªo»ony w prostok¡t R, który nast¦pnie podzielili±my na maªe pro-
stok¡ty Sk. Rozwa»amy tylko prostok¡ty Sk caªkowicie zawarte w D∗. Gdy ±rednica
P → 0 przybli»aj¡ one D∗ coraz lepiej. Niech (uk, vk) oznacza lewy dolny wierzchoªek
prostok¡ta Sk. Wtedy∫∫

D

dx dy = A(D) = A(T (D∗)) ≈ A(T̃ (D∗)) ≈
∑
k

|JT (uk, vk)|∆Sk.

W granicy, gdy ±rednica podziaªu d¡»y do zera, otrzymamy∫∫
D

dx dy =

∫∫
D∗
|JT (u, v)| du dv.

Doªó»my teraz funkcj¦ f . Oznaczmy (xk, yk) = T (uk, vk). Mamy∫∫
D

f(x, y) dx dy ≈
∑
k

f(xk, yk)A(T (Sk)) ≈
∑
k

f(xk, yk)A(T̃ (Sk))

=
∑
k

f(xk, yk)|JT (uk, vk))|A(Sk)→
∫∫

D∗
f(T (u, v)) |JT (u, v)| du dv.

Ostatecznie otrzymujemy wzór

(4.38)
∫∫

D

f(x, y) dx dy =

∫∫
D∗
f(T (u, v)) |JT (u, v)| du dv.

Nie jest to peªny dowód, a raczej agitacja.

Przykªad 4.39.
∫∫∫
D

e(x2+y2+z2)3/2 dx, dy dz, gdzie D jest fragmentem kuli jednostko-

wej le»¡cym w pierwszym oktancie.

Zastosujemy wspóªrz¦dne sferyczne

x = r sinϕ cosψ,

y = r sinϕ sinψ,(4.40)

z = r cosϕ,

gdzie 0 ≤ ϕ, ψ ≤ π
2
, 0 ≤ r ≤ 1. Przyporz¡dkowanie (r, ϕ, ψ) 7→ (x, y, z) okre±lone

wzorami wy»ej nie jest ró»nowarto±ciowe na D∗ = [0, 1] × [0, π
2
] × [0, π

2
], ale staje

si¦ takie, gdy r > 0. Okre±lamy T (r, ϕ, ψ) = (x, y, z) wg wzorów (4.40). Zaªo»enia
Twierdzenia 4.21 s¡ speªnione. Mamy

|JT (r, ϕ, ψ)| = r2 sinϕ.
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Dalej∫∫∫
D

e(x2+y2+z2)3/2 dx dy dz =

∫∫∫
D∗

er
3

r2 sinϕdr dϕ dψ

=

∫ 1

0

∫ π
2

0

∫ π
2

0

r2er
3

sinϕdϕdψ dr =
π

2

∫ 1

0

r2er
3

dr

∫ π
2

0

sinϕdϕ =
π

6
er

3
∣∣∣1
0

=
π

6
(e−1).

Przykªad 4.41. Obliczymy obj¦to±¢ kuli D = {(x, y, z) : x2 + y2 + z2 ≤ R2}.

Mamy

V =

∫∫∫
V

dx dy dz.

Przechodzimy do wspóªrz¦dnych sferycznych.

V =

∫ π

0

dϕ

∫ 2π

0

dψ

∫ R

0

r2 sinϕdr = 2π

∫ R

0

r2 dr

∫ π

0

sinϕdϕ =
4

3
πR3.

Obliczenia nie s¡ do ko«ca ±cisªe, bo wspóªrz¦dne nie s¡ jednoznaczne na peªnej kuli.
Zwró¢my jednak uwag¦, »e

T : (0, R)×(0, π)×(0, 2π) 7→ IntD\({(x, 0, z) : x ≥ 0, x2+z2 < R}∪{(0, 0, z) : |z| < R}),

i na tak ograniczonej dziedzinie T ma wszystkie potrzebne wªasno±ci, a to co zostaªo
wyrzucone z kuli ma miar¦ zero.

Wspóªrz¦dne cylindryczne okre±lone s¡ przez

x = r cosϕ,

y = r sinϕ,

z = z,

co oznacza, »e w pªaszczy¹nie (x, y) przechodzimy do wspóªrz¦dnych biegunowych.
Wtedy

J =
∂(x, y, z)

∂(r, ϕ, z)
=

∣∣∣∣∣∣
cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1

∣∣∣∣∣∣ = r.

Przykªad 4.42. I =
∫ 2

0
dx
∫ √2x−x2

0
dy
∫ a

0
z
√
x2 + y2 dz.

Obszar caªkowania wzgl¦dem x i y jest opisany warunkami 0 ≤ x ≤ 2, 0 ≤ y ≤√
2x− x2. Po przeksztaªceniu otrzymujemy x2 + y2 ≤ 2x, y ≥ 0. Rozpoznajemy

górne póªkole o promieniu 1 i ±rodku w punkcie (1, 0). Po przej±ciu do wspóªrz¦dnych
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biegunowych otrzymujemy warunki r ≤ 2 cosϕ oraz 0 ≤ ϕ ≤ π/2. Istotnie, przy
danym ϕ, r = rmax speªnia równanie

(r cosϕ− 1)2 + (r sinϕ)2 =1

r2 − 2r cosϕ+ 1 =1

r = 2 cosϕ.

Zatem

I =

∫ π
2

0

dϕ

∫ 2 cosϕ

0

dr

∫ a

0

zr2 dz =
a2

2

∫ π
2

0

r3

3

∣∣∣2 cosϕ

0
dϕ =

4a2

3

∫ π
2

0

cos3 ϕdϕ

=
4a2

3

∫ π
2

0

(1− sin2 ϕ) cosϕdϕ =
4a2

3

(
sinϕ− 1

3
sin3 ϕ

) ∣∣∣π2
0

=
8a2

9
.

Górne póªkole sugeruje, »e podstawienie

x = 1 + r cosϕ, y = r sinϕ, dla 0 ≤ r ≤ 1, 0 ≤ ϕ ≤ π,

mogªoby by¢ przydatne. Jednak po takim podstawieniu otrzymujemy «ieprzyjazn¡-
¢aªk¦

I =

∫ π

0

dϕ

∫ 1

0

dr

∫ a

0

zr
√
r2 + 2r cosϕ+ 1 dz =

a2

2

∫ π

0

dϕ

∫ 1

0

r
√
r2 + 2r cosϕ+ 1 dr.

4.6.1. �rodek masy. W punktach P1, P2, . . . , Pn umieszczamy masy m1,m2, . . . ,mn.
�rodek masy P ukªadu speªnia

~OP =

∑n
i=1mi

~OPi∑n
i=1mi

.

Niech Pi = (xi, yi, zi), m =
∑

imi oraz P = (x, y, z). Wtedy

x =
1

m

n∑
i=1

mixi, y =
1

m

n∑
i=1

miyi, z =
1

m

n∑
i=1

mizi.

Je±li masa jest rozªo»ona w sposób ci¡gªy w obszarze D z g¦sto±ci¡ masy %(x, y, z) w
punkcie (x, y, z), to ±rodek masy wyra»a si¦ wzorem

x =

∫∫∫
D

x%(x, y, z) dx dy dz∫∫∫
D

%(x, y, z) dx dy dz
.

Podobnie wzory mamy dla wspóªrz¦dnych y i z.
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Przykªad 4.43. Znale¹¢ ±rodek masy górnej póªkuli o promieniu 1, czyli obszaru
x2 + y2 + z2 ≤ 1, z ≥ 0. Przyjmujemy staª¡ g¦sto±¢ masy % ≡ 1. Ze wzgl¦du na
symetri¦ obszaru ±rodek masy ma wspóªrz¦dne (0, 0, z). Obliczamy

z =
3

2π

∫∫∫
D

z dx dy dz =
3

2π

∫ π
2

0

dϕ

∫ 2π

0

dψ

∫ 1

0

r cosϕ r2 sinϕdr = 3 · 1

4
· 1

2
=

3

8

4.6.2. Moment bezwªadno±ci. Rozwa»amy ciaªoD o g¦sto±ci masy %(x, y, z) w punkcie
(x, y, z). Moment bezwªadno±ci wzgl¦dem osi x wyra»a si¦ wzorem

Ix =

∫∫∫
D

(y2 + z2)%(x, y, z) dx dy dz.

Podobnie okre±la si¦ momenty Iy oraz Iz.

Przykªad 4.44. Obliczy¢ moment bezwªadno±ci wzgl¦dem osi z obszaru pomi¦dzy
paraboloid¡ z = x2 + y2, cylindrem x2 + y2 = a2 oraz pªaszczyzn¡ z = 0, przyjmuj¡c
% ≡ 1. Obszar opisany jest warunkami

0 ≤ z ≤ x2 + y2 ≤ a2.

U»yjemy wspóªrz¦dnych cylindrycznych. Wtedy

Iz =

∫∫∫
D

(x2 + y2) dx dy dz =

∫ 2π

0

dϕ

∫ a2

0

dz

∫ a

√
z

r2 · r dr

= 2π

∫ a2

0

1

4
(a4 − z2) dz =

π

2

(
a6 − 1

3
a6

)
=
π

3
a6.

4.6.3. Potencjaª grawitacyjny. Wpunkcie (x, y, z) umieszczamy mas¦M. Siªa oddzia-
ªywania na mas¦ m umieszczon¡ w punkcie (x1, y1, z1) jest gradientem potencjaªu

V (x1, yz, z1) =
GmM√

(x− x1)2 + (y − y1)2 + (z − z1)2
.

Zakªadamy, »e masa jest rozmieszczona w obszarze D z g¦sto±ci¡ %(x, y, z). Wtedy
potencjaª wyra»a si¦ wzorem

V (x1, y1, z1) =

∫∫∫
D

Gm%(x, y, z)√
(x− x1)2 + (y − y1)2 + (z − z1)2

dx dy dz.

Siªa oddziaªywania na mas¦m umieszczon¡ w punkcie (x1, y1, z1) jest równa∇V (x1, y1, z1).

Przykªad 4.45. Zaªó»my, »e D jest obszarem zawartym pomi¦dzy sferami

x2 + y2 + z2 = r2
1, x

2 + y2 + z2 = r2
2,

gdzie r1 < r2. Przyjmujemy % ≡ 1 oraz m = 1. Obliczymy warto±¢ potencjaªu w
punktach przestrzeni poza D.
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Ze wzgl¦du na niezmienniczo±¢ na obroty wzgl¦dem pocz¡tku ukªadu wystarczy
obliczy¢ V (0, 0, R). W obliczeniach u»yjemy wspóªrz¦dnych sferycznych.

1

G
V (0, 0, R) =

∫∫∫
D

dx dy dz√
x2 + y2 + (z −R)2

=

∫ π

0

dϕ

∫ 2π

0

dψ

∫ r2

r1

r2 sinϕ√
r2 − 2rR cosϕ+R2

dr = 2π

∫ r2

r1

dr

∫ π

0

r2 sinϕ√
r2 − 2rR cosϕ+R2

dϕ

W wewn¦trznej caªce stosujemy podstawienie

u = r2 − 2rR cosϕ+R2, du = 2rR sinϕdϕ.

1

G
V (0, 0, R) =

π

R

∫ r2

r1

r dr

∫ (r+R)2

(r−R)2

du√
u
du =

2π

R

∫ r2

r1

r[r +R− |r −R|] dr.

Zaªó»my, »e R < r1. Wtedy
1

G
V (0, 0, R) =

2π

R

∫ r2

r1

2Rr dr = 2π(r2
2 − r2

1).

Z kolei dla R > r2 mamy
1

G
V (0, 0, R) =

2π

R

∫ r2

r1

2r2 dr =
4π

3R
(r3

2 − r3
1).

Reasumuj¡c, wewn¡trz obszaru potencjaª jest staªy (niezale»ny od R) zatem nie ma
siªy grawitacji. Z kolei na zewn¡trz potencjaª jest odwrotnie proporcjonalny do odle-
gªo±ci punktu od pocz¡tku ukªadu. Zatem siªa grawitacji jest odwrotnie proporcjo-
nalna do kwadratu tej odlegªo±ci.


