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Rozdziaª 0

Ukªady równa«

Jedn¡ z kluczowych metod algebry jest opis problemu matematycznego w terminach niewiado-
mych i równa« (zapisywanych w formie ukªadu równa«). Rozwi¡zywanie problemu sprowadza
si¦ wówczas do znalezienia wszystkich rozwi¡za« ukªadu równa«, któr¡ to czynno±¢ mo»na do±¢
mocno zalgorytmizowa¢.

Podstawow¡ metod¡ rozwi¡zywania wszelkich ukªadów równa« jest metoda podstawiania.
W szkole jest ona stosowana do rozwi¡zywania ukªadów dwóch równa« liniowych z dwoma nie-
wiadomymi, ale jej zakres stosowania jest znacznie szerszy � obejmuje dowoln¡ liczb¦ równa« i
niewiadomych oraz nie ogranicza si¦ do równa« liniowych (niemniej w ramach algebry liniowej
b¦dziemy mie¢ do czynienia niemal wyª¡cznie z równaniami liniowymi).

Algorytm 0.1: Metoda podstawiania

Rozwi¡zuj¡c ukªad n równa« (niekoniecznie liniowych) z n niewiadomymi post¦pujemy
nast¦puj¡co:

Krok 1 Wyznaczamy dowolnie wybran¡ niewiadom¡ z dowolnie wybranego równania i
podstawiamy do wszystkich pozostaªych równa«. W ten sposób otrzymujemy
ukªad n− 1 równa« z n− 1 niewiadomymi.

Krok 1 powtarzamy n − 1 razy, za ka»dym razem zmniejszaj¡c o 1 liczb¦ równa« i
równocze±nie zmniejszaj¡c o 1 liczb¦ niewiadomych.

Krok 2 Iteracje Kroku 1 prowadz¡ do 1 równania z 1 niewiadom¡. Rozwi¡zujemy to
równanie, wyznaczaj¡c w ten sposób jedn¡ (spo±ród n pocz¡tkowych) niewiadomych.

Krok 3 Wykorzystujemy podstawienia z kolejnych iteracji Kroku 1 (zaczynaj¡c od ostat-
niego, a ko«cz¡c na pierwszym) dla wyznaczenia pozostaªych n− 1 niewiadomych.

Stosuj¡c powy»szy algorytm pami¦tamy, »e co prawda w ka»dej iteracji Kroku 1 mo»na wy-
bra¢ dowolne (z pozostaªych) równa« i dowoln¡ (z pozostaªych) niewiadomych, niemniej najlepiej
dokonywa¢ takich wyborów, które zminimalizuj¡ stopie« komplikacji oblicze«.

Przykªad 1

Rozwi¡za¢ ukªad równa«: 
x+ y + z + t = 1

x+ 3y + 2z + 7t = 2

−2x− y − 3z + 2t = −2

x+ 4y + 4z + 3t = −3

3



4 ROZDZIA� 0. UK�ADY RÓWNA�

Rozwi¡zanie. Wyznaczamy niewiadom¡ x z pierwszego równania i podstawiamy do trzech
pozostaªych równa« (Krok 1):

x+ y + z + t = 1

x+ 3y + 2z + 7t = 2

−2x− y − 3z + 2t = −2

x+ 4y + 4z + 3t = −3

x=1−y−z−t−−−−−−−−→


(1− y − z − t) + 3y + 2z + 7t = 2

−2(1− y − z − t)− y − 3z + 2t = −2

(1− y − z − t) + 4y + 4z + 3t = −3

Po uproszczeniu równa«, wyznaczamy niewiadom¡ y z drugiego z trzech równa« i podstawiamy
do obu pozostaªych (Krok 1):

2y + z + 6t = 1

y − z + 4t = 0

3y + 3z + 2t = −4

y=z−4t−−−−−→

{
2(z − 4t) + z + 6t = 1

3(z − 4t) + 3z + 2t = −4

Po uproszczeniu równa«, wyznaczamy niewiadom¡ t z pierwszego z dwóch równa« i podsta-
wiamy do jedynego pozostaªego (Krok 1):{

3z − 2t = 1

6z − 10t = −4

t=
3
2 z−

1
2−−−−−→ 6z − 10(3

2z −
1
2) = −4

Upraszczamy i rozwi¡zujemy otrzymane jedno równanie z jedn¡ niewiadom¡ (Krok 2):

−9z + 5 = −4 −→ z = 1

Wykorzystujemy zastosowane podstawienia (w kolejno±ci od ostatniego do pierwszego) do
wyliczenia pozostaªych niewiadomych (Krok 3):

z = 1

t = 3
2z −

1
2 = 1

y = z − 4t = −3

x = 1− y − z − t = 2

Metoda podstawiania nadaje si¦ równie» do rozwi¡zywania ukªadów równa« nieliniowych:

Przykªad 2

Rozwi¡» ukªad równa«: 
2x+ y − 3z = 12

x2 + y2 + z2 = 21

x+ y − z = 5

Rozwi¡zanie. Wyznaczamy niewiadom¡ z z trzeciego równania i podstawiamy do obu pozo-
staªych równa«:

2x+ y − 3z = 12

x2 + y2 + z2 = 21

x+ y − z = 5

z=x+y−5−−−−−−→

{
2x+ y − 3(x+ y − 5) = 12

x2 + y2 + (x+ y − 5)2 = 21

Po uproszczeniu pierwszego równania wyznaczamy z niego niewiadom¡ y i podstawiamy do
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5

jedynego pozostaªego równania:{
x+ 2y = 3

x2 + y2 + (x+ y − 5)2 = 21

x=3−2y−−−−−→ (3− 2y)2 + y2 + (−y − 2)2 = 21

Rozwi¡zujemy otrzymane jedno równanie z jedn¡ niewiadom¡:

6y2 − 8y − 8 = 0 −→ y = 2 lub y = −2
3

Wykorzystujemy zastosowane podstawienia (w kolejno±ci od ostatniego do pierwszego) do
wyliczenia pozostaªych niewiadomych:

y = 2

x = 3− 2y = −1

z = x+ y − 5 = −4

lub


y = −2

3

x = 3− 2y = 13
3

z = x+ y − 5 = −4
3

Rachunki wykonywane przy realizacji Algorytmu 0.1 czasami istotnie upraszczaj¡ si¦, je±li
wcze±niej odpowiednio �przygotujemy� rozwi¡zywany ukªad równa«. Jest to szczególnie istotne,
gdy nie jest to ukªad równa« liniowych. Pomaga w tym nast¦puj¡cy fakt:

Fakt 0.2

Je±li do wybranego równania ukªadu równa« dodamy lub od niego odejmiemy inne rów-
nanie tego ukªadu, to otrzymamy równowa»ny ukªad równa« (tzn. ukªad maj¡cy takie
same rozwi¡zanie co oryginalny).

Przykªad 3

Rozwi¡» ukªad równa« 
(x− 1)2 + (y − 3)2 + (z − 1)2 = 9

x2 + y2 + z2 = 14

(x− 2)2 + (y − 1)2 + (z + 3)2 = 6

Rozwi¡zanie. Odejmuj¡c drugie równanie od pierwszego i trzeciego otrzymujemy równowa»ny
ukªad zªo»ony z dwóch równa« liniowych i jednego kwadratowego (zamiast trzech równa«
kwadratowych):

(x2 − 2x+ 1) + (y2 − 6y + 9) + (z2 − 2z + 1) = 9

x2 + y2 + z2 = 14

(x2 − 4x+ 4) + (y2 − 2y + 1) + (z2 + 6z + 9) = 6

−→


−2x− 6y − 2z = −16

x2 + y2 + z2 = 14

−4x− 2y + 6z = −22

Otrzymany ukªad równa« (po uproszczeniu) rozwi¡zujemy metod¡ podstawiania:
x+ 3y + z = 8

x2 + y2 + z2 = 14

−2x− y + 3z = −11

x=8−3y−z−−−−−−−→

{
(8− 3y − z)2 + y2 + z2 = 14

−2(8− 3y − z)− y + 3z = −11

{
(8− 3y − z)2 + y2 + z2 = 14

5y + 5z = 5

y=1−z−−−−→ (5 + 2z)2 + (1− z)2 + z2 = 14

6z2 + 18z + 12 = 0 −→ z = −1 lub z = −2

Copyright c© Tomasz Elsner, 2019



6 ROZDZIA� 0. UK�ADY RÓWNA�

Sk¡d dostajemy dwa rozwi¡zania:
z = −1

y = 1− z = 2

x = 8− 3y − z = 3

lub


z = −2

y = 1− z = 3

x = 8− 3y − z = 1

Fakt 0.2 mo»na uogólni¢ dopuszczaj¡c dodawanie lub odejmowanie równie» niezerowej krot-
no±ci innego równania:

Fakt 0.3

Je±li do wybranego równania ukªadu równa« dodamy lub od niego odejmiemy niezerow¡
krotno±¢ innego równania tego ukªadu (tzn. inne równanie ukªadu przemno»one stronami
przez niezerow¡ liczb¦), to otrzymamy równowa»ny ukªad równa« (tzn. ukªad maj¡cy
takie same rozwi¡zania co oryginalny).

Copyright c© Tomasz Elsner, 2019



Rozdziaª 1

Wektory na pªaszczy¹nie

1.1 Poj¦cie wektora

De�nicja 1.1

(Uporz¡dkowan¡) par¦ punktów A i B na pªaszczy¹nie nazywamy wektorem (na pªaszczy¹-
nie) o pocz¡tku A i ko«cu B i oznaczamy

−−→
AB. Dªugo±ci¡ wektora

−−→
AB (oznaczan¡ |

−−→
AB|)

nazywamy dªugo±¢ odcinka AB, jego kierunkiem � prost¡ AB (przy czym przyjmujemy, »e
proste równolegªe wyznaczaj¡ ten sam kierunek). Wektor o ustalonej dªugo±ci i kierunku
mo»e mie¢ dwa ró»ne zwroty (jak na rysunku).

A B CD

Dwa wektory s¡ równe, je±li maj¡ jednakowe dªugo±ci, kierunki i zwroty1.

Szczególnym przypadkiem wektora jest wektor zerowy (oznaczany ~0), tzn. wektor, którego
koniec i pocz¡tek s¡ równe (np. wektor

−→
AA,

−−→
BB). Wektor taki nie ma okre±lonego kierunku

ani zwrotu, a jego dªugo±¢ wynosi 0. Jest tylko jeden wektor zerowy (tzn. tylko jeden wektor o
dªugo±ci 0).

Fakt 1.2

Wektory
−−→
AB i

−−→
CD s¡ równe wtedy i tylko wtedy, gdy czworok¡t ABDC jest równolegªo-

bokiem (tzn. jeden z wektorów powstaje przez równolegªe przesuni¦cie drugiego).

Dowód. Wektory
−−→
AB i

−−→
CD s¡ równe wtedy i tylko wtedy, gdy maj¡ równe dªugo±ci (tzn. |AB| =

|CD|), jednakowe kierunki (tzn. AB‖CD) oraz zgodne zwroty, czyli wtedy i tylko wtedy, gdy
czworok¡t ABDC jest równolegªobokiem.

A

B

C

D

1Pod koniec semestru, po przygotowaniu w ramach Wst¦pu do matematyki, b¦dzie mo»na lepiej sformalizowa¢
de�nicje wektora oraz jego kierunku przy pomocy poj¦cia klasy abstrakcji.
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8 ROZDZIA� 1. WEKTORY NA P�ASZCZY�NIE

Wektory w ukªadzie wspóªrz¦dnym zazwyczaj b¦dziemy umieszcza¢ tak, by miaªy pocz¡tek

w pocz¡tku ukªadu wspóªrz¦dnych, tzn. w punkcie O =

(
0
0

)
. Zgodnie z Faktem 1.2 jest

to mo»liwe dla ka»dego wektora (wystarczy zastosowa¢ odpowiednie przesuni¦cie równolegªe).
Wektor

−−→
OP b¦dziemy w skrócie oznacza¢ ~P (tzn. pocz¡tek ukªadu wspóªrz¦dnych O traktujemy

jako �domy±lny� pocz¡tek wektora).

x

y

O

A

P

B

−−→
AB =

−−→
OP =

−→
P

Poniewa» wektor nie ma jednoznacznie wyznaczonego pocz¡tku ani ko«ca (dlatego wektory,
którymi b¦dziemy si¦ posªugiwa¢, nazywane s¡ czasami wektorami swobodnymi), wi¦c zamiast
oznacza¢ wektor przy pomocy dwóch wielkich liter (przykªadowe pocz¡tek i koniec wektora),
b¦dziemy stosowa¢ oznaczenie pojedyncz¡ (zazwyczaj maª¡) liter¡ ze strzaªk¡: ~u, ~v, ~w itd.

De�nicja 1.3

Sum¡ wektorów
−−→
AB i

−−→
BC nazywamy wektor

−→
AC (reguªa przykªadania). Sum¡ wekto-

rów
−−→
AB i

−−→
AD nazywamy przek¡tn¡

−→
AC równolegªoboku ABCD (reguªa równolegªoboku).

Aby wyznaczy¢ sum¦ wektorów w pozostaªych przypadkach nale»y te wektory przesun¡¢
równolegle tak, by móc zastosowa¢ jedn¡ z powy»szych reguª dodawania.

Wynik dodawania dwóch wektorów nie zale»y od zastosowanej reguªy dodawania, co pokazane
zostaªo na poni»szym rysunku (ABCD jest równolegªobokiem, wi¦c zgodnie z Faktem 1.2 mamy
−−→
AB =

−−→
DC = ~v).

A

D

~u

C

~u
+
~v

~v

B

reguªa przykªadania A

B

C

D

~u ~u
+
~v

~v

reguªa równolegªoboku

Copyright c© Tomasz Elsner, 2019



1.1. POJ�CIE WEKTORA 9

De�nicja 1.4

Niech t b¦dzie liczb¡ rzeczywist¡ (któr¡ b¦dziemy te» nazywa¢ skalarem), za± ~u wektorem
na pªaszczy¹nie. Wówczas t · ~u jest wektorem o dªugo±ci |t| · |~u|, o kierunku wyznaczonym
przez wektor ~u i o zwrocie zgodnym z ~u, gdy t > 0 lub przeciwnym do ~u, gdy t < 0.
Jako »e jedynym wektorem dªugo±ci 0 jest wektor zerowy, wi¦c 0 · ~u = ~0. Wektor (−1) · ~u
nazywamy wektorem przeciwnym do ~u i oznaczamy −~u.

~u
2~u −2~u

−~u

Fakt 1.5

Wekorem przeciwnym do wektora
−−→
AB jest wektor

−−→
BA.

Dowód. Wektory
−−→
AB i

−−→
BA maj¡ t¡ sam¡ dªugo±¢ i ten sam kierunek, natomiast przeciwne

zwroty.

De�nicja 1.6

Je±li A =

(
x0

y0

)
oraz B =

(
x1

y1

)
s¡ punktami pªaszczyzny, to wspóªrz¦dnymi wektora

−−→
AB

nazywamy par¦ liczb:
−−→
AB =

(
x1 − x0

y1 − y0

)

Wspóªrz¦dne wektora
−−→
AB interpretujemy jako przesuni¦cie w poziomie (pierwsza wspóª-

rz¦dna) i przesuni¦cie w pionie (druga wspóªrz¦dna) potrzebne dla przemieszczenia z punktu
A do punktu B. Warto±¢ bezwzgl¦dna wspóªrz¦dnej podaje dªugo±¢ przesuni¦cia, natomiast
znak wspóªrz¦dnej rozró»nia pomi¦dzy przesuni¦ciem w kierunku dodatnim i ujemnym (kieru-
nek dodatni wyznaczaj¡ strzaªki na osiach wspóªrz¦dnych).

x

y

A

B

|x1 − x0|

|y1 − y0|
y0

x0

y1

x1

·

x1 − x0 > 0

y1 − y0 > 0

x

y

A

B
|y1 − y0|

|x1 − x0|

y0

x0

y1

x1

·

x1 − x0 > 0

y1 − y0 < 0

Wektor zerowy ma wspóªrz¦dne ~0 =

(
0
0

)
.

Poniewa» wektor nie ma ustalonego pocz¡tku ani ko«ca (zgodnie z De�nicj¡ 1.1 dwa wektory
s¡ równe, je±li jeden z nich jest przesuni¦ciem równolegªym drugiego), wi¦c aby powy»sza de�nicja
wspóªrz¦dnych wektora miaªa sens, równe wektory powinny mie¢ jednakowe wspóªrz¦dne. St¡d
potrzeba udowodnienia nast¦puj¡cego faktu:

Copyright c© Tomasz Elsner, 2019



10 ROZDZIA� 1. WEKTORY NA P�ASZCZY�NIE

Fakt 1.7

Dwa wektory na pªaszczy¹nie s¡ równe wtedy i tylko wtedy, gdy maj¡ równe odpowiednie
wspóªrz¦dne.

Dowód. Wektory
−−→
AB i

−−→
A′B′ (zaznaczone na rysunku) s¡ równe wtedy i tylko wtedy, gdy równe

s¡ wektory
−→
AP i

−−→
AP ′ oraz wektory

−−→
PB i

−−→
P ′B′. Innymi sªowy x1 − x0 = x′1 − x′0 (przesuni¦cia

poziome s¡ równe) oraz y1 − y0 = y′1 − y′0 (przesuni¦cia poziome s¡ równe), czyli:

−−→
AB =

−−→
A′B′ ⇐⇒

(
x1 − x0

y1 − y0

)
=

(
x′1 − x′0
y′1 − y′0

)

x

y

A
P

B

y0

x0

y1

x1

·

A′
P ′

B′

y′0

x′0

y′1

x′1

·

Poniewa», zgodnie z Faktem 1.7, wspóªrz¦dne jednoznacznie okre±laj¡ wektor, od tej pory

b¦dziemy uto»samia¢ wektor z par¡ liczb (jego wspóªrz¦dnych) i pisa¢: ~v =

(
x
y

)
.

Fakt 1.8

Sum¡ wektorów o wspóªrz¦dnych
(
x0

y0

)
i
(
x1

y1

)
jest wektor o wspóªrz¦dnych:

(
x0

y0

)
+

(
x1

y1

)
=

(
x0 + x1

y0 + y1

)

Dowód. Niech ~u =

(
x0

y0

)
i ~v =

(
x1

y1

)
i wszystkie wspóªrz¦dne ~u i ~v niech b¦d¡ dodatnie.

x

y

~u

~v
~u+

~v

x0 x1

y0

y1

x0 + x1

y 0
+
y 1
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1.1. POJ�CIE WEKTORA 11

Jak wida¢ na rysunku:(
x0

y0

)
+

(
x1

y1

)
=
−−→
AB +

−−→
BC =

−→
AC =

(
x0 + x1

y0 + y1

)
Rozpatrzenie przypadku, gdy jedna lub wi¦cej wspóªrz¦dnych jest ujemna pozostawiamy czytel-
nikowi.

Fakt 1.9

Iloczynem wektora o wspóªrz¦dnych
(
x0

y0

)
przez skalar t jest wektor o wspóªrz¦dnych:

t ·
(
x0

y0

)
=

(
t · x0

t · y0

)

W szczególno±ci, wektorem przeciwnym do
(
x0

y0

)
jest wektor (−1) ·

(
x0

y0

)
=

(
−x0

−y0

)
.

Dowód. Rozpatrzmy najpierw przypadek t > 0. Niech
−−→
AB =

(
x0

y0

)
oraz

−→
AC = t ·

−−→
AB. Wówczas

wektory
−−→
AB i

−→
AC maj¡ jednakowe kierunki i zwroty oraz |

−→
AC| = t · |

−−→
AB|. Poni»szy rysunek

przedstawia t¦ sytuacj¦, gdy x0 > 0 oraz y0 > 0.

x

y

A

B

P

x0

y0
·

C

Q
·

x1

y1

Trójk¡ty prostok¡tne 4ABP i 4ACQ s¡ podobne w skali t, sk¡d otrzymujemy

t ·
−−→
AB =

−→
AC =

(
x1

y1

)
=

(
t · x0

t · x1

)
Przypadek, gdy jedna lub obie wspóªrz¦dne wektora

−−→
AB s¡ ujemne (lub równe 0) jest analogiczna

i jego rozpatrzenie pozostawiamy czytelnikowi.
Je±li t < 0, tzn. t = −t′, gdzie t′ > 0, to:

−t′ ·
(
x0

y0

)
= −

(
t′ · x0

t′ · y0

)
=

(
−t′ · x0

−t′ · y0

)
gdzie pierwsza równo±¢ wynika z udowodnionej ju» cz¦±ci faktu (gdy» t′ > 0), natomiast druga
równo±¢ wynika z tego, »e wektory przeciwne maj¡ przeciwne wspóªrz¦dne, co wida¢ na poni»-
szym rysunku.
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12 ROZDZIA� 1. WEKTORY NA P�ASZCZY�NIE

x

y

v =

(
x
y

)
−v =

(
−x
−y

)
x

y

x

y

Je±li t = 0, to oczywi±cie 0 ·
(
x0

y0

)
=

(
0
0

)
=

(
0 · x0

0 · y0

)
.

De�nicja 1.10

Ró»nic¡ wektorów ~u i ~v nazywamy sum¦ wektora ~u i wektora przeciwnego do ~v, tzn.
~u− ~v = ~u+ (−~v), co we wspóªrz¦dnych ma posta¢:(

x0

y0

)
−
(
x1

y1

)
=

(
x0 − x1

y0 − y1

)

Przykªad 1

Dane s¡ wektory ~u =

(
2
1

)
oraz ~v =

(
3
2

)
. Wyznacz wspóªrz¦dne wektora 3~u− 2~v.

Rozwi¡zanie.

3~u− 2~v = 3 ·
(

2
1

)
− 2 ·

(
3
2

)
=

(
3 · 2
3 · 1

)
−
(

2 · 3
2 · 2

)
=

(
6
3

)
−
(

6
4

)
=

(
6− 6
3− 4

)
=

(
0
−1

)

Zauwa»my, »e wektor
−→
A (z domy±lnym pocz¡tkiem w punkcie

(
0
0

)
) ma takie same wspóª-

rz¦dne co punkt A. W zwi¡zku z tym w dalszym tek±cie nie b¦dziemy odró»nia¢ punktów od
wektorów, oba oznaczaj¡c A.

x

y

y

x

A

O

−→
OA =

−→
A = A

Podobnie, przy oznaczeniach wektora jedn¡ maª¡ liter¡ (~u, ~v itd.) b¦dziemy pomija¢ strzaªk¦
i pisa¢ u, v itd.

Copyright c© Tomasz Elsner, 2019



1.1. POJ�CIE WEKTORA 13

Fakt 1.11

Dla dowolnego wektora
−−→
AB zachodzi:

−−→
AB = B −A

Powy»sz¡ równo±¢ mo»na te» zapisa¢ w postaci:

A+
−−→
AB = B

i interpretowa¢: � je±li z punktu A wykonamy przesuni¦cie o
−−→
AB, to znajdziemy si¦ w B�.

Dowód. Zgodnie z reguª¡ dodawania wektorów zachodzi:
−−→
AB =

−→
AO +

−−→
OB

x

y

A

B

O

Pami¦taj¡c, »e O =

(
0
0

)
jest domy±lnym pocz¡tkiem ka»dego wektora otrzymujemy:

−−→
AB =

−→
AO +

−−→
OB = −

−→
OA+

−−→
OB = −A+B = B −A

Przykªad 2

Wiedz¡c, »e
−−→
AB =

(
3
5

)
oraz A =

(
1
2

)
wyznaczy¢ wspóªrz¦dne punktu B.

Rozwi¡zanie. Skoro
−−→
AB = B −A, to B = A+

−−→
AB =

(
1
2

)
+

(
3
5

)
=

(
4
7

)
.

W powy»szych rachunkach domy±lnie przyj¦li±my, »e dodawanie wektorów rz¡dzi si¦ tymi
samymi prawami co dodawanie liczb rzeczywistych. Poni»szy fakt ujmuje to bardziej formalnie:

Fakt 1.12

Dla dowolnych wektorów u, v, w na pªaszczy¹nie oraz dowolnych skalarów s, t zachodz¡
nast¦puj¡ce wªasno±ci:

1) u+ v = v + u (przemienno±¢ +)
2) (u+ v) + w = u+ (v + w) (ª¡czno±¢ +)
3) 0 + u = u+ 0 = u (element neutralny +)
4) u+ (−u) = (−u) + u = 0 (element przeciwny)
5) (s+ t) · u = s · u+ t · u (rozdzielno±¢ · wzgl¦dem +)
6) t · (u+ v) = t · u+ t · v (rozdzielno±¢ · wzgl¦dem +)
7) s · (t · v) = (s · t) · v (ª¡czno±¢ mno»enia skalarów)
8) 1 · u = u
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14 ROZDZIA� 1. WEKTORY NA P�ASZCZY�NIE

Dowód. Oznaczmy u =

(
u1

u2

)
, v =

(
v1

v2

)
, w =

(
w1

w2

)
. Aby udowodni¢ wªasno±¢ (2) (ª¡czno±¢

dodawania wektorów) poka»emy, »e lewa i prawa strona wzoru s¡ równe:((
u1

u2

)
+

(
v1

v2

))
+

(
w1

w2

)
=

(
u1 + v1

u2 + v2

)
+

(
w1

w2

)
=

(
u1 + v1 + w1

u2 + v2 + w2

)
(
u1

u2

)
+

((
v1

v2

)
+

(
w1

w2

))
=

(
u1

u2

)
+

(
v1 + w1

v2 + w2

)
=

(
u1 + v1 + w1

u2 + v2 + w2

)
Dowód pozostaªych wªasno±ci jest podobny i jego przeprowadzenie zostawiamy czytelnikowi.

De�nicja 1.13

Wektory u i v nazywamy wspóªliniowymi (równolegªymi) je±li maj¡ ten sam kierunek
(przyjmujemy przy tym, »e wektor 0 jest wspóªliniowy z ka»dym wektorem).

Przykªad 3

W±ród wektorów
(

3
2

)
,
(

4
1

)
,
(

6
4

)
,
(

0
0

)
wska» wszystkie pary wektorów wspóªliniowych.

Rozwi¡zanie. Wektory
(

3
2

)
i
(

6
4

)
s¡ wspóªliniowe, gdy»

(
6
4

)
= 2 ·

(
3
2

)
. Wektor

(
0
0

)
jest

wspóliniowy z ka»dym z wektorów, gdy»
(

0
0

)
= 0 ·

(
x
y

)
dla dowolnych x i y.

Fakt 1.14

Wektory u i v s¡ wspóªliniowe wtedy i tylko wtedy, gdy istnieje taki skalar t, »e

u = tv lub v = tu

Dowód. Przyjmijmy najpierw, »e oba wektory u i v s¡ niezerowe. Wektory te s¡ wspóªliniowe
(De�nicja 1.13) wtedy i tylko wtedy, gdy ró»ni¡ si¦ jedynie dªugo±ci¡ i zwrotem, co oznacza, »e:

u = t · v oraz v =
1

t
· u

dla pewnej liczby t (ujemnej, gdy zwroty u i v s¡ przeciwne).
Je±li natomiast przynajmniej jeden z wektorów u i v jest wektorem zerowym, to zgodnie z

De�nicj¡ 1.13 s¡ one wspóªliniowe i równocze±nie speªniaj¡ warunek u = 0 · v (je±li u = 0) lub
v = 0 · u (je±li v = 0).

Zauwa»my, »e (jak wynika z dowodu) spójnik lub w powy»szym fakcie jest konieczny ze
wzgl¦du na specy�czn¡ sytuacj¦ wektora zerowego. W sytuacji, gdy oba wektory s¡ niezerowe,
spójnik lub mo»na zast¡pi¢ spójnikiem oraz.

De�nicja 1.15

Kombinacj¡ liniow¡ wektorów u i v nazywamy ka»dy wektor postaci su+ tv gdzie s i t s¡
dowolnymi skalarami. Skalary s i t nazywamy wspóªczynnikami tej kombinacji liniowej.
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1.1. POJ�CIE WEKTORA 15

Przykªad 4

Przedstaw wektor
(
−1
8

)
w postaci kombinacji liniowej wektorów

(
1
2

)
i
(
−2
1

)
.

Rozwi¡zanie. Szukamy takich liczb s i t, »e(
−1
8

)
= s ·

(
1
2

)
+ t ·

(
−2
1

)
, czyli

(
−1
8

)
=

(
s− 2t
2s+ t

)
Musimy zatem rozwi¡za¢ ukªad równa«:{

s− 2t = −1

2s+ t = 8

Rozwi¡zaniem jest s = 3, t = 2, sk¡d dostajemy:
(
−1
8

)
= 3 ·

(
1
2

)
+ 2 ·

(
−2
1

)
.

De�nicja 1.16

Wersorami na pªaszczy¹nie nazywamy wektory e1 =

(
1
0

)
i e2 =

(
0
1

)
.

Fakt 1.17

Ka»dy wektor na pªaszczy¹nie mo»na przedstawi¢ jako kombinacj¦ liniow¡ wersorów, przy
czym wspóªczynnikami tej kombinacji liniowej s¡ wspóªrz¦dne wektora:(

x
y

)
= x ·

(
1
0

)
+ y ·

(
0
1

)
= x · e1 + y · e2

x

y

e1

e2

v

y

x

v = x · e1 + y · e2

Przykªad 5

Wyznaczy¢ wspóªrz¦dne ±rodka odcinka AB, je±li A =

(
x0

y0

)
i B =

(
x1

y1

)
.

Rozwi¡zanie (sposób I). Oznaczmy S =

(
xS
yS

)
i zauwa»my, »e

−→
AS = 1

2

−−→
AB. Zatem:

(
xS − x0

yS − y0

)
= 1

2

(
x1 − x0

y1 − y0

)
=

(
1
2(x1 − x0)
1
2(y1 − y0)

)
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sk¡d otrzymujemy ukªad równa«:{
xS − x0 = 1

2(x1 − x0)

yS − y0 = 1
2(y1 − y0)

czyli

{
xS = 1

2(x1 − x0) + x0 = 1
2(x1 + x0)

yS = 1
2(y1 − y0) + y0 = 1

2(y1 + y0)

St¡d dostajemy odpowied¹: S =

(x0+x1
2

y0+y1
2

)
.

x

y

A

B

y0

x0

y1

x1

S1
2(y0 + y1)

1
2(x0 + x1)

Rozwi¡zanie (sposób II). Warunek
−→
AS = 1

2

−−→
AB mo»na przeksztaªci¢ bez odwoªywania si¦ do

wspóªrz¦dnych:
S −A = 1

2(B −A)

St¡d dostajemy:

S = A+ 1
2B −

1
2A = 1

2(A+B) =

(x0+x1
2

y0+y1
2

)
(1.1)

Przykªad 6

Udowodni¢, »e ±rodki boków dowolnego czworok¡ta ABCD s¡ wierzchoªkami równolegªoboku.
Rozwi¡zanie. Oznaczmy ±rodki boków czworok¡ta przez K, L, M , N (jak na rysunku).

A B

C

D

K

L

M

N

Aby pokaza¢, »e KLMN jest równolegªobokiem, wystarczy sprawdzi¢, »e
−−→
KL =

−−→
NM .

Korzystaj¡c ze wzoru (1.1) dostajemy:

−−→
KL = L−K = 1

2(B + C)− 1
2(A+B) = 1

2C −
1
2A

−−→
NM = M −N = 1

2(C +D)− 1
2(A+D) = 1

2C −
1
2A

czyli
−−→
KL =

−−→
NM .
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Przykªad 7

Wyznaczy¢ wspóªrz¦dne takiego punktu P , który dzieli odcinek AB w stosunku 2 : 1 (tzn.

|AP | : |PB| = 2 : 1), je±li A =

(
x0

y0

)
, B =

(
x1

y1

)
.

Rozwi¡zanie. Post¦pujemy podobnie jak w Przykªadzie 5. Zauwa»my, »e
−→
AP = 1

3

−−→
AB, co

mo»emy zapisa¢ w postaci:
P −A = 1

3(B −A)

sk¡d otrzymujemy

P = A+ 1
3(B −A) = 1

3B + 2
3A =

(
2
3x0 + 1

3x1
2
3y0 + 1

3y1

)
(1.2)

x

y

A

B

y0

x0

y1

x1

P2
3y0 + 1

3y1

2
3x0 + 1

3x1

Przykªad 8

Udowodni¢, »e trzy ±rodkowe trójk¡ta (tzn. odcinki ª¡cz¡ce wierzchoªek trójk¡ta ze ±rodkiem
przeciwlegªego boku) przecinaj¡ si¦ w jednym punkcie, który dzieli ka»d¡ ±rodkow¡ w stosunku
2 : 1. Wyznaczy¢ wspóªrz¦dne tego punktu (nazywanego ±rodkiem ci¦»ko±ci trójk¡ta), je±li

A =

(
x0

y0

)
, B =

(
x1

y1

)
, C =

(
x2

y2

)
.

Rozwi¡zanie. Niech SA b¦dzie punktem dziel¡cym ±rodkow¡ AA′ w stosunku 2 : 1. Wówczas

SA = A+
−−→
ASA = A+ 2

3

−−→
AA′ = A+ 2

3(A′ −A) = A+ 2
3(1

2B + 1
2C −A) = 1

3(A+B + C)

A B

C

SA
A′

A B

C

S
A′B′

C ′

Podobnie dowodzimy, »e dla punktów SB i SC dziel¡cych odpowiednio ±rodkowe BB′ i
CC ′ w stosunku 2 : 1 zachodzi SB = SC = 1

3(A + B + C). Wobec tego SA = SB = SC = S,
czyli ±rodkowe przecinaj¡ si¦ w jednym punkcie, który ka»d¡ z nich dzieli w stosunku 2 : 1.
Wspóªrz¦dne tego punktu, zgodnie z powy»szym rachunkiem to:

S = 1
3(A+B + C) =

(
1
3x0 + 1

3x1 + 1
3x2

1
3y0 + 1

3y1 + 1
3y2

)
(1.3)
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Przykªad 9

Czy przesuwaj¡c równolegle ±rodkowe dowolnego trójk¡ta mo»na uªo»y¢ z nich trójk¡t?
Rozwi¡zanie. Zauwa»my, »e z wektorów ~u, ~v i ~w da si¦ uªo»y¢ trójk¡t, wtedy i tylko wtedy
gdy speªniaj¡ warunek ~u+ ~v + ~w = ~0 (reguªa przykªadania):

~u
~v

~w

W trójk¡cie o ±rodkowych AA′, BB′, CC ′ wyliczamy (zgodnie ze wzorem (1.1)):

−−→
AA′ +

−−→
BB′ +

−−→
CC ′ = (A′ −A) + (B′ −B) + (C ′ − C) =

(1
2B + 1

2C −A) + (1
2C + 1

2A−B) + (1
2A+ 1

2B − C) = 0

A B

C

A′
B′

C ′

−−→
AA
′

−−→BB ′

−−
→

C
C
′

czyli przesuwaj¡c równolegle ±rodkowe AA′, BB′, CC ′ mo»na z nich uªo»y¢ trójk¡t.

Przykªad 10

Znane s¡ wspóªrz¦dne trzech wierzchoªków równolegªoboku ABCD: A =

(
1
2

)
, B =

(
4
4

)
,

D =

(
5
6

)
. Znajd¹ wspóªrz¦dne czwartego wierzchoªka.

Rozwi¡zanie. Zgodnie z reguª¡ dodawania wektorów (reguªa równolegªoboku):

−−→
AB +

−−→
AD =

−→
AC

A

B C

D

~u

~v

~u+ ~v

czyli
(B −A) + (D −A) = C −A

St¡d dostajemy

C = B −A+D =

(
4
4

)
−
(

1
2

)
+

(
5
6

)
=

(
8
8

)
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Fakt 1.18

Dªugo±¢ wektora v =

(
x
y

)
wynosi

√
x2 + y2. Odlegªo±¢ punktów A =

(
x0

y0

)
i B =

(
x1

y1

)
jest równa dªugo±ci wektora

−−→
AB =

(
x1 − x0

y1 − y0

)
i wynosi

√
(x1 − x0)2 + (y1 − y0)2.

Dowód. Na mocy Twierdzenia Pitagorasa dªugo±¢ wektora
−→
P =

(
x
y

)
(zaczepionego w O =

(
0
0

)
)

wynosi:

|
−→
P | = |

−−→
OP | =

√
|OQ|2 + |PQ|2 =

√
|x|2 + |y|2 =

√
x2 + y2

x

y

P

QO |x|

|y|

·

W takim razie:

|AB| = |
−−→
AB| = |B −A| =

∣∣∣∣(x1 − x0

y1 − y0

)∣∣∣∣ =
√

(x1 − x0)2 + (y1 − y0)2

Wniosek 1.19

Okr¡g o ±rodku w punkcie
(
a
b

)
i promieniu r to zbiór punktów

(
x
y

)
speªniaj¡cych na-

st¦puj¡ce równanie (zwane równaniem okr¦gu):

(x− a)2 + (y − b)2 = r2

Dowód. Okr¡g o ±rodku
(
a
b

)
i promieniu r to zbiór punktów

(
x
y

)
odlegªych o r od punktu

(
a
b

)
,

czyli speªniaj¡cych warunek: √
(x− a)2 + (y − b)2 = r

Poniewa» obie strony równania s¡ dodatnie, wi¦c podnosz¡c równanie stronami do kwadratu
otrzymujemy równowa»n¡ posta¢:

(x− a)2 + (y − b)2 = r2
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Wzór na odlegªo±¢ punktów pozwala ªatwo ustali¢ wzajemne poªo»enie dwóch okr¦gów:

A B

r1 r2

|AB| > r1 + r2 rozª¡czne zewn¦trznie

A B

r1 r2

|AB| = r1 + r2 styczne zewn¦trznie

A B

r1

r2

|r1 − r2| < |AB| < r1 + r2 przecinaj¡ce si¦

A B

r1

r2

|AB| = |r1 − r2| styczne wewn¦trznie

AB

r1

r2

|AB| < |r1 − r2| rozª¡czne wewn¦trznie

Przykªad 11

Ustal wzajemne poªo»enie okr¦gu o ±rodku w punkcie A =

(
1
1

)
i promieniu r1 = 3 oraz okr¦gu

o ±rodku w punkcie B =

(
4
5

)
i promieniu r2 = 2.

Rozwi¡zanie. Odlegªo±¢ ±rodków okr¦gów to |AB| =
√

(4− 1)2 + (5− 1)2 =
√

9 + 16 = 5.
Wobec tego zachodzi warunek |AB| = r1 + r2, czyli okr¦gi s¡ styczne zewn¦trznie.
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Fakt 1.20: Nierówno±¢ trójk¡ta

Dla dowolnych punktów A, B, C na pªaszczy¹nie zachodzi warunek

|AC| ≤ |AB|+ |BC|

przy czym równo±¢ zachodzi wtedy i tylko wtedy, gdy punkt B nale»y do odcinka AC.

Dowód. Je±li punkty A, B i C tworz¡ trójk¡t (czyli nie le»¡ na jednej prostej), to zachodzi:

|AC| < |AB|+ |BC|

A

B

C

Je±li natomiast punkty A, B, C le»¡ na jednej prostej, to |AC| = |AB|+ |BC|, gdy B nale»y
do odcinka AC (wª¡czaj¡c w to mo»liwo±ci B = A lub B = C) lub |AC| < |AB| + |BC| w
przeciwnym razie.

A B C

|AC| = 8 = 3 + 5 = |AB|+ |BC|

AB C

|AC| = 8 < 3 + 11 = |AB|+ |BC|

Powy»szy fakt mo»na zapisa¢ równie» w wersji wektorowej (której b¦dziemy cz¦±ciej u»ywa¢):

Fakt 1.21: Nierówno±¢ trójk¡ta

Dla dowolnych wektorów u, v na pªaszczy¹nie speªniony jest nast¦puj¡cy warunek:

|u+ v| ≤ |u|+ |v|

przy czym równo±¢ zachodzi wtedy i tylko wtedy, gdy wektory u i v s¡ wspóªliniowe i maj¡
zgodne zwroty.

Dowód. Je±li wektory u i v nie s¡ wspóªliniowe, to z wektorów u, v, u + v (po odpowiednim
przesuni¦ciu równolegªym) mo»na zªo»y¢ trójk¡t. Wówczas zachodzi warunek |u+ v| < |u|+ |v|.

u

v

v

u+ v
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Je±li wektory u i v s¡ wspóªliniowe, to |u + v| = |u| + |v| w przypadku, gdy ich zwroty s¡
zgodne lub |u+ v| < |u|+ |v|, gdy ich zwroty s¡ przeciwne.

uv

u+ v

|u+ v| = 11 = 8 + 3 = |u|+ |v|

uv

u+ v

|u+ v| = 5 < 8 + 3 = |u|+ |v|

1.2 Równanie prostej

Je±li chcemy opisa¢ prost¡ na pªaszczy¹nie wystarczy poda¢ (jakikolwiek) punkt X0 nale»¡cy
do tej prostej oraz (niezerowy) wektor v, który wyznacza kierunek tej prostej. Informacje te
jednoznacznie opisuj¡ prost¡, tzn. istnieje dokªadnie jedna prosta przechodz¡ca przez punkt X0

i maj¡ca kierunek wyznaczony przez wektor v.

x

y

X0

X

y0

x0

y

x

~v

We¹my teraz dowolny punkt X =

(
x
y

)
nale»¡cy do prostej przechodz¡cej przez dany punkt

X0 =

(
x0

y0

)
i maj¡cej kierunek danego (niezerowego) wektora v =

(
p
q

)
. Wektory

−−−→
X0X i v s¡

wspóªliniowe oraz v jest niezerowy, wi¦c

−−−→
X0X = t · v, czyli X −X0 = t · v

dla pewnej liczby rzeczywistej t. St¡d otrzymujemy równanie prostej:

X = X0 + t · v (1.4)

To samo równanie mo»na zapisa¢ w postaci:(
x
y

)
=

(
x0

y0

)
+ t ·

(
p
q

)
(1.5)

Równanie (1.5) (lub, w wersji bardziej zwi¦zªej, równanie (1.4)) nazywamy równaniem parame-
trycznym prostej. Wektor v nazywamy wektorem kierunkowym tej prostej. Zauwa»my, »e jedna
prosta jest opisywana przez wiele ró»nych równa« parametrycznych, gdy» ani punkt X0 (do-
wolny punkt na prostej), ani wektor v (dowolny niezerowy wektor równolegªy do prostej) nie jest
wyznaczony jednoznacznie.
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Fakt 1.22

Równania parametryczne X = t ·v+X0 oraz X = t ·v′+X ′0 przedstawiaj¡ t¦ sam¡ prost¡
wtedy i tylko wtedy, gdy wektory v i v′ s¡ równolegªe oraz punkt X ′0 le»y na prostej
X = t · v +X0 (równowa»nie: punkt X0 le»y na prostej X = t · v′ +X ′0).

Dowód. Proste s¡ pokrywaj¡ si¦ wtedy i tylko wtedy, gdy maj¡ ten sam kierunek (tzn. wektory
v i v′ s¡ równolegªe) oraz maj¡ przynajmniej jeden punkt wspólny.

x

y

X0

X ′0

y0

x0

y′0

x′0

~v

~v′

Przykªad 1

Sprawd¹, czy punkt
(

1
2

)
le»y na prostej zadanej równaniem

(
x
y

)
= t

(
3
−1

)
+

(
1
1

)
.

Rozwi¡zanie. Nale»y ustali¢, czy istnieje liczba t speªniaj¡ca równanie wektorowe:(
1
2

)
= t

(
3
−1

)
+

(
1
1

)
czyli speªniaj¡ca ukªad dwóch równa« skalarnych:{

1 = t · 3 + 1

2 = t · (−1) + 1

Powy»szy ukªad równa« jest sprzeczny, wi¦c punkt
(

1
2

)
nie le»y na rozwa»anej prostej.

Przykªad 2

Dana jest prosta ` o równaniu parametrycznym
(
x
y

)
= t

(
2
1

)
+

(
1
0

)
. Znajd¹ inne równanie

opisuj¡ce t¦ sam¡ prost¡.

Rozwi¡zanie. Punkt
(

3
1

)
jest punktem nale»¡cym do prostej ` (bo

(
3
1

)
= 1 ·

(
2
1

)
+

(
1
0

)
).

Wektor
(

4
2

)
jest równolegªy do wektora

(
2
1

)
, wi¦c te» jest wektorem kierunkowym prostej `.

Zatem (zgodnie z Faktem 1.22) innym równaniem parametrycznym prostej ` jest np.(
x
y

)
= t

(
4
2

)
+

(
3
1

)
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Równanie parametryczne prostej interpretujemy nast¦puj¡co: punkt X =

(
x
y

)
nale»y do

prostej o równaniu (1.5) wtedy i tylko wtedy, gdy istnieje liczba rzeczywista t speªniaj¡ca ukªad
równa«: {

x = pt+ x0

y = qt+ y0

Je±li p 6= 0, to ukªad ten mo»na przeksztaªci¢ (stosuj¡c metod¦ podstawiania) do postaci:{
t = 1

px−
1
px0

y = q
px−

1
px0 + y0

(1.6)

Zatem punkt X =

(
x
y

)
le»y na prostej o równaniu parametrycznym

(
x
y

)
= t

(
p
q

)
+

(
x0

y0

)
wtedy

i tylko wtedy, gdy speªnia drugie z równa« ukªadu (1.6) (wówczas istnieje t speªniaj¡ce pierwsze
równanie), czyli (po przeksztaªceniu), gdy speªnia równanie:

− qx+ py + (x0 − py0) = 0 (1.7)

Równanie (1.7) mo»emy przepisa¢ w postaci:

Ax+By + C = 0 (1.8)

gdzie A, B, C s¡ pewnymi liczbami rzeczywistymi oraz A i B nie s¡ równocze±nie równe 0. Przy-
padek p 6= 0 prowadzi do takiej samej konkluzji, a jego rozpatrzenie zostawiamy czytelnikowi.
Równanie (1.8) nazywamy równaniem ogólnym prostej. Zauwa»my, »e podobnie jak w równa-
niu parametrycznym, wspóªczynniki A, B i C w równaniu ogólnym prostej nie s¡ wyznaczone
jednoznacznie.

Fakt 1.23

Wektorem kierunkowym prostej o równaniu Ax+By + C = 0 jest wektor
(
B
−A

)
.

Dowód. Zgodnie ze wzorem (1.7) je±li wektor kierunkowy prostej to
(
p
q

)
, to jej równanie ogólne

ma posta¢ −qx+ py + C = 0. Podstawiaj¡c p = B i q = −A otrzymujemy tez¦.

Wniosek 1.24

Równania Ax+By + C = 0 i A′x+B′y + C ′ = 0 opisuj¡:

1. proste równolegªe wtedy i tylko wtedy, gdy istnieje taka (niezerowa) liczba t, »e
A′ = tA i B′ = tB;

2. t¦ sam¡ prost¡ wtedy i tylko wtedy, gdy istnieje taka (niezerowa) liczba t, »e A′ = tA,
B′ = tB, C ′ = tC (tzn. jedno z równa« powstaje przez przemno»enie drugiego
stronami przez niezerow¡ liczb¦ rzeczywist¡ t).

Dowód. Proste s¡ równolegªe wtedy i tylko wtedy, gdy ich wektory kierunkowe s¡ równolegªe,

tzn. (zgodnie z Faktem 1.23) dla pewnej liczby t zachodzi
(
B′

−A′
)

= t

(
B
−A

)
, czyli B′ = tB i

A′ = tA.
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Równania opisuj¡ce t¦ sam¡ prost¡, w szczególno±ci opisuj¡ proste równolegªe (ka»da prosta
jest równolegªa do siebie). Dodatkowo C ′ = tC, gdy» w przeciwnym razie ukªad równa«{

Ax+By + C = 0

A′x+B′y′ + C ′ = 0

byªby sprzeczny.

Przykªad 3

Dana jest prosta ` o równaniu ogólnym 2x − y + 3 = 0. Znajd¹ inne równania opisuj¡ce t¦
sam¡ prost¡.
Rozwi¡zanie. Je±li pomno»ymy to równanie stronami przez pewn¡ niezerow¡ liczb¦ rzeczywi-
st¡, to otrzymamy równanie równowa»ne, które ma dokªadnie ten sam zbiór rozwi¡za«. Zatem
ka»de z równa«:

4x− 2y + 6 = 0, 6x− 3y + 9 = 0, −2x+ y − 3 = 0

jest równaniem ogólnym prostej `.

Przykªad 4

Sprawd¹, czy punkt
(

1
2

)
le»y na prostej zadanej równaniem ogólnym 2x− 5y + 1 = 0.

Rozwi¡zanie. Wstawiaj¡c
(
x
y

)
=

(
1
2

)
do równania prostej otrzymujemy prawdziwe równanie:

2 · 1− 5 · 2 + 1 = 0

co oznacza, »e punkt
(

1
2

)
nale»y do rozwa»anej prostej.

Przykªad 5

Zamie« równanie parametryczne
(
x
y

)
= t

(
3
2

)
+

(
1
−1

)
na równanie ogólne prostej.

Rozwi¡zanie. Równanie parametryczne mo»emy przedstawi¢ w postaci ukªadu równa«:{
x = 3t+ 1

y = 2t− 1

z którego (jak we wzorze (1.6)) musimy wyeliminowa¢ zmienn¡ t. Wyliczaj¡c z drugiego
równania t = 1

2y + 1
2 i wstawiaj¡c do pierwszego równania otrzymujemy:

x− 3
2y + 5

2 = 0, czyli 2x− 3y + 5 = 0

Szczególn¡ wersj¡ równania ogólnego jest (znane ze szkoªy) równanie kierunkowe prostej:

y = ax+ b (1.9)

Równanie kierunkowe mo»na ªatwo przeksztaªci¢ do postaci ogólnej:

ax− y + b = 0
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Z drugiej strony równanie Ax + By + C = 0 mo»na zamieni¢ na posta¢ kierunkow¡, o ile tylko
B 6= 0:

y = −A
B
x− C

B
Zalet¡ równania ogólnego jest to, »e pozwala on opisa¢ ka»d¡ prost¡ na pªaszczy¹nie, równie»
prost¡ równolegª¡ do osi Oy, czyli prost¡ o równaniu x = c (to jest przypadek B = 0), której nie
mo»na opisa¢ przy pomocy równania kierunkowego.

Przykªad 6

Opisz prost¡ przechodz¡c¡ przez punkty P =

(
1
2

)
i Q =

(
3
5

)
przy pomocy:

(a) równania ogólnego,

(b) równania parametrycznego.

Rozwi¡zanie.

x

y

P

Q

2

1

5

3

Równanie ogólne prostej ma posta¢ Ax + By + C = 0. Aby prosta przechodziªa przez

punkty
(

1
2

)
i
(

3
5

)
, wspóªczynniki A, B i C musz¡ speªnia¢ ukªad równa«:

{
A+ 2B + C = 0

3A+ 5B + C = 0

Rozwi¡zuj¡c ten ukªad otrzymujemy: {
A = 3C

B = −2C

czyli równanie prostej to np. 3x − 2y + 1 = 0 (za C mo»emy przyj¡¢ dowoln¡ niezerow¡
warto±¢, np. C = 1).

Do napisania równania parametrycznego potrzebujemy wektor kierunkowy, np.
−−→
PQ =

(
2
3

)
oraz dowolny punkt na prostej, np. P =

(
1
2

)
. Dostajemy równanie:

(
x
y

)
= t ·

(
2
3

)
+

(
1
2

)
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Przykªad 7

Znajd¹ punkt przeci¦cia prostych:

(a) −3x+ y − 5 = 0 i 4x+ 3y − 2 = 0,

(b) 2x+ y + 3 = 0 i
(
x
y

)
= t

(
1
2

)
−
(

2
3

)
,

(c)
(
x
y

)
= t

(
1
2

)
+

(
4
−1

)
i
(
x
y

)
= t

(
3
−1

)
+

(
1
0

)
.

Rozwi¡zanie. W ka»dym przypadku zadanie sprowadza si¦ do rozwi¡zania ukªadu równa«.
Zatem w (a): {

−3x+ y − 5 = 0

4x+ 3y − 2 = 0

co daje punkt przeci¦cia
(
x
y

)
=

(
−1
2

)
. W (b) dostajemy ukªad równa«:


2x+ y + 3 = 0(
x

y

)
= t

(
1

2

)
−

(
2

3

)
czyli


2x+ y + 3 = 0

x = t− 2

y = 2t− 3

co daje punkt przeci¦cia
(
x
y

)
=

(
−1
−1

)
. W przypadku (c) nale»y zwróci¢ uwag¦, »e szukany

punkt ma speªnia¢ oba równania parametryczne, ale niekoniecznie dla tej samej warto±ci pa-
rametru t, co oznacza, »e parametr dla ka»dej prostej powinni±my oznaczy¢ inn¡ niewiadom¡.
W ten sposób dostajemy ukªad równa« wektorowych:

(
x

y

)
= t

(
1

2

)
+

(
4

−1

)
(
x

y

)
= s

(
3

−1

)
+

(
1

0

) czyli


x = t+ 4

y = 2t− 1

x = 3s+ 1

y = −s

Rozwi¡zuj¡c ten ukªad dostajemy punkt przeci¦cia
(
x
y

)
=

(
4
−1

)
.

Przykªad 8

Napisz równanie prostej przechodz¡cej przez punkt
(

1
−1

)
i równolegªej do prostej o równaniu:

(a)
(
x
y

)
= t

(
1
3

)
+

(
4
1

)
,

(b) 5x− 4y + 1 = 0.

Rozwi¡zanie. (a) Proste równolegªe maj¡ jednakowe wektory kierunkowe, wi¦c szukana prosta

ma wektor kierunkowy
(

1
3

)
(tak jak prosta

(
x
y

)
= t

(
1
3

)
+

(
4
1

)
). Dodatkowo wiemy, »e

szukana prosta przechodzi przez punkt
(

1
−1

)
, sk¡d dostajemy jej równanie (parametryczne):(

x
y

)
= t

(
1
3

)
+

(
1
−1

)
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(b) Ka»da prosta równolegªa do 5x− 4y+ 1− 0 ma równanie 5x− 4y+C = 0, dla pewnej

warto±ci C (Wniosek 1.24). Szukana prosta przechodzi przez punkt
(

1
−1

)
, wi¦c:

5 · 1− 4 · (−1) + C = 0

sk¡d otrzymujemy C = −9. Równanie szukanej prostej to zatem 5x− 4y − 9 = 0.

Przykªad 9

Zamie« równanie ogólne 5x− 2y + 3 = 0 na równanie parametryczne.
Rozwi¡zanie. Potrzebujemy wyrazi¢ zmienne x i y przy pomocy parametru t, co najpro±ciej
zrobi¢, je±li jedn¡ ze zmiennych przyjmiemy za parametr (np. x = t). Wówczas drug¡ zmienn¡
mo»emy wyrazi¢ przy pomocy parametru t:

y = 5
2x+ 3

2 = 5
2 t+ 3

2

co daje równanie parametryczne prostej:{
x = t

y = 5
2 t+ 3

2

czyli
(
x
y

)
= t

(
1
5
2

)
+

(
0
3
2

)

1.3 Iloczyn skalarny

De�nicja 1.25

Iloczynem skalarnym wektorów u i v nazywamy liczb¦:

u ◦ v = |u| · |v| · cos∠(u, v)

gdzie ∠(u, v) oznacza miar¦ mniejszego z k¡tów utworzonych przez wektory u i v.

Przykªad 1

Obliczy¢ iloczyn skalarny ka»dej pary wektorów z poni»szego rysunku.

9

64

30◦·

u

v
w

Rozwi¡zanie.

v ◦ u = u ◦ v = |u| · |v| · cos∠(u, v) = 9 · 6 · cos 30◦ = 9 · 6 ·
√

3
2 = 27

√
3

w ◦ v = v ◦ w = |v| · |w| · cos∠(v, w) = 6 · 4 · cos 90◦ = 6 · 4 · 0 = 0

u ◦ w = w ◦ u = |w| · |u| · cos∠(w, u) = 4 · 9 · cos 120◦ = 4 · 9 · (−1
2) = −18
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Fakt 1.26

Je±li u i v s¡ niezerowymi wektorami, to:

• u ◦ v > 0, gdy ∠(u, v) jest ostry (lub zerowy),

• u ◦ v = 0, gdy ∠(u, v) jest prosty,

• u ◦ v < 0, gdy ∠(u, v) jest rozwarty (lub póªpeªny).

Dowód. Dªugo±ci niezerowych wektorów s¡ liczbami dodatnimi, wi¦c znak u ◦ v jest taki sam
jak znak cos∠(u, v). Natomiast dla k¡ta θ ∈ [0◦, 180◦] (s¡ to wszystkie mo»liwo±ci, gdy» ∠(u, v)
de�niowali±my jako miar¦ mniejszego z dwóch k¡tów utworzonych przez wektory u i v) zachodzi:

• cos θ > 0, gdy 0◦ ≤ θ < 90◦,

• cos θ = 0, gdy θ = 90◦,

• cos θ < 0, gdy 90◦ < θ ≤ 180◦.

Fakt 1.27: Nierówno±¢ Schwarza

Dla dowolnych wektorów u i v na pªaszczy¹nie zachodzi nierówno±¢:

|u ◦ v| ≤ |u| · |v|

przy czym równo±¢ zachodzi wtedy i tylko wtedy, gdy wektory u i v s¡ wspóªliniowe.

Dowód. Poniewa» cos θ ∈ [−1, 1] dla dowolnego k¡ta θ, wi¦c je±li »aden z wektorów u i v nie jest
wektorem zerowym, to :

|u ◦ v| = |u| · |v| · | cos∠(u, v)| ≤ |u| · |v| · 1 = |u| · |v|

Równo±¢ zachodzi wtedy i tylko wtedy, gdy | cos∠(u, v)| = 1 (czyli k¡t mi¦dzy wektorami to 0◦

lub 180◦, tzn. wektory s¡ wspóªliniowe).
Je±li jeden z wektorów u i v jest wektorem zerowym, to |u◦v| = |u| · |v| = 0 (czyli te» zachodzi

równo±¢). Poniewa» jednak w De�nicji 1.13 przyj¦li±my, »e wektor zerowy jest wspóªliniowy z
ka»dym wektorem, wi¦c ten przypadek równie» oznacza wspóªliniowo±¢ wektorów u i v.

Poni»szy fakt pozwala wyliczy¢ iloczyn skalarny wektorów przy pomocy ich wspóªrz¦dnych.

Fakt 1.28

Iloczynem skalarnym wektorów u =

(
x1

y1

)
i v =

(
x2

y2

)
jest liczba:

(
x1

y1

)
◦
(
x2

y2

)
= x1x2 + y1y2

Dowód. Oznaczmy dªugo±ci wektorów u i v przez r i s, za± k¡ty jakie tworz¡ z dodatni¡ póªosi¡
Ox przez θ i ϕ.
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x

y

θ − ϕ

vv

s
s sinϕ

ϕ ·
s cosϕ

u

r r sin θ

θ ·
r cos θ

Z de�nicji funkcji sin i cos mo»emy wyliczy¢ wspóªrz¦dne wektorów u i v:

u =

(
r cos θ
r sin θ

)
, v =

(
s cosϕ
s sinϕ

)
(1.10)

Powy»szy zapis nazywamy postaci¡ biegunow¡ wektorów u i v. K¡t mi¦dzy tymi wektorami to
θ − ϕ, wi¦c:

u ◦ v = |u| · |v| · cos∠(u, v) = r · s · cos(θ − ϕ) = rs · (cos θ cosϕ+ sin θ sinϕ)

= (r cos θ)(s cosϕ) + (r sin θ)(s sinϕ) = x1x2 + y1y2

Wektor dªugo±ci 1 nazywamy wektorem jednostkowym. Wektor jednostkowy ma wspóªrz¦dne(
cos θ
sin θ

)
(co wynika z poprzedniego rysunku dla r = 1).

Przykªad 2

Obliczy¢ iloczyn skalarny ka»dej pary wektorów z poni»szego rysunku.

1

1
x

y

u

v

w

Rozwi¡zanie.

v ◦ u = u ◦ v =

(
8
2

)
◦
(

4
3

)
= 8 · 4 + 2 · 3 = 38

w ◦ v = v ◦ w =

(
4
3

)
◦
(
−1
4

)
= 4 · (−1) + 3 · 4 = 8

u ◦ w = w ◦ u =

(
−1
4

)
◦
(

8
2

)
= 8 · (−1) + 2 · 4 = 0
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Przy pomocy Faktu 1.28 mo»emy wyznaczy¢ miar¦ k¡ta mi¦dzy dwoma wektorami, których
wspóªrz¦dne s¡ znane:

Fakt 1.29

Je±li ϕ jest k¡tem mi¦dzy wektorami u i v na pªaszczy¹nie, to:

cosϕ =
u ◦ v
|u| · |v|

Dowód. Wystarczy przeksztaªci¢ wzór u ◦ v = |u| · |v| · cos∠(u, v).

Przykªad 3

Wyznacz k¡t mi¦dzy wektorami u i v z Przykªadu 2 i ustal czy jest to k¡t ostry, prosty czy
rozwarty.
Rozwi¡zanie.

cos∠(u, v) =
u ◦ v
|u| · |v|

=
38√

82 + 22 ·
√

42 + 32
=

38√
68 · 5

=
38

10
√

17
=

38
√

17

170

Poniewa» wiemy, »e szukany k¡t θ nale»y do przedziaªu [0◦, 180◦], wi¦c podanie warto±ci cos θ

jednoznacznie wyznacza k¡t. Odpowiedzi¡ jest zatem: θ, to taki k¡t, »e cos θ = 38
√

17
170 (co

inaczej mo»na zapisa¢: θ = arccos 38
√

17
170 ). Jest to k¡t ostry, bo cos θ > 0.

Przykªad 4

Zapisz wektor v =

(√
3

1

)
w postaci biegunowej, tzn. w postaci

(
r cos θ
r sin θ

)
.

Rozwi¡zanie. Zaznaczamy wektor v w ukªadzie wspóªrz¦dnych.

x

y

v

√
3

1

θ

Jego dªugo±¢ to r = |v| =
√

(
√

3)2 + 12 = 2. K¡t θ mi¦dzy v a dodatni¡ póªosi¡ Ox speªnia
warunek:

tg θ =

√
3

1
=
√

3

w zwi¡zku z czym θ = 60◦. St¡d dostajemy v =

(
2 cos 60◦

2 sin 60◦

)
.
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Przykªad 5

Sprawd¹ czy trójk¡t o wierzchoªkach A =

(
1
2

)
, B =

(
5
6

)
, C =

(
9
4

)
jest ostrok¡tny, prosto-

k¡tny, czy rozwartok¡tny.
Rozwi¡zanie. Wystarczy ustali¢ znaki odpowiednich iloczynów skalarnych:

−−→
AB ◦

−→
AC =

(
4
4

)
◦
(

8
2

)
= 32 + 8 = 40 > 0, czyli α < 90◦

−−→
BA ◦

−−→
BC =

(
−4
−4

)
◦
(

4
−2

)
= −16 + 8 = −8 < 0, czyli β > 90◦

−→
CA ◦

−−→
CB =

(
−8
−2

)
◦
(
−4
2

)
= 32− 4 = 28 > 0, czyli γ < 90◦

A

B

C
α

β
γ

A

B

C
α

β
γ

A

B

C
α

β
γ

Zatem trójk¡t ABC jest rozwartok¡tny.

Poni»szy fakt przedstawia najwa»niejsze wªasno±ci iloczynu skalarnego.

Fakt 1.30

Dla dowolnych wektorów u, v, w na pªaszczy¹nie i dowolnego skalara t zachodzi:

1) u ◦ v = v ◦ u (przemienno±¢ ◦)

2) u ◦ (v + w) = u ◦ v + u ◦ w (rozdzielno±¢ ◦ wzgl¦dem +)
(v + w) ◦ u = v ◦ u+ w ◦ u

3) (tu) ◦ w = t(u ◦ w) (ª¡czno±¢)

4) u ◦ u = |u|2

5) u ◦ v = 0 wtedy i tylko wtedy, gdy wektory u i v s¡ prostopadªe (u ⊥ v). Uwaga.
Przyjmujemy, »e wektor zerowy jest prostopadªy do ka»dego innego wektora.

Dowód. Bezpo±rednio z De�nicji 1.25 wynika (1) (przemienno±¢ iloczynu skalarnego). Dla do-
wodu (4) zauwa»amy, »e k¡t o pokrywaj¡cych si¦ ramionach ma miar¦ 0, sk¡d:

u ◦ u = |u| · |u| · cos 0 = |u|2

Dla dowodu (5) zauwa»amy, »e |u| · |v| · cos(u, v) = 0, wtedy i tylko wtedy gdy:

cos(u, v) = 0 (tzn. u ⊥ v) lub u = 0 lub v = 0

Poniewa» przyjmujemy, »e wektor 0 jest prostopadªy do ka»dego wektora, wi¦c dwie ostatnie
mo»liwo±ci (u = 0 lub v = 0) zawieraj¡ si¦ w pierwszej: u ⊥ v.

Dla dowodu wªasno±ci (2) skorzystamy z algebraicznej charakteryzacji iloczynu skalarnego
(Fakt 1.28). Poniewa» iloczyn skalarny jest przemienny (wªasno±¢ (1)), wystarczy sprawdzi¢
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tylko jedn¡ z równo±ci z punktu (2). Przyjmuj¡c u =

(
x1

y1

)
, v =

(
x2

y2

)
, w =

(
x3

y3

)
dostajemy:

u ◦ (v + w) =

(
x1

y1

)
◦
((

x2

y2

)
+

(
x3

y3

))
=

(
x1

y1

)
◦
(
x2 + x3

y2 + y3

)
= x1 · (x2 + x3) + y1 · (y2 + y3)

= x1x2 + x1x3 + y1y2 + y1y3 =

(
x1

y1

)
◦
(
x2

y2

)
+

(
x1

y1

)
◦
(
x3

y3

)
= u ◦ v + u ◦ w

Dowód wªasno±ci (3) jest podobny do dowodu wªasno±ci (2) i pozostawiamy go czytelnikowi.

Wyprowadzone powy»ej wªasno±ci umo»liwi¡ nam udowodnienie Twierdzenia cosinusów:

Twierdzenie 1.31: Twierdzenie cosinusów

W trójk¡cie o bokach dªugo±ci a, b, c i k¡cie γ naprzeciw boku c zachodzi wzór:

c2 = a2 + b2 − 2ab cos γ

Dowód. Oznaczmy wierzchoªki trójk¡ta A, B, C oraz wektory: u =
−→
CA, v =

−−→
CB.

A

B

C

u

vγ

v −
u

Wówczas
−−→
AB =

−→
AC +

−−→
CB = −u+ v = v − u. Wykorzystuj¡c Fakt 1.30 otrzymujemy:

c2 = |v − u|2 = (v − u) ◦ (v − u) (wªasno±¢ (4))

= v ◦ (v − u)− u ◦ (v − u) = (v ◦ v − v ◦ u)− (u ◦ v − u ◦ u) (wªasno±¢ (2))

= u ◦ u+ v ◦ v − 2 · u ◦ v (wªasno±¢ (1))

= |u|2 + |v|2 − 2(u ◦ v) = a2 + b2 − 2ab cos γ (wªasno±¢ (4))

Przykªad 6

Dany jest (niezerowy) wektor v =

(
a
b

)
. Znajd¹:

(a) jakikolwiek wektor prostopadªy do v,

(b) wszystkie wektory prostopadªe do v,

(c) wektor jednostkowy (tzn. wektor dªugo±ci 1) prostopadªy do v.

Rozwi¡zanie. Przykªadem takiego wektora jest wektor
(
−b
a

)
, gdy»:

(
a
b

)
◦
(
−b
a

)
= a · (−b) + b · a = 0
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x

y

(
a
b

)(
−b
a

)
·

Pozostaªe wektory prostopadªe do
(
a
b

)
s¡ wspóªliniowe z wektorem

(
−b
a

)
, czyli s¡ postaci

t·
(
−b
a

)
=

(
−bt
at

)
dla pewnego t. Aby znale¹¢ w±ród nich wektor dªugo±ci 1, nale»y wyznaczy¢

takie t, aby: ∣∣∣∣(−btat
)∣∣∣∣ = 1, czyli

√
(−bt)2 + (at)2 = 1

St¡d dostajemy:

t2 =
1

a2 + b2
, czyli t = ± 1√

a2 + b2

S¡ wi¦c dwa jednostkowe wektory prostopadªe do wektora
(
a
b

)
:

− b√
a2 + b2
a√

a2 + b2

 oraz

 b√
a2 + b2

− a√
a2 + b2



Fakt 1.32

Wektor
(
A
B

)
jest prostopadªy do prostej o równaniu Ax + By + C = 0 (wektor ten

nazywamy wektorem normalnym tej prostej).

Dowód. Niech P0 =

(
x0

y0

)
i P1 =

(
x1

y1

)
le»¡ na prostej o równaniu Ax+By + C = 0.

x

y

Ax+By + C = 0(
A
B

)
· P1

P0

y0

x0

y1

x1
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Wówczas: {
Ax0 +By0 + C = 0

Ax1 +By1 + C = 0

Odejmuj¡c te równania stronami otrzymujemy

A(x1 − x0) +B(y1 − y0) = 0

czyli

0 =

(
A
B

)
◦
(
x1 − x0

y1 − y0

)
=

(
A
B

)
◦
−−−→
P0P1

co zgodnie z Faktem 1.30(5) oznacza, »e wektor
(
A
B

)
jest prostopadªy do wektora

−−−→
P0P1, który

jest wektorem kierunkowym prostej.

Zauwa»my, »e w ±wietle powy»szego faktu, znacznie bardziej zrozumiaªy jest Fakt 1.23. Wek-

tor normalny prostej jest prostopadªy do wektora kierunkowego prostej. Skoro wi¦c wektor
(
A
B

)
jest wektorem normalnym prostej o równaniu Ax+By +C = 0, to wektor

(
B
−A

)
(jako prosto-

padªy do
(
A
B

)
) musi by¢ jej wektorem kierunkowym.

Dla lepszego zrozumienia zale»no±ci mi¦dzy wektorem normalnym prostej a jej wektorem kie-
runkowym, przyjrzyjmy si¦ jeszcze raz operacjom zamiany równania parametrycznego na ogólne
i na odwrót.

Przykªad 7

Zamie« posta¢ parametryczn¡ równania prostej
(
x
y

)
= t

(
1
5

)
+

(
3
2

)
na posta¢ ogóln¡.

Rozwi¡zanie. Z postaci parametrycznej odczytujemy wektor kierunkowy:
(

1
5

)
. Wektor

(
5
−1

)
jest do niego prostopadªy, wi¦c jest wektorem normalnym. St¡d ogólne równanie ma posta¢:

5x− y + C = 0

Wiedz¡c (z postaci parametrycznej), »e punkt
(

3
2

)
le»y na tej prostej, znajdujemy C = −13.

Przykªad 8

Zamie« posta¢ ogóln¡ równania prostej 2x− 3y + 7 = 0 na posta¢ parametryczn¡.

Rozwi¡zanie. Z postaci ogólnej odczytujemy wektor normalny:
(

2
−3

)
. Wektor

(
3
2

)
, jako pro-

stopadªy do wektora normalnego, jest zatem wektorem kierunkowym. Znajduj¡c jakikolwiek

punkt na prostej, np.
(
−7

2
0

)
, dostajemy posta¢ parametryczn¡:

(
x
y

)
= t

(
3
2

)
+

(
−7

2
0

)

Badanie wzajemnego poªo»enia wektorów kierunkowych lub wektorów normalnych prostych,
pozwala na ustalenie wzajemnego poªo»enia samych prostych, co pokazuj¡ kolejne dwa fakty.
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Fakt 1.33

Proste `0 i `1 na pªaszczy¹nie s¡:

(a) równolegªe ⇔ ich wektory kierunkowe s¡ równolegªe ⇔ ich wektory normalne s¡
równolegªe;

(b) prostopadªe ⇔ ich wektory kierunkowe s¡ prostopadªe ⇔ ich wektory normalne s¡
prostopadªe.

Dowód. Na pierwszym rysunku przedstawiono wektory kierunkowe prostych:

proste równolegªe

·

proste prostopadªe proste przecinaj¡ce si¦
pod k¡tem ostrym

a na drugim � wektory normalne tych samych prostych:

·

·

proste równolegªe

·

proste prostopadªe

··

proste przecinaj¡ce si¦
pod k¡tem ostrym

Przykªad 9

Napisz równanie ogólne prostej przechodz¡cej przez punkt A =

(
1
2

)
oraz

(a) prostopadªej do wektora u =

(
3
1

)
,

(b) równolegªej do wektora u =

(
3
1

)
.

Rozwi¡zanie. (a) Równanie prostej prostopadªej do wektora
(

3
1

)
ma posta¢ 3x+ y + C = 0.

Skoro prosta ta przechodzi przez punkt
(

1
2

)
, to C = −5.

(b) Je±li wektor
(

3
1

)
jest równolegªy do prostej, to (prostopadªy do niego) wektor

(
−1
3

)
jest do tej prostej prostopadªy. Zatem równanie ogólne szukanej prostej to −x+ 3y + C = 0,

a skoro prosta przechodzi przez punkt
(

1
2

)
, to C = −5.
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Przykªad 10

Napisz równanie ogólne prostej przechodz¡cej przez punkt A =

(
1
2

)
oraz

(a) prostopadªej do prostej o równaniu 2x− 3y + 4 = 0,

(b) równolegªej do prostej o równaniu 2x− 3y + 4 = 0.

Rozwi¡zanie. (a) Proste s¡ prostopadªe wtedy i tylko wtedy, gdy ich wektory normalne s¡
prostopadªe, st¡d prosta prostopadªa do prostej o równaniu 2x − 3y + 4 = 0 ma równanie

3x + 2y + C = 0 (bo
(

2
−3

)
⊥
(

3
2

)
). Podobnie jak w poprzednim przykªadzie wyliczamy

C = −7.
(b) Proste s¡ równolegªe wtedy i tylko wtedy, gdy ich wektory normalne s¡ równolegªe,

st¡d prosta równolegªa do prostej o równaniu 2x− 3y + 4 = 0 ma równanie 2x− 3y + C = 0.
Podobnie jak poprzednio wyliczamy C = 4.

Przykªad 11

Napisz równanie parametryczne prostej przechodz¡cej przez punkt A =

(
−1
1

)
oraz

(a) prostopadªej do prostej o równaniu
(
x
y

)
= t

(
2
−3

)
+

(
1
0

)
,

(b) równolegªej do prostej o równaniu
(
x
y

)
= t

(
2
−3

)
+

(
1
0

)
.

Rozwi¡zanie. (a) Szukamy prostej, której wektor kierunkowy jest prostopadªy do
(

2
−3

)
(wi¦c

wektorem tym mo»e by¢ np.
(

3
2

)
) i która przechodzi przez

(
−1
1

)
. Taka prosta to

(
x
y

)
=

t

(
3
2

)
+

(
−1
1

)
.

(b) Prosta równolegªa do wektora
(

2
−3

)
i przechodz¡ca przez

(
−1
1

)
ma równanie

(
x
y

)
=

t

(
2
−3

)
+

(
−1
1

)
.

Fakt 1.33 mo»na uogólni¢ tak, aby wyznaczy¢ k¡t mi¦dzy dowoln¡ par¡ prostych badaj¡c ich
wektory kierunkowe lub normalne:

Fakt 1.34

Je±li dwie proste si¦ przecinaj¡, to tworz¡ dwie pary równych k¡tów, o miarach α i π−α.
Wówczas:

(a) k¡t mi¦dzy wektorami kierunkowymi tych prostych to α lub π − α,

(b) k¡t mi¦dzy wektorami normalnymi tych prostych to α lub π − α.

Dowód. (a) Wektor kierunkowy prostej jest równolegªy do tej prostej, wi¦c k¡t mi¦dzy wektorami
kierunkowymi jest równy k¡towi mi¦dzy prostymi.

(b) Je±li k¡t ostry mi¦dzy prostymi ma miar¦ α, to k¡t β mi¦dzy wektorami normalnymi, w
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zale»no±ci od ich wzajemnego poªo»enia (patrz rysunek), ma miar¦

β = 2π − π
2 −

π
2 − α = π − α lub β = 2π − π

2 −
π
2 − (π − α) = α

α ·
· β α

π − α
··
β

Przykªad 12

Wyznacz miar¦ k¡ta ostrego mi¦dzy prostymi:

(a) zadanymi równaniami ogólnymi x+ 3y − 1 = 0 i 7x+ y − 4 = 0;

(b) zadanymi równaniami parametrycznymi
(
x
y

)
= t

(
3
−4

)
+

(
−1
0

)
i
(
x
y

)
= t

(
1
1

)
+

(
1
2

)
.

Rozwi¡zanie. (a) Obliczamy cosinus k¡ta mi¦dzy wektorami normalnymi prostych:

cos θ =

(
1
3

)
◦
(

7
1

)
∣∣∣∣(1

3

)∣∣∣∣ · ∣∣∣∣(7
1

)∣∣∣∣ =
10√

10 ·
√

50
=

√
5

5

Wiemy, »e proste, które nie s¡ prostopadªe ani równolegªe tworz¡ dwa jednakowe k¡ty ostre i
dwa jednakowe k¡ty rozwarte. Poniewa» cos θ > 0, wi¦c θ = arccos

√
5

5 jest k¡tem ostrym, za±

π − θ = arccos
(
−
√

5
5

)
jest k¡tem rozwartym mi¦dzy prostymi.

(b) Obliczamy cosinus k¡ta mi¦dzy wektorami kierunkowymi prostych:

cos θ =

(
3
−4

)
◦
(

1
1

)
∣∣∣∣( 3
−4

)∣∣∣∣ · ∣∣∣∣(1
1

)∣∣∣∣ =
−1

5 ·
√

2
= −
√

2

10

Poniewa» cos θ < 0, wi¦c θ = arccos
(
−
√

2
10

)
jest k¡tem rozwartym, za± π − θ = arccos

√
2

10 jest

k¡tem ostrym mi¦dzy prostymi.

Fakt 1.35

Rzut prostopadªy wektora u na wektor v jest wektorem

pv(u) =
u ◦ v
v ◦ v

· v =
u ◦ v
|v|2

· v

Dowód. Rzut na wektor v jest wektorem postaci pv(u) = t · v, dla pewnego skalara t.
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x

y

v

u

pv(u) = tv

u− tv

·

Poniewa» u− tv ⊥ v, wi¦c:

0 = (u− tv) ◦ v = u ◦ v − tv ◦ v = (u ◦ v)− t(v ◦ v)

sk¡d

t =
u ◦ v
v ◦ v

Przykªad 13

Wyznacz rzut wektora u =

(
2
3

)
na wektor v =

(
1
2

)
.

Rozwi¡zanie. Zgodnie ze Faktem 1.35 rzut u na v jest wektorem:

pv(u) =
u ◦ v
v ◦ v

· v =

(
2
3

)
◦
(

1
2

)
(

1
2

)
◦
(

1
2

) · (1
2

)
=

2 + 6

1 + 4
·
(

1
2

)
=

8

5
·
(

1
2

)
=

(
8
5
16
5

)

Zwró¢my uwag¦, »e otrzymany wektor (zgodnie z de�nicj¡ rzutu) jest wspóªliniowy z wektorem
v (na który rzutowali±my).

Fakt 1.36

Odlegªo±¢ punktu P =

(
x0

y0

)
od prostej ` o równaniu Ax+By + C = 0 wynosi

d =
|Ax0 +By0 + C|√

A2 +B2

Dowód. Wybierzmy dowolny punkt Q =

(
x1

y1

)
na prostej `. Odlegªo±¢ punktu P od prostej `

jest równa dªugo±ci rzutu wektora
−−→
QP =

(
x0 − x1

y0 − y1

)
na wektor normalny prostej `, sk¡d:

d =

∣∣∣∣p(A
B

)(
−−→
QP )

∣∣∣∣ =

∣∣∣∣∣
−−→
QP ◦

(
A
B

)(
A
B

)
◦
(
A
B

) · (A
B

)∣∣∣∣∣ =

∣∣∣∣A(x0 − x1) +B(y0 − y1)

A2 +B2

∣∣∣∣ · ∣∣∣∣(AB
)∣∣∣∣
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x

y

P

Q

y0

x0

y1

x1

`d

·

·

czyli

d =
|A(x0 − x1) +B(y0 − y1)|

A2 +B2
·
√
A2 +B2 =

|A(x0 − x1) +B(y0 − y1)|√
A2 +B2

Punkt Q =

(
x1

y1

)
le»y na prostej `, wi¦c Ax1 +By1 +C = 0, czyli Ax1 +By1 = −C, zatem

d =
|(Ax0 +By0)− (Ax1 +By1)|√

A2 +B2
=
|Ax0 +By0 + C|√

A2 +B2
(1.11)

Wzór (6.5) pozwala ªatwo ustali¢ wzajemne poªo»enie okr¦gu i prostej:

A

r

d > r
prosta rozª¡czna z okr¦giem

·

A

r

d = r
prosta styczna do okr¦gu

·

A

r

d < r
prosta przecinaj¡ca okr¡g

·

Przykªad 14

Ustal wzajemne poªo»enie okr¦gu o równaniu (x− 2)2 + (y + 4)2 = 4 oraz prostej o równaniu
2x− 3y + 3 = 0.

Rozwi¡zanie. �rodkiem okr¦gu jest punkt
(

2
−4

)
, a jego odlegªo±¢ od prostej to

d =
|2 · 2− 3 · (−4) + 3|

22 + (−3)2
=

19

13
< 2

czyli mniej ni» promie« okr¦gu (który ma dªugo±¢ 2). Prosta zatem przecina okr¡g.
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1.4 Wyznacznik

Fakt 1.37

Pole trójk¡ta rozpi¦tego przez wektory u =

(
u1

u2

)
oraz v =

(
v1

v2

)
wynosi 1

2 | det(u, v)|, za±

pole równolegªoboku rozpi¦tego przez te wektory wynosi |det(u, v)|, gdzie:

det(u, v) = u1v2 − u2v1

Dowód. Jak wida¢ na rysunku, pole równolegªoboku rozpi¦tego przez wektory u i v jest 2 razy
wi¦ksze od pola trójk¡ta rozpi¦tego przez te wektory.

ϕ
u

v

Pole trójk¡ta mo»na obliczy¢ ze wzoru:

P4 = 1
2 sinϕ · |u| · |v|

gdzie ϕ to k¡t mi¦dzy wektorami u i v. Zatem:

P4 = 1
2 |u|·|v|·sinϕ = 1

2

√
|u|2|v|2 sin2 ϕ = 1

2

√
|u|2|v|2(1− cos2 ϕ) = 1

2

√
|u|2|v|2 − |u|2|v|2 cos2 ϕ =

= 1
2

√
|u|2|v|2 − (u ◦ v)2 = 1

2

√
(u2

1 + u2
2)(v2

1 + v2
2)− (u1v1 + u2v2)2 = 1

2

√
u2

1v
2
2 + u2

2v
2
1 − 2u1v1u2v2 =

= 1
2

√
(u1v2 − u2v1)2 = 1

2 |u1v2 − u2v1| = 1
2 | det(u, v)|

Pole równolegªoboku jest 2 razy wi¦ksze, wi¦c wynosi | det(u, v)|.

W dalszej cz¦±ci skryptu nie b¦dziemy ju» mówili o wyznaczniku pary wektorów, tylko o

wyznaczniku macierzy 2× 2, tzn. zamiast det

((
a
c

)
,

(
b
d

))
b¦dziemy pisali det

(
a b
c d

)
.

Przykªad 1

Wyznacz pole trójk¡ta ABC oraz równolegªoboku ABDC z poni»szego rysunku.

1

1
x

y

D

C

B
A

Rozwi¡zanie. Zarówno trójk¡t ABC jak i równolegªobok ABCD rozpi¦te s¡ przez wektory
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−−→
AB =

(
6
1

)
i
−→
AC =

(
1
4

)
. Zgodnie z Faktem 1.37 pole równolegªoboku wynosi:

| det(
−−→
AB,

−→
AC)| =

∣∣∣∣det

((
6
1

)
,

(
1
4

))∣∣∣∣ = |24− 1| = 23

za± pole trójk¡ta jest dwukrotnie mniejsze i wynosi 1
2 · 23 = 111

2 .

Fakt 1.38

Zamiana kolejno±ci wektorów (kolumn) w wyznaczniku zmienia znak wyznacznika, tzn.

det(u, v) = −det(v, u)

Dowód. Oznaczaj¡c u =

(
u1

u2

)
i v =

(
v1

v2

)
otrzymujemy:

det

((
u1

u2

)
,

(
v1

v2

))
= u1v2 − u2v1 = −(v1u2 − v2u1) = −det

((
v1

v2

)
,

(
u1

u2

))

Zauwa»my, »e ª¡cz¡c Fakty 1.37 i 1.38 widzimy, »e det(u, v) to liczba, której warto±¢ bez-
wzgl¦dna oznacza pole równolegªoboku rozpi¦tego przez wektory u i v, natomiast jej znak jest
zale»ny od kolejno±ci wektorów (w jednym przypadku dodatni, w drugim ujemny). Obserwacja
ta jest motywacj¡ nast¦puj¡cej de�nicji:

De�nicja 1.39

Par¦ niewspóªliniowych wektorów (u, v) na pªaszczy¹nie nazywamy dodatnio zorientowan¡,
je±li k¡t wypukªy (tzn. mniejszy od 180◦) skierowany od u do v jest dodatni, za± ujemnie
zorientowan¡, gdy k¡t ten jest ujemny.

v

u+

(u, v) dodatnio zorientowana

u

v−

(u, v) ujemnie zorientowana

Zwró¢my uwag¦, »e standardowo za �dodatni� kierunek k¡ta przyjmuje si¦ kierunek przeciwny
do ruchu wskazówek zegara, a za �ujemny� � kierunek zgodny z ruchem wskazówek zegara. Za-
uwa»my te», »e konwencja numerowania ¢wiartek ukªadu wspóªrz¦dnych jest zgodna z konwencj¡
okre±laj¡c¡ dodatni kierunek k¡ta.

x

y

III

III IV
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Zwi¡zek orientacji pary wektorów z wyznacznikiem podaje nast¦puj¡cy fakt:

Fakt 1.40

Para wektorów (u, v) na pªaszczy¹nie jest:

• dodatnio zorientowana, gdy det(u, v) > 0,

• ujemnie zorientowana, gdy det(u, v) < 0,

• par¡ wektorów wspóªliniowych, gdy det(u, v) = 0.

Dowód. Zapiszmy oba wektory w postaci biegunowej: u =

(
r sin θ
r cos θ

)
i v =

(
s sinϕ
s cosϕ

)
.

x

y

ϕ− θ

uu

r r sin θ

θ ·

r cos θ

v

s s sinϕ

ϕ ·
s cosϕ

det(u, v) > 0

x

y

ϕ− θ

uu

r r sin θ

θ ·
r cos θ

v

s
s sinϕ

ϕ ·
s cosϕ

det(u, v) < 0

Wówczas:

det(u, v) = det

((
r cos θ
r sin θ

)
,

(
s cosϕ
s sinϕ

))
= (r cos θ)(s sinϕ)− (r sin θ)(s cosϕ)

= rs(cos θ sinϕ− sin θ cosϕ) = rs sin(ϕ− θ)
Zatem:

det(u, v) > 0 ⇐⇒ sin(ϕ− θ) > 0 ⇐⇒ ϕ− θ ∈ (0, 180◦)

det(u, v) < 0 ⇐⇒ sin(ϕ− θ) < 0 ⇐⇒ ϕ− θ ∈ (−180◦, 0)

Z Faktu 1.37 wynika, »e det(u, v) = 0 wtedy i tylko wtedy, gdy pole równolegªoboku rozpi¦-
tego przez wektory u i v wynosi 0, czyli gdy równolegªobok degeneruje si¦ do odcinka (wektory
u i v s¡ wspóªliniowe).

Korzystaj¡c z poj¦cia orientacji pary wektorów, Fakt 1.38 mo»na przeformuªowa¢ w nast¦-
puj¡cy sposób:

Wniosek 1.41

Zamiana kolejno±ci pary wektorów zmienia orientacj¦ tej pary (na przeciwn¡).

Przykªad 2

Dane s¡ wektory u =

(
−1
3

)
i v =

(
2
−7

)
. Ustal która z par (u, v) i (v, u) jest dodatnio, a

która ujemnie zorientowana.

Rozwi¡zanie. Poniewa» det(u, v) = det

((
−1
3

)
,

(
2
−7

))
= 7−6 = 1 > 0, wi¦c para (u, v) jest

dodatnio zorientowana, a zatem (patrz Wniosek 1.41) para (v, u) jest ujemnie zorientowana.
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De�nicja 1.42

Znakowanym polem trójk¡ta (równolegªoboku) rozpi¦tego przez par¦ wektorów (u, v) na
pªaszczy¹nie, nazywamy pole tego trójk¡ta (równolegªoboku) ze znakiem + lub −, w
zale»no±ci od tego, czy para (u, v) jest dodatnio czy ujemnie zorientowana.

U»ywaj¡c powy»szej de�nicji, mo»emy poª¡czy¢ Fakt 1.37 oraz Fakt 1.40 w nast¦puj¡cy
sposób:

Wniosek 1.43

Znakowane pole równolegªoboku rozpi¦tego przez par¦ wektorów (u, v) na pªaszczy¹nie
jest równe det(u, v), a znakowane pole trójk¡ta rozpi¦tego przez (u, v) wynosi 1

2 det(u, v).

W analogii do znakowanego pola trójk¡ta, mo»emy te» wprowadzi¢ znakowan¡ odlegªo±¢ od
prostej:

De�nicja 1.44

Znakowan¡ odlegªo±ci¡ punktu P na pªaszczy¹nie od prostej ` b¦dziemy nazywa¢ odlegªo±¢
punktu P od prostej ` ze znakiem + lub − w zale»no±ci od tego, po której stronie prostej
` znajduje si¦ punkt P .

Zauwa»my, »e de�nicja ta jest troch¦ niejednoznaczna � nie precyzuje, któr¡ stron¦ prostej
uznajemy za �dodatni¡�, a któr¡ za �ujemn¡�. W praktycznych zastosowaniach nie b¦dzie to
miaªo znaczenia, tzn. nie b¦dzie istotny wybór �dodatniej� strony, a jedynie fakt, »e odlegªo±ci
punktów po przeciwnej stronie s¡ liczbami przeciwnymi.

x

y

+

−

Ax
+By

+ C = 0

Ax
+By

+ C = 0

+

−

x

y

Ustalanie wzoru na znakowan¡ odlegªo±¢ punktu od prostej zaczniemy od nast¦puj¡cego
faktu:

Fakt 1.45

Prosta o równaniu Ax+ By + C = 0 dzieli pªaszczyzn¦ na dwie póªpªaszczyzny. Jedna z
tych póªpªaszczyzn skªada si¦ z punktów speªniaj¡cych warunek:

Ax+By + C ≥ 0

a druga z póªpªaszczyzn skªada si¦ z punktów speªniaj¡cych warunek:

Ax+By + C ≤ 0

Prost¡ graniczn¡ zaliczamy do obu póªpªaszczyzn.
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Dowód. Rozwa»my przypadek B 6= 0. Prosta Ax + By + C = 0 przecina o± Oy w punkcie

P =

(
0

−C
B

)
. Zgodnie z Faktem 1.23 wektor v =

(
B
−A

)
jest wektorem kierunkowym prostej.

x

y

P

X

v

Ax
+By

+ C = 0

det(v,
−−→
PX) > 0

x

y

P

X

v

Ax
+By

+ C = 0

det(v,
−−→
PX) < 0

Zauwa»my, »e jedna z póªpªaszczyzn skªada si¦ z takich punktów X =

(
x
y

)
, dla których

para wektorów (v,
−−→
PX) jest dodatnio zorientowana, a druga póªpªaszczyzna skªada si¦ z tych

punktów X, dla których para (v,
−−→
PX) jest ujemnie zorientowana. Na mocy Faktu 1.40 jedna z

póªpªaszczyzn jest opisana nierówno±ci¡:

det(v,
−−→
PX) > 0, czyli det

((
B
−A

)
,

(
x

y + C
B

))
> 0

a zatem nierówno±¢ opisuj¡ca t¦ pªaszczyzn¦ to:

Ax+By + C > 0

W podobny sposób pokazujemy, »e druga póªpªaszczyzna jest opisywana przez nierówno±¢:

Ax+By + C < 0

Poniewa» prost¡ graniczn¡ (o równaniu Ax+By+C = 0) zaliczamy do obu póªpªaszczyzn, wi¦c
ostre nierówno±ci (> i <) zamieniamy na sªabe (≥ i ≤).

Przypadek B = 0, jako znacznie prostszy, pozostawiamy do rozpatrzenia czytelnikowi.

�¡cz¡c Fakt 1.36 oraz Fakt 1.45 otrzymujemy nast¦puj¡cy wniosek:

Wniosek 1.46

Znakowana odlegªo±¢ punktu P =

(
x0

y0

)
od prostej ` o równaniu Ax+By+C = 0 wynosi:

d =
Ax0 +By0 + C√

A2 +B2

Zgodnie z uwagami dotycz¡cymi De�nicji 1.44 powy»szy wniosek jest troch¦ niejednoznaczny
� zamiana równania prostej Ax+By+C = 0 na inne równanie tej samej prostej (np. na równanie
−Ax − By − C = 0) mo»e zamieni¢ stron¦ dodatni¡ z ujemn¡ (tzn. zmieni¢ znak znakowanej
odlegªo±ci). W praktycznych zastosowaniach tego pojecia, wspomniana niejednoznaczno±¢ nie
b¦dzie miaªa znaczenia.

Copyright c© Tomasz Elsner, 2019



46 ROZDZIA� 1. WEKTORY NA P�ASZCZY�NIE

Fakt 1.47

Dany jest wielok¡t wypukªy A1A2 . . . An. Je±li oznaczymy wektory vi =
−−−→
A1Ai, to pole

tego wielok¡ta wynosi:

1
2 | det(v2, v3) + det(v3, v4) + · · ·+ det(vn−1vn)|

Dowód. Udowodnimy ten fakt w przypadku n = 5. Pozostaªe przypadki dowodzi si¦ analogicznie.
Dany jest zatem pi¦ciok¡t wypukªy A1A2A3A4A5. Jego pole P mo»na przedstawi¢ jako sum¦
pól trzech trójk¡tów:

P = PA1A2A3 + PA1A3A4 + PA1A4A5

A1

v2

A2

v3

A3

v4

A4

v5

A5

A1

v2

A2

v3

A3

v4

A4

v5

A5

Zgodnie z Faktem 1.37 mamy zatem:

P = 1
2 |det(v2, v3)|+ 1

2 |det(v3, v4)|+ 1
2 | det(v4, v5)|

Poniewa» wielok¡t jest wypukªy, wi¦c wszystkie pary (v2, v3), (v3, v4), (v4, v5) s¡ jednakowo
zorientowane (dodatnio, jak na pierwszym rysunku lub ujemnie, jak na drugim). Je±li wszystkie
pary s¡ dodatnio zorientowane, to otrzymujemy:

P = 1
2 | det(v2, v3)|+ 1

2 |det(v3, v4)|+ 1
2 | det(v4, v5)| = 1

2(det(v2, v3) + det(v3, v4) + det(v4, v5))

a je±li wszystkie pary s¡ ujemnie zorientowane, to:

P = 1
2 |det(v2, v3)|+ 1

2 | det(v3, v4)|+ 1
2 |det(v4, v5)| = −1

2(det(v2, v3) + det(v3, v4) + det(v4, v5))

Poniewa» pole jest zawsze liczb¡ dodatni¡, wi¦c w ka»dym przypadku otrzymujemy szukany
wzór:

P = 1
2 |det(v2, v3) + det(v3, v4) + det(v4, v5)|

Fakt 1.47 mo»na uogólni¢ na wszystkie (równie» wkl¦sªe) wielok¡ty, cho¢ dowód tego uogól-
nienia wykracza poza ramy niniejszego skryptu:

Fakt 1.48

Pole dowolnego wielok¡ta A1A2 . . . An wyra»a si¦ wzorem:

1
2 | det(v2, v3) + det(v3, v4) + · · ·+ det(vn−1vn)|

gdzie vi =
−−−→
A1Ai.

Nie przedstawimy dowodu tego faktu, natomiast natomiast na rysunku mo»emy zobaczy¢ jak
dziaªa on w przypadku wielok¡tów wypukªych (zaznaczono znakowane pola b¦d¡ce sum¡ odpo-
wiednich wyznaczników, gdzie kolor czerwony oznacza pole dodatnie, za± niebieski � ujemne).
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A1
v2 A2

v3

A3

v4

A4

v5

A5

1
2 det(v2, v3)

A1
v2 A2

v3

A3

v4

A4

v5

A5

1
2 det(v2, v3)

+1
2 det(v3, v4)

A1
v2 A2

v3

A3

v4

A4

v5

A5

1
2 det(v2, v3)

+1
2 det(v3, v4)

+1
2 det(v4, v5)

Przykªad 3

Oblicz pole wielok¡ta z poni»szego rysunku.

1

1
x

y

v1

v2 v3

v4

Rozwi¡zanie. Zgodnie z Faktem 1.48 pole to jest równe:

1
2 | det(v1, v2) + det(v2, v3) + det(v3, v4)| = 1

2

∣∣∣∣det

(
7 3
−1 3

)
+ det

(
3 6
3 4

)
+ det

(
6 1
4 7

)∣∣∣∣
= 1

2(24− 6 + 46) = 32

Na koniec u»yjemy wyznaczników do rozwi¡zywania ukªadu dwóch równa« liniowych z dwoma
niewiadomymi. Zaczniemy od rozwa»enia pojedynczego równania:

Fakt 1.49

Zbiór rozwi¡za« pojedynczego równania liniowego z niewiadomymi x i y:

ax+ by = p

jest jednym z nast¦puj¡cych zbiorów:

• prost¡, gdy a 6= 0 lub b 6= 0,

• pªaszczyzn¡, gdy a = b = p = 0,

• zbiorem pustym, gdy a = b = 0, ale p 6= 0.
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Dowód. Je±li przynajmniej jeden z parametrów a i b jest niezerowy, to zgodnie z (1.8) otrzy-
mujemy równanie prostej. Je±li a = b = 0, to równanie ma posta¢ 0 = p i jest równaniem
sprzecznym (gdy p 6= 0) lub to»samo±ciowym (gdy p = 0).

Fakt 1.50

Zbiór rozwi¡za« ukªadu dwóch równa« liniowych z niewiadomymi x i y:{
ax+ by = p (1.12a)

cx+ dy = q (1.12b)

jest jednym z nast¦puj¡cych zbiorów:

• punktem, gdy (1.12a) i (1.12b) s¡ równaniami przecinaj¡cych si¦ prostych,

• prost¡, gdy (1.12a) i (1.12b) s¡ równaniami tej samej prostej
lub jedno z nich jest równaniem prostej, a drugie równaniem to»samo±ciowym,

• zbiorem pustym, gdy (1.12a) i (1.12b) s¡ równaniami (ró»nych) prostych równole-
gªych lub jedno z nich jest równaniem sprzecznym,

• pªaszczyzn¡, gdy (1.12a) i (1.12b) s¡ to»samo±ciowe, tzn. a = b = c = d = p = q = 0.

Dowód. Zgodnie z Faktem 1.49 rozwi¡zaniem ka»dego z równa« (1.12a) i (1.12b) jest prosta
pªaszczyzna lub zbiór pusty. Rozwi¡zaniem ukªadu równa« jest cz¦±¢ wspólna rozwi¡za« (1.12a)
i (1.12b), czyli cz¦±¢ wspólna dwóch prostych (tzn. punkt, prosta lub zbiór pusty), pªaszczyzna,
cz¦±¢ wspólna pªaszczyzny i prostej (tzn. prosta) lub zbiór pusty.

Fakt 1.51: Wzory Cramera

Dany jest nast¦puj¡cy ukªad równa« z niewiadomymi x i y:{
ax+ by = p

cx+ dy = q
(1.13)

w którym zakªadamy, »e przynajmniej jeden ze wspóªczynników a, b, c, d jest niezerowy.

Wyznacznik D = det

(
a b
c d

)
nazywamy wyznacznikiem gªównym ukªadu. Wówczas:

• Je±li D 6= 0, to ukªad ma jednoznaczne rozwi¡zanie postaci:
x =

Dx

D

y =
Dy

D

gdzie Dx = det

(
p b
q d

)
, Dy = det

(
a p
c q

)

• Je±li D = 0 oraz Dx 6= 0 i Dy 6= 0, to ukªad jest sprzeczny.

• Je±li D = 0 oraz Dx = Dy = 0, to ukªad ma niesko«czenie wiele rozwi¡za«.

Niemo»liwe jest, by D = 0 oraz tylko jeden z wyznaczników Dx i Dy byª niezerowy.

Dowód. Wykorzystuj¡c obydwa równania otrzymujemy:

d(ax+ by)− b(cx+ dy) = dp− bq
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czyli po przeksztaªceniu:
(ad− bc)x = pd− bq

Podobnie wykorzystuj¡c oba równania ukªadu otrzymujemy:

a(cx+ dy)− c(ax+ by) = aq − cp

czyli po przeksztaªceniu:
(ad− bc)y = aq − pc

St¡d je±li D = ad− bc 6= 0 dostajemy:

x =
pd− bq
ad− bc

=
Dx

D
, y =

aq − pc
ad− bc

=
Dy

D

Je±li D = 0, to na mocy Faktu 1.40 wektory
(
a
c

)
i
(
b
d

)
s¡ wspóªliniowe. Je±li ukªad (1.13)

zapiszemy w postaci wektorowej:

x

(
a
c

)
+ y

(
b
d

)
=

(
p
q

)

to otrzymamy równanie mówi¡ce, »e
(
p
q

)
jest kombinacj¡ liniow¡

(
a
c

)
i
(
b
d

)
. Poniewa» jednak(

a
c

)
i
(
b
d

)
s¡ wspóªliniowe, wi¦c równanie ma rozwi¡zanie wtedy i tylko wtedy, gdy

(
p
q

)
jest

wspóªliniowe z
(
a
c

)
(i równocze±nie z

(
b
d

)
), czyli Dx = Dy = 0. W przeciwnym razie Dx 6= 0 i

Dy 6= 0 (przypadek gdy jedna z tych liczb jest zerem, a druga nie jest niemo»liwy) i ukªad jest
sprzeczny.

Przykªad 4

Rozwi¡» nast¦puj¡ce ukªady równa«:{
3x− 2y = 1

4x− 5y = 3
,

{
6x+ 2y = 1

3x+ y = 2
,

{
x− 3y = 1

3x− 9y = 3

Rozwi¡zanie. (a) Obliczamy:

D = det

(
3 −2
4 −5

)
= −7, Dx = det

(
1 −2
3 −5

)
= 1, Dy = det

(
3 1
4 3

)
= 5

czyli ukªad ma jedno rozwi¡zanie: x = Dx
D = −1

7 , y =
Dy
D = −5

7 .
(b) Obliczamy:

D = det

(
6 2
3 1

)
= 0, Dx = det

(
1 2
2 1

)
= −3, Dy = det

(
6 1
3 2

)
= 9

czyli ukªad jest sprzeczny.
(c) Obliczamy:

D = det

(
1 −3
3 −9

)
= 0, Dx = det

(
1 −3
3 −9

)
= 0, Dy = det

(
1 1
3 3

)
= 0

czyli ukªad ma niesko«czenie wiele rozwi¡za«. Rozwi¡zaniem tego ukªadu jest zbiór punktów
le»¡cych na prostej x− 3y = 1 (równanie 3x− 9y = 2 to równanie tej samej prostej).
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Fakt 1.52

Je±li na pªaszczy¹nie dane s¡ dwa niewspóªliniowe wektory u i v, to ka»dy wektor w mo»na
jednoznacznie przedstawi¢ w postaci kombinacji liniowej wektorów u i v:

w = su+ tv

gdzie s i t s¡ liczbami rzeczywistymi (wspóªczynnikami kombinacji liniowej).

Dowód. Oznaczmy u =

(
u1

u2

)
, v =

(
v1

v2

)
oraz w =

(
w1

w2

)
. Wówczas zadanie sprowadza si¦ do

rozwi¡zania ukªadu równa« z niewiadomymi s i t:{
su1 + tv1 = w1

su2 + tv2 = w2

Wiemy, »e ukªad taki ma jednoznaczne rozwi¡zanie, je±li det

(
u1 v1

u2 v2

)
6= 0, co na mocy Faktu

1.40 jest prawd¡, bo wektory u i v nie s¡ wspóªliniowe.
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Rozdziaª 2

Przeksztaªcenia pªaszczyzny

2.1 Przeksztaªcenia liniowe i a�niczne

De�nicja 2.1

Przeksztaªcenie pªaszczyzny (w siebie) to funkcja F : R2 → R2, tzn. przyporz¡dkowanie

ka»demu punktowi
(
x
y

)
∈ R2 punktu F

((
x
y

))
∈ R2.

Zazwyczaj obraz punktu X =

(
x
y

)
oznaczamy X ′ =

(
x′

y′

)
. Je±li punkty oznaczymy pojedy-

czymi literami (A, B, P , Q itd.), to ich obrazy b¦dziemy oznacza¢, odpowiednio, A′, B′, P ′, Q′

itd.

Litera F jest nazw¡ przeksztaªcenia F : R2 → R2, natomiast F (P ) oznacza punkt pªaszczyzny
b¦d¡cy obrazem punktu P (oznaczenie F (P ) b¦dziemy stosowali wymiennie z oznaczeniem P ′,
o ile nie b¦dzie powodowaªo to niejasno±ci).

Poni»ej kilka przykªadów przeksztaªce« pªaszczyzny.

x

y

A

A′

B

B′

C

C ′

translacja (przesuni¦cie)
o wektor ( 2

1 )

x

y

`

A′

A

B′

B

C ′=D′

C

D

·
· · E=E′

rzut (prostok¡tny) na prost¡ `
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x

y

odbicie wzgl¦dem prostej `
(symetria osiowa)

`

A

A′

B

B′

C

C ′

·
· ·

D=D′

x

y

`

A

A′

B

B′

C

C ′

D

D′

·
· ·

·

powinowactwo prostok¡tne
o osi ` i skali 2

x

y

S=S′

A

A′

B
B′

C

C ′

obrót o +40◦ wokóª punktu S

x

y

S=S′

A

A′

B

B′

C

C ′

jednokªadno±¢ o ±rodku S i skali 2

x

y

S=S′

A

A′

B

B′

C

C ′

jednokªadno±¢ o ±rodku S i skali −1
2

x

y

S=S′

A

A′

B

B′

C

C ′

odbicie wzgl¦dem punktu S
(symetria ±rodkowa)

x

y

`

A′

A

B′

B

C ′=D′

C

D

E=E′

rzut uko±ny na prost¡ `
w kierunku wektora ( 1

2 )

x

y

`

A

A′

B

B′

C=C ′
D

D′
E

E′

powinowactwo ±cinaj¡ce
o osi ` i wektorze ( 3

1 )
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Poni»ej podane s¡ formalne de�nicje ka»dego z przeksztaªce« zaprezentowanych pogl¡dowo
na poprzednich dwóch stronach.

1

Translacja (przesuni¦cie) o wektor v to przeksztaªcenie, które do-
wolny punkt X przeprowadza na taki punkt X ′, »e:

−−→
XX ′ = v X

X ′

~v

2

Rzut (prostok¡tny) na prost¡ ` to przeksztaªcenie, które dowolny
punkt X przeprowadza na taki punkt X ′ le»¡cy na prostej `, »e:

−−→
XX ′ ⊥ `

X ′

X
`

·

3

Odbicie (symetria) wzgl¦dem prostej ` to przeksztaªcenie, które

dowolny punkt X przeprowadza na taki punkt X ′, »e
−−→
XX ′ ⊥ `

oraz X i X ′ znajduj¡ si¦ w równych odlegªo±ciach od prostej ` i
po przeciwnych jej stronach.

X

X ′

`

·

4

Powinowactwo prostok¡tne o osi ` i skali k 6= 0 to przeksztaªcenie,
które dowolny punkt X przeprowadza na taki punkt X ′, »e:

−−→
XX ′ = k ·

−−→
XX

gdzie X jest rzutem (prostok¡tnym) punktu X na prost¡ `.

X ′

X

X

`

·

5
Obrót o k¡t θ wokóª punktu S to przeksztaªcenie, które dowolny
punkt X przeprowadza na taki punkt X ′, »e |SX ′| = |SX| oraz
skierowany k¡t ∠XSX ′ ma miar¦ θ.

S
X

X ′

θ

6

Jednokªadno±¢ o ±rodku S i skali k 6= 0 to przeksztaªcenie, które
dowolny punkt X przeprowadza na taki punkt X ′, »e:

−−→
SX ′ = k ·

−−→
SX S

X

X ′

7
Odbicie wzgl¦dem punktu S (symetria ±rodkowa o ±rodku S) to
przeksztaªcenie, które dowolny punkt X przeprowadza na taki
punkt X ′, »e punkt S jest ±rodkiem odcinka XX ′. X

X ′

S

8

Rzut uko±ny na prost¡ ` w kierunku wektora v to przeksztaªcenie,
które dowolny punkt X przeprowadza na taki punkt X ′ le»¡cy na
prostej `, »e: −−→

XX ′ ‖ v X ′

X

v `

9

Powinowactwo ±cinaj¡ce o osi ` i wektorze v (gdzie v jest wek-
torem kierunkowym prostej `) to przeksztaªcenie, które dowolny
punkt X przeprowadza na taki punkt X ′, »e:

−−→
XX ′ = d(X) · v

gdzie d(X) to znakowana odlegªo±¢ punktu X od prostej `.

X ′

X
`

vd
·
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Przykªadami przeksztaªce« pªaszczyzny s¡ równie»:

• przeksztaªcenie identyczno±ciowe, czyli przeksztaªcenie F : R2 → R2 zde�niowane wzorem:
F (X) = X (ka»dy punkt przechodzi na siebie),

• przeksztaªcenie staªe, czyli przeksztaªcenie, przy którym ka»dy punkt ma taki sam obraz,

np. G : R2 → R2 zde�niowane wzorem: G(X) =

(
2
3

)
,

• przeksztaªcenie zerowe (szczególny przypadek przeksztaªcenia staªego), czyli przeksztaªce-
nie H : R2 → R2 zde�niowane wzorem H(X) = 0.

Wygodnym opisem przeksztaªcenia pªaszczyzny jest podanie jego wzoru, tzn. sposobu wyli-

czenia wspóªrz¦dnych obrazu X ′ =
(
x′

y′

)
przy pomocy wspóªrz¦dnych argumentu X =

(
x
y

)
.

Zwró¢my uwag¦, »e przeksztaªcenie pªaszczyzny (tak jak ka»da funkcja) to jedynie przypo-
rz¡dkowanie ka»demu punktowi pªaszczyzny jakiego± (innego lub tego samego) punktu. Prze-
ksztaªcenie �pami¦ta� zatem jedynie punkt P ′ (obraz punktu P ), a nie �drog¦� jak¡ pokonuje
punkt P , aby znale¹¢ si¦ w P ′. Dlatego np. obrót o +270◦ wokóª punktu S jest tym samym

przeksztaªceniem co obrót o −90◦ wokóª S. Podobnie obrót o 180◦ wokóª punktu S jest tym
samym przeksztaªceniem co symetria ±rodkowa o ±rodku S.

Przykªad 1 (translacja)

Wyznacz wzór translacji (przesuni¦cia) Tv o wektor v =

(
3
2

)
.

Rozwi¡zanie.

x

y

X

X ′ = Tv(X)v

y

x

y + 2

x+ 3

Jak wida¢ na powy»szym rysunku funkcja Tv przyporz¡dkowuje punktowiX =

(
x
y

)
punkt:

Tv

((
x
y

))
=

(
x
y

)
+

(
3
2

)
=

(
x+ 3
y + 2

)
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Przykªad 2 (rzut prostok¡tny)

Wyznacz wzór rzutu (prostok¡tnego) P` na prost¡ ` o równaniu 3x− 4y = 0.
Rozwi¡zanie.

x

y

`

O
v

X ′

X

·

Przeksztaªcenie P` przeprowadza wektor X =
−−→
OX (pami¦tamy o uto»samieniu wektorów

i punktów) na jego rzut na wektor kierunkowy v prostej `. Wektor normalny prostej ` to(
3
−4

)
, wi¦c jej wektor kierunkowy to v =

(
4
3

)
. Przeksztaªcenie P` przyporz¡dkowuje zatem

punktowi X =

(
x
y

)
punkt:

P`

((
x
y

))
= p( 4

3 )

((
x
y

))
=

( xy ) ◦ ( 4
3 )

( 4
3 ) ◦ ( 4

3 )
·
(

4
3

)
=

4x+ 3y

25
·
(

4
3

)
=

(
16
25x+ 12

25y
12
25x+ 9

25y

)

Przykªad 3 (odbicie wzgl¦dem prostej)

Wyznacz wzór odbicia (symetrii) S` wzgl¦dem prostej ` o równaniu 3x− 4y = 0.
Rozwi¡zanie. Wykorzystamy wynik z Przykªadu 2, dlatego (wyj¡tkowo) obraz punktu X przez
przeksztaªcenie oznaczymy X ′′, za± przez X ′ oznaczymy rzut punktu X na prost¡ `, którego
wspóªrz¦dne wyliczyli±my w Przykªadzie 2.

x

y

`

X ′

X

X ′′

·

Zauwa»my, »e X ′ jest ±rodkiem odcinka XX ′′. St¡d ze wzoru (1.1) mamy X ′ = 1
2(X+X ′′),

czyli:

S`(X) = X ′′ = 2X ′ −X = 2 ·
(

16
25x+ 12

25y
12
25x+ 9

25y

)
−
(
x
y

)
=

(
7
25x+ 24

25y
24
25x−

7
25y

)
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Przykªad 4 (powinowactwo prostok¡tne)

Wyznacz wzór powinowactwa prostok¡tnego o skali 3 wzgl¦dem prostej ` o równaniu 3x−4y = 0

Rozwi¡zanie. Podobnie jak w Przykªadzie 3 oznaczymy obraz punktu X =

(
x
y

)
przez powi-

nowactwo prostok¡tne jako X ′′, za± przez X ′ rzut punktu X na prost¡ `.

x

y

`

X ′

X

X ′′

·

Zgodnie z de�nicj¡ powinowactwa prostok¡tnego zachodzi równo±¢ wektorów:

−−−→
X ′X ′′ = 3 ·

−−→
X ′X czyli (X ′′ −X ′) = 3 · (X −X ′)

sk¡d otrzymujemy
X ′′ = 3X − 2X ′

Podstawiaj¡c wyliczone w Przykªadzie 2 wspóªrz¦dne X ′ dostajemy:

X ′′ = 3X − 2X ′ = 3 ·
(
x
y

)
− 2 ·

(
16
25x+ 12

25y
12
25x+ 9

25y

)
=

(
43
25x−

24
25y

−24
25x+ 57

25y

)

Przykªad 5 (rzut prostok¡tny raz jeszcze)

Wyznacz wzór rzutu (prostok¡tnego) P` na prost¡ ` o równaniu 2x− 3y − 4 = 0.

Rozwi¡zanie (sposób I). Oznaczmy X =

(
x
y

)
oraz X ′ =

(
x′

y′

)
. Utrudnienie wzgl¦dem Przy-

kªadu 2 polega na tym, »e prosta ` nie przechodzi przez punkt
(

0
0

)
, a zatem wektor X ′ =

−−→
OX ′

nie jest rzutem wektora X =
−−→
OX na wektor kierunkowy prostej `.

x

y

Q v

X ′

X
`

·
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Zauwa»my natomiast, »e je±li Q jest (dowolnym) punktem prostej `, to wektor
−−→
QX ′ b¦dzie

rzutem wektora
−−→
QX na wektor kierunkowy prostej ` i b¦dziemy mogli powtórzy¢ rozumowanie

z Przykªadu 2 (gdzie rol¦ punktu Q peªniª punkt O). Przyjmijmy Q =

(
2
0

)
. Wektor normalny

prostej ` to
(

2
−3

)
, wi¦c jej wektor kierunkowy to v =

(
3
2

)
. St¡d:

−−→
QX ′ = pv(

−−→
QX) =

−−→
QX ◦ v
v ◦ v

v =
3(x− 2) + 2y

9 + 4

(
3
2

)
=

3x+ 2y − 6

13

(
3
2

)
=

(
9
13x+ 6

13y −
18
13

6
13x+ 4

13y −
12
13

)
Wobec tego

P`

((
x
y

))
= X ′ = Q+

−−→
QX ′ =

(
2
0

)
+

(
9
13x+ 6

13y −
18
13

6
13x+ 4

13y −
12
13

)
=

(
9
13x+ 6

13y + 8
13

6
13x+ 4

13y −
12
13

)
czyli {

x′ = 9
13x+ 6

13y + 8
13

y′ = 6
13x+ 4

13y −
12
13

Rozwi¡zanie (sposób II). Punkt X ′ =
(
x′

y′

)
ma speªnia¢ dwa warunki:

• punkt X ′ le»y na prostej `,

• wektor
−−→
XX ′ jest prostopadªy do prostej `.

Poniewa» wektorem kierunkowym prostej jest wektor v =

(
3
2

)
, wi¦c powy»szy ukªad warun-

ków mo»na zapisa¢ w postaci nast¦puj¡cego ukªadu równa« (z niewiadomymi x′ i y′):
2x′ − 3y′ − 4 = 0(
x′ − x
y′ − y

)
◦

(
3

2

)
= 0

czyli {
2x′ − 3y′ − 4 = 0

3(x′ − x) + 2(y′ − y) = 0

Przeksztaªcaj¡c ten ukªad do postaci (1.13) otrzymujemy:{
2x′ − 3y′ = 4

3x′ + 2y′ = 3x+ 2y

Zgodnie ze wzorami Cramera (Fakt 1.51) rozwi¡zanie powy»szego ukªadu to:
x′ = det

(
4 −3

3x+ 2y 2

)
/det

(
2 −3

3 2

)
=

8 + 9x+ 6y

13
= 9

13x+ 6
13y + 8

13

y′ = det

(
2 4

3 3x+ 2y

)
/det

(
2 −3

3 2

)
=

6x+ 4y − 12

13
= 6

13x+ 4
13y −

12
13
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Przykªad 6 (odbicie raz jeszcze)

Wyznacz wzór odbicia (symetrii) S` wzgl¦dem prostej ` o równaniu 2x− 3y − 4 = 0.
Rozwi¡zanie (sposób I). Podobnie jak Przykªadzie 5 utrudnienie polega na tym, »e prosta `

nie przechodzi przez punkt
(

0
0

)
. Oznaczmy obraz punktu X przez X ′′, natomiast X ′ niech

oznacza rzut punktu X na prost¡ ` (wyznaczony ju» w Przykªadzie 5).

x

y

X ′

X

X ′′

`

·

Poniewa» punkt X ′ jest ±rodkiem odcinka XX ′′, wi¦c zgodnie ze wzorem (1.1):

X ′ = 1
2(X ′′ +X), czyli X ′′ = 2X ′ −X

Podstawiaj¡c wyliczone w Przykªadzie 5 wspóªrz¦dne punktu X ′ otrzymujemy:

S`

((
x
y

))
= X ′′ = 2X ′ −X = 2 ·

(
9
13x+ 6

13y + 8
13

6
13x+ 4

13y −
12
13

)
−
(
x
y

)
=

(
5
13x+ 12

13y + 16
13

12
13x−

5
13y −

24
13

)

Rozwi¡zanie (sposób II). Punkt X ′′ =
(
x′′

y′′

)
musi speªnia¢ dwa warunki:

• znakowane odlegªo±ci X i X ′′ od prostej ` s¡ liczbami przeciwnymi,

• wektor
−−−→
XX ′′ jest prostopadªy do prostej `.

Warunki te, zgodnie z Wnioskiem 1.46 oraz Faktem 1.40 (prostopadªo±¢ do prostej ` ozna-
cza wspóªliniowo±¢ z jej wektorem normalnym) mo»na zapisa¢ w postaci ukªadu równa« z
niewiadomymi x′′ i y′′:

2x′′ − 3y′′ − 4√
22 + 32

= −2x− 3y − 4√
22 + 32

det

((
x′′ − x
y′′ − y

)
,

(
2

−3

))
= 0

czyli

{
2x′′ − 3y′′ = −2x+ 3y + 8

−3(x′′ − x)− 2(y′′ − y) = 0

Po przeksztaªceniu do postaci (1.13) otrzymujemy:{
2x′′ − 3y′′ = −2x+ 3y + 8

3x′′ + 2y′′ = 3x+ 2y

Zgodnie ze wzorami Cramera (Fakt 1.51) otrzymujemy:
x′′ =

(
−2x+ 3y + 8 −3

3x+ 2y 2

)
/

(
2 −3

3 2

)
=

5x+ 12y + 16

13

y′′ =

(
2 −2x+ 3y + 8

3 3x+ 2y

)
/

(
2 −3

3 2

)
=

12x− 5y − 24

13
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Przykªad 7 (powinowactwo prostok¡tne raz jeszcze)

Wyznacz wzór powinowactwa prostok¡tnego o skali −1
2 i osi ` o równaniu 2x− 3y − 4 = 0.

Rozwi¡zanie (sposób I). Podobnie jak w Przykªadach 5 i 6 prosta ` nie przechodzi przez punkt(
0
0

)
. Oznaczmy obraz punktu X przez X ′′, natomiast niech X ′ oznacza rzut punktu X na

prost¡ ` (wyznaczony ju» w Przykªadzie 5).

x

y

X ′

X

X ′′

`

·

Zgodnie z de�nicj¡ powinowactwa prostok¡tnego:
−−−→
X ′X ′′ = −1

2

−−→
X ′X czyli X ′′ −X ′ = −1

2(X −X ′)

Podstwiaj¡c wyliczone w Przykªadzie 5 wspóªrz¦dne punktu X ′ otrzymujemy:

X ′′ = −1
2X + 3

2X
′ = −1

2 ·
(
x
y

)
+ 3

2 ·
(

9
13x+ 6

13y + 8
13

6
13x+ 4

13y −
12
13

)
=

(
14
26x+ 18

26y + 24
26

18
26x−

1
26y −

36
26

)

Rozwi¡zanie (sposób II). Punkt X ′′ =
(
x′′

y′′

)
musi speªnia¢ dwa warunki:

• znakowana odlegªo±¢ X ′′ od prostej ` to (−1
2) znakowanej odlegªo±ci X od `,

• wektor
−−−→
XX ′′ jest prostopadªy do prostej `.

Warunki te, zgodnie z Wnioskiem 1.46 i Faktem 1.40 (prostopadªo±¢ do prostej ` oznacza
wspóªliniowo±¢ z jej wektorem normalnym), mo»na zapisa¢ w postaci ukªadu równa« z niewia-
domymi x′′ i y′′:

2x′′ − 3y′′ − 4√
22 + 32

= −1

2
· 2x− 3y − 4√

22 + 32

det

((
x′′ − x
y′′ − y

)
,

(
2

−3

))
= 0

czyli

{
2 · (2x′′ − 3y′′ − 4) = −(2x− 3y − 4)

−3(x′′ − x)− 2(y′′ − y) = 0

Po przeksztaªceniu do postaci (1.13) otrzymujemy:{
4x′′ − 6y′′ = −2x+ 3y + 12

3x′′ + 2y′′ = 3x+ 2y

Zgodnie ze wzorami Cramera (Fakt 1.51) otrzymujemy:
x′′ =

(
−2x+ 3y + 12 −6

3x+ 2y 2

)
/

(
4 −6

3 2

)
=

14x+ 18y + 24

26

y′′ =

(
4 −2x+ 3y + 12

3 3x+ 2y

)
/

(
4 −6

3 2

)
=

18x− y − 36

26
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Przykªad 8 (obrót)

Wyznacz wzór obrotu Rθ wokóª punktu O =

(
0
0

)
o k¡t θ.

Rozwi¡zanie.

x

y

X
r

X ′

r

ϕ+ θ
θ

r sinϕ

r sin(ϕ+ θ)

ϕ ··

r cosϕ

r cos(ϕ+ θ)

Obrót przeprowadza punkt X =

(
x
y

)
na punkt X ′ =

(
x′

y′

)
. Zgodnie ze wzorem (1.10)

mo»emy zapisa¢ oba te wektory w postaci biegunowej:

X =

(
r cosϕ
r sinϕ

)
, X ′ =

(
r cos(ϕ+ θ)
r sin(ϕ+ θ)

)
Korzystaj¡c ze wzorów trygonometrycznych dostajemy:

X ′ =

(
r(cosϕ cos θ − sinϕ sin θ)
r(cosϕ sin θ + sinϕ cos θ)

)
=

(
(r cosϕ) cos θ − (r sinϕ) sin θ
(r cosϕ) sin θ + (r sinϕ) cos θ

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)

Przykªad 9 (obrót raz jeszcze)

Wyznacz wzór obrotu RSθ wokóª punktu S =

(
1
2

)
o k¡t θ = π

6 .

Rozwi¡zanie.

x

y

X
r

X ′

r

S

π
6 r sinϕ

r sin(ϕ+ π
6 )

ϕ ··

r cosϕ

r cos(ϕ+ π
6 )

Obrót przeprowadza punkt X =

(
x
y

)
na punkt X ′ =

(
x′

y′

)
. Zgodnie ze wzorem (1.10)
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mo»emy zapisa¢ wektory
−−→
SX i

−−→
SX ′ w postaci biegunowej:

−−→
SX =

(
r cosϕ
r sinϕ

)
=

(
x− 1
y − 2

)
, oraz

−−→
SX ′ =

(
r cos(ϕ+ π

6 )
r sin(ϕ+ π

6 )

)
=

(
x′ − 1
y′ − 2

)
Korzystaj¡c ze wzorów trygonometrycznych dostajemy:

−−→
SX ′ =

(
r(cosϕ cos π6 − sinϕ sin π

6 )
r(cosϕ sin π

6 + sinϕ cos π6 )

)
=

(
(r cosϕ) cos π6 − (r sinϕ) sin π

6
(r cosϕ) sin π

6 + (r sinϕ) cos π6

)

=

(
(x− 1) cos π6 − (y − 2) sin π

6
(x− 1) sin π

6 + (y − 2) cos π6

)
=

( √
3

2 x−
1
2y −

√
3

2 + 1
1
2x+

√
3

2 y −
1
2 −
√

3

)
st¡d:

RSθ (X) = X ′ = S +
−−→
SX ′ =

(
1
2

)
+

( √
3

2 x−
1
2y −

√
3

2 + 1
1
2x+

√
3

2 y −
1
2 −
√

3

)
=

( √
3

2 x−
1
2y + (2−

√
3

2 )
1
2x+

√
3

2 y + (3
2 −
√

3)

)

Przykªad 10 (jednokªadno±¢)

Wyznacz wzór jednokªadno±ci DS
k o skali k = 3 i ±rodku S =

(
1
2

)
.

Rozwi¡zanie.

x

y

S

X

X ′

Punkt X =

(
x
y

)
i jego obraz X ′ =

(
x′

y′

)
speªniaj¡ warunek:

−−→
SX ′ = 3 ·

−−→
SX czyli X ′ − S = 3 · (X − S)

sk¡d otrzymujemy

DS
k (X) = X ′ = 3X − 2S = 3 ·

(
x
y

)
− 2 ·

(
1
2

)
=

(
3x− 2
3y − 4

)

Przykªad 11 (symetria ±rodkowa)

Wyznaczy¢ wzór symetrii ±rodkowej wzgl¦dem punktu S =

(
3
2

)
.
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Rozwi¡zanie.

x

y

S

X

X ′

Oznaczmy obraz punktu X =

(
x
y

)
przez X ′ =

(
x′

y′

)
. Punkt S =

(
3
2

)
jest ±rodkiem

odcinka XX ′, wi¦c zgodnie ze wzorem (1.1):

S = 1
2(X +X ′)

czyli

X ′ = 2S −X = 2 ·
(

3
2

)
−
(
x
y

)
=

(
−x+ 6
−y + 4

)

Przykªad 12 (rzut uko±ny)

Wyznacz wzór rzutu uko±nego na prost¡ ` o równaniu x−3y+1 = 0 w kierunku wektora
(

2
4

)
.

Rozwi¡zanie.

x

y

`v

X

X ′

Obrazem punktu X =

(
x
y

)
jest punkt X ′ =

(
x′

y′

)
speªniaj¡cy dwa warunki:

• punkt X ′ le»y na prostej o równaniu x− 3y + 1 = 0,

• wektor
−−→
XX ′ =

(
x′ − x
y′ − y

)
jest równolegªy do wektora

(
2
4

)
.

Warunki te mo»na zapisa¢ w postaci ukªadu równa« z niewiadomymi x′ i y′:
x′ − 3y′ + 1 = 0

det

((
x′ − x
y′ − y

)
,

(
2

4

))
= 0

czyli

{
x′ − 3y′ + 1 = 0

4(x′ − x)− 2(y′ − y) = 0
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Po przeksztaªceniu do postaci (1.13) otrzymujemy:{
x′ − 3y′ = −1

4x′ − 2y′ = 4x− 2y

Zgodnie ze wzorami Cramera (Fakt 1.51) otrzymujemy:
x′ =

(
−1 −3

4x− 2y −2

)
/

(
1 −3

4 −2

)
=

2 + 12x− 6y

10

y′ =

(
1 −1

4 4x− 2y

)
/

(
1 −3

4 −2

)
=

4x− 2y + 4

10

Przykªad 13 (powinowactwo ±cinaj¡ce)

Wyznacz wzór powinowactwa ±cinaj¡cego o osi ` maj¡cej równanie 5x−12y−8 = 0 i wektorze

v =

(
12
5

)
.

Rozwi¡zanie.

x

y

`

v

X

·
d(X)

X ′

Zauwa»my, »e v jest wektorem kierunkowym prostej `. Oznaczmy obraz punktu X =

(
x
y

)
przez X ′ =

(
x′

y′

)
. Zgodnie z de�nicj¡ powinowactwa ±cinaj¡cego, punkt X ′ speªnia warunek:

−−→
XX ′ = d(X) ·

(
12
5

)
gdzie d(X) to znakowana odlegªo±¢ punktu X od prostej `, czyli zgodnie z Wnioskiem 1.46:

d(X) =
5x− 12y − 8√

52 + (−12)2
=

5x− 12y − 8

13

Wobec tego:

X ′ = X +
−−→
XX ′ =

(
x
y

)
+

5x− 12y − 8

13
·
(

12
5

)
=

(
73
13x−

144
13 y −

96
13

25
13x−

47
13y −

40
13

)
Zwró¢my uwag¦, »e zgodnie z komentarzem przy Wniosku 1.46 znakowan¡ odlegªo±¢ mo»na
zde�niowa¢ na dwa ró»ne sposoby (w zale»no±ci od przyj¦tego równania prostej), co powoduje,
»e powy»sze zadanie ma jeszcze jedno mo»liwe rozwi¡zanie.
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Zauwa»my, »e we wszystkich przykªadach otrzymali±my wzór postaci:{
x′ = ax+ by + e

y′ = cx+ dy + f
(2.1)

dla pewnych liczb rzeczywistych a, b, c, d, e, f . Wzór ten, dla uproszczenia, zapisujemy zazwyczaj
w nast¦puj¡cej postaci: (

x′

y′

)
=

(
a b
c d

)
·
(
x
y

)
+

(
e
f

)
(2.2)

gdzie
(
a b
c d

)
nazywamy macierz¡ 2× 2, znak · oznacza mno»enie macierzy przez wektor zde�-

niowane nast¦puj¡co: (
a b
c d

)
·
(
x
y

)
=

(
ax+ by
cx+ dy

)
(2.3)

za± znak + oznacza dodawanie wektorów (zauwa»my, »e wynikiem mno»enia macierzy przez wek-
tor jest wektor). Mno»enie zde�niowane wzorem (2.3) to bardzo szczególny przypadek mno»enia
macierzy, które b¦dzie omówione w Rozdziale 2.2.

Nie ka»de przeksztaªcenie pªaszczyzny ma wzór postaci (2.1) (jest to bardzo wyj¡tkowa grupa
przeksztaªce«), ale s¡ to dokªadnie te przeksztaªcenia pªaszczyzny, których badaniem zajmuje si¦
algebra liniowa. St¡d nast¦puj¡ca de�nicja:

De�nicja 2.2

Przeksztaªceniem a�nicznym pªaszczyzny nazywamy przeksztaªcenie F : R2 → R2 zadane
wzorem:

F

((
x
y

))
=

(
a b
c d

)(
x
y

)
+

(
e
f

)
gdzie a, b, c, d, e, f to pewne liczby rzeczywiste.

Wzór ten mo»na równie» zapisa¢ w postaci:

F (X) = AX + v (2.4)

(gdzie A =

(
a b
c d

)
oraz v =

(
e
f

)
) lub w postaci:

{
x′ = ax+ by + e

y′ = cx+ dy + f
(2.5)

Wzór ten skªada si¦ z cz¦±ci liniowej i cz¦±ci translacyjnej :

F

((
x
y

))
=

(
a b
c d

)(
x
y

)
︸ ︷︷ ︸
cz¦±¢ liniowa

+

(
e
f

)
︸︷︷︸

cz¦±¢ translacyjna

(2.6)

Rozró»nienie bierze si¦ z tego, »e badanie przeksztaªce« a�nicznych w du»ej mierze opiera si¦ o
badanie ich cz¦±ci liniowej, czyli badanie zwi¡zanymi z nimi przeksztaªce« liniowych.

Algebra liniowa zajmuje si¦ przede wszystkim szczególnym przypadkiem przeksztaªce« a�-
nicznych, w których nie ma cz¦±ci translacyjnej (tzn. e = f = 0), czyli przeksztaªce« liniowych.
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De�nicja 2.3

Przeksztaªceniem liniowym pªaszczyzny nazywamy przeksztaªcenie F : R2 → R2 zadane
wzorem:

F

((
x
y

))
=

(
a b
c d

)(
x
y

)
gdzie a, b, c, d ∈ R. Macierz

(
a b
c d

)
nazywamy macierz¡ przeksztaªcenia liniowego F i

oznaczamy m(F ).

Wzór ten mo»na równie» zapisa¢ w postaci:

F (X) = AX (2.7)

(gdzie A =

(
a b
c d

)
) lub w postaci: {

x′ = ax+ by

y′ = cx+ dy
(2.8)

Fakt 2.4

Przeksztaªcenie a�niczne F jest liniowe wtedy i tylko wtedy, gdy F (0) = 0.

Dowód. Przeksztaªcenie a�niczne ma wzór F (X) = AX + v, gdzie A =

(
a b
c d

)
i v =

(
e
f

)
i jest

ono liniowe wtedy i tylko wtedy, gdy jego cz¦±¢ translacyjna znika, tzn. v = 0. Poniewa»

F (0) = A · 0 + v =

(
a b
c d

)(
0
0

)
+

(
e
f

)
=

(
0
0

)
+

(
e
f

)
= v

wi¦c jest to równowa»ne stwierdzeniu F (0) = 0.

Wszystkie przeksztaªcenia rozpatrywane w tym rozdziale byªy przeksztaªceniami a�nicznymi.
Fakt 2.4 pomaga wyszczególni¢ w±ród nich przeksztaªcenia liniowe, co pokazano poni»ej.

przeksztaªcenia a�niczne przeksztaªcenia liniowe

1 translacja o dowolny wektor translacja o wektor 0 (=identyczno±¢)

2 rzut (prostok¡tny) na dowoln¡ prost¡ rzut (prostok¡tny) na prost¡ przechodz¡c¡ przez O

3 odbicie wzgl¦dem dowolnej prostej odbicie wzgl¦dem prostej przechodz¡cej przez O

4
powinowactwo prostok¡tne o dowolnej
osi

powinowactwo prostok¡tne o osi przechodz¡cej przez
O

5 obrót wokóª dowolnego punktu obrót wokóª punktu O

6 jednokªadno±¢ o dowolnym ±rodku jednokªadno±¢ o ±rodku w punkcie O

7 symetria ±rodkowa o dowolnym ±rodku symetria ±rodkowa o ±rodku O

8 rzut uko±ny na dowoln¡ prost¡ rzut uko±ny na prost¡ przechodz¡c¡ przez O

9 powinowactwo ±cinaj¡ce o dowolnej osi powinowactwo ±cinaj¡ce o osi przechodz¡cej przez O

10 identyczno±¢ identyczno±¢

11 przeksztaªcenie staªe przeksztaªcenie zerowe
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Przykªad 14

Znale¹¢ obraz punktu
(

2
−1

)
przez:

(a) przeksztaªcenie liniowe F o macierzy
(

1 2
−3 1

)
,

(b) przeksztaªcenie a�niczne o wzorze F (X) =

(
2 −1
3 0

)
X +

(
1
1

)
.

Rozwi¡zanie.

(a) F

((
2
−1

))
=

(
1 2
−3 1

)(
2
−1

)
=

(
0
−7

)
(b) F

((
2
−1

))
=

(
2 −1
3 0

)(
2
−1

)
+

(
1
1

)
=

(
5
6

)
+

(
1
1

)
=

(
6
7

)

2.2 Macierze

De�nicja 2.5

Macierz¡ rozmiarum×n nazywamy prostok¡tn¡ tablic¦ liczb om wierszach i n kolumnach.
Liczby z tej tablicy nazywamy wyrazami macierzy. Macierz o jednakowej liczbie wierszy
i kolumn nazywamy macierz¡ kwadratow¡.

Przykªady macierzy:

(
2 5
−1 7

) (
−1 3 1
5 0 0

) 5 1
2 8
0 −1

 (
−3 1

) (
3
4

)

W pierwszej cz¦±ci niniejszego skryptu (skupionej na przestrzeniach 2-wymiarowych), b¦dziemy
bada¢ jedynie macierze o co najwy»ej 2 wierszach i co najwy»ej 2 kolumnach, czyli macierze
nast¦puj¡cych rozmiarów:(

2 3
1 0

)
macierz 2× 2

(
4
1

)
macierz 2× 1

(
5 3

)
macierz 1× 2

(7)
macierz 1× 1

Jak wida¢ wektor v ∈ R2 mo»na traktowa¢ jako szczególny przypadek macierzy (macierz rozmiaru
2 × 1, tzn. macierz o 2 wierszach i 1 kolumnie). Podobnie liczby rzeczywiste mo»na traktowa¢
jako macierz rozmiaru 1× 1 (macierz o 1 wierszu i 1 kolumnie).

Na zbiorze macierzy tego samego rozmiaru (np. na zbiorze macierzy 2×2) mo»na wprowadzi¢
dwa dziaªania: dodawanie macierzy oraz mno»enie macierzy przez skalar.

De�nicja 2.6

Dodawanie macierzy 2× 2 de�niujemy w nast¦puj¡cy sposób:(
a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
Analogicznie de�niujemy dodawanie jakichkolwiek dwóch macierzy tego samego rozmiaru
(np. macierzy 2× 1 lub macierzy 1× 2).
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De�nicja 2.7

Mno»enie macierzy 2× 2 przez skalar de�niujemy w nast¦puj¡cy sposób:

t ·
(
a b
c d

)
=

(
ta tb
tc td

)

W szczególno±ci macierz¡ przeciwn¡ do
(
a b
c d

)
jest macierz (−1)·

(
a b
c d

)
=

(
−a −b
−c −d

)
.

Analogicznie de�niujemy mno»enie macierzy innych rozmiarów przez skalar oraz macierze
przeciwne do macierzy innych rozmiarów.

Zauwa»my, »e De�nicje 2.6 i 2.7 stanowi¡ uogólnienie zarówno dziaªa« na wektorach (patrz
Fakt 1.8 i Fakt 1.9) traktowanych jako macierze 2 × 1, jak i dziaªa« na liczbach rzeczywistych,
traktowanych jako macierze 1×1. Macierz zerow¡ 0 (oznaczan¡ zazwyczaj tym samym symbolem
co liczba zero, b¡d¹ wektor zerowy) de�niujemy podobnie jak wektor zerowy:

0 =

(
0 0
0 0

)
W zwi¡zku z wyra¹n¡ analogi¡ mi¦dzy dziaªaniami na macierzach a dziaªaniami na wektorach nie
dziwi, »e dziaªania na macierzach maj¡ wªasno±ci analogiczne do wªasno±ci dziaªa« na wektorach
(por. Fakt 1.12):

Fakt 2.8

Dla dowolnych macierzy A, B, C (tego samego rozmiaru) oraz dowolnych skalarów s, t
zachodz¡ nast¦puj¡ce wªasno±ci:

1) A+B = B +A (przemienno±¢ +)
2) (A+B) + C = A+ (B + C) (ª¡czno±¢ +)
3) 0 +A = A+ 0 = A (element neutralny +)
4) A+ (−A) = (−A) +A = 0 (element przeciwny)
5) (s+ t) ·A = s ·A+ t ·A (rozdzielno±¢ · wzgl¦dem +)
6) t · (A+B) = t ·A+ t ·B (rozdzielno±¢ · wzgl¦dem +)
7) s · (tA) = (st) ·A (ª¡czno±¢ mno»enia skalarów)
8) 1 ·A = A

Dowód. Poka»emy dowód ª¡czno±ci dodawania. Dowód pozostaªych wªasno±ci przebiega analo-
gicznie i jego przeprowadzenie pozostawiamy czytelnikowi:((

a b
c d

)
+

(
a′ b′

c′ d′

))
+

(
a′′ b′′

c′′ d′′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
+

(
a′′ b′′

c′′ d′′

)
=

(
a+ a′ + a′′ b+ b′ + b′′

c+ c′ + c′′ d+ d′ + d′′

)
(
a b
c d

)
+

((
a′ b′

c′ d′

)
+

(
a′′ b′′

c′′ d′′

))
=

(
a b
c d

)
+

(
a′ + a′′ b′ + b′′

c′ + c′′ d′ + d′′

)
=

(
a+ a′ + a′′ b+ b′ + b′′

c+ c′ + c′′ d+ d′ + d′′

)

Na zbiorze macierzy mo»na równie» wprowadzi¢ trzecie dziaªanie (nie maj¡ce odpowiednika
w±ród dziaªa« na wektorach): mno»enie macierzy. W odró»nieniu od dodawania i mno»enia
przez skalar (które zachowuj¡ rozmiar macierzy), mno»y¢ mo»na jedynie takie dwie macierze, »e:

liczba kolumn pierwszej macierzy = liczba wierszy drugiej macierzy (2.9)

Genez¦ takiego warunku pokazuje poni»sza de�nicja mno»enia.
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De�nicja 2.9

Iloczyn macierzy 2× 2 de�niujemy w nastepuj¡cy sposób:(
a b
c d

)
·
(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca+ dc′ cb′ + dd′

)
(wyraz w i-tym wierszu i j-tej kolumnie wynikowej macierzy wyliczany jest na podstawie
wyrazów w i-tym wierszu pierwszego czynnika i w j-tej kolumnie drugiego czynnika).
Iloczyn macierzy innych rozmiarów (speªniaj¡cych warunek (2.9)) de�niujemy analogicz-
nie, w szczególno±ci: (

a b
c d

)
·
(
x
y

)
=

(
ax+ by
cx+ dy

)

Zauwa»my, »e mno»enie macierzy 2× 2 przez macierz 2× 1 (któr¡ uto»samiamy z wektorem)
jest zde�niowane jak we wzorze (2.3) de�niuj¡cym mno»enie macierzy przez wektor.

Wykonywanie mno»enia macierzy mo»e by¢ wygodniejsze, je±li drugi czynnik zapiszemy nieco
wy»ej, a wynik mno»enia poni»ej drugiego czynnika, jak w nast¦puj¡cym przykªadzie.

Przykªad 1

Oblicz nast¦puj¡ce iloczyny macierzy:(
4 1
2 3

)
·
(

1 0
3 1

)
,(a)

(
1 1
5 2

)
·
(

1
2

)
,(b)

(
3 2

)
·
(

2 1
0 3

)
.(c)

Rozwi¡zanie.

(a)

(
1 0
3 1

)
(

4 1
2 3

) (
7 1
11 3

), (b)

(
1
2

)
(

1 1
5 2

) (
3
9

), (c)

(
2 1
0 3

)
(
3 2

) (
6 9

)

Zwró¢my uwag¦, »e mno»enie macierzy nie jest przemienne. Po pierwsze, je±li A i B s¡
macierzami, to zazwyczaj przynajmniej jedno z mno»e« A · B, B · A jest niewykonalne (np.(

1 9
3 2

)
·
(

2
1

)
jest wykonalne, natomiast

(
2
1

)
·
(

1 9
3 2

)
nie). Po drugie, w sytuacji, gdy oba

mno»enia s¡ wykonalne, mog¡ one dawa¢ ró»ne wyniki, co pokazuje kolejny przykªad.

Przykªad 2

Obliczy¢ iloczyny A ·B oraz B ·A, gdzie A =

(
1 2
1 0

)
, B =

(
0 3
1 1

)
.

Rozwi¡zanie.

A ·B =

(
1 2
1 0

)
·
(

0 3
1 1

)
=

(
2 5
0 3

)
, B ·A =

(
0 3
1 1

)
·
(

1 2
1 0

)
=

(
3 0
2 2

)
Jak wida¢ A ·B 6= B ·A.
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Fakt 2.10

Je±li A, B i C s¡ takimi macierzami, »e mno»enia A ·B i B · C s¡ wykonalne, to:

1) (A ·B) · C = A · (B · C) (ª¡czno±¢ ·)

2) t · (A ·B) = (tA) ·B = A · (tB)

3) (A+B) · C = A · C +B · C (rozdzielno±¢ · wzgl¦dem +)

4) A · (B + C) = A ·B +A · C (rozdzielno±¢ · wzgl¦dem +)

Dowód. (1) Rozwa»my przypadek, gdy A, B i C s¡ macierzami 2 × 2. Pozostaªe przypadki
rozpatrujemy analogicznie.((

a b
c d

)
·
(
a′ b′

c′ d′

))
·
(
a′′ b′′

c′′ d′′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
·
(
a′′ b′′

c′′ d′′

)

=

(
aa′a′′ + bc′a′′ + ab′c′′ + bd′c′′ aa′b′′ + bc′b′′ + ab′d′′ + bd′d′′

ca′a′′ + dc′a′′ + cb′c′′ + dd′c′′ ca′b′′ + dc′b′′ + cb′d′′ + dd′d′′

)
(
a b
c d

)
·
((

a′ b′

c′ d′

)
·
(
a′′ b′′

c′′ d′′

))
=

(
a b
c d

)
·
(
a′a′′ + b′c′′ a′b′′ + b′d′′

c′a′′ + d′c′′ c′b′′ + d′d′′

)
=

(
aa′a′′ + ab′c′′ + bc′a′′ + bd′c′′ aa′b′′ + ab′d′′ + bc′b′′ + bd′d′′

ca′a′′ + cb′c′′ + dc′a′′ + dd′c′′ ca′b′′ + cb′d′′ + dc′b′′ + dd′d′′

)
czyli lewa i prawa strona wzoru s¡ równe.

Dowód pozostaªych wªasno±ci przebiega podobnie.

Wªasno±ci dziaªa« na macierzach zebrane w Faktach 2.8 i 2.10 pozwalaj¡ udowodni¢ nast¦-
puj¡ce wa»ne wªasno±ci przeksztaªce« liniowych:

Fakt 2.11

Je±li F : R2 → R2 jest przeksztaªceniem liniowym, to dla dowolnych wektorów u i v oraz
dowolnego skalara t zachodz¡ wªasno±ci:

1) F (0) = 0
2) F (u+ v) = F (u) + F (v) (addytywno±¢)
3) F (t · u) = t · F (u) (jednorodno±¢)

Dowód. Niech A =

(
a b
c d

)
b¦dzie macierz¡ przeksztaªcenia liniowego F , tzn. F (X) = AX.

Wówczas wªasno±¢ (1) otrzymujemy przez proste sprawdzenie:

F

((
0
0

))
=

(
a b
c d

)(
0
0

)
=

(
0
0

)
Wªasno±¢ (2) wynika z rozdzielno±ci mno»enia macierzy wzgl¦dem dodawania (Fakt 2.8), gdzie
wektor traktujemy jako szczególny przypadek macierzy:

F (u+ v) = A · (u+ v) = A · u+A · v = F (u) + F (v)

Wªasno±¢ (3) wynika z Faktu 2.10:

F (t · u) = A · (tu) = t · (Au) = t · F (u)
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Wªasno±¢ (1) jest w rzeczywisto±ci szczególnym przypadkiem wªasno±ci (3) (przy t = 0).
Niemniej, jako wyj¡tkowo wa»ny przypadek, podana zostaªa w postaci osobnej wªasno±ci.

Przykªad 3

Dane jest przeksztaªcenie liniowe F : R2 → R2. O wektorach u i v wiemy, »e F (u+ v) =

(
4
3

)
oraz F (u− v) =

(
2
1

)
. Oblicz F (u) i F (v).

Rozwi¡zanie. Korzystaj¡c z addytywno±ci i jednorodno±ci przeksztaªce« liniowych (Fakt 2.11),
dostajemy: (

4
3

)
= F (u+ v) = F (u) + F (v)(

2
1

)
= F (u− v) = F (u)− F (v)

Dodaj¡c stronami obie równo±ci otrzymujemy:(
4
3

)
+

(
2
1

)
= 2F (u), czyli F (u) =

(
3
2

)
a odejmuj¡c stronami obie równo±ci:(

4
3

)
−
(

2
1

)
= 2F (v), czyli F (v) =

(
1
1

)

Wªasno±ci addytywno±ci i jednorodno±ci (ª¡cznie nazywane liniowo±ci¡) mog¡ stanowi¢ al-
ternatywn¡ charakteryzacj¦ przeksztaªce« liniowych, co pokazuje nast¦puj¡cy fakt.

Fakt 2.12

Przeksztaªcenie pªaszczyzny F : R2 → R2 jest liniowe wtedy i tylko wtedy, gdy jest
addytywne i jednorodne.

Dowód. Pokazali±my ju» (Fakt 2.11), »e przeksztaªcenie liniowe jest addytywne i jednorodne.
Niech teraz F : R2 → R2 b¦dzie dowolnym przeksztaªceniem pªaszczyzny, które jest addytywne

i jednorodne. Oznaczmy obrazy wersorów e1 =

(
1
0

)
i e2 =

(
0
1

)
przez przeksztaªcenie F jako

F (e1) =

(
a
c

)
i F (e2) =

(
b
d

)
. Wówczas dla dowolnego

(
x
y

)
zachodzi:

F

((
x
y

))
= F (xe1 + ye2) = F (xe1) + F (ye2) = xF (e1) + yF (e2) = x

(
a
c

)
+ y

(
b
d

)

=

(
ax
cx

)
+

(
by
dy

)
=

(
ax+ by
cx+ dy

)
=

(
a b
c d

)(
x
y

)
czyli F jest przeksztaªceniem liniowym.

Wnioskiem z dowodu jest nast¦puj¡cy fakt:
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Fakt 2.13

Je±li
(
a b
c d

)
jest macierz¡ przeksztaªcenia liniowego F : R2 → R2, to:

(
a
c

)
= F (e1) oraz

(
b
d

)
= F (e2)

(tzn. kolumny macierzy przeksztaªcenia to obrazy wersorów).

Dowód.

F (e1) =

(
a b
c d

)(
1
0

)
=

(
a
c

)
, F (e2) =

(
a b
c d

)(
0
1

)
=

(
b
d

)

Zwró¢my uwag¦, »e z Faktu 2.13 wynika, »e znajomo±¢ obrazów obu wersorów przez prze-
ksztaªcenie liniowe F pozwala na ustalenie obrazu przez F ka»dego innego punktu pªaszczyzny.
Pokazuje to jak bardzo szczególnymi przeksztaªceniami s¡ przeksztaªcenia liniowe.

Przykªad 4

Wyznacz (bez »adnych rachunków) macierze nast¦puj¡cych przeksztaªce« liniowych:
obrót R o +90◦ wokóª 0,(a) odbicie S wzgl¦dem prostej y = x.(b)

Rozwi¡zanie. Zgodnie z Faktem 2.13 kolumny macierzy przeksztaªcenia to obrazy wersorów.
Zatem:

x

y

e1

e 2
=
R

(e
1
)

R(e2)
· x

y

e2 = S(e1)

e 1
=
S

(e
2
)

(a) Poniewa» R(e1) =

(
0
1

)
i R(e2) =

(
−1
0

)
(pierwszy rysunek), wi¦c:

R(X) =

(
0 −1
1 0

)
X

(b) Poniewa» S(e1) =

(
0
1

)
i S(e2) =

(
1
0

)
(drugi rysunek), wi¦c:

S(X) =

(
0 1
1 0

)
X
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Przykªad 5

Wyznacz macierz obrotu R o k¡t θ wokóª 0.
Rozwi¡zanie.

x

y

e1

e2

R(e1)

R(e2)

· α

Zgodnie ze wzorem (1.10) na wspóªrz¦dne biegunowe wektora, obrazy wersorów to:

R

((
1
0

))
=

(
cosα
sinα

)

R

((
0
1

))
=

(
cos(α+ 90◦)
sin(α+ 90◦)

)
=

(
cosα cos 90◦ − sinα sin 90◦

sinα cos 90◦ + cosα sin 90◦

)
=

(
− sinα
cosα

)
St¡d, zgodnie z Faktem 2.13 otrzymujemy macierz przeksztaªcenia R:

R(X) =

(
cosα − sinα
sinα cosα

)
X

co jest prostszym wyprowadzeniem wzoru z Przykªadu 8 z Rozdziaªu 2.1.

Przykªad 6

Wyznacz macierz odbicia S` wzgl¦dem prostej ` przechodz¡cej przez 0 i nachylonej do dodat-
niej póªosi Ox pod k¡tem α.
Rozwi¡zanie.

x

y

e1

e2 S`(e1)

S`(e2)

β
β

α
α

Zgodnie ze wzorem (1.10) na wspóªrz¦dne biegunowe wektora, obrazy wersorów to:

S`

((
1
0

))
=

(
cos 2α
sin 2α

)
oraz S`

((
0
1

))
=

(
cos(α− β)
sin(α− β)

)
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Poniewa» β = 90◦ − α, wi¦c α− β = 2α− 90◦, czyli:

S`

((
0
1

))
=

(
cos(2α− 90◦)
sin(2α− 90◦)

)(
cos 2α cos 90◦ + sin 2α sin 90◦

sin 2α cos 90◦ − cos 2α sin 90◦

)
=

(
sin 2α
− cos 2α

)
St¡d, zgodnie z Faktem 2.13, otrzymujemy macierz przeksztaªcenia S`:

S`(X) =

(
cos 2α sin 2α
sin 2α − cos 2α

)
X

Przeksztaªcenie liniowe jest jednoznacznie wyznaczone nie tylko przez obrazy obu wersorów,
ale przez obrazy dowolnych dwóch niewspóªliniowych wektorów. W tym sensie poni»szy fakt
uogólnia Fakt 2.13.

Fakt 2.14

Przeksztaªcenie liniowe pªaszczyzny jest jednoznacznie wyznaczone przez obrazy dowol-
nych dwóch niewspóªliniowych wektorów, tzn. je±li dane s¡ niewspóªliniowe wektory
u i v oraz dowolne wektory u′ i v′ to istnieje dokªadnie jedno przeksztaªcenie liniowe
F : R2 → R2 takie, »e

F (u) = u′ oraz F (v) = v′

Dowód. Oznaczmy u =

(
u1

u2

)
, v =

(
v1

v2

)
, u′ =

(
u′1
u′2

)
, v′ =

(
v′1
v′2

)
. Szukamy macierzy

(
a b
c d

)
takiej, »e: 

(
a b

c d

)(
u1

u2

)
=

(
u′1
u′2

)
(
a b

c d

)(
v1

v2

)
=

(
v′1
v′2

) czyli


au1 + bu2 = u′1
cu1 + du2 = u′2
av1 + bv2 = v′1
cv1 + dv2 = v′2

Powy»szy ukªad 4 równa« z 4 niewiadomymi (a, b, c, d) mo»na zapisa¢ w postaci dwóch ukªadów
2 równa« z 2 niewiadomymi (pierwszy z niewiadomymi a, b, drugi z niewiadomymi c, d):{

au1 + bu2 = u′1
av1 + bv2 = v′1

{
cu1 + du2 = u′2
cv1 + dv2 = v′2

Wyznacznik gªówny ka»dego z tych ukªadów jest taki sam i wynosi:

det

(
u1 u2

v1 v2

)
= u1v2 − v1u2 = det

(
u1 v1

u2 v2

)
= det(u, v) 6= 0

(jako »e wektory u i v nie s¡ wspóªliniowe). Wobec tego, zgodnie ze wzorami Cramera (Fakt 1.51)

ka»dy z ukªadów ma jednoznaczne rozwi¡zanie. St¡d istnieje dokªadnie jedna macierz
(
a b
c d

)
,

czyli dokªadnie jedno przeksztaªcenie liniowe F speªniaj¡ce warunki zadania.

Fakt 2.14 ma równie» swój odpowiednik dla przeksztaªce« a�nicznych:

Fakt 2.15

Przeksztaªcenie a�niczne pªaszczyzny jest jednoznacznie wyznaczone przez obrazy dowol-
nych trzech punktów nie le»¡cych na jednej prostej, tzn. je±li dane s¡ nie le»¡ce na
jednej prostej punkty u, v, w oraz dowolne punkty u′, v′, w′ to istnieje dokªadnie jedno
przeksztaªcenie a�niczne F : R2 → R2 takie, »e

F (u) = u′, F (v) = v′, F (w) = w′
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Dowód. Oznaczmy u =

(
u1

u2

)
, v =

(
v1

v2

)
, w =

(
w1

w2

)
, u′ =

(
u′1
u′2

)
, v′ =

(
v′1
v′2

)
, w =

(
w′1
w′2

)
.

Szukamy macierzy
(
a b
c d

)
oraz wektora

(
e
f

)
takich, »e:



(
a b

c d

)(
u1

u2

)
+

(
e

f

)
=

(
u′1
u′2

)
(
a b

c d

)
+

(
e

f

)(
v1

v2

)
=

(
v′1
v′2

)
(
a b

c d

)
+

(
e

f

)(
w1

w2

)
=

(
w′1
w′2

) czyli



au1 + bu2 + e = u′1
cu1 + du2 + f = u′2
av1 + bv2 + e = v′1
cv1 + dv2 + f = v′2
aw1 + bw2 + e = w′1
cw1 + dw2 + f = w′2

Powy»szy ukªad 6 równa« z 6 niewiadomymi (a, b, c, d, e, f) mo»na zapisa¢ w postaci dwóch
ukªadów 3 równa« z 3 niewiadomymi (pierwszy z niewiadomymi a, b, e, drugi z niewiadomymi
c, d, f): 

au1 + bu2 + e = u′1
av1 + bv2 + e = v′1
aw1 + bw2 + e = w′1


cu1 + du2 + f = u′2
cv1 + dv2 + f = v′2
cw1 + dw2 + f = w′2

Przeksztaª¢my te ukªad wyznaczaj¡c z trzeciego równania niewiadom¡ e (odpowiednio f) i wsta-
wiaj¡c do pierwszych dwóch równa«:{

a(u1 − w1) + b(u2 − w2) = (u′1 − w′1)

a(v1 − w1) + b(v2 − w2) = (v′1 − w′1)

{
c(u1 − w1) + d(u2 − w2) = (u′2 − w′2)

c(v1 − w1) + d(v2 − w2) = (v′2 − w′2)

Otrzymane ukªady na mocy wzorów Cramera (Fakt 1.51) maj¡ jednoznaczne rozwi¡zanie, gdy»:

det

(
u1 − w1 u2 − w2

v1 − w1 v2 − w2

)
=

(
u1 − w1 v1 − w1

u2 − w2 v2 − w2

)
= det(u− w, v − w) 6= 0

bo wektory u− w i v − w s¡ liniowo niezale»ne.

Przykªad 7

Znajd¹ przeksztaªcenie liniowe pªaszczyzny F takie, »e F
((

1
2

))
=

(
0
1

)
i F
((

2
3

))
=

(
−1
2

)
.

Rozwi¡zanie. Zgodnie z Faktem 2.14, poniewa» wektory
(

1
2

)
i
(

2
3

)
nie s¡ wspóªliniowe, wiemy,

»e istnieje dokªadnie jedno przeksztaªcenie liniowe speªniaj¡ce warunki zadania. Wzór tego

przeksztaªcenia ma posta¢ F (X) =

(
a b
c d

)
X, gdzie a, b, c, d speªniaj¡ ukªad równa«:



(
a b

c d

)(
1

2

)
=

(
0

1

)
(
a b

c d

)(
2

3

)
=

(
−1

2

) czyli


a+ 2b = 0

c+ 2d = 1

2a+ 3b = −1

2c+ 3d = 2

Copyright c© Tomasz Elsner, 2019



2.2. MACIERZE 75

Rozwi¡zuj¡c ten ukªad otrzymujemy:
a = −2

b = 1

c = 1

d = 0

czyli F (X) =

(
−2 1
1 0

)
X

Przykªad 8

Znajd¹ przeksztaªcenie a�niczne pªaszczyzny F takie, »e F
((

1
1

))
=

(
2
6

)
, F
((

2
1

))
=

(
3
9

)
oraz F

((
1
−1

))
=

(
4
−2

)
.

Rozwi¡zanie. Punkty A =

(
1
1

)
, B =

(
2
1

)
i C =

(
1
−1

)
nie le»¡ na jednej prostej (co mo»na

zobaczy¢ np. sprawdzaj¡c, »e wektory
−−→
AB =

(
1
0

)
i
−→
AC =

(
0
−2

)
nie s¡ wspóªliniowe), wi¦c

zgodnie z Faktem 2.15 istnieje dokªadnie jedno przeksztaªcenie a�niczne, speªniaj¡ce warunki
zadania. Wzór tego przeksztaªcenia ma posta¢:

F (X) =

(
a b
c d

)
X +

(
e
f

)
Niewiadome a, b, c, d, e, f speªniaj¡ ukªad równa«:

(
a b

c d

)(
1

1

)
+

(
e

f

)
=

(
2

6

)
(
a b

c d

)(
2

1

)
+

(
e

f

)
=

(
3

9

)
(
a b

c d

)(
1

−1

)
+

(
e

f

)
=

(
4

−2

) czyli



a+ b+ e = 2

c+ d+ f = 6

2a+ b+ e = 3

2c+ d+ f = 9

a− b+ e = 4

c− d+ f = −2

Rozwi¡zuj¡c ten ukªad równa« otrzymujemy F (X) =

(
1 −1
3 4

)
X +

(
2
−1

)
.

Do szczególnych punktów zwi¡zanych z danym przeksztaªceniem nale»¡ tzw. punkty staªe
przeksztaªcenia:

De�nicja 2.16

Punktem staªym przeksztaªcenia F nazywamy taki punkt X, »e F (X) = X.

Przykªad 9

Wyznacz punkty staªe nast¦puj¡cych przeksztaªce«:

(a) obrót wokóª punktu S o k¡t θ 6= 0,

(b) odbicie (symetria) wzgl¦dem prostej `,

(c) translacja o wektor v 6= 0,

(d) identyczno±¢.
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Rozwi¡zanie. (a) Jedynym punktem staªym obrotu jest ±rodek obrotu, czyli punkt S.

(b) Punktem staªym odbicia (symetrii) wzgl¦dem prostej jest ka»dy punkt le»¡cy na osi
odbicia, czyli zbiorem punktów staªych jest prosta `.

(c) Translacja o niezerowy wektor nie ma punktów staªych.

(d) Identyczno±¢ to przeksztaªcenie, dla którego ka»dy punkt jest punktem staªym.

Przykªad 10

Wyznacz wszystkie punkty staªe przeksztaªcenia a�nicznego danego wzorem:

F (X) =

(
1 2
3 −1

)
X +

(
−2
−4

)
(a) G(X) =

(
2 1
4 5

)
X +

(
1
4

)
(b)

Rozwi¡zanie. (a) Szukamy punktów
(
x
y

)
speªniaj¡cych równanie:

(
1 2
3 −1

)(
x
y

)
+

(
−2
−4

)
=

(
x
y

)
czyli

{
x+ 2y − 2 = x

3x− y − 4 = y

Rozwi¡zuj¡c ten ukªad równa« otrzymujemy
(
x
y

)
=

(
2
1

)
.

(b) Szukamy punktów
(
x
y

)
speªniaj¡cych równanie:

(
2 1
4 5

)(
x
y

)
+

(
1
4

)
=

(
x
y

)
czyli

{
2x+ y + 1 = x

4x+ 5y + 4 = y

Ukªad ten ma niesko«czenie wiele rozwi¡za«: ka»dy punkt le»¡cy na prostej x+ y+ 1 = 0. S¡
to wszystkie punkty staªe przeksztaªcenia G.

Fakt 2.4 mo»na teraz wysªowi¢ nast¦puj¡co: przeksztaªcenie a�niczne jest przeksztaªceniem
liniowym wtedy i tylko wtedy, gdy 0 jest jego punktem staªym.

Fakt 2.17

Zbiór punktów staªych przeksztaªcenia a�nicznego (a wi¦c równie» przeksztaªcenia linio-
wego) jest punktem lub prost¡ lub zbiorem pustym lub caª¡ pªaszczyzn¡.

Dowód. Je±li F jest przeksztaªceniem a�nicznym, to F
((

x
y

))
=

(
a b
c d

)(
x
y

)
+

(
e
f

)
dla pew-

nych a, b, c, d, e, f . Punkty staªe F to rozwi¡zania równania:(
a b
c d

)(
x
y

)
+

(
e
f

)
=

(
x
y

)
czyli

{
ax+ by + e = x

cx+ dy + f = y

Ukªad ten zapisany w postaci (1.13) to:{
(a− 1)x+ by = −e
cx+ (d− 1)y = −f

Zgodnie z Faktem 1.50 zbiór rozwi¡za« takiego ukªadu jest punktem lub prost¡ lub zbiorem
pustym lub caª¡ pªaszczyzn¡.

Copyright c© Tomasz Elsner, 2019



2.3. SK�ADANIE PRZEKSZTA�CE� 77

2.3 Skªadanie przeksztaªce«

Niech F i G b¦d¡ przeksztaªceniami pªaszczyzny. Oznaczmy obraz przez przeksztaªcenie G do-
wolnego punktu X jako X ′, za± obraz punktu X ′ przez przeksztaªcenie F jako X ′′. Wówczas
przeksztaªcenie, które przeprowadza X na X ′′ nazywamy zªo»eniem przeksztaªce« F i G i ozna-
czamy F ◦G:

X
G−→ X ′

F−→ X ′′

Formalnie mo»na to zapisa¢ w nastepuj¡cy sposób:

De�nicja 2.18

Zªo»eniem przeksztaªce« F i G nazywamy przeksztaªcenie F ◦ G zadane nast¦puj¡cym
wzorem:

(F ◦G)(X) = F (G(X)) (2.10)

Zauwa»my, »e przeksztaªcenia w zªo»eniu F ◦ G wykonywane s¡ �od prawej do lewej�, tzn.
najpierw G, potem F . Taka kolejno±¢ zostaªa ustalona po to, by wzór (2.10) miaª mo»liwie
prost¡ posta¢ (kolejno±¢ liter po obu stronach równo±ci jest jednakowa).

Przykªad 1

Znajd¹ zªo»enia Tv ◦ Tu i Tu ◦ Tv translacji Tu i Tv, gdzie u =

(
1
2

)
oraz v =

(
3
1

)
.

Rozwi¡zanie (sposób I).

x

y

X

X ′

X ′′

u

v

u+
v

x

y

X

X ′

X ′′

u

v

u+
v

Zauwa»my, »e dla dowolnego punktu X zachodzi:

(Tv ◦ Tu)(X) = Tv(Tu(X)) = Tu+v(X) (pierwszy rysunek)

(Tu ◦ Tv)(X) = Tu(Tv(X)) = Tu+v(X) (drugi rysunek)

Rozwi¡zanie (sposób II). Wzory obu przeksztaªce« to:

Tu(X) = X +

(
1
2

)
oraz Tv(X) = X +

(
3
1

)
St¡d otrzymujemy:

Tv

(
Tu

((
x
y

)))
= Tv

((
x
y

)
+

(
1
2

))
= Tv

((
x+ 1
y + 2

))
=

(
x+ 1
y + 2

)
+

(
3
1

)
=

(
x+ 4
y + 3

)
Tu

(
Tv

((
x
y

)))
= Tu

((
x
y

)
+

(
3
1

))
= Tu

((
x+ 3
y + 1

))
=

(
x+ 3
y + 1

)
+

(
1
2

)
=

(
x+ 4
y + 3

)
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Przykªad 2

Znajd¹ zªo»enia Sy ◦Sx i Sx ◦Sy odbicia Sx wzgl¦dem osi Ox z odbiciem Sy wzgl¦dem osi Oy.
Rozwi¡zanie (sposób I). Zauwa»my, »e dla dowolnego punktu X zachodzi:

(Sy ◦ Sx)(X) = Sy(Sx(X)) = Rπ(X) (pierwszy rysunek)

(Sx ◦ Sy)(X) = Sx(Sy(X)) = Rπ(X) (drugi rysunek)

gdzie Rπ oznacza obrót o k¡t π wokóª punktu O (czyli symetri¦ ±rodkow¡).

x

y

X

X ′
X ′′

·

·

x

y

X X ′

X ′′

·

·

Rozwi¡zanie (sposób II). Wzory obu przeksztaªce« to:

Sx

((
x
y

))
=

(
x
−y

)
oraz Sy

((
x
y

))
=

(
−x
y

)
St¡d otrzymujemy:

Sy

(
Sx

((
x
y

)))
= Sy

((
x
−y

))
=

(
−x
−y

)
Sx

(
Sy

((
x
y

)))
= Sx

((
−x
y

))
=

(
−x
−y

)

Przykªad 3

Znajd¹ zªo»enia odbi¢ S` ◦ Sx i Sx ◦ S`, gdzie ` jest prost¡ o równaniu y = x.
Rozwi¡zanie (sposób I).

x

y

45◦

α
α
ββ

O

X

X ′

X ′′ `

x

y

45◦αα

β
βO

X

X ′

X ′′

`
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Pierwszy rysunek przedstawia zªo»enie S` ◦ Sx. Zauwa»my, »e α + β = 45◦ (k¡t nachylenia
prostej y = x do osi Ox), wi¦c 2α+ 2β = 90◦. Poniewa» dodatkowo OX = OX ′ = OX ′′, wi¦c
punkt X obraca si¦ o k¡t +90◦ wokóª punktu O. St¡d: S` ◦ Sx = R+90◦ .

Drugi rysunek przedstawia zªo»enie Sx ◦ S`. Podobne rozumowanie jak powy»ej pokazuje,
»e punkt X obraca si¦ o k¡t −90◦ wokóª punktu O. St¡d: Sx ◦ S` = R−90◦ .

Rozwi¡zanie (sposób II). Wzory przeksztaªce« to (wzór na S` byª wyprowadzony w Przykªa-
dzie 11 z Rozdziaªu 2.2):

Sx

((
x
y

))
=

(
x
−y

)
oraz S`

((
x
y

))
=

(
y
x

)
St¡d otrzymujemy:

(S` ◦ Sx)

((
x
y

))
= S`

(
Sx

((
x
y

)))
= S`

((
x
−y

))
=

(
−y
x

)

(Sx ◦ S`)
((

x
y

))
= Sx

(
S`

((
x
y

)))
= Sx

((
y
x

))
=

(
y
−x

)
Zauwa»my, »e zgodnie ze wzorem z Przykªadu 8 z Rozdziaªu 2.1 s¡ to rzeczywi±cie wzory
obrotów o +90◦ i −90◦ wokóª punktu O.

Przykªad 4

Znajd¹ zªo»enia S` ◦ Sx i Sx ◦ S` odbicia S` wzgl¦dem prostej ` nachylonej pod k¡tem ϕ do
dodatniej póªosi Ox z odbiciem Sx wzgl¦dem osi Ox.
Rozwi¡zanie (sposób I). Pierwszy rysunek przedstawia zªo»enie S`◦Sx. K¡t nachylenia prostej
` do osi Ox wynosi ϕ, wi¦c α+ β = ϕ. Poniewa» dodatkowo OX = OX ′ = OX ′′, wi¦c punkt
X obraca si¦ o k¡t 2ϕ wokóª punktu O, czyli

S` ◦ Sx = R2ϕ

Drugi rysunek przedstawia zªo»enie Sx ◦ S`. Podobne rozumowanie jak powy»ej pokazuje,
»e punkt X obraca si¦ o k¡t −2ϕ wokóª punktu O, czyli

Sx ◦ S` = R−2ϕ

x

y

ϕ

αα
β
β

O

X

X ′

X ′′ `

x

y

ϕαα

β
βO

X

X ′

X ′′

`

Rozwi¡zanie (sposób II). Wzory przeksztaªce« to (wzór na S` byª wyprowadzony w Przykªa-
dzie 6 z Rozdziaªu 2.2):

Sx

((
x
y

))
=

(
1 0
0 −1

)(
x
y

)
oraz S`

((
x
y

))
=

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)(
x
y

)
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St¡d otrzymujemy:

S`

(
Sx

((
x
y

)))
= S`

((
1 0
0 −1

)(
x
y

))
=

(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)(
1 0
0 −1

)(
x
y

)

=

(
cos 2ϕ − sin 2ϕ
sin 2ϕ cos 2ϕ

)(
x
y

)
= R2ϕ

((
x
y

))
Sx

(
S`

((
x
y

)))
= Sx

((
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)(
x
y

))
=

(
1 0
0 −1

)(
cos 2ϕ sin 2ϕ
sin 2ϕ − cos 2ϕ

)(
x
y

)
=

(
cos 2ϕ sin 2ϕ
− sin 2ϕ cos 2ϕ

)(
x
y

)
=

(
cos(−2ϕ) − sin(−2ϕ)
sin(−2ϕ) cos(−2ϕ)

)(
x
y

)
= R−2ϕ

((
x
y

))

Przykªad 5

Znajd¹ zªo»enia SO ◦ SA oraz SA ◦ SO symetrii ±rodkowych o ±rodkach O i A =

(
3
2

)
.

Rozwi¡zanie (sposób I).

x

y

O

A

X

X ′X ′′
x

y

O

A

X

X ′

X ′′

Zauwa»my, »e w obu przypadkach odcinek OA ª¡czy ±rodki boków trójk¡ta XX ′X ′′, sk¡d na
mocy Twierdzenia Talesa mamy (niezale»nie od wyboru punktu X):

−−−→
XX ′′ = 2 ·

−→
AO (pierwszy rysunek) oraz

−−−→
XX ′′ = 2 ·

−→
OA (drugi rysunek)

St¡d
SO ◦ SA = T

2
−→
AO

oraz SA ◦ SO = T
2
−→
OA

W szczególno±ci SO ◦ SA 6= SA ◦ SO.

Rozwi¡zanie (sposób II). Wzory przeksztaªce« to (wzór na SA byª wyprowadzany w Przykªa-
dzie 11 z Rozdziaªu 2.1):

SO

((
x
y

))
=

(
−x
−y

)
oraz SA

((
x
y

))
=

(
6− x
4− y

)
St¡d otrzymujemy:

(SO ◦ SA)

((
x
y

))
= SO

(
SA

((
x
y

)))
= SO

((
6− x
4− y

))
=

(
x− 6
y − 4

)

(SA ◦ SO)

((
x
y

))
= SA

(
SO

((
x
y

)))
= SA

((
−x
−y

))
=

(
x+ 6
y + 4

)
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Przykªad 6

Znajd¹ zªo»enia S ◦ R i R ◦ S odbicia S wzgl¦dem prostej o równaniu y = x z obrotem R o
k¡t π

2 wokóª punktu O.
Rozwi¡zanie. Tym razem zªo»enie trudno jest zobaczy¢ na rysunku, ale mo»na wyliczy¢ jego
wzór, podobnie jak w poprzednich przykªadach. W Przykªadzie 4 z Rozdziaªu 2.2 wyprowa-
dzono wzory przeksztaªce« S i R:

S(X) =

(
0 1
1 0

)
X, R(X) =

(
0 −1
1 0

)
X

St¡d:

(S ◦R)(X) = S(R(X)) = S

((
0 −1
1 0

)
X

)
=

(
0 1
1 0

)(
0 −1
1 0

)
X =

(
1 0
0 −1

)
X = Sx(X)

(R ◦ S)(X) = R(S(X)) = R

((
0 1
1 0

)
X

)
=

(
0 −1
1 0

)(
0 1
1 0

)
X =

(
−1 0
0 1

)
X = Sy(X)

Przykªad 7

Znajd¹ zªo»enia S` ◦ Sy i Sy ◦ S` odbicia S` wzgl¦dem prostej o równaniu x = 3 i odbicia Sy
wzgl¦dem osi Oy.
Rozwi¡zanie (sposób I). Pierwszy rysunek przedstawia zªo»enie S` ◦ Sy. Zauwa»my, »e dla

dowolnego X zachodzi
−−−→
XX ′′ =

(
6
0

)
, sk¡d:

S` ◦ Sy = T( 6
0 )

Drugi rysunek przedstawia zªo»enie Sy ◦ S`. Dla dowolnego X zachodzi
−−−→
XX ′′ =

(
−6
0

)
, sk¡d:

Sy ◦ S` = T(−6
0

)

x

y

3

`

X X ′ X ′′

a a 3− a 3− a
· ·

x

y

3

`

XX ′X ′′

aa3− a3− a
··

Rozwi¡zanie (sposób II). Zauwa»my, »e dla dowolnego
(
x
y

)
zachodzi:

Sy

((
x
y

))
=

(
−x
y

)
oraz S`

((
x
y

))
=

(
6− x
y

)
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St¡d otrzymujemy:

(S` ◦ Sy)
((

x
y

))
= S`

(
Sy

((
x
y

)))
= S`

((
−x
y

))
=

(
6 + x
y

)
= T( 6

0 )

((
x
y

))

(Sy ◦ S`)
((

x
y

))
= Sy

(
S`

((
x
y

)))
= Sy

((
6− x
y

))
=

(
x− 6
y

)
= T(−6

0

)((x
y

))

Przykªad 8

Znajd¹ zªo»enia RSπ
2
◦R−π

2
i R−π

2
◦RSπ

2
obrotów wokóª punktów O i S =

(
1
2

)
.

Rozwi¡zanie. Post¦puj¡c podobnie jak w Przykªadach 8 i 9 z Rozdziaªu 2.1 mo»emy wypro-
wadzi¢ wzory:

R−π
2
(X) =

(
cos(−π

2 ) − sin(−π
2 )

sin(−π
2 ) cos(−π

2 )

)
X =

(
0 1
−1 0

)
X

RSπ
2
(X) =

(
0 −1
1 0

)
X +

(
3
1

)
Zatem:

(R−π
2
◦RSπ

2
)(X) = (R−π

2
(RSπ

2
(X)) = R−π

2

((
0 −1
1 0

)
X +

(
3
1

))
=

(
0 1
−1 0

)((
0 −1
1 0

)
X +

(
3
1

))
=

(
1 0
0 1

)
X +

(
1
−3

)
= X +

(
1
−3

)
= T( 1

−3

)(X)

(RSπ
2
◦R−π

2
)(X) = (RSπ

2
(R−π

2
(X)) = RSπ

2

((
0 1
−1 0

)
X

)
=

(
0 −1
1 0

)(
0 1
−1 0

)
X +

(
3
1

)
=

(
1 0
0 1

)
X +

(
3
1

)
= X +

(
3
1

)
= T( 3

1 )(X)

Przykªad 9

Znajd¹ zªo»enia F ◦G i G◦F przeksztaªce« F (X) =

(
2 1
3 1

)
X i G(X) =

(
1 2
−1 0

)
X+

(
1
1

)
.

Rozwi¡zanie.

(F ◦G)(X) = F (G(X)) = F

((
1 2
−1 0

)
X +

(
1
1

))
=

(
2 1
3 1

)((
1 2
−1 0

)
X +

(
1
1

))

=

(
2 1
3 1

)
·
(

1 2
−1 0

)
X +

(
2 1
3 1

)
·
(

1
1

)
=

(
1 4
2 6

)
X +

(
3
4

)
(G ◦ F )(X) = G(F (X)) = G

((
2 1
3 1

)
X

)
=

(
1 2
−1 0

)((
2 1
3 1

)
X

)
+

(
1
1

)
=

(
2 3
−2 −1

)
X +

(
1
1

)

Copyright c© Tomasz Elsner, 2019



2.3. SK�ADANIE PRZEKSZTA�CE� 83

Przykªad 10

Przedstaw przeksztaªcenie a�niczne F (X) =

(
3 1
2 1

)
X +

(
2
1

)
w postaci zªo»enia przeksztaª-

cenia liniowego i translacji.

Rozwi¡zanie. Zauwa»my, »e dla G(X) =

(
3 1
2 1

)
X oraz v =

(
2
1

)
otrzymujemy:

(Tv ◦G)(X) = Tv(G(X)) = Tv

((
3 1
2 1

)
X

)
=

(
3 1
2 1

)
X +

(
2
1

)
= F (X)

czyli
Tv ◦G = F

Mo»liwe jest równie» znalezienie rozkªadu:

G ◦ Tu = F

dla pewnego (innego) wektora u. Wówczas:

(G ◦ Tu)(X) = G(Tu(X)) = G(X + u) =

(
3 1
2 1

)
(X + u) =

(
3 1
2 1

)
X +

(
3 1
2 1

)
· u

wi¦c szukany wektor u =

(
p
q

)
musi speªnia¢ warunek:

(
3 1
2 1

)(
p
q

)
=

(
2
1

)
czyli

{
3p+ q = 2

2p+ q = 1

Sk¡d u =

(
p
q

)
=

(
1
−1

)
. Zauwa»my, »e u 6= v, co zwa»ywszy na (dostrze»on¡ w poprzednich

przykªadach) nieprzemienno±¢ skªadania przeksztaªce« nie powinno dziwi¢.

Powy»szy przykªad mo»na uogólni¢ na dowolne przeksztaªcenia a�niczne, co pokazuje poni»-
szy fakt.

Fakt 2.19

Ka»de przeksztaªcenie a�niczne pªaszczyzny jest zªo»eniem przeksztaªcenia liniowego i
translacji.

Dowód. Dane jest przeksztaªcenie a�niczne F (X) = AX + v, gdzie A jest macierz¡ 2× 2, za± v
jest wektorem. Oznaczmy przez G(X) = AX przeksztaªcenie liniowe o macierzy A. Wówczas:

F = Tv ◦G

gdy»

(Tv ◦G)(X) = Tv(G(X)) = Tv(AX) = AX + v

gdzie Tv oznacza translacj¦ o wektor v.

Obserwacje ze wszystkich przykªadów z tego rozdziaªu mo»na podsumowa¢ nast¦puj¡cym
faktem:

Copyright c© Tomasz Elsner, 2019



84 ROZDZIA� 2. PRZEKSZTA�CENIA P�ASZCZYZNY

Fakt 2.20

1) Zªo»enie przeksztaªce« liniowych pªaszczyzny jest przeksztaªceniem liniowym.

2) Zªo»enie przeksztaªce« a�nicznych pªaszczyzny jest przeksztaªceniem a�nicznym.

Dowód. (1) Niech F (X) = AX oraz G(X) = BX, gdzie X =

(
x
y

)
, za± A i B to macierze 2× 2.

Korzystaj¡c z prawa ª¡czno±ci mno»enia macierzy (Fakt 2.10) otrzymujemy:

(F ◦G)(X) = F (G(X)) = F (BX) = A · (BX) = (AB)X

czyli F ◦G jest przeksztaªceniem liniowym.

(2) Niech F (X) = AX+v oraz G(X) = BX+w, gdzie X =

(
x
y

)
, A i B to macierze 2×2, a

v i w to wektory. Korzystaj¡c z prawa ª¡czno±ci mno»enia macierzy oraz rozdzielno±ci mno»enia
wzgl¦dem dodawania (Fakt 2.10) otrzymujemy:

(F ◦G)(X) = F (G(X)) = F (BX + w) = A · (BX + w) + v = (AB)X + (Aw + v)

czyli F ◦G jest przeksztaªceniem a�nicznym.

Fakt 2.21

Je±li F i G s¡ przeksztaªceniami liniowymi pªaszczyzny, to:

m(F ◦G) = m(F ) ·m(G)

(tzn. skªadanie przeksztaªce« liniowych odpowiada mno»eniu ich macierzy).

Dowód. Oznaczmy macierze przeksztaªce« F i G przez A = m(F ) i B = m(G). Wówczas:

(F ◦G)(X) = F (G(X)) = F (BX) = A · (BX) = (A ·B)X

czyli A ·B = m(F ◦G).

Fakt 2.22

Skªadanie przeksztaªce« jest ª¡czne, tzn. dla dowolnych przeksztaªce« F , G, H (dla któ-
rych poni»sze zªo»enia maj¡ sens) zachodzi:

(F ◦G) ◦H = F ◦ (G ◦H)

Skªadanie przeksztaªce« nie jest przemienne.

Dowód. Zgodnie z De�nicj¡ 2.18:

((F ◦G) ◦H)(X) = (F ◦G)((H(X)) = F (G(H(X)))

(F ◦ (G ◦H))(X) = (F (G ◦H(X))) = F (G(H(X)))
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Przykªad 11

Przestaw obrót RSπ
6
o k¡t π

6 wokóª punktu S =

(
1
2

)
w postaci zªo»enia:

RSπ
6

= Tv ◦Rπ
6
◦ T−v

gdzie Rπ
6
jest obrotem wokóª punktu O. Wykorzystaj to przedstawienie do znalezienia wzoru

przeksztaªcenia RSπ
6
.

Rozwi¡zanie. Na rysunku wida¢, »e:

RSπ
6

= T( 1
2 ) ◦Rπ

6
◦ T(−1

−2

)

x

y

RSπ
6

T(−1
−2

)

T( 1
2 )

Rπ
6

X

X ′

O

S

Wzory translacji i obrotu wokóª punktu O wyznaczyli±my ju» w Przykªadach 1 i 8 w Rozdziale
2.1:

T( 1
2 )

((
x
y

))
=

(
x+ 1
y + 2

)
, T(−1

−2

)((x
y

))
=

(
x− 1
y − 2

)

Rπ
6

((
x
y

))
=

(
cos π6 − sin π

6
sin π

6 cos π6

)(
x
y

)
=

(√
3

2 −1
2

1
2

√
3

2

)(
x
y

)
wi¦c otrzymujemy:

RPπ
6

((
x
y

))
=

(
T( 1

2 ) ◦Rπ
6
◦ T(−1

−2

))((x
y

))
= T( 1

2 )

(
Rπ

6

(
T(−1
−2

)((x
y

))))

= T( 1
2 )

(
Rπ

6

((
x− 1
y − 2

)))
= T( 1

2 )

((√
3

2 −1
2

1
2

√
3

2

)(
x− 1
y − 2

))

=

(√
3

2 −1
2

1
2

√
3

2

)(
x− 1
y − 2

)
+

(
1
2

)
=

( √
3

2 x−
1
2y −

√
3

2 + 2
1
2x+

√
3

2 y + 3
2 −
√

3

)
co pokrywa si¦ ze wzorem z Przykªadu 9 z Rozdziaªu 2.1.
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2.4 Izometrie pªaszczyzny

De�nicja 2.23

Izometria pªaszczyzny, to przeksztaªcenie F : R2 → R2, które zachowuje odlegªo±ci, tzn.
dla dowolnych A,B ∈ R2 zachodzi

|
−−→
A′B′| = |

−−→
AB|

Izometria liniowa pªaszczyzny, to izometria pªaszczyzny, która jest równocze±nie prze-
ksztaªceniem liniowym.

Przykªady izometrii:

izometrie izometrie liniowe

obrót wokóª punktu obrót wokóª punktu 0

odbicie wzgl¦dem prostej odbicie wzgl¦dem prostej przechodz¡cej przez punkt 0

translacja translacja o wektor ~0 (=identyczno±¢)

identyczno±¢ identyczno±¢

Twierdzenie 2.24

Ka»da izometria pªaszczyzny jest przeksztaªceniem a�nicznym.

Dowód tego wa»nego twierdzenia wykracza poza ramy niniejszego skryptu.

Wniosek 2.25

Izometria pªaszczyzny F jest liniowa wtedy i tylko wtedy, gdy F (0) = 0.

Dowód. Zgodnie z Twierdzeniem 2.24 izometria pªaszczyzny jest przeksztaªceniem a�nicznym,
wi¦c zgodnie z Faktem 2.4 jest liniowa wtedy i tylko wtedy, gdy F (0) = 0.

Wzajemne relacje pomi¦dzy poznanymi typami przeksztaªce« pªaszczyzny zebrane s¡ na po-
ni»szym diagramie:

Przeksztaªcenia pªaszczyzny
A�niczne

Liniowe Izometrie

Izom.
liniowe
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Fakt 2.26

Ka»da izometria pªaszczyzny zachowuje k¡ty, tzn. ∠ABC = ∠A′B′C ′.

Dowód. Trójk¡t ABC i jego izometryczny obraz A′B′C ′ s¡ przystaj¡ce, gdy» izometria zacho-
wuje dªugo±ci (cecha przystawania trójk¡tów bbb). Wobec tego odpowiadaj¡ce sobie k¡ty tych
trójk¡tów maj¡ równe miary, w szczególno±ci ∠ABC = ∠A′B′C ′.

x

y

c

b

a

A

B
C ϕ

c

ab

A′

B′

C ′

ϕ

Wniosek 2.27

Je±li F jest izometri¡ pªaszczyzny, to dowolny wielok¡t A1A2 . . . An jest przystaj¡cy do
swojego obrazu A′1A

′
2 . . . A

′
n przez przeksztaªcenie F .

Dowód. Wielok¡t A1A2 . . . An i jego obraz A′1A
′
2 . . . A

′
n maj¡ odpowiednie boki jednakowych

dªugo±ci (De�nicja 2.23) i odpowiednie k¡ty tej samej miary (Fakt 2.26). Wielok¡ty te s¡ zatem
przystaj¡ce.

Powy»szy wniosek mo»na uogólni¢ na dowolne �gury na pªaszczy¹nie, jednak dowód takiego
uogólnienia wykracza poza ramy niniejszego skryptu.

Fakt 2.28

Je±li F jest izometri¡ pªaszczyzny, to dowolna �gura jest przystaj¡ca do swojego obrazu
przez przeksztaªcenie F .

Poniewa» w obszarze naszych zainteresowa« znajduj¡ si¦ niemal wyª¡cznie przeksztaªcenia
liniowe, wi¦c spo±ród wszystkich izometrii zajmowa¢ si¦ b¦dziemy gªównie izometriami liniowymi.

De�nicja 2.29

Mówimy, »e A jest macierz¡ izometrii, je±li przeksztaªcenie liniowe F takie, »e m(F ) = A
(tzn. F (X) = AX) jest izometri¡ (jest to oczywi±cie izometria liniowa).

Twierdzenie 2.30: Klasy�kacja izometrii liniowych

Ka»da izometria liniowa pªaszczyzny jest albo obrotem wokóª punktu O, albo odbiciem
wzgl¦dem pewnej prostej przechodz¡cej przez punkt O.

Przeksztaªcenie identyczno±ciowe (które równie» jest izometri¡ liniow¡) traktujemy tu jako
szczególny przypadek obrotu (obrót o k¡t 0).
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Dowód. Wersory e1 =

(
1
0

)
i e2 =

(
0
1

)
s¡ prostopadªowymi wektorami dªugo±ci 1, za± izometria

zachowuje dªugo±ci odcinków i miary k¡tów, wi¦c obrazy F (e1) i F (e2) to równie» prostopadªe
wektory jednostkowe. Zgodnie z (1.10) wspóªrz¦dne biegunowe wektora dªugo±ci 1 to:

F (e1) =

(
cos θ
sin θ

)
dla pewnego k¡ta θ. Wektor F (e2) jest prostopadªy do F (e1), wi¦c jest postaci:

F (e2) = t ·
(
− sin θ
cos θ

)
Poniewa» |F (e2)| = 1, wi¦c |t| = ±1. To daje nam dwie mo»liwo±ci:

F (e2) =

(
− sin θ
cos θ

)
lub F (e2) =

(
sin θ
− cos θ

)
Na mocy Faktu 2.13 kolumny macierzy przeksztaªcenia liniowego to obrazy wersorów, wi¦c

macierz izometrii liniowej F jest postaci:(
cos θ − sin θ
sin θ cos θ

)
lub

(
cos θ sin θ
sin θ − cos θ

)
(2.11)

Pierwsza z tych macierzy to macierz obrotu wokóª O o k¡t θ (Przykªad 8 z Rozdziaªu 2.1 lub
Przykªad 4 z Rozdziaªu 2.2). Druga z tych macierzy to macierz odbicia wzgl¦dem prostej `
nachylonej pod k¡tem α = 1

2θ do dodatniej póªosi Ox (Przykªad 6 z Rozdziaªu 2.2).

x

y

e1

e 2

F (e1)

F (e2)

· θ x

y

e1

e2 F (e1)

F (e2)

β
β 1

2θ

1
2θ

Zatem F jest obrotem wokóª punktu O lub odbiciem wzgl¦dem prostej przechodz¡cej przez punkt
O.

Fakt 2.31

Niech A b¦dzie macierz¡ 2× 2. Wówczas nast¦puj¡ce warunki s¡ równowa»ne:

1) A jest macierz¡ izometrii,

2) A jest postaci
(
a −b
b a

)
lub

(
a b
b −a

)
, gdzie a2 + b2 = 1,

3) kolumny macierzy A s¡ prostopadªymi wektorami dªugo±ci 1.
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Dowód. (1)⇐⇒ (2)
Zgodnie ze wzorem (2.11) macierz izometrii jest postaci(

cos θ − sin θ
sin θ cos θ

)
lub

(
cos θ sin θ
sin θ − cos θ

)
(2.12)

gdzie (cos θ)2 + (sin θ)2 = 1. Z drugiej strony ka»d¡ macierz postaci(
a −b
b a

)
lub

(
a b
b −a

)

gdzie a2 + b2 = 1 mo»na zapisa¢ w postaci (2.12) (gdzie
(

cos θ
sin θ

)
to zapis jednostkowego wektora(

a
b

)
w postaci biegunowej (1.10)).

(2)⇐⇒ (3)

Pierwsza kolumna macierzy jest dªugo±ci 1 wtedy i tylko wtedy, gdy jest postaci
(
a
b

)
, gdzie

a2 + b2 = 1. Druga kolumna jest do niej prostopadªa wtedy i tylko wtedy, gdy jest postaci

t ·
(
b
−a

)
, przy czym jest ona dªugo±ci 1 wtedy i tylko wtedy, gdy t = ±1.

Wniosek 2.32

Wyznacznik macierzy izometrii to ±1.

Dowód. Na mocy Faktu 2.31 wyznacznik macierzy izometrii to:

det

(
a −b
b a

)
= a2 + b2 = 1 lub det

(
a b
b −a

)
= −a2 − b2 = −1

Fakt ten ma zwi¡zek z tym, »e izometria zachowuje nie tylko dªugo±ci odcinków i miary
k¡tów, ale równie» pola �gur (zgodnie z Faktem 2.28 przeksztaªca ka»d¡ �gur¦ na �gur¦ do niej
przystaj¡c¡, wi¦c w szczególno±ci o takim samym polu, co �gura wyj±ciowa). Zwi¡zek mi¦dzy
wyznacznikiem macierzy przeksztaªcenia liniowego a zachowowaniem pola wyja±ni¡ kolejne fakty.

Fakt 2.33

Dla dowolnych macierzy A i B rozmiaru 2× 2 zachodzi wzór:

det(AB) = detA · detB

Dowód. Oznaczmy A =

(
a b
c d

)
oraz B =

(
a′ b′

c′ d′

)
i obliczmy lew¡ i praw¡ stron¦ wzoru:

det(AB) = det

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
= (aa′ + bc′)(cb′ + dd′)− (ab′ + bd′)(ca′ + dc′)

= (aa′)(cb′) + (aa′)(dd′) + (bc′)(cb′) + (bc′)(dd′)− (ab′)(ca′)− (ab′)(dc′)− (bd′)(ca′)− (bd′)(dc′)

= aca′c′ + bdb′d′ − acb′d′ − bda′c′

detA · detB = (ad− bc)(a′d′ − b′c′) = ada′d′ + bcb′c′ − adb′c′ − bca′d′ = det(AB)
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Fakt 2.34

Je±li F (X) = AX jest przeksztaªceniem liniowym pªaszczyzny, to dla dowolnego trójk¡ta
OKL (gdzie O to pocz¡tek ukªadu wspóªrz¦dnych) zachodzi:

P4OK′L′ = | detA| · P4OKL

x

y

K

L

K ′

L′

O

Dowód. Niech A =

(
a b
c d

)
. Wektory K =

(
xK
yK

)
, L =

(
xL
yL

)
, K ′ =

(
xK′

yK′

)
, L′ =

(
xL′

yL′

)
speªniaj¡ warunki: (

a b
c d

)(
xK
yK

)
=

(
xK′

yK′

)
,

(
a b
c d

)(
xL
yL

)
=

(
xL′

yL′

)
Zauwa»my, »e zgodnie z reguª¡ mno»enia macierzy, mo»na oba te warunki (wektorowe) zapisa¢
jednym warunkiem (macierzowym):(

a b
c d

)(
xK xL
yK xL

)
=

(
xK′ xL′

yK′ xL′

)
sk¡d na mocy Faktu 2.33 mamy:

det

(
a b
c d

)
· det

(
xK xL
yK xL

)
= det

(
xK′ xL′

yK′ xL′

)
czyli ∣∣∣∣det

(
a b
c d

)∣∣∣∣ · 1

2

∣∣∣∣det

(
xK xL
yK xL

)∣∣∣∣ =
1

2

∣∣∣∣det

(
xK′ xL′

yK′ xL′

)∣∣∣∣
co zgodnie z Faktem 1.37 daje:

|detA| · P4OKL = P4OK′L′

Wniosek 2.35

Je±li F (X) = AX jest przeksztaªceniem liniowym pªaszczyzny, to dla dowolnego wielok¡ta
S1 . . . Sn zachodzi:

PS′1...S′n = |detA| · PS1...Sn
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x

y

O

S1

S2

S3 S′1
S′2

S′3

x

y

O

S1

S2

S3 S4 S′1
S′2

S′3

S′4

Dowód. Je±li jednym z wierzchoªków wielok¡ta jest punkt O, to wynika to z Faktu 1.48 oraz
Faktu 2.34, na przykªad w sytuacji przedstawionej na pierwszym rysunku otrzymujemy:

POS′1S′2S′3 = P4OS′1S′2 + P4OS′2S′3 = | detA| · P4OS1S2 + |detA| · P4OS2S3

= |detA| · (P4OS1S2 + P4OS2S3) = | detA| · POS1S2S3

(F jest przeksztaªceniem liniowym, wi¦c O′ = F (O) = O).
W sytuacji, gdy O nie jest wierzchoªkiem wielok¡ta, wykorzystujemy przypadek rozpatrzony

powy»ej, na przykªad w sytuacji przedstawionej na drugim rysunku otrzymujemy:

PS′1S′2S′3S′4 = POS′1S′2S′3S′4 − P4OS′1S′4 = | detA| · POS1S2S3S4 − | detA| · P4OS1S4

= |detA| · (POS1S2S3S4 − P4OS1S4) = | detA| · PS1S2S3S4

Wniosek 2.35 mo»na uogólni¢ na dowolne �gury. Dowód tak ogólnego faktu wymaga formalnej
de�nicji pola oraz poj¦cia granicy i wykracza poza ramy niniejszego skryptu.

Fakt 2.36

Je±li F (X) = AX jest przeksztaªceniem liniowym pªaszczyzny, to dla dowolnej �gury f
(niekoniecznie wielok¡ta) zachodzi:

Pf = | detA| · Pf

Interpretacja geometryczna wyznacznika macierzy przeksztaªcenia dotyczy nie tylko warto±ci
bezwzgl¦dnej wyznacznika, ale równie» jego znaku. St¡d nast¦puj¡ca de�nicja.

De�nicja 2.37

Przeksztaªcenie liniowe F zachowuje orientacj¦, je±li dla dowolnych niewspóªliniowych
wektorów u i v pary (u, v) i (F (u), F (v)) maj¡ jednakowe orientacje, a zmienia orientacj¦,
je±li dla dowolnych niewspóªliniowych wektorów u i v pary (u, v) i (F (u), F (v)) maj¡
przeciwne orientacje.

Nieformalny sposób rozró»niania przeksztaªce« pªaszczyzny zachowuj¡cych orientacj¦ od tych,
które j¡ zmieniaj¡ jest nast¦puj¡cy: przeksztaªcenie pªaszczyzny zachowuje orientacj¦, je±li ob-
raz np. litery R jest liter¡ R (by¢ mo»e nieco zdeformowan¡), natomiast zmienia orientacj¦, je±li
obraz litery R jest jej lustrzanym odbiciem R(by¢ mo»e nieco zdeformowanym).
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x

y

R

R

translacja
x

y

R R

odbicie

Fakt 2.38

Je±li A jest macierz¡ przeksztaªcenia liniowego pªaszczyzny F , to:

• F zachowuje orientacj¦ ⇐⇒ detA > 0,

• F zmienia orientacj¦ ⇐⇒ detA < 0.

Dowód. Niech A =

(
a b
c d

)
. Wektory u =

(
u1

u2

)
, v =

(
v1

v2

)
, F (u) =

(
u′1
u′2

)
, F (v) =

(
v′1
v′2

)
speªniaj¡ warunki: (

a b
c d

)(
u1

u2

)
=

(
u′1
u′2

)
oraz

(
a b
c d

)(
v1

v2

)
=

(
v′1
v′2

)
Podobnie jak w dowodzie Faktu 2.34 oba te warunki (wektorowe) mo»na zapisa¢ jednym warun-
kiem (macierzowym): (

a b
c d

)(
u1 v1

u2 v2

)
=

(
u′1 v′1
u′2 v′2

)
sk¡d na mocy Faktu 2.33 otrzymujemy:

det

(
a b
c d

)
· det

(
u1 v1

u2 v2

)
= det

(
u′1 v′1
u′2 v′2

)
czyli

detA · det(u, v) = det(F (u), F (v))

Zatem:

• je±li detA > 0, to wyznaczniki det(u, v) i det(F (u), F (v)) maj¡ jednakowe znaki,

• je±li detA < 0, to wyznaczniki det(u, v) i det(F (u), F (v)) maj¡ przeciwne znaki,

• je±li detA = 0, to det(F (u), F (v)) = 0, wi¦c nie mo»na mówi¢ o orientacji pary (F (u), F (v)).

Wniosek 2.39

Wyznacznik macierzy izometrii zachowuj¡cej orientacj¦ to +1, a wyznacznik macierzy
izometrii zmieniaj¡cej orientacj¦ to −1.

Dowód. Zgodnie z Wnioskiem 2.32 wyznacznik macierzy izometrii to ±1. Fakt 2.38 wi¡»e znak
wyznacznika z zachowywaniem/zmian¡ orientacji.
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Przykªad 1

Ustal, które z poni»szych przeksztaªce« zachowuje, a które zmienia orientacj¦:
obrót,(a) odbicie wzgl¦dem prostej,(b) jednokªadno±¢,(c)

powinowactwo prostok¡tne,(d) rzut prostok¡tny.(e)

Rozwi¡zanie. Rozwa»aj¡c, które z przeksztaªce« przeprowadzaj¡ R na R, a które na Rnie-
trudno zauwa»y¢, »e obrót, jednokªadno±¢ (zarówno o skali dodatniej, jak i ujemnej) oraz
powinowactwo prostok¡tne o skali dodatniej zachowuj¡ orientacj¦, natomiast odbicie wzgl¦-
dem prostej i powinowactwo prostok¡tne o skali ujemnej zmieniaj¡ orientacj¦. W przypadku
rzutu prostok¡tnego nie mo»na mówi¢ o zachowywaniu b¡d¹ zmianie orientacji.

Przykªad 2

Ustal, która z poni»szych macierzy jest macierz¡ przeksztaªcenia liniowego zachowuj¡cego
orientacj¦, a która � przeksztaªcenia zmieniaj¡cego orientacj¦:

A =

(
2 3
−1 1

)
, B =

(
2 1
6 3

)
, C =

(
1 5
4 2

)
Rozwi¡zanie. Zauwa»my, »e

detA > 0, detB = 0, detC < 0.

Zatem A jest macierz¡ przeksztaªcenia liniowego zachowuj¡cego orientacj¦, C � macierz¡ prze-
ksztaªcenia zmieniaj¡cego orientacj¦, za± B nie nale»y do »adnego z tych zbiorów macierzy.

2.5 Przeksztaªcenia ró»nowarto±ciowe i �na�

Przeksztaªcenie liniowe nie musi mie¢ jednakowej dziedziny i przeciwdziedziny (jak w poprzednich
rozdziaªach, gdzie badali±my jedynie przeksztaªcenia F : R2 → R2). Poniewa» w pierwszej cze±ci
skryptu zajmujemy si¦ jedynie przestrzeniami 1- i 2-wymiarowymi, wi¦c ograniczamy si¦ do
przeksztaªce«, gdzie zarówno dziedzin¡, jak i przeciwdziedzin¡ jest jedna z przestrzeni: R2 i R.

De�nicja 2.40

Przeksztaªceniem liniowym b¦dziemy nazywa¢ tak¡ funkcj¦ F , której:

• dziedzin¡ jest R lub R2,

• przeciwdziedzin¡ jest R lub R2,

• wzór jest postaci F (X) = A · X, gdzie A jest macierz¡, za± · oznacza mno»enie
macierzy.

W Rozdziale 2.1 poznali±my du»o przykªadów przeksztaªce« liniowych F : R2 → R2. W
zwi¡zku z tym zaczniemy od przykªadw przeksztaªce« liniowych, gdzie dziedzin¡ b¡d¹ przeciw-
dziedzin¡ jest zbiór R.

Przykªad 1 (znakowana odlegªo±¢ od prostej)

Dane jest przeksztaªcenie F : R2 → R, które ka»demu punktowi przyporz¡dkowuje jego zna-
kowan¡ odlegªo±¢ od prostej o równaniu 2x + y = 0. Uzasadnij, »e F jest przeksztaªceniem
liniowym oraz znajd¹ macierz tego przeksztaªcenia.

Copyright c© Tomasz Elsner, 2019



94 ROZDZIA� 2. PRZEKSZTA�CENIA P�ASZCZYZNY

Rozwi¡zanie. Zgodnie z Wnioskiem 1.46 znakowana odlegªo±¢ punktu X =

(
x
y

)
od prostej o

równaniu 2x+ y = 0 jest równa:

F

((
x
y

))
=

2x+ y√
22 + 12

=
2x+ y√

5
=

2
√

5

5
x+

√
5

5
y

Przeksztaªcenie to jest liniowe, gdy»:

F

((
x
y

))
=
(

2
√

5
5

√
5

5

)
·
(
x
y

)
gdzie

(
2
√

5
5

√
5

5

)
jest macierz¡ tego przeksztaªcenia.

Przykªad 2 (znakowane pole)

Dany jest punkt A =

(
3
2

)
oraz przeksztaªcenie FA : R2 → R, które ka»demu punktowi X

przyporz¡dkowuje znakowane pole trójk¡ta OAX. Uzasadnij, »e FA jest przeksztaªceniem
liniowym oraz znajd¹ macierz tego przeksztaªcenia.
Rozwi¡zanie. Zgodnie z Faktem 1.40 znakowane pole trójk¡ta OAX to:

FA

((
x
y

))
=

1

2
det

(
3 x
2 y

)
= −x+

3

2
y

Przeksztaªcenie to jest liniowe, gdy»:

FA

((
x
y

))
=
(
−1 3

2

)
·
(
x
y

)
gdzie

(
−1 3

2

)
jest macierz¡ przeksztaªcenia.

Przykªad 3 (iloczyn skalarny)

Dany jest wektor v =

(
5
−1

)
oraz przeksztaªcenie Gv : R2 → R, które ka»demu wektorowi X

przyporz¡dkowuje iloczyn skalarny v ◦ X. Uzasadnij, »e Gv jest przeksztaªceniem liniowym
oraz znajd¹ macierz tego przeksztaªcenia.
Rozwi¡zanie. Zauwa»my, »e:

Gv

((
x
y

))
= v ◦

(
x
y

)
=

(
5
−1

)
◦
(
x
y

)
= 5x− y

czyli

Gv

((
x
y

))
=
(
5 −1

)
·
(
x
y

)
Zatem przeksztaªcenie to jest liniowe, a jego macierz to

(
5 −1

)
.

Przykªad 4 (Przeksztaªcenie liniowe R→ R2)

Uzasadnij, »e przeksztaªcenie F : R → R2 dane wzorem F (t) =

(
3t
2t

)
(tzn. przyporz¡d-

kowuj¡ce liczbie rzeczywistej t odpowiedni punkt na prostej o równaniu parametrycznym
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(
x
y

)
= t

(
3
2

)
) jest przeksztaªceniem liniowym oraz znajd¹ macierz tego przeksztaªcenia.

Rozwi¡zanie. Przeksztaªcenie liniowe F mo»na zapisa¢ w nast¦puj¡cy sposób jako mno»enie
macierzy (pami¦taj¡c, »e liczb¦ t ∈ R uto»samiamy z macierz¡ (t) o rozmiarze 1× 1):

F (t) =

(
3
2

)
· (t) =

(
3t
2t

)

Zatem przeksztaªcenie to jest liniowe, a jego macierz to
(

3
2

)
.

Przykªad 5 (Przeksztaªcenie liniowe R→ R)
Dane s¡ przeksztaªcenia F : R→ R i G : R→ R zadane wzorami F (t) = 3t oraz G(t) = 3t+1.
Ustal, które z nich jest przeksztaªceniem liniowym oraz znajd¹ macierz tego przeksztaªcenia.
Rozwi¡zanie. Przeksztaªcenie liniowe F mo»na zapisa¢ w nast¦puj¡cy sposób jako mno»enie
macierzy (pami¦taj¡c, »e liczb¦ t ∈ R uto»samiamy z macierz¡ (t) o rozmiarze 1× 1):

F (t) = (3) · (t) = (3t)

Zatem przeksztaªcenie to jest liniowe, a jego macierz (rozmiaru 1× 1) to (3).
Przeksztaªcenia G nie mo»na zapisa¢ w podobny sposób, wi¦c nie jest ono przeksztaªceniem

liniowym.
Zauwa»my, »e terminologia ta nieco odbiega od stosowanej w szkole (gdzie funkcj¡ liniow¡

nazywano funkcj¦ f(x) = ax + b). W ±wietle De�nicji 2.40 funkcja postaci f(x) = ax jest
liniowa, nastomiast funkcja f(x) = ax + b (dla b 6= 0) nie jest liniowa (b¦dziemy j¡ nazywali
funkcj¡ a�niczn¡).

De�nicja 2.41

Obrazem punktu P przez przeksztaªcenie F nazywamy punkt F (P ).

De�nicja 2.42

Przeciwobrazem punktu P przez przeksztaªcenie F (oznaczanym F−1[P ]) nazywamy zbiór
wszystkich takich punktów X, »e F (X) = P .

Przykªad 6

Znajd¹ obraz punktu
(

1
2

)
przez nast¦puj¡ce przeksztaªcenia:

(a) symetria S wzgl¦dem prostej o równaniu 3x− 4y = 0,

(b) rzut P1 na prost¡ o równaniu 3x− 4y = 0,

(c) rzut P2 na prost¡ o równaniu 2x− 3y − 4 = 0,

(d) przeksztaªcenie F stale równe
(

4
3

)
.

Rozwi¡zanie. Przeksztaªcenia te maj¡ nast¦puj¡ce wzory (wyznaczone w Przykªadach 3, 2 i 5
w Rozdziale 2.1):

S(X) =

(
7
25

24
25

24
25

−7
25

)
X, P1(X) =

(
16
25

12
25

12
25

9
25

)
X
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P2(X) =

(
9
13

6
13

6
13

4
13

)
X +

(
8
13
−12

13

)
, F (X) =

(
4
3

)
W zwi¡zku z tym obrazem punktu

(
1
2

)
przez te przeksztaªcenia s¡ punkty

S

((
1
2

))
=

(
41
25
−10

25

)
, P1

((
1
2

))
=

(
8
25
6
25

)
, P1

((
1
2

))
=

(
11
13
−10

13

)
, F

((
1
2

))
=

(
4
3

)

Przykªad 7

Znajd¹ przeciwobraz punktu P =

(
4
3

)
przez nast¦puj¡ce przeksztaªcenia:

(a) symetria S wzgl¦dem prostej o równaniu 3x− 4y = 0,

(b) rzut P1 na prost¡ o równaniu 3x− 4y = 0,

(c) rzut P2 na prost¡ o równaniu 2x− 3y − 4 = 0,

(d) przeksztaªcenie F stale równe
(

4
3

)
.

Rozwi¡zanie. Wzory powy»szych przeksztaªce« przytoczono w poprzednim przykªadzie. Wy-
znaczenie przeciwobrazów polega na rozwi¡zaniu równa«:

(a) S
((

x
y

))
=

(
4
3

)
, czyli

(
7
25

24
25

24
25

−7
25

)(
x
y

)
=

(
4
3

)
.

Rozwi¡zaniem tego równania jest punkt
(
x
y

)
=

(
4
3

)
. Mo»na to zauwa»y¢ równie» bez

rachunków, jako »e punkt
(

4
3

)
le»y na osi symetrii, wi¦c jest punktem staªym przeksztaªcenia

i nie jest obrazem »adnego innego punktu.

(b) P1

((
x
y

))
=

(
4
3

)
, czyli

(
16
25

12
25

12
25

9
25

)(
x
y

)
=

(
4
3

)
.

Rozwi¡zaniem tego równania s¡ wszystkie punkty le»¡ce na prostej
(
x
y

)
= t

(
3
−4

)
+

(
4
3

)
.

Mo»na to zauwa»y¢ równie» bez rachunków, jako »e punkt
(

4
3

)
le»y na prostej, na któr¡

rzutujemy, wi¦c punkty przeprowadzane na
(

4
3

)
to punkty le»¡ce na prostej prostopadªej do

prostej 3x− 4y = 0 i przechodz¡cej przez
(

4
3

)
.

(c) P2

((
x
y

))
=

(
4
3

)
, czyli

(
9
13

6
13

6
13

4
13

)(
x
y

)
+

(
8
13
−12

13

)
=

(
4
3

)
.

Rozwi¡zaniem tego równania jest zbiór pusty. Mo»na to zauwa»y¢ równie» bez rachunków,

jako »e punkt
(

4
3

)
nie le»y na prostej, na któr¡ rzutujemy, wi¦c nie jest obrazem »adnego

punktu.

(d) F
((

x
y

))
=

(
4
3

)
, czyli

(
4
3

)
=

(
4
3

)
.

Równanie to jest to»samo±ciowe, jego zbiorem rozwi¡za« jest caªa pªaszczyzna.
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Przykªad 8

Znale¹¢ przeciwobraz punktu
(

1
2

)
przez przeksztaªcenie:

(a) a�niczne F o wzorze F (X) =

(
1 2
3 5

)
X +

(
0
2

)
,

(b) liniowe G o macierzy
(

2 1
4 2

)
,

Rozwi¡zanie. Szukamy rozwi¡za« równa« wektorowych:

(a) F (X) =

(
1
2

)
, czyli

(
1 2
3 5

)(
x
y

)
+

(
0
2

)
=

(
1
2

)
.

Równanie to mo»na zapisa¢ w postaci ukªadu dwóch równa« liniowych z dwoma niewia-
domymi: {

x+ 2y = 2

3x+ 5y = −1

Rozwi¡zaniem tego ukªadu jest punkt
(
−1
1

)
.

(b) G(X) =

(
1
2

)
, czyli

(
2 1
4 2

)(
x
y

)
=

(
1
2

)
.

Równanie to mo»na zapisa¢ w postaci ukªadu dwóch równa« liniowych z dwoma niewia-
domymi: {

2x+ y = 2

4x+ 2y = −1

Rozwi¡zaniem tego ukªadu jest prosta o równaniu 2x+ y − 1 = 0.

Jak wida¢ z powy»szych przykªadów, przeciwobraz punktu mo»e si¦ skªada¢ z jednego punktu,
ale mo»e równie» by¢ zbiorem pustym lub caª¡ prost¡, a nawet caª¡ pªaszczyzn¡. W przypadku
przeksztaªce« a�nicznych pªaszczyzny (w szczególno±ci liniowych) jest to kompletna lista mo»li-
wo±ci, co poka»emy poni»ej.

Fakt 2.43

Obrazem punktu przez dowolne przeksztaªcenie jest punkt.

Fakt 2.44

Przeciwobrazem punktu przez przeksztaªcenie a�niczne F : R2 → R2 jest punkt lub prosta
lub zbiór pusty lub caªa pªaszczyzna. Przeciwobraz ten jest punktem wtedy i tylko wtedy,
gdy detA 6= 0, gdzie F (X) = AX + v jest wzorem przeksztaªcenia.

Dowód. Niech F (X) =

(
a b
c d

)
X +

(
e
f

)
b¦dzie przeksztaªceniem a�nicznym. Przeciwobrazem

punktu P =

(
p
q

)
jest zbiór rozwi¡za« równania (z niewiadomymi x i y):

(
a b
c d

)
X +

(
e
f

)
=

(
p
q

)
, czyli

{
ax+ by = p− e
cx+ dy = q − f

Zgodnie z Faktem 1.50 zbiorem rozwi¡za« tego ukªadu jest punkt lub prosta lub zbiór pusty
lub caªa pªaszczyzna. Co wi¦cej, wiemy, »e rozwi¡zanie jest jednoznaczne (punkt) wtedy i tylko

wtedy, gdy det

(
a b
c d

)
6= 0.
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De�nicja 2.45

Przeksztaªcenie F nazywamy ró»nowarto±ciowym, je±li dla dowolnych elementów dziedziny
u i v takich »e u 6= v zachodzi F (u) 6= F (v) (tzn. ró»ne punkty zawszemaj¡ ró»ne obrazy).

Przykªad 9

Uzasadnij, »e poni»sze przeksztaªcenia F : R2 → R2 nie s¡ ró»nowarto±ciowe:
rzut na prost¡ `,(a)

przeksztaªcenie staªe (stale równe P ).(b)

Rozwi¡zanie. W ka»dym przypadku mo»na wskaza¢ takie (ró»ne) punkty A i B na pªaszczy¹-
nie, »e A′ = B′:

x

y

`

A

B

A′=B′

x

y

A

B

P =A′ =B′

Przykªad 10

Uzasadnij, »e poni»sze przeksztaªcenia F : R2 → R2 s¡ ró»nowarto±ciowe:

(a) translacja Tv o wektor v,

(b) odbicie S` wzgl¦dem prostej `,

Rozwi¡zanie. Nietrudno zauwa»y¢, »e dla dowolnych ró»nych punktów A i B zachodzi A′ 6= B′:

(a) Tv(A) 6= Tv(B) (pierwszy rysunek)

(b) S`(A) 6= S`(B) (drugi rysunek)

x

y

A

A′

B

B′

x

y

`

A

A′

B

B′
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Przykªad 11

Sprawd¹ ró»nowarto±ciowo±¢ poni»szych przeksztaªce«:

(a) znakowana odlegªo±¢ od danej prostej ` (przeksztaªcenie F : R2 → R),

(b) przeksztaªcenie F : R→ R2 zadane macierz¡
(

4
1

)
.

Rozwi¡zanie. Przeksztaªcenie (a) nie jest ró»nowarto±ciowe, gdy» mo»na wskaza¢ dwa ró»ne
punkty A i B maj¡ce tak¡ sam¡ znakowan¡ odlegªo±¢ od prostej `.

Przeksztaªcenie (b) jest ró»nowarto±ciowe, gdy» dla ró»nych argumentów t 6= s punkty

t

(
4
1

)
i s
(

4
1

)
s¡ ró»nymi punktami pªaszczyzny.

De�nicj¦ ró»nowarto±ciowo±ci przeksztaªcenia mo»na przeformuªowa¢ u»ywaj¡c poj¦cia prze-
ciwobrazu:

Fakt 2.46

Przeksztaªcenie F jest ró»nowarto±ciowe, wtedy i tylko wtedy, gdy przeciwobraz ka»dego
punktu jest pojedynczym punktem lub zbiorem pustym.

Dowód. Przeksztaªcenie F jest ró»nowarto±ciowe, gdy nie istniej¡ takie ró»ne punkty u i v, »e
F (u) = F (v), czyli gdy przeciwobraz »adnego punktu nie zawiera dwóch lub wi¦cej punktów.

Fakt 2.47

1) Przeksztaªcenie liniowe F : R2 → R2 jest ró»nowarto±ciowe wtedy i tylko wtedy, gdy

jego macierz m(F ) =

(
a b
c d

)
ma niezerowy wyznacznik.

2) Przeksztaªcenie liniowe F : R2 → R nigdy nie jest ró»nowarto±ciowe.

3) Przeksztaªcenie liniowe F : R→ R2 jest ró»nowarto±ciowe wtedy i tylko wtedy, gdy

jego macierz m(F ) =

(
a
b

)
jest niezerowa.

4) Przeksztaªcenie liniowe F : R → R jest ró»nowarto±ciowe wtedy i tylko wtedy, gdy
jego macierz m(F ) = (a) jest niezerowa.

Dowód. Zgodnie z Faktem 2.46 przeksztaªcenie F jest ró»nowarto±ciowe wtedy i tylko wtedy,
gdy dla dowolnego punktu P równanie F (X) = P ma co najwy»ej jedno rozwi¡zanie.

(1) W przypadku F : R2 → R2 oznacza to, »e równanie (z niewiadomymi x i y):

AX = P czyli
(
a b
c d

)(
x
y

)
=

(
p
q

)
ma co najwy»ej jedno rozwi¡zanie niezale»nie od wyboru

(
p
q

)
. Zgodnie z Faktem 1.51 w

przypadku gdy detA 6= 0 równanie to ma jedno rozwi¡zanie niezale»nie od p i q. W przypadku
gdy detA = 0 równanie to ma 0 lub ∞ rozwi¡za«, zale»nie od wyboru p i q. Przeksztaªcenie F
jest zatem ró»nowarto±ciowe wtedy i tylko wtedy, gdy detA 6= 0.

(2) W przypadku F : R2 → R oznacza to, »e równanie (z niewiadomymi x i y):

AX = P czyli
(
a b

)(x
y

)
= p
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ma co najwy»ej jedno rozwi¡zanie niezale»nie od wyboru

(
p
q

)
. Tymczasem równanie to (o

ile
(
a b

)
6=
(
0 0

)
) jest równaniem prostej (mo»na je zapisa¢ w postaci ax + by = p), czyli

ma ∞ rozwi¡za«. W przypadku gdy
(
a b

)
=
(
0 0

)
równanie to ma ∞ rozwi¡za« dla p = 0.

Przeksztaªcenie F nigdy nie jest zatem ró»nowarto±ciowe.
(3) W przypadku F : R→ R2 oznacza to, »e równanie (z niewiadom¡ x):

AX = P czyli
(
a
b

)
· x =

(
p
q

)

ma co najwy»ej jedno rozwi¡zanie niezale»nie od wyboru

(
p
q

)
. Je±li

(
a
b

)
6=
(

0
0

)
, to równanie

to albo jest sprzeczne (gdy wektory
(
a
b

)
i
(
p
q

)
nie s¡ wspóªliniowe) albo ma jedno rozwi¡zanie

(wspóªczynnik skalowania). Je±li
(
a
b

)
=

(
0
0

)
, to w sytuacji

(
p
q

)
=

(
0
0

)
rozwi¡zaniem jest ka»da

liczba rzeczywista x. Przeksztaªcenie F zatem jest ró»nowarto±ciowe, o ile tylko
(
a
b

)
6=
(

0
0

)
.

(4) W przypadku F : R→ R oznacza to, »e równanie (z niewiadom¡ x):

ax = p

ma co najwy»ej jedno rozwi¡zanie niezale»nie od wyboru p. Równanie to ma jednoznaczne
rozwi¡zanie (postaci x = p

a) gdy a 6= 0, natomiast je±li a = 0 to dla p = 0 rozwi¡zaniem jest
ka»da liczba rzeczywista x. Przeksztaªcenie F zatem jest ró»nowarto±ciowe, o ile tylko a 6= 0.

Fakt 2.48

Przeksztaªcenie F (X) = AX+v jest ró»nowarto±ciowe wtedy i tylko wtedy, gdy detA 6= 0.

Dowód. Dowód przebiega analogicznie do dowodu Faktu 2.47(1) i jego przeprowadzenie pozosta-
wiamy czytelnikowi.

Wniosek 2.49

Izometria pªaszczyzny jest przeksztaªceniem ró»nowarto±ciowym.

Dowód. Niech F : R2 → R2 b¦dzie izometri¡ (niekoniecznie liniow¡). Dla dowolnych ró»nych
punktów A i B wektor

−−→
AB jest niezerowy. Poniewa» izometria zachowuje dªugo±ci wektorów,

wi¦c
−−→
A′B′ te» jest niezerowy, czyli A′ 6= B′. Wobec tego F jest ró»nowarto±ciowe.

De�nicja 2.50

Przeksztaªcenie F nazywamy na, je±li dla dowolnego elementu P przeciwdziedziny istnieje
taki punkt X w dziedzinie, »e F (X) = P (tzn. ka»dy punkt przeciwdziedziny jest obrazem
pewnego punktu dziedziny).

Przykªad 12

Uzasadnij, »e poni»sze przeksztaªcenia F : R2 → R2 nie s¡ �na�:
rzut na prost¡ `,(a)

przeksztaªcenie staªe (stale równe P ).(b)
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Rozwi¡zanie. (a) Punkty poza prost¡ ` nie s¡ obrazem »adnego punktu.
(b) Punkty inne ni» P nie s¡ obrazem »adnego punktu.

Przykªad 13

Uzasadnij, »e poni»sze przeksztaªcenia F : R2 → R2 s¡ �na�:

(a) translacja Tv o wektor v,

(b) odbicie S` wzgl¦dem prostej `.

Rozwi¡zanie. Nietrudno zauwa»y¢, »e:

(a) ka»dy punkt P pªaszczyzny jest ko«cem pewnego wektora
−−→
XP = v (czyli obrazem pew-

nego punktu X),

(b) ka»dy punkt P pªaszczyzny jest odbiciem symetrycznym wzgl¦dem prostej ` pewnego
punktu X.

Zatem oba te przeksztaªcenia s¡ �na�.

Przykªad 14

Sprawd¹, które z poni»szych przeksztaªce« s¡ �na�:

(a) znakowana odlegªo±¢ od prostej 2x+ y = 0 (przeksztaªcenie F : R2 → R),

(b) przeksztaªcenie F : R→ R2 zadane macierz¡
(

4
1

)
.

Rozwi¡zanie. (a) Dowolna liczba rzeczywista mo»e by¢ znakowan¡ odlegªo±ci¡ od prostej o
równaniu 2x+ y = 0, wi¦c to przeksztaªcenie jest �na�.

(b) Obrazem liczby t jest wektor
(

4t
t

)
, wi¦c tylko punkty le»¡ce na prostej o równaniu

parametrycznym
(
x
y

)
= t

(
4
1

)
s¡ obrazami, zatem przeksztaªcenie nie jest �na�.

Fakt 2.51

Przeksztaªcenie F jest �na�, wtedy i tylko wtedy, gdy przeciwobraz ka»dego punktu jest
niepustym zbiorem.

Dowód. Przeksztaªcenie F jest �na�, wtedy i tylko wtedy gdy ka»dy punkt przeciwdziedziny jest
obrazem, czyli jego przeciwobraz jest niepusty.

Fakt 2.52

1) Przeksztaªcenie liniowe F : R2 → R2 jest �na� ⇐⇒ macierz m(F ) ma niezerowy
wyznacznik.

2) Przeksztaªcenie liniowe F : R2 → R jest �na� ⇐⇒ macierz m(F ) jest niezerowa.

3) Przeksztaªcenie liniowe F : R→ R2 nigdy nie jest �na�.

4) Przeksztaªcenie liniowe F : R→ R jest �na� ⇐⇒ macierz m(F ) jest niezerowa.
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Dowód. Zgodnie z Faktem 2.51 przeksztaªcenie F jest �na� wtedy i tylko wtedy, gdy dla dowol-
nego punktu P równanie F (X) = P ma co mniej jedno rozwi¡zanie.

(1) W przypadku F : R2 → R2 oznacza to, »e równanie (z niewiadomymi x i y):

AX = P czyli
(
a b
c d

)(
x
y

)
=

(
p
q

)

ma co najmniej jedno rozwi¡zanie niezale»nie od wyboru

(
p
q

)
. Zgodnie z Faktem 1.51 w

przypadku gdy detA 6= 0 równanie to ma jedno rozwi¡zanie niezale»nie od p i q. W przypadku
gdy detA = 0 równanie to ma 0 lub ∞ rozwi¡za«, zale»nie od wyboru p i q. Przeksztaªcenie F
jest zatem ró»nowarto±ciowe wtedy i tylko wtedy, gdy detA 6= 0.

(2) W przypadku F : R2 → R oznacza to, »e równanie (z niewiadomymi x i y):

AX = P czyli
(
a b

)(x
y

)
= p

ma co najmniej jedno rozwi¡zanie niezale»nie od wyboru

(
p
q

)
. Tymczasem równanie to

(o ile
(
a
b

)
6=
(

0
0

)
) jest równaniem prostej (mo»na je zapisa¢ w postaci ax + by = p), czyli

ma ∞ rozwi¡za«. W przypadku gdy
(
a
b

)
=

(
0
0

)
to równanie nie ma rozwi¡za« dla p 6= 0.

Przeksztaªcenie F jest zatem �na�, o ile
(
a
b

)
6=
(

0
0

)
.

(3) W przypadku F : R→ R2 oznacza to, »e równanie (z niewiadom¡ x):

AX = P czyli
(
a
b

)
· x =

(
p
q

)

ma co najmniej jedno rozwi¡zanie niezale»nie od wyboru

(
p
q

)
. Je±li

(
a
b

)
6=
(

0
0

)
, to równanie

to albo jest sprzeczne, je±li za
(
p
q

)
wybierzemy wektor niewspóªliniowy z

(
a
b

)
. Je±li

(
a
b

)
=

(
0
0

)
,

to równanie jest sprzeczne dla dowolnego
(
p
q

)
6=
(

0
0

)
. Przeksztaªcenie F zatem nigdy nie jest

�na�.
(4) W przypadku F : R→ R oznacza to, »e równanie (z niewiadom¡ x):

ax = p

ma co najmniej jedno rozwi¡zanie niezale»nie od wyboru p. Równanie to ma jednoznaczne
rozwi¡zanie (x = p

a) gdy a 6= 0, natomiast je±li a = 0 to dla p 6= 0 jest sprzeczne. Przeksztaªcenie
F zatem jest ró»nowarto±ciowe, o ile tylko a 6= 0.

Fakt 2.53

Przeksztaªcenie F (X) = AX + v jest �na� wtedy i tylko wtedy, gdy detA 6= 0.

Dowód. Dowód przebiega analogicznie do dowodu Faktu 2.52(1) i jego przeprowadzenie pozosta-
wiamy czytelnikowi.
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2.6 Przeksztaªcenie odwrotne

De�nicja 2.54

Przeksztaªceniem odwrotnym do przeksztaªcenia F : D → C nazywamy takie przeksztaª-
cenie G : C → D, »e F ◦ G = IdD oraz G ◦ F = IdC . Przeksztaªcenie G o tej wªasno±ci
oznaczamy jako F−1. Przeksztaªcenie F , dla którego istnieje przeksztaªcenie odwrotne
nazywamy przeksztaªceniem odwracalnym.

Zwró¢my uwag¦, »e z uwagi na to, »e skªadanie przeksztaªce« liniowych nie jest przemienne,
de�nicja wymaga zbadania zarówno zªo»enia F ◦G, jak i G ◦ F .

Fakt 2.55

Je±li F jest przeksztaªceniem odwracalnym oraz F (X) = X ′, to F−1(X ′) = X.

Dowód. Skoro F (X) = X ′, to F−1(X ′) = F−1(F (X)) = (F−1 ◦ F )(X) = Id(X) = X.

Fakt 2.55 pozwala my±le¢ o nast¦puj¡cej konstrukcji przeksztaªcenia odwrotnego: patrzymy
na przeksztaªcenie F , które ka»demu punktowi X przyporz¡dkowuje pewien punkt X ′ (co mo»na
sobie wyobrazi¢ jako strzaªk¦ o pocz¡tku X i ko«cu X ′), a nast¦pnie �odwracamy� przyporz¡dko-
wania, tzn. zmieniamy zwrot wszystkich strzaªek (tzn. punktowi X ′ przyporz¡dkowujemy punkt
X). Opisana konstrukcja zadziaªa, o ile speªnione b¦d¡ dwa warunki:

• ka»dy punkt z przeciwdziedziny jest obrazem (przez przeksztaªcenie F ) co najwy»ej jed-
nego punktu (w przeciwnym razie �odwrócenie� przyporz¡dkowania nie dawaªoby funkcji,
gdy» niektórym punktom przypisane byªoby kilka obrazów),

• ka»dy punkt z przeciwdziedziny jest obrazem (przez przeksztaªcenie F ) co najmniej jed-
nego punktu (w przeciwnym razie �odwrócenie� przyporz¡dkowania nie dawaªoby funkcji,
gdy» niektórym punktom nie byªby przypisany »aden obraz).

Warunki te rozpoznajemy jako ró»nowarto±ciowo±¢ i �na�, co pozwala podsumowa¢ powy»sze
rozwa»ania w formie nast¦puj¡cego faktu:

Fakt 2.56

F jest przeksztaªceniem odwracalnym wtedy i tylko wtedy, gdy przeciwobraz ka»dego
punktu jest pojedynczym punktem. Innymi sªowy, F jest odwracalne ⇐⇒ F jest ró»no-
warto±ciowe i �na�.

Fakt 2.57

Je±li G jest przeksztaªceniem odwrotnym do F , to F jest przeksztaªceniem odwrotnym do
G (tzn. (F−1)−1 = F ).

Dowód. Skoro G jest odwrotne do F , to F ◦ G = Id oraz G ◦ F = Id, a to oznacza, »e F jest
odwrotne do G.

Wniosek 2.58

1) Przeksztaªcenie liniowe F : R2 → R2 jest odwracalne wtedy i tylko wtedy, gdy jego
macierz m(F ) ma niezerowy wyznacznik.

2) Przeksztaªcenia liniowe F : R1 → R2 ani G : R2 → R1 nigdy nie s¡ odwracalne.
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Dowód. (1) Zgodnie z Faktami 2.47 oraz 2.52 przeksztaªcenie F : R2 → R2 jest ró»nowarto±ciowe
i �na� wtedy i tylko wtedy, gdy jego macierz m(F ) ma niezerowy wyznacznik.

(2) Te same fakty pokazuj¡, »e przeksztaªcenie F : R1 → R2 nigdy nie jest �na�, a przeksztaª-
cenie G : R2 → R1 nigdy nie jest ró»nowarto±ciowe, a zatem zgodnie z Faktem 2.56 »adne z nich
nie mo»e by¢ odwracalne.

Jak ju» zauwa»yli±my przy badaniu zªo»e« przeksztaªce« liniowych, operacje na przeksztaªce-
niach liniowych mo»na rozumie¢ jako operacje na macierzach tych przeksztaªce«. Podobnie jest
z operacj¡ odwracania przeksztaªcenia liniowego.

Fakt 2.59

Macierz identyczno±ciowa I =

(
1 0
0 1

)
ma t¦ wªasno±¢, »e:

AI = IA = A, dla dowolnej macierzy A ∈M2×2

IB = B, dla dowolnej macierzy B ∈M2×1

De�nicja 2.60

Macierz¡ odwrotn¡ do macierzy A ∈M2×2 nazywamy tak¡ macierz A−1 ∈M2×2, »e

A ·A−1 = A−1 ·A = I

Macierz, dla której istnieje macierz odwrotna nazywamy macierz¡ odwracaln¡.

Zwró¢my uwag¦, »e ze wzgl¦du na nieprzemienno±¢ mno»enia macierzy de�nicja musi wy-
maga¢ by iloczyn macierzy A i A−1 byª macierz¡ identyczno±ciow¡ niezale»nie od kolejno±ci
czynników.

Niech A =

(
a b
c d

)
. Szukamy macierzy odwrotnej do A, tzn. takiej macierzy

(
x y
z t

)
, »e:

(
a b
c d

)(
x y
z t

)
=

(
1 0
0 1

)
oraz

(
x y
z t

)(
a b
c d

)
=

(
1 0
0 1

)
(2.13)

Pierwsze z równa« (7.1) mo»na zapisa¢ w postaci dwóch równa« wektorowych:

(
a b

c d

)(
x

z

)
=

(
1

0

)
(
a b

c d

)(
y

t

)
=

(
0

1

) (2.14)

które mo»na zapisa¢ jako dwa ukªady 2 równa« liniowych z 2 niewiadomymi:{
ax+ bz = 1

cx+ dz = 0
oraz

{
ay + bt = 0

cy + dt = 1

Je±li det

(
a b
c d

)
6= 0, to zgodnie ze wzorami Cramera ka»dy z powy»szych ukªadów ma jedno-

znaczne rozwi¡zanie:

x =

det

(
1 b
0 d

)
detA

=
1

detA
· d, z =

det

(
a 1
c 0

)
detA

=
1

detA
· (−c)
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y =

det

(
0 b
1 d

)
detA

=
1

detA
· (−b), t =

det

(
a 0
c 1

)
detA

=
1

detA
· a

wobec czego szukan¡ macierz¡ odwrotn¡ powinna by¢ macierz:(
x y
z t

)
=

1

detA

(
d −b
−c a

)
Poniewa» mno»enie macierzy nie jest przemienne, wi¦c musimy jeszcze sprawdzi¢, »e znaleziona
macierz speªnia równie» drugie z równa« (7.1):(

d −b
−c a

)(
a b
c d

)
=

(
1 0
0 1

)
Fakt 2.61

Macierz A =

(
a b
c d

)
jest odwracalna wtedy i tylko wtedy, gdy detA 6= 0, a macierz¡ do

niej odwrotn¡ jest macierz:

A−1 =
1

detA

(
d −b
−c a

)

Dowód. Przed sformuªowaniem faktu wyprowadzili±my powy»szy wzór na macierz odwrotn¡.
Pozostaje uzasadni¢, »e w przypadku, gdy detA = 0, macierz A nie jest odwracalna. Ale je±li
macierz A jest odwracalna, to zachodzi A ·A−1 = I, co na mocy Faktu 2.33 poci¡ga:

detA · det(A−1) = 1

wi¦c w przypadku detA = 0, to otrzymujemy sprzeczno±¢.

Wniosek 2.62

Przeksztaªcenie liniowe F : R2 → R2 dane wzorem F (X) = AX jest odwracalne wtedy i
tylko wtedy, gdy macierz A jest odwracalna. W takiej sytuacji:

F−1(X) = A−1X (tzn. m(F−1) = m(F )−1)

Dowód. Przeksztaªcenie F , zgodnie z Wnioskiem 2.58, jest odwracalne wtedy i tylko wtedy, gdy
macierz detm(F ) 6= 0, co zgodnie z Faktem 2.61 jest równowa»ne odwracalno±ci macierzy m(F ).

Je±li m(F ) = A jest odwracalna, to przeksztaªcenie G(X) = A−1X jest przeksztaªceniem
odwrotnym do F , gdy»:

(F ◦G)(X) = F (G(X)) = A · (A−1 ·X) = (A ·A−1) ·X = I ·X = X

(G ◦ F )(X) = G(F (X)) = A−1 · (A ·X) = (A−1 ·A) ·X = I ·X = X

Fakt 2.63

Dla dowolnych odwracalnych macierzy A i B o wymiarach 2× 2 zachodz¡ warunki:

1) det(A−1) = (detA)−1

2) (AB)−1 = B−1A−1
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Dowód. (1) Zgodnie z Faktem 2.33 zachodzi:

detA · detA−1 = det(AA−1) = det I = 1

St¡d otrzymujemy detA−1 = (detA)−1.
(2) Zauwa»my, »e na mocy prawa ª¡czno±ci mno»enia:

(B−1A−1) · (AB) = B−1(A−1A)B = B−1IB = B−1B = I

czyli macierze B−1A−1 i AB s¡ wzajemnie odwrotne.

Macierze odwrotne pozwalaj¡ na alternatywne podej±cie do problemu rozwi¡zywania ukªadów
równa« liniowych. Ukªad: {

ax+ by = e

cx+ dy = f

mo»na zapisa¢ przy pomocy macierzy w postaci:(
a b
c d

)(
x
y

)
=

(
e
f

)
lub w uproszczonej postaci

AX = B

i rozwi¡zywa¢ korzystaj¡c z wªasno±ci macierzy odwrotnej:

X = A−1B

Ze wzgl¦du na nieprzemienno±¢ mno»enia macierzy trzeba zawsze zwraca¢ uwag¦ na to, z której
strony mno»ymy przez macierz odwrotn¡, co pokazuj¡ poni»sze przykªady.

Przykªad 1

Rozwi¡» nast¦puj¡ce równania macierzowe:

(a)
(

1 2
1 1

)(
x
y

)
=

(
3
1

)
,

(b)
(
x y
z t

)(
3 2
4 3

)
=

(
1 0
1 1

)
,

(c)
(

1 2
1 1

)(
x y
z t

)(
3 2
4 3

)
=

(
5 1
1 0

)
.

Rozwi¡zanie. W ka»dym przypadku mno»ymy obie strony równania przez macierz odwrotn¡,
zwracaj¡c uwag¦ na to, by zarówno lew¡ jak i praw¡ stron¦ równo±ci mno»y¢ przez macierz
odwrotn¡ z tej samej strony (mno»enie macierzy nie jest przemienne).

(a)
(
x
y

)
=

(
1 2
1 1

)−1(
3
1

)
=

(
−1 2
1 −1

)(
3
1

)
=

(
−1
2

)
(b)

(
x y
z t

)
=

(
1 0
1 1

)(
3 2
4 3

)−1

=

(
1 0
1 1

)(
3 −2
−4 3

)
=

(
3 −2
−1 1

)
(c)
(
x y
z t

)
=

(
1 2
1 1

)−1(
5 1
1 0

)(
3 2
4 3

)−1

=

(
−1 2
1 −1

)(
5 1
1 0

)(
3 −2
−4 3

)
=

(
−5 3
8 −5

)
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De�nicja 2.64

Transpozycj¡ macierzy A (niekoniecznie kwadratowej), oznaczan¡ A>, nazywamy macierz,
która jest �symetrycznym odbiciem� macierzy A wzgl¦dem gªównej przek¡tnej, jak na
poni»szym rysunku.

(
2 3
−1 4

) (
2 −1
3 4

) (
1 5 2
8 0 3

) 1 8
5 0
2 3


Macierz A, dla której A> = A nazywamy macierz¡ symetryczn¡.

Fakt 2.65

Dla dowolnych wektorów u i v na pªaszczy¹nie zachodzi wzór:

u ◦ v = u> · v

Dowód. Oznaczmy u =

(
u1

u2

)
oraz v =

(
v1

v2

)
. Wówczas:

u ◦ v = u1v1 + u2v2 =
(
u1 u2

)
·
(
v1

v2

)
= u> · v

Fakt 2.66

1) Dla dowolnych macierzy A i B tego samego rozmiaru oraz dowolnego skalara t za-
chodz¡ wzory:

(A+B)> = A> +B>, (tA)> = t ·A>

2) Dla dowolnych macierzy A i B, dla których iloczyn A ·B ma sens zachodzi wzór:

(A ·B)> = B> ·A>

Dowód. (1) Udowodnimy pierwszy wzór dla macierzy 2×2. Dowód dla macierzy innych rozmia-
rów oraz dowód drugiego wzoru jest analogiczny:((

a b
c d

)
+

(
a′ b′

c′ d′

))>
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)>
=

(
a+ a′ c+ c′

b+ b′ d+ d′

)

=

(
a c
b d

)
+

(
a′ c′

b′ d′

)
=

(
a b
c d

)>
+

(
a′ b′

c′ d′

)>

Fakt 2.67

Dla dowolnej macierzy A rozmiaru 2× 2 zachodzi detA = detA>.

Dowód. Je±li A =

(
a b
c d

)
, to A> =

(
a c
b d

)
oraz detA = detA> = ad− bc.
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Fakt 2.68

Macierz A jest macierz¡ izometrii wtedy i tylko wtedy, gdy jest odwracalna i A−1 = A>.

Dowód. Je±li A jest macierz¡ izometrii, to na mocy Faktu 2.31 mamy

A =

(
a −b
b a

)
lub A =

(
a b
b −a

)
gdzie a2 + b2 = 1. St¡d zgodnie z Faktem 2.61:

A−1 =
1

a2 + b2

(
a b
−b a

)
=

(
a b
−b a

)
= A>

lub

A−1 =
1

−a2 − b2

(
−a −b
−b a

)
=

(
a b
b −a

)
= A>

Je±li z kolei A speªnia warunek A−1 = A>, to zgodnie z Faktami 2.66 i 2.63 dostajemy

(detA)−1 = detA> = detA, czyli detA = ±1. Oznaczaj¡c A =

(
a b
c d

)
, zgodnie z Faktem 2.61

dostajemy:

A−1 =

(
d −b
−c a

)
i A> =

(
a c
b d

)
, czyli d = a i c = −b, je±li detA = +1

A−1 =

(
−d b
c −a

)
i A> =

(
a c
b d

)
, czyli d = −a i c = b, je±li detA = −1

Fakt 2.69

Macierz A jest macierz¡ izometrii wtedy i tylko wtedy macierz A> jest macierz¡ izometrii.
W szczególno±ci, macierz A jest macierz¡ izometrii wtedy i tylko wtedy, gdy jej wiersze
s¡ prostopadªymi wektorami dªugo±ci 1.

Dowód. Je±li A jest macierz¡ izometrii, to zgodnie z Faktem 2.68:

A−1 = A>

sk¡d zgodnie z Faktami 2.66 i 2.63:

(A>)−1 = (A−1)−1 = A = (A>)>

czyli A> jest macierz¡ izometrii. Podobnie pokazujemy, »e je±li A> jest macierz¡ izometrii, to A
równie». Poniewa» transpozycja macierzy zamienia kolumny na wiersze, wi¦c warunek dotycz¡cy
kolumn z Faktu 2.31 tªumaczy si¦ na warunek dotycz¡cy wierszy.
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Rozdziaª 3

Diagonalizacja macierzy 2× 2

3.1 Warto±ci wªasne i wektory wªasne

Od tej pory przestajemy si¦ zajmowa¢ przeksztaªceniami a�nicznymi. Nasza grupa przeksztaªce«
to przeksztaªcenia liniowe.

De�nicja 3.1

Wektor wªasny przeksztaªcenia liniowego F : R2 → R2 to wektor X speªniaj¡cy warunek:

F (X) = λ ·X

dla pewnej liczby rzeczywistej λ. Je±li X 6= 0, to liczb¦ λ nazywamy warto±ci¡ wªasn¡
przeksztaªcenia F , za± X wektorem wªasnym dla warto±ci wªasnej λ. Wektor X = 0 jest
wektorem wªasnym dla ka»dej warto±ci wªasnej λ.

Innymi sªowy: wektor wªasny przeksztaªcenia F to taki wektor X, który ma ten sam kierunek
co jego obraz F (X), natomiast warto±¢ wªasna to wspóªczynnik λ o jaki skaluje go przeksztaª-
cenie F . Zauwa»my, »e punkt staªy przeksztaªcenia liniowego (De�nicja 2.16) jest szczególnym
przypadkiem wektora wªasnego (dla warto±ci wªasnej 1). Drugim szczególnym przypadkiem jest
ka»dy wektor, który nale»y do przeciwobrazu punktu 0 (jest to wektor wªasny dla warto±ci wªa-
snej 0).

Przykªad 1

Wyznacz warto±ci i wektory wªasne odbicia S` wzgl¦dem prostej `.
Rozwi¡zanie. Dla dowolnego wektora v1 le»¡cego na prostej ` zachodzi F (v1) = v1 = 1 · v1,
czyli λ1 = 1 jest warto±ci¡ wªasn¡ przeksztaªcenia, a prosta ` jest zbiorem wektorów wªasnych
dla λ1.

x

y

λ1 = 1

λ
2

=
−

1

v1 = F (v1)

v2

F (v2)

·

v3

F (v3)
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Dla dowolnego wektora v2 prostopadªego do prostej ` zachodzi F (v2) = −v2 = (−1) · v2, czyli
λ2 = −1 jest warto±ci¡ wªasn¡ przeksztaªcenia, a prosta prostopadªa do ` przechodz¡ca przez
0 jest zbiorem wektorów wªasnych dla λ2.

Je±li wektor v3 nie jest równolegªy ani prostopadªy do `, to wektory v3 i F (v3) maj¡ ró»ne
kierunki, przeksztaªcenie nie ma zatem wi¦cej wektorów ani warto±ci wªasnych.

Przykªad 2

Wyznacz warto±ci i wektory wªasne rzutu uko±nego na prost¡ ` w kierunku wektora v.
Rozwi¡zanie. Dla dowolnego wektora v1 le»¡cego na prostej ` zachodzi F (v1) = v1 = 1 · v1,
czyli λ1 = 1 jest warto±ci¡ wªasn¡ przeksztaªcenia, a prosta ` jest zbiorem wektorów wªasnych
dla λ1.

x

y

λ1 = 1

λ 2
=

0

v1 = F (v1)

v2

v3

F (v3)

v

Dla dowolnego wektora v2 równolegªego do v zachodzi F (v2) = 0 = 0 · v2, czyli λ2 = 0 jest
warto±ci¡ wªasn¡ przeksztaªcenia, a prosta równolegªa do v przechodz¡ca przez 0 jest zbiorem
wektorów wªasnych dla λ2.

Je±li wektor v3 nie jest równolegªy ani do `, ani do v, to wektory v3 i F (v3) maj¡ ró»ne
kierunki, przeksztaªcenie nie ma zatem wi¦cej wektorów ani warto±ci wªasnych.

Przykªad 3

Wyznacz warto±ci i wektory wªasne nast¦puj¡cych przeksztaªce« liniowych:

(a) jednokªadno±¢ o ±rodku O i skali k,

(b) przeksztaªcenie identyczno±ciowe,

(c) przeksztaªcenie zerowe.

λ1 = k

x

y

jednokªadno±¢

λ1 = +1

x

y

identyczno±¢

λ1 = 0

x

y

przeksztaªcenie zerowe
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(a) Jednokªadno±¢ o ±rodku O i skali k speªnia warunek: F (X) = k ·X dla ka»dego wektora
X, w zwi¡zku z tym ka»dy wektor jest wektorem wªasnym dla warto±ci wªasnej λ1 = k.

(b) Przeksztaªcenie identyczno±ciowe speªnia warunek F (X) = 1 ·X dla ka»dego wektora
X, czyli ka»dy wektor jest wektorem wªasnym dla λ1 = 1.

(c) Przeksztaªcenie zerowe speªnia warunek F (X) = 0 · X dla ka»dego wektora X, czyli
ka»dy wektor jest wektorem wªasnym dla λ1 = 0.

Przykªad 4

Wyznacz wszystkie warto±ci i wektory wªasne obrotu wokóª O o k¡t θ (inny ni» 0 i π).
Rozwi¡zanie. Je±li v jest niezerowym wektorem, to v i F (v) maj¡ ró»ne kierunki. Przeksztaª-
cenie to nie ma zatem »adnych warto±ci wªasnych, ani niezerowych wektorów wªasnych.

x

y

v

v′

θ

Przykªad 5

Wyznacz wszystkie warto±ci i wektory wªasne powinowactwa ±cinaj¡cego o osi ` (przechodz¡cej
przez 0) i wektorze v.
Rozwi¡zanie. Dla dowolnego wektora v1 równolegªego do prostej ` zachodzi F (v1) = v1 = 1·v1,
czyli λ1 = 1 jest warto±ci¡ wªasn¡ przeksztaªcenia, a prosta ` jest zbiorem wektorów wªasnych
dla λ1.

Je±li wektor v2 nie jest równolegªy do `, to wektory v2 i F (v2) maj¡ ró»ne kierunki, prze-
ksztaªcenie nie ma zatem wi¦cej wektorów ani warto±ci wªasnych.

x

y

λ1 = 1

v1 = F (v1)

v2
F (v2)

v

Je±li mamy podan¡ macierz przeksztaªcenia liniowego, to wyznaczanie warto±ci i wektorów
wªasnych mo»na sprowadzi¢ do rozwi¡zywania równa«, jak to pokazuj¡ kolejne fakty.

Copyright c© Tomasz Elsner, 2019



112 ROZDZIA� 3. DIAGONALIZACJA MACIERZY 2× 2

Fakt 3.2

Warto±ci wªasne przeksztaªcenia liniowego F : R2 → R2 to rozwi¡zania równania:

det(m(F )− λ Id) = 0

Wielomian χF (λ) = det(m(F )− λ Id) nazywamy wielomianem charakterystycznym prze-
ksztaªcenia F .

Dowód. Niech A b¦dzie macierz¡ przeksztaªcenia F , tzn. F (X) = AX. Warunek:

F (X) = λX (w wersji macierzowej A ·X = λX)

mo»na zapisa¢ w postaci

(F − λ Id)(X) = 0 (w wersji macierzowej (A− λI) ·X = 0)

Zatem λ jest warto±ci¡ wªasn¡ F wtedy i tylko wtedy, gdy równanie macierzowe

(A− λI) ·X = 0 (3.1)

ma niezerowe rozwi¡zanie. Poniewa» wektor X = 0 jest rozwi¡zaniem (8.1) niezale»nie od
warto±ci λ, wi¦c szukamy takich λ, dla których (8.1) ma przynajmniej dwa rozwi¡zania (X = 0
i rozwi¡zanie niezerowe). Równanie (8.1) to ukªad cramerowski o macierzy gªównej (A − λI),
który zgodnie z Faktem 1.50 ma wi¦cej ni» jedno rozwi¡zanie wtedy i tylko wtedy, gdy

det(A− λI) = 0

Wobec tego warto±ciami wªasnymi s¡ pierwiastki λ równania det(A− λI) = 0.

Przykªad 6

Znajd¹ wszystkie warto±ci wªasne i wektory wªasne przeksztaªcenia liniowego F : R2 → R2 o
wzorze:

F (X) =

(
2 1
3 4

)
X

Rozwi¡zanie. Tym razem, w odró»nieniu od poprzednich przykªadów, wygodniej b¦dzie zacz¡¢
od wyznaczenia warto±ci wªasnych. Zgodnie z Faktem 3.2 warto±ci wªasne przeksztaªcenia F ,
to pierwiastki wielomianu charakterystycznego:

χF (λ) = det

(
2− λ 1

3 4− λ

)
= (2− λ)(4− λ)− 3 = λ2 − 6λ+ 5

czyli rozwi¡zania równania:
λ2 − 6λ+ 5 = 0

Zatem warto±ciami wªasnymi s¡ λ1 = 1 i λ2 = 5. Wyznaczmy teraz wektory wªasne dla
warto±ci wªasnej λ1 = 1. Zgodnie z de�nicj¡, s¡ to rozwi¡zania równania:(

2 1
3 4

)(
x
y

)
= 1 ·

(
x
y

)
czyli

{
2x+ y = x

3x+ 4y = y

Ka»de z równa« tego ukªadu przeksztaªca si¦ do postaci x + y = 0, wi¦c zbiorem wektorów
wªasnych dla warto±ci wªasnej λ1 = 1 jest prosta o równaniu x+ y = 0.
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Wyznaczmy teraz wektory wªasne dla warto±ci wªasnej λ1 = 5. Zgodnie z de�nicj¡, s¡ to
rozwi¡zania równania:(

2 1
3 4

)(
x
y

)
= 5 ·

(
x
y

)
czyli

{
2x+ y = 5x

3x+ 4y = 5y

Ka»de z równa« tego ukªadu przeksztaªca si¦ do postaci 3x−y = 0, wi¦c zbiorem wektorów
wªasnych dla warto±ci wªasnej λ2 = 5 jest prosta o równaniu 3x− y = 0.

Jak pokazuje powy»szy przykªad i wcze±niejszy dowód, czasami wygodniej jest posªugiwa¢
si¦ warunkiem macierzowym ni» funkcyjnym, dlatego wprowadzimy poj¦cie warto±ci wªasnej i
wektora wªasnego macierzy (kwadratowej).

De�nicja 3.3

Wektor wªasny macierzy A rozmiaru 2× 2, to wektor X speªniaj¡cy warunek

AX = λX

dla pewnej liczby rzeczywistej λ. Je±li X 6= 0, to liczb¦ λ nazywamy warto±ci¡ wªasn¡ ma-
cierzy A, za± X wektorem wªasnym dla warto±ci wªasnej λ. Wektor X = 0 jest wektorem
wªasnym dla ka»dej warto±ci wªasnej λ. Wielomian

χA(λ) = det(A− λI)

nazywamy wielomianem charakterystycznym macierzy A.

Innymi sªowy, warto±ci i wektory wªasne macierzy A to warto±ci i wektory wªasne przeksztaª-
cenia liniowego o macierzy A. W zwi¡zku z t¡ uwag¡, na wszystkie kolejne fakty mo»na patrzy¢
na dwa sposoby: jako odnosz¡ce si¦ do macierzy A lub jako odnosz¡ce si¦ do przeksztaªcenia
liniowego o macierzy A.

Wniosek 3.4

Macierz A ∈ M2×2 (przeksztaªcenie liniowe F : R2 → R2) ma co najwy»ej dwie warto±ci
wªasne.

Dowód. Warto±ci wªasne macierzy A =

(
a b
c d

)
to pierwiastki wielomianu charakterystycznego:

χA(x) = det

(
a− x b
c d− x

)
= (a− x)(d− x)− bc

Poniewa» wielomian kwadratowy ma co najwy»ej dwa pierwiastki, wi¦c macierz Ama co najwy»ej
dwie warto±ci wªasne.

Fakt 3.5

Niezerowy wektor wªasny macierzy A ∈ M2×2 (przeksztaªcenia liniowego F : R2 → R2)
przynale»y tylko do jednej warto±ci wªasnej.
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Dowód. Zaªó»my (nie wprost), »e X jest niezerowym wektorem wªasnym macierzy A dla dwóch
ró»nych warto±ci wªasnych λ1 i λ2. Oznacza to, »e:{

AX = λ1X

AX = λ2X

St¡d

λ1X = λ2X czyli (λ1 − λ2)X = 0

sk¡d otrzymujemy sprzeczno±¢, gdzy» λ1 − λ2 6= 0 oraz X 6= 0.

Fakt 3.6

Je±li λ jest warto±ci¡ wªasn¡ macierzy A ∈ M2×2 (przeksztaªcenia liniowego F : R2 →
R2), to zbiór wektorów wªasnych dla λ jest albo prost¡ (przechodz¡c¡ przez 0) albo caª¡
pªaszczyzn¡.

Dowód. Oznaczmy A =

(
a b
c d

)
. Zbiór wektorów X =

(
x
y

)
wªasnych dla warto±ci wªasnej λ to

zbiór rozwi¡za« nast¦puj¡cego ukªadu równa« (z niewiadomymi x i y):

(
a b
c d

)
= λ

(
x
y

)
czyli

{
ax+ by = λx

cx+ dy = λy

Po przeksztaªceniu otrzymujemy ukªad cramerowski:{
(a− λ)x+ by = 0

cx+ (d− λ)y = 0

Zbiór rozwi¡za« takiego ukªadu to (zgodnie z Faktem 1.50) zbiór pusty, punkt, prosta lub caªa
pªaszczyzna. Poniewa» x = y = 0 speªnia ten ukªad równa«, a skoro λ jest warto±ci¡ wªasn¡, to
ukªad ma oprócz tego przynajmniej jedno niezerowe rozwi¡zanie, wi¦c lista mo»liwych zbiorów
rozwi¡za« to: prosta zawieraj¡ca punkt 0 oraz caªa pªaszczyzna.

Fakt 3.7

Je±li macierz A ∈ M2×2 (przeksztaªcenie liniowe F : R2 → R2) ma dwie ró»ne warto±ci
wªasne, to zbiór wektorów wªasnych dla ka»dej z warto±ci wªasnych jest prost¡ przecho-
dz¡c¡ przez 0.

Dowód. Zgodnie z Faktem 3.6 zbiór wektorów wªasnych dla ka»dej z warto±ci wªasnych to prosta
przechodz¡ca przez 0 lub pªaszczyzna. Poniewa» jednak niezerowy wektor wªasny mo»e nale-
»e¢ do tylko jednej warto±ci wªasnej (Fakt 3.5), wi¦c jedyn¡ mo»liwo±ci¡ s¡ dwie ró»ne proste
przechodz¡ce przez 0.
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Wniosek 3.8

Zbiór wektorów wªasnych macierzy 2 × 2 (przeksztaªcenia liniowego F : R2 → R2) jest
jednym z poni»szych zbiorów:

x

y

λ1

λ2

2 warto±ci wªasne

x

y

λ1

1 warto±¢ wªasna

x

y

λ1

1 warto±¢ wªasna

x

y

0 warto±ci wªasnych

Dowód. Zgodnie z Wnioskiem 3.8 macierz 2 × 2 ma 0, 1 lub 2 warto±ci wªasne. Je±li ma tylko
1 warto±¢ wªasn¡ λ1, to zbiór wektorów wªasnych dla λ1 to (zgodnie z Faktem 3.6) prosta
przechodz¡ca przez 0 lub caªa pªaszczyzna. Je±li ma 2 warto±ci wªasne λ1 i λ2, to (zgodnie z
Faktem 3.7) zbiory wektorów wªasnych to dwie ró»ne proste przechodz¡ce przez 0. St¡d mo»liwe
s¡ tylko cztery sytuacje przestawione na rysunkach. Przykªady z pocz¡tku rozdziaªu pokazuj¡,
»e ka»da z tych sytuacji faktycznie mo»e mie¢ miejsce.

Fakt 3.9: Wzory Viete'a

Je±li x1 i x2 s¡ pierwiastkami równania kwadratowego ax2 + bx+ c = 0, to

x1 + x2 = − b
a

oraz x1x2 =
c

a

Dowód. Skoro x1 i x2 s¡ pierwiastkami wielomianu ax2 + bx + c, to rozkªadaj¡c ten wielomian
na czynniki otrzymujemy:

ax2 + bx+ c = a(x− x1)(x− x2)

Wymna»aj¡c dostajemy:

ax2 + bx+ c = ax2 − a(x1 + x2)x+ (ax1x2)

Poniewa» dwa wielomiany s¡ równe wtedy i tylko wtedy, gdy maj¡ jednakowe odpowiednie
wspóªczynniki, wi¦c: {

b = −a(x1 + x2)

c = ax1x2

sk¡d: {
x1 + x2 = − b

a

x1x2 = c
a
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Wniosek 3.10

Je±li macierz A rozmiaru 2× 2 ma dwie warto±ci wªasne λ1 i λ2, to:{
λ1 + λ2 = trA

λ1 · λ2 = detA

gdzie tr

(
p q
r s

)
= p+ s nazywamy ±ladem macierzy.

Dowód. Niech A =

(
p q
r s

)
. Wówczas λ1 i λ2 to pierwiastki wielomianu charakterystycznego:

χA(λ) = det

(
p− λ q
r s− λ

)
= (p− λ)(s− λ)− qr = λ2 − (p+ s)λ+ (ps− qr)

= λ2 − (trA)λ+ detA

Zgodnie z wzorami Viete'a: {
λ1 + λ2 = −− trA

1 = trA

λ1λ2 = detA
1 = detA

Wykorzystuj¡c powy»szy wniosek mo»na szybko ustali¢ znaki warto±ci wªasnych bez ich wy-
liczania:

Przykªad 7

Wiedz¡c, »e macierz A =

(
3 1
4 2

)
ma 2 warto±ci wªasne ustal znaki warto±ci wªasnych.

Rozwi¡zanie. Zgodnie z Wnioskiem 3.10 wiemy, »e:{
λ1 + λ2 = trA = 5

λ1 · λ2 = detA = 2

Suma i iloczyn warto±ci wªasnych jest dodatnia, a zatem λ1 > 0 i λ2 > 0.

3.2 Diagonalizacja macierzy

Twierdzenie 3.11: Diagonalizacja macierzy

Je±li A jest macierz¡ 2× 2, która ma dwie ró»ne warto±ci wªasne λ i µ, to

A = PDP−1, gdzie D =

(
λ 0
0 µ

)
, P =

(
u1 v1

u2 v2

)

przy czym u =

(
u1

u2

)
i v =

(
v1

v2

)
to wektory wªasne odpowiednio dla λ i µ.
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Dowód. Niech u =

(
u1

u2

)
i v =

(
v1

v2

)
b¦d¡ niezerowymi wektorami wªasnymi odpowiednio dla

warto±ci wªasnych λ i µ macierzy A. Oznaczmy P =

(
u1 v1

u2 v2

)
. Macierz AP jest macierz¡ 2×2,

a zgodnie z zasadami mno»enia macierzy, wektory:

AP

(
1
0

)
= A

(
u1 v1

u2 v2

)(
1
0

)
= A

(
u1

u2

)
= λ

(
u1

u2

)
=

(
λu1

λu2

)

AP

(
0
1

)
= A

(
u1 v1

u2 v2

)(
0
1

)
= A

(
v1

v2

)
= µ

(
v1

v2

)
=

(
µv1

µv2

)
stanowi¡ odpowiednio pierwsz¡ i drug¡ kolumn¡ macierzy AP . Wobec tego:

AP =

(
λu1 µv1

λu2 µv2

)
=

(
u1 v1

u2 v2

)(
λ 0
0 µ

)
= PD

Skoro AP = PD, a macierz P jest odwracalna (bo wektory u i v, zgodnie z Faktem 3.7, s¡
niewspóªliniowe), to A = PDP−1.

Fakt 3.12

Niech A b¦dzie macierz¡ 2× 2, za± D i P takimi macierzami 2× 2, »e P jest odwracalna
oraz A = PDP−1. Wówczas dla dowolnej liczby naturalnej n zachodzi wzór:

An = PDnP−1

Dowód. Przeprowad¹my indukcj¦ wzgl¦dem n. Dla n = 1 teza jest oczywista. Zaªó»my, »e dla
pewnej warto±ci n = k zachodzi Ak = PDkP−1. Wówczas dla n = k + 1 otrzymujemy:

Ak+1 = Ak ·A = PDkP−1 · PDP−1 = PDk(P−1 · P )DP−1

= P (DkID)P−1 = P (DkD)P−1 = P (Dk+1)P−1

Powy»szy fakt jest prawdziwy dla dowolnej macierzy D, aczkolwiek w praktyce b¦dziemy go
wykorzystywa¢ gªównie w sytuacji gdy D jest diagonalna (a PDP−1 jest diagonalizacj¡ macierzy
A), co pozwoli nam sprawnie pot¦gowa¢ macierze kwadratowe.

Fakt 3.13

Dla dowolnej liczby naturalnej n zachodzi:(
a 0
0 b

)n
=

(
an 0
0 bn

)

Dowód powy»szego faktu pozostawiamy czytelnikowi jako ¢wiczenie.
Pierwszym wa»nym zastosowaniem diagonalizacja macierzy jest wyliczanie pot¦g (natural-

nych) macierzy kwadratowych, jak pokazuje to poni»szy przykªad.

Przykªad 1

Obliczy¢
(

2 1
1 2

)100

.
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Rozwi¡zanie. Wielomian charakterystyczny macierzy
(

2 1
1 2

)
to

det

(
2− x 1

1 2− x

)
= (2− x)2 − 1 = x2 − 4x+ 3 = (x− 1)(x− 3)

Zatem warto±ci wªasne to λ1 = 1 i λ2 = 3. Wektory wªasne dla λ1 to zbiór rozwi¡za« równania:(
2 1
1 2

)(
x
y

)
=

(
x
y

)
czyli

{
2x+ y = x

x+ 2y = y
czyli x = −y

Wektory wªasne dla λ2 to zbiór rozwi¡za« równania:(
2 1
1 2

)(
x
y

)
= 3

(
x
y

)
czyli

{
2x+ y = 3x

x+ 2y = 3y
czyli x = y

Zatem przykªadowe wektory wªasne dla warto±ci wªasnych 1 i 3 to, odpowiednio,
(

1
−1

)
i
(

1
1

)
,

czyli macierz diagonalizuje si¦ w nast¦puj¡cy sposób:(
2 1
1 2

)
=

(
1 1
−1 1

)(
1 0
0 3

)(
1 1
−1 1

)−1

Wobec tego, zgodnie z Faktem 3.12 i Faktem 3.13:(
2 1
1 2

)100

=

(
1 1
−1 1

)(
1 0
0 3

)100(
1 1
−1 1

)−1

=
1

2

(
1 1
−1 1

)(
1 0
0 3100

)(
1 −1
1 1

)
=

1

2

(
3100 + 1 3100 − 1
3100 + 1 3100 − 1

)

Drugie wa»ne zastosowanie, to rozwi¡zywanie rekurencji liniowych (tzn. wyznaczanie zwar-
tego wzoru ci¡gu zadanego rekurencyjnie).

Przykªad 2

Ci¡g (an) zadany jest nast¦puj¡c¡ rekurencj¡:
a0 = 0

a1 = 1

an+1 = 5an − 6an−1, gdy n ≥ 1

Kolejnymi wyrazami tego ci¡gu s¡ zatem: 0, 1, 5, 19, 65, . . . . Znajd¹ (zwarty) wzór na an.
Rozwi¡zanie. Ka»dy wyraz ci¡gu zale»y tylko od dwóch poprzednich wyrazów. Je±li zatem

b¦dziemy rozpatrywa¢ wektory vn =

(
an+1

an

)
, dla n = 0, 1, 2, . . . , to ka»dy wektor b¦dzie

zale»aª tylko od poprzedniego wektora i zale»no±¢ t¦ b¦dzie mo»na zapisa¢ warunkiem:

vn =

(
an+1

an

)
=

(
5 −6
1 0

)(
an
an−1

)
=

(
5 −6
1 0

)
vn−1

W zwi¡zku z tym:

vn =

(
5 −6
1 0

)
vn−1 =

(
5 −6
1 0

)2

vn−2 = · · · =
(

5 −6
1 0

)n
v0 =

(
5 −6
1 0

)n(
1
0

)
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Dla wyznaczenia wzoru na an potrzeba wi¦c obliczy¢ n-t¡ pot¦g¦ macierzy. Post¦pujemy jak

w poprzednim przykªadzie. Wielomian charakterystyczny macierzy
(

5 −6
1 0

)
to:

χ(λ) = det

(
5− λ −6

1 −λ

)
= (5− λ)(−λ) + 6 = λ2 − 5λ+ 6 = (λ− 3)(λ− 2)

Pierwiastki wielomianu charakterystycznego to zatem λ1 = 3 i λ2 = 2, a odpowiadaj¡ce im

wektory wªasne to (jak nietrudno wyliczy¢) v1 =

(
3
1

)
oraz v2 =

(
2
1

)
Diagonalizacja macierzy

przyjmuje zatem posta¢: (
5 −6
1 0

)
=

(
3 2
1 1

)(
3 0
0 2

)(
3 2
1 1

)−1

Wobec tego

vn =

(
an+1

an

)
=

(
5 −6
1 0

)n(
1
0

)
=

((
3 2
1 1

)(
3 0
0 2

)(
3 2
1 1

)−1
)n(

1
0

)

=

(
3 2
1 1

)(
3 0
0 2

)n(
3 2
1 1

)−1(
1
0

)
=

(
3 2
1 1

)(
3n 0
0 2n

)(
1 −2
−1 3

)(
1
0

)
=

(
3n+1 − 2n+1

3n − 2n

)
St¡d otrzymujemy

an = 3n − 2n

Trzeci rodzaj problemów, do których b¦dziemy wykorzystywa¢ diagonalizacj¦ macierzy, to
wyznaczanie macierzy przeksztaªcenia liniowego, dla którego znamy (lub ªatwo mo»emy ustali¢)
warto±ci i wektory wªasne.

Przykªad 3

Wyznaczy¢ macierze nast¦puj¡cych przeksztaªce« liniowych:

(a) odbicie wzgl¦dem prostej ` o równaniu 3x− 4y = 0,

(b) rzut (prostopadªy) na prost¡ ` o równaniu 3x− 4y = 0,

Rozwi¡zanie. Zauwa»my, »e w ka»dym przypadku jeste±my w stanie wyznaczy¢ wektory i
warto±ci wªasne przeksztaªcenia:

(a) Warto±ci wªasne to 1 i −1, a wektory wªasne to, odpowiednio, wektory równolegªe do `

(czyli wspóªliniowe z wektorem kierunkowym
(

4
3

)
) i prostopadªe do ` (czyli wspóªliniowe

z wektorem normalnym
(

3
−4

)
).

(b) Warto±ci wªasne to 1 i 0, a wektory wªasne to, odpowiednio, wektory równolegªe do `

(czyli wspóªliniowe z wektorem kierunkowym
(

4
3

)
) i prostopadªe do ` (czyli wspóªliniowe

z wektorem normalnym
(

3
−4

)
).

W zwi¡zku z tym macierze tych przeksztaªce« (zapisane w postaci diagonalnej) maj¡ posta¢:

(a) R
((

x
y

))
=

(
4 3
3 −4

)(
1 0
0 −1

)(
4 3
3 −4

)−1(
x
y

)
=

(
7
25

24
25

24
25 − 7

25

)(
x
y

)
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(b) P
((

x
y

))
=

(
4 3
3 −4

)(
1 0
0 0

)(
4 3
3 −4

)−1(
x
y

)
=

(
16
25

12
25

12
25

9
25

)(
x
y

)

x

y

λ1
=

+1

λ
2 =
−

1

x

y

λ1
=

+1

λ
2 =

0

Powy»sze przykªady pokazuj¡ jak wa»ne jest diagonalizowanie macierzy. Z Faktu ?? wiemy,
»e nie ka»da macierz 2× 2 si¦ diagonalizuje (bo nie ka»da macierz 2× 2 ma dwa niewspóªliniowe
wektory wªasne). Poni»sze twierdzenie wyodr¦bnia zbiór macierzy (symetrycznych), które zawsze
si¦ diagonalizuj¡ (aczkolwiek nie ka»da diagonalizuj¡ca si¦ macierz musi by¢ symetryczna).

Twierdzenie 3.14: Twierdzenie spektralne dla R2

Symetryczna macierz A rozmiaru 2× 2 zawsze si¦ diagonalizuje, tzn.

A = PDP−1

i to w taki sposób, »e kolumny macierzy P s¡ wektorami prostopadªymi.
Innymi sªowy zachodzi jedna z dwóch mo»liwo±ci:

(a) A ma dwie ró»ne warto±ci wªasne, a zbiory ich wektorów wªasnych s¡ prostopadªymi
prostymi,

(b) A ma jedn¡ (podwójn¡) warto±¢ wªasn¡ λ, dla której zbiór wektorów wªasnych jest
caª¡ pªaszczyzn¡ (wówczas A = λI).

Dowód. Wielomian charakterystyczny macierzy symetrycznej A =

(
a b
b c

)
to:

χA(λ) = det

(
a− λ b
b c− λ

)
= (a− λ)(c− λ)− b2 = λ2 − λ(a+ c) + (ac− b2)

Wyró»nik tego wielomianu to:

∆ = (a+ c)2 − 4(ac− b2) = a2 − 2ac+ c2 + 4b2 = (a− c)2 + 4b2 ≥ 0

przy czym ∆ = 0 wtedy i tylko wtedy, gdy a − c = 0 i b = 0, czyli A =

(
a 0
0 a

)
. St¡d z Faktu

3.2 macierz A jest albo postaci aI albo ma dwie ró»ne warto±ci wªasne.
Niech teraz v1 i v2 b¦d¡ wektorami wªasnymi dla ró»nych warto±ci wªasnych λ1 i λ2. Za-

uwa»my, »e:

λ1(v1 ◦ v2) = (λ1v1) ◦ v2 = (λ1v1)>v2 = (Av1)>v2 = v>1 A
>v2 = v>1 Av2
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= v>1 · λ2v2 = λ2(v1 ◦ v2)

Zatem λ1(v1 ◦ v2) = λ2(v1 ◦ v2), co wobec λ1 6= λ2 daje v1 ◦ v2 = 0, czyli v1 i v2 s¡ prostopadªe.

Fakt 3.15

Je±li A jest macierz¡ 2 × 2, to A i A> maj¡ jednakowy wielomian charakterystyczny i
jednakowe warto±ci wªasne.

Dowód. Rozwa»ane wielomiany charakterystyczne to

χA(x) = det(A− xI) oraz χA> = det(A> − xI)

Zauwa»my, »e zgodnie z Faktem 2.66:

(A− xI)> = A> − xI> = A> − xI

Poniewa» transponowanie macierzy nie zmienia wyznacznika (Fakt 2.67), wi¦c:

χA(x) = det(A− xI) = det(A− xI)> = det(A> − xI) = χA>(x)
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Rozdziaª 4

Zamiana ukªadu wspóªrz¦dnych na

pªaszczy¹nie

4.1 Nowy ukªad wspóªrz¦dnych

Na jednej pªaszczy¹nie mo»emy mie¢ dwa ró»ne ukªady wspóªrz¦dnych (jak na poni»szym ry-
sunku). Wówczas ka»demu punktowi mo»na przypisa¢ wspóªrz¦dne na dwa ró»ne sposoby: wzgl¦-
dem jednego lub wzgl¦dem drugiego ukªadu wspóªrz¦dnych. Dla uproszczenia b¦dziemy jeden z
nich nazywa¢ starym ukªadem wspóªrz¦dnych (i wspóªrz¦dne b¦dziemy oznacza¢ x i y), a drugi
� nowym ukªadem wspóªrz¦dnych (i wspóªrz¦dne b¦dziemy oznacza¢ x′ i y′).

1

1
x

y

1
1

x′y′

A=

(
4
3

)
=

(
5
0

)B=

(
0
5

)
=

(
3
4

)

Aby rozró»ni¢ (bez u»ywania kolorów) wspóªrz¦dne danego punktu wzgl¦dem ró»nych ukªa-
dów wspóªrz¦dnych, b¦dziemy stosowa¢ nast¦puj¡c¡ konwencj¦: [v]stary b¦dzie oznacza¢ wspóª-
rz¦dne w starym ukªadzie, za± [v]nowy wspóªrz¦dne w nowym ukªadzie. Na powy»szym rysunku
mamy wi¦c:

[A]stary =

(
4
3

)
, [A]nowy =

(
5
0

)

[B]stary =

(
0
5

)
, [B]nowy =

(
3
4

)
123
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W niniejszym skrypcie b¦dziemy rozwa»a¢ jedynie sytuacj¦, gdy pocz¡tek ukªadu wspóªrz¦d-
nych O jest taki sam zarówno w nowym, jak i w starym ukªadzie wspóªrz¦dnym, tzn.

[O]stary = [O]nowy =

(
0
0

)
Pozwala to pozosta¢ przy dotychczasowej konwencji uto»samiania punktów i wektorów (tzn.
−→
OA = A), gdy» pocz¡tek ukªadu wspóªrz¦dnych (b¦d¡cy domy±lnym pocz¡tkiem wektora) nie
zale»y od wyboru ukªadu.

Natomiast jednostka w nowym ukªadzie wspóªrz¦dnym nie musi by¢ te» to»sama z jednostk¡
w starym ukªadzie wspóªrz¦dnych:

1

1
x

y

1

1

x′

y′

Nowy ukªad wspóªrz¦dnych nie musi by¢ nawet ukªadem prostok¡tnym (tzn. jego osie nie
musz¡ by¢ prostopadªe):

1

1
x

y

1

1
x′

y′

W tej sytuacji potrzebujemy wi¦c zde�niowa¢ czym jest ukªad wspóªrz¦dnych i co to s¡
wspóªrz¦dne wzgl¦dem wybranego (niekoniecznie prostok¡tnego) ukªadu wspóªrz¦dnych:

De�nicja 4.1

Ukªadem wspóªrz¦dnych na pªaszczy¹nie nazwiemy dwie przecinaj¡ce si¦ (pod dowolnym
k¡tem) proste (nazywane osiami x i y), niezerowy wektor równolegªy do osi x (nazywany
pierwszym wersorem i wyznaczaj¡cy jednostk¦ na osi x) oraz niezerowy wektor równolegªy
do osi y (nazywany drugim wersorem i wyznaczaj¡cy jednostk¦ na osi y).
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Zgodnie z powy»sz¡ de�nicj¡, wersor to wektor o pocz¡tku O (punkt przeci¦cia osi, czyli
pocz¡tek ukªadu wspóªrz¦dnych) i ko«cu oznaczaj¡cym jednostk¦ na jednej z osi (punkty te

b¦dziemy oznacza¢
(

1
0

)
lub

(
0
1

)
).

De�nicja 4.2

Wspóªrz¦dnymi wektora (punktu) v w (nowym) ukªadzie wspóªrz¦dnych o wersorach e′1 i
e′2 nazywamy takie liczby x′ i y′, »e:

v = x′e′1 + y′e′2

x′

y′

v = 3e′1 + 4e′2

3

4

e′1

e′2

Zauwa»my, »e de�nicja ta zgodna jest z naszym dotychczasowym rozumieniem wspóªrz¦dnych
� je±li punkt (wektor) v w starym ukªadzie ma wspóªrz¦dne x i y, to:

v = xe1 + ye2

gdzie e1 i e2 to wersory starego ukªadu wspóªrz¦dnych.

Przykªad 1

Dany jest nowy ukªad wspóªrz¦dnych, którego wersorami s¡ wektory
(

1
2

)
i
(

3
1

)
. Wyznacz:

(a) nowe wspóªrz¦dne wektora v =

(
3
4

)
(tzn. [v]stary =

(
3
4

)
),

(b) stare wspóªrz¦dne wektora w, takiego »e [w]nowy =

(
3
4

)
.

Rozwi¡zanie. (a) Szukamy nowych wspóªrz¦dnych, tzn. takich x′ i y′, »e

v = x′e′1 + y′e′2

Oznacza to rozwi¡zywanie ukªadu równa«:(
3
4

)
= x′

(
1
2

)
+ y′

(
3
1

)
czyli

{
3 = x′ + 3y′

4 = 2x′ + y′

sk¡d otrzymujemy x′ = 9
5 , y

′ = 2
5 .
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(b) Skoro nowe wspóªrz¦dne wektora w to 3 i 4, to:

w = 3e′1 + 4e′2 = 3

(
1
2

)
+ 4

(
3
1

)
=

(
15
10

)

Fakt 4.3

Je±li e′1, e
′
2 s¡ wersorami nowego ukªadu wspóªrz¦dnych, to dla dowolnego wektora v

zachodzi:
[v]stary = P · [v]nowy (4.1)

gdzie P jest macierz¡, której kolumnami s¡ stare wspóªrz¦dne nowych wersorów, tzn.

P = ([e′1]stary, [e
′
2]stary)

Macierz P nazywamy macierz¡ zamiany wspóªrz¦dnych.

Dowód. Wektor v mo»na zapisa¢ w postaci kombinacji liniowej starych wersorów:

v = xe1 + ye2, czyli [v]stary =

(
x
y

)
oraz w postaci kombinacji liniowej nowych wersorów:

v = x′e′1 + y′e′2, czyli [v]nowy =

(
x′

y′

)
Je±li oznaczymy stare wspóªrz¦dne nowych wersorów jak nast¦puje:

[e′1]stary =

(
a
c

)
czyli e′1 = ae1 + ce2

[e′1]stary =

(
b
d

)
czyli e′2 = be1 + de2

to
v = x′e′1 + y′e′2 = x′(ae1 + ce2) + y′(be1 + de2) = (x′a+ y′b)e1 + (x′c+ y′d)e2

Zatem stare wspóªrz¦dne wektora v to:

[v]stary =

(
x′a+ y′b
x′c+ y′d

)
=

(
a b
c d

)(
x′

y′

)
= P · [v]nowy

Zauwa»my, »e [e′1]nowy =

(
1
0

)
oraz [e′2]nowy =

(
0
1

)
, wi¦c podstawiaj¡c v = e′1 oraz v = e′2 do

wzoru (4.1) otrzymujemy:

[e′1]stary = P ·
(

1
0

)
oraz [e′2]stary = P ·

(
0
1

)
co oznacza, »e [e′1]stary i [e′2]stary to kolumny macierzy P (zgodnie z Faktem 4.3).

Rozwa»my jeszcze raz Przykªad 1, tym razem opieraj¡c jego rozwi¡zanie na wzorze (4.1)
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Przykªad 2

Dany jest nowy ukªad wspóªrz¦dnych, którego wersorami s¡ wektory
(

1
2

)
i
(

3
1

)
. Wyznacz:

(a) nowe wspóªrz¦dne wektora v =

(
3
4

)
(tzn. [v]stary =

(
3
4

)
),

(b) stare wspóªrz¦dne wektora w, takiego »e [w]nowy =

(
3
4

)
,

Rozwi¡zanie. Wersory nowego ukªadu wspóªrz¦dnych to e′1 =

(
1
2

)
i e′2 =

(
3
1

)
, co oznacza:

[e′1]stary =

(
1
2

)
oraz [e′2]stary =

(
3
1

)
Wobec tego macierz P z Faktu 4.3 ma posta¢:

P =

(
1 3
2 1

)
St¡d, zgodnie z Faktem 4.3, otrzymujemy:

(a) [v]stary =

(
1 3
2 1

)
· [v]nowy, czyli [v]nowy =

(
1 3
2 1

)−1

· [v]stary =

(
−1

5
3
5

2
5 −1

5

)(
3
4

)
=

(
9
5
2
5

)
(b) [w]stary =

(
1 3
2 1

)
· [w]nowy =

(
1 3
2 1

)(
3
4

)
=

(
15
10

)

Przykªad 3

Wersorami nowego ukªadu wspóªrz¦dnych s¡ wektory
(

1
1

)
i
(

2
1

)
. Wyznacz w nowych wspóª-

rz¦dnych równanie prostej, która w starych wspóªrz¦dnych ma równanie 2x+ 3y − 1 = 0.
Rozwi¡zanie (sposób I). Zgodnie ze wzorem (4.1) mamy:(

x
y

)
=

(
1 2
1 1

)(
x′

y′

)
czyli

{
x = x′ + 2y′

y = x′ + y′

St¡d:
2x+ 3y − 1 = 2(x′ + 2y′) + 3(x′ + y′)− 1 = 5x′ + 7y′ − 1

czyli równanie prostej to 5x′ + 7y′ − 1 = 0.

Rozwi¡zanie (sposób II). Równanie 2x+ 3y − 1 = 0 mo»na zapisa¢ w postaci

(
2 3

)(x
y

)
= 1

co uwzgl¦dniaj¡c wzór (4.1): (
x
y

)
=

(
1 2
1 1

)(
x′

y′

)
daje: (

2 3
)(1 2

1 1

)(
x′

y′

)
= 1 czyli 5x′ + 7y′ = 1

co jest równaniem prostej w nowych wspóªrz¦dnych.
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Przykªad 4

Wersorami nowego ukªadu wspóªrz¦dnych s¡ wektory
(

1
−1

)
i
(

1
1

)
. Wyznacz w starych wspóª-

rz¦dnych równanie prostej, która w nowych wspóªrz¦dnych ma równanie x′ + y′ − 2 = 0.
Rozwi¡zanie (sposób I). Zgodnie ze wzorem (4.1) mamy:(

x
y

)
=

(
1 1
−1 1

)(
x′

y′

)
czyli

{
x = x′ + y′

y = −x′ + y′

sk¡d wyliczamy: {
x′ = 1

2x−
1
2y

y′ = 1
2x+ 1

2y

Wobec tego:
x′ + y′ − 2 = (1

2x−
1
2y) + (1

2x+ 1
2y)− 2 = x− 2

czyli równanie prostej w starych wspóªrz¦dnych to x− 2 = 0.

Rozwi¡zanie (sposób II). Równanie x′ + y′ − 2 = 0 mo»na zapisa¢ w postaci

(
1 1

)(x′
y′

)
= 2

co uwzgl¦dniaj¡c wzór (4.1):(
x
y

)
=

(
1 1
−1 1

)(
x′

y′

)
czyli

(
x′

y′

)
=

(
1 1
−1 1

)−1(
x
y

)
daje:

(
1 1

)( 1 1
−1 1

)−1(
x
y

)
= 2 czyli

(
1 1

)(1
2 −1

2
1
2

1
2

)(
x
y

)
= 2 czyli x = 2

co jest równaniem prostej w nowych wspóªrz¦dnych.

Je±li zmieniamy ukªad wspóªrz¦dnych, to zmianie ulegn¡ równie» macierze przeksztaªce«
liniowych. Dla rozró»nienia macierzy przeksztaªcenia liniowego F w starym i nowym ukªadzie
wspóªrz¦dnych, b¦dziemy je oznacza¢, odpowiednio, mstary(F ) i mnowy(F ).

De�nicja 4.4

Dane jest przeksztaªcenie liniowe F : R2 → R2. Macierz¡ F w starym ukªadzie wspóª-
rz¦dnych nazywamy macierz mstary(F ) speªniaj¡c¡ dla dowolnego wektora X warunek:

[F (X)]stary = mstary(F ) · [X]stary

Macierz¡ F w nowym ukªadzie wspóªrz¦dnych nazywamy macierz mnowy(F ) speªniaj¡c¡
dla dowolnego wektora X warunek:

[F (X)]nowy = mnowy(F ) · [X]nowy

Zauwa»my, »e de�nicja macierzy przeksztaªcenia w starym ukªadzie wspóªrz¦dnych to inaczej
zapisana De�nicja 2.3. Interpretacja macierzy przeksztaªcenia w nowym ukªadzie wspóªrz¦dnych
jest analogiczna do interpretacji macierzy przeksztaªcenia w starym ukªadzie wspóªrz¦dnych,
opisanej w Fakcie 2.13.

Copyright c© Tomasz Elsner, 2019



4.1. NOWY UK�AD WSPÓ�RZ�DNYCH 129

Fakt 4.5

Je±li
(
a b
c d

)
jest macierz¡ przeksztaªcenia liniowego F : R2 → R2 w (nowym) ukªadzie

wspóªrz¦dnych o wersorach e′1 i e′2, to:(
a
c

)
= [F (e′1)]nowy oraz

(
b
d

)
= [F (e′2)]nowy

(tzn. kolumny macierzy przeksztaªcenia to nowe wspóªrz¦dne obrazów nowych wersorów).

Dowód.

[F (e′1)]nowy = mnowy(F ) · [e′1]nowy =

(
a b
c d

)(
1
0

)
=

(
a
c

)
[F (e′2)]nowy = mnowy(F ) · [e′2]nowy =

(
a b
c d

)(
0
1

)
=

(
b
d

)

Przykªad 5

Dany jest nowy ukªad wspóªrz¦dnych o wersorach e′1 =

(
2
−1

)
i e′2 =

(
1
1

)
. Pewne przeksztaª-

cenie liniowe F : R2 → R2 ma w nowym ukªadzie macierz mnowy(F ) =

(
4 1
1 1

)
. Oblicz F (e′1),

F (e′2) oraz F
((

3
0

))
.

Rozwi¡zanie. Zgodnie z Faktem 4.5, skoro mnowy(F ) =

(
4 1
1 1

)
, to:

(
4
1

)
= [F (e′1)]nowy czyli F (e′1) = 4e′1 + e′2 = 4

(
2
−1

)
+

(
1
1

)
=

(
9
−3

)
(

1
1

)
= [F (e′2)]nowy czyli F (e′2) = e′1 + e′2 =

(
2
−1

)
+

(
1
1

)
=

(
3
0

)
Poniewa» v =

(
3
0

)
=

(
2
−1

)
+

(
1
1

)
= e′1 + e′2, wi¦c:

F (v) = F (e′1 + e′2) = F (e′1) + F (e′2) =

(
9
−3

)
+

(
3
0

)
=

(
12
−3

)

Operowanie macierzami przeksztaªce« w nowych i starych wspóªrz¦dnych bardzo upraszcza
nast¦puj¡cy fakt:

Fakt 4.6

Niech e′1 i e′2 b¦d¡ wersorami nowego ukªadu wspóªrz¦dnych, za± P macierz¡ zamiany
wspóªrz¦dnych (tzn. P = ([e′1]stary, [e

′
2]stary)). Wówczas dla dowolnego przeksztaªcenia

liniowego F : R2 → R2 zachodzi wzór:

mstary(F ) = P ·mnowy(F ) · P−1 (4.2)
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Dowód. Zgodnie z De�nicj¡ 4.4 mamy:

[F (X)]nowy = mnowy(F ) · [X]nowy

Zgodnie z Faktem 4.3 zastosowanym dla wektora X:

[X]stary = P · [X]nowy, czyli P−1[X]stary = [X]nowy

Zgodnie z Faktem 4.3 zastosowanym dla wektora F (X):

[F (X)]stary = P · [F (X)]nowy

�¡cz¡c te wzory otrzymujemy:

[F (X)]stary = P · [F (X)]nowy = P ·mnowy(F ) · [X]nowy = P ·mnowy(F ) · P−1 · [X]stary

Porównuj¡c otrzymany wzór:

[F (X)]stary = P ·mnowy(F ) · P−1 · [X]stary

z de�nicj¡:
[F (X)]stary = mstary(F ) · [X]stary

dostajemy szukany wzór:
mstary(F ) = P ·mnowy(F ) · P−1

Przykªad 6

Przeksztaªcenie liniowe F : R2 → R2 o macierzy A ma dwie ró»ne warto±ci wªasne λ i µ.

Wprowad¹my nowy ukªad wspóªrz¦dnych o wersorach u =

(
u1

u2

)
i v =

(
v1

v2

)
, gdzie u i v to

wektory wªasne F dla warto±ci wªasnych, odpowiednio, λ i µ. Znajd¹ macierz F w nowym
ukªadzie.
Rozwi¡zanie. Skoro nowe wersory e′1 = u i e′2 = v s¡ wektorami wªasnymi F , to:

F (e′1) = λ · e′1 + 0 · e′2 oraz F (e′2) = 0 · e′1 + µ · e′2

sk¡d mnowy(F ) =

(
λ 0
0 µ

)
. Zauwa»my, »e w takim razie, zgodnie ze wzorem (4.2) otrzymu-

jemy:

A = P

(
λ 0
0 µ

)
P−1, gdzie P = ([e′1]stary, [e

′
2]stary) =

(
u1 v1

u2 v2

)
czyli wzór na diagonalizacj¦ macierzy. Wzór (4.2) mo»na wi¦c traktowa¢ jako uogólnienie
wzoru na diagonalizacj¦ macierzy.

Przykªad 7

Dany jest nowy ukªad wspóªrz¦dnych o wersorach e′1 =

(
1
1

)
i e′2 =

(
1
−1

)
.

(a) Przeksztaªcenie liniowe F : R2 → R2 w nowym ukªadzie ma macierz
(

2 1
−1 2

)
. Wyznacz

macierz F w starym ukªadzie.

(b) Przeksztaªcenie liniowe G : R2 → R2 w starym ukªadzie ma macierz
(

4 1
1 0

)
. Wyznacz
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macierz G w nowym ukªadzie.

Rozwi¡zanie. Macierz zamiany wspóªrz¦dnych to P =

(
1 1
1 −1

)
. Zgodnie z Faktem 4.6:

mstary(F ) = P ·mnowy(F ) · P−1 =

(
1 1
1 −1

)(
2 1
−1 2

)(
1 1
1 −1

)−1

=

(
2 −1
1 2

)
oraz

mstary(G) = P ·mnowy(G) · P−1

sk¡d otrzymujemy:

mnowy(G) = P−1 ·mstary(G) · P =

(
1 1
1 −1

)−1(
4 1
1 0

)(
1 1
1 −1

)
=

(
3 2
2 1

)

4.2 Krzywe drugiego stopnia

W Rozdziale 1.2 dowiedzieli±my si¦, »e równanie pierwszego stopnia z niewiadomymi x i y, tzn.
równanie

ax+ by + c = 0 (4.3)

zazwyczaj opisuje prost¡ na pªaszczy¹nie (wyj¡tkiem jest przypadek a = b = 0, gdy równanie to
opisuje zbiór pusty lub caª¡ pªaszczyzn¦). Równanie (4.3) nazywamy równaniem pierwszego stop-
nia, gdy» niewiadome x i y wyst¦puj¡ w co najwy»ej pierwszej pot¦dze. W niniejszym rozdziale
ustalimy jaki zbiór opisuje równanie drugiego stopnia z niewiadomymi x i y, tzn. równanie

ax2 + bxy + cy2 + dx+ ey + f = 0 (4.4)

Równanie (4.4) nazywamy równaniem drugiego stopnia, gdy» niewiadome x i y wyst¦puj¡ w co
najwy»ej drugiej pot¦dze (przy czym skªadnik bxy traktujemy jako skªadnik drugiego stopnia,
gdy» wyst¦puje w nim iloczyn dwóch niewiadomych). Dla uproszczenia, rozwa»a¢ b¦dziemy tylko
przypadek, gdy w równaniu (4.4) nie wyst¦puj¡ skªadniki pierwszego stopnia (tzn. d = e = 0), a
wyraz wolny jest niezerowy (tzn. f 6= 0). To dodatkowe zaªo»enie w niewielkim stopniu wpªywa
na ogólno±¢ rozwa»a«. Najpierw przyjrzymy si¦ kilku szczególnym przypadkom równa« drugiego
stopnia.

De�nicja 4.7

Elips¡ o dªugiej póªosi dªugo±ci a i krótkiej póªosi dªugo±ci b (a ≥ b) nazywamy krzyw¡
zadan¡ równaniem: (x

a

)2
+
(y
b

)2
= 1 (4.5)

Zwró¢my uwag¦, »e okr¡g jest szczególnym przypadkiem elipsy (gdy dªuga i krótka póªo± s¡
tej samej dªugo±ci). Równanie x2 + y2 = r2 okr¦gu o ±rodku w punkcie O mo»na zapisa¢ w
postaci: (x

r

)2
+
(y
r

)2
= 1

Wówczas promie« okr¦gu to póªo± elipsy (a ±rednica okr¦gu to o± elipsy).

Copyright c© Tomasz Elsner, 2019



132 ROZDZIA� 4. ZAMIANA UK�ADU WSPÓ�RZ�DNYCH NA P�ASZCZY�NIE

x

y

−a a

b

−b

Elipsa o równaniu
(x
a

)2
+
(y
b

)2
= 1

De�nicja 4.8

Hiperbol¡ nazywamy krzyw¡ zadan¡ równaniem:(x
a

)2
−
(y
b

)2
= 1 lub −

(x
a

)2
+
(y
b

)2
= 1 (4.6)

x

y

−a a

b

−b

Hiperbola o równaniu
(x
a

)2
−
(y
b

)2
= 1

x

y

−a a

b

−b

Hiperbola o równaniu −
(x
a

)2
+
(y
b

)2
= 1

Na kolejnym rysunku, we wspólnym ukªadzie wspóªrz¦dnych, przedstawiono wykresy wszyst-
kich trzech równa«:
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x

y

−a a

b

−b

(x
a

)2
−
(y
b

)2
= 1 −

(x
a

)2
+
(y
b

)2
= 1

(x
a

)2
+
(y
b

)2
= 1

Rysunek ten pokazuje praktyczn¡ metod¦ rysowania hiperboli:

(1) zaznaczy¢ punkty
(
a
0

)
,
(
−a
0

)
,
(

0
b

)
,
(

0
−b

)
i ustali¢, które dwa z tych punktów nale»¡ do

wykresu (tzn. speªniaj¡ rozwa»ane równanie hiperboli),

(2) narysowa¢ prostok¡t, dla którego cztery powy»sze punkty s¡ ±rodkami boków i przedªu»y¢
jego przek¡tne (b¦d¡ to asymptoty hiperboli),

(3) naszkicowa¢ dwie gaª¦zie hiperboli przechodz¡ce przez punkty wybrane w (1) i maj¡ce
asymptoty ustalone w (2).

Zgodnie z wcze±niejszymi uwagami, b¦dziemy rozwa»a¢ równania drugiego stopnia postaci:

ax2 + bxy + cy2 + f = 0

gdzie f 6= 0. Równanie takie mo»na przeksztaªci¢ do postaci:

Ax2 +Bxy + Cy2 = 1

gdzie A = − a
f , B = − b

f , C = − c
f . Rozwa»my najpierw sytuacj¦, gdy B = 0.

Fakt 4.9

Zbiór punktów pªaszczyzny opisany równaniem Ax2 + Cy2 = 1 to:

• elipsa, gdy A,C > 0,

• hiperbola, gdy A > 0 > C lub C > 0 > A,

• zbiór pusty, gdy A,C < 0.

Przypadek, gdy A = 0 lub C = 0 pozostawiamy do rozwa»enia w ramach ¢wicze«.

Dowód. Je±li A,C > 0, to równanie to mo»na przeksztaªci¢ do postaci równania elipsy:(
x

1/
√
A

)2

+

(
y

1/
√
C

)2

= 1
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Je±li A > 0 > C, to równanie to mo»na przeksztaªci¢ do postaci równania hiperboli:(
x

1/
√
A

)2

−
(

y

1/
√
−C

)2

= 1

Podobnie w przypadku C > 0 > A:

−
(

x

1/
√
−A

)2

+

(
y

1/
√
C

)2

= 1

W sytuacji gdy A,C < 0, lewa strona równania jest ujemna lub równa zero, wi¦c równanie jest
sprzeczne.

Przykªad 1

Narysuj krzyw¡ o równaniu 2x2 − 5y2 = 1.
Rozwi¡zanie. Zgodnie z Faktem 4.9 krzywa ta jest hiperbol¡. Mo»emy j¡ zapisa¢ w postaci
(4.6): (

x
1√
2

)2

−

(
y
1√
5

)2

= 1

Zgodnie z opisan¡ wcze±niej procedur¡ rysujemy prostok¡t o ±rodkach boków

(
1√
2

0

)
,

(
− 1√

2

0

)
,(

0
1√
5

)
,

(
0
− 1√

5

)
, przedªu»amy jego przek¡tne, by otrzyma¢ asymptoty hiperboli i prowadzimy

dwie gaª¦zie hiperboli przez punkty

(
1√
2

0

)
i

(
− 1√

2

0

)
(które, jak nietrudno sprawdzi¢, speªniaj¡

zadane równanie).

x

y

− 1√
2

1√
2

1√
5

− 1√
5

W dalszej cz¦±ci poka»emy, »e równanie w postaci Ax2 +Bxy + Cy2 = 1 mo»na sprowadzi¢
do postaci A′(x′)2 + C ′(y′)2 = 1 w odpowiednio wybranym (nowym) prostok¡tnym ukªadzie
wspóªrz¦dnych, co oznacza, »e (o ile A′, C ′ 6= 0) jest to równanie elipsy, hiperboli lub równanie
sprzeczne.
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Twierdzenie 4.10

Dane jest równanie
Ax2 +Bxy + Cy2 = 1 (4.7)

Je±li v1 i v2 to jednostkowe wektory wªasne symetrycznej macierzy
(
A B

2
B
2 C

)
dla warto±ci

wªasnych λ1 i λ2, to w nowym ukªadzie wspóªrz¦dnych o wersorach v1 i v2 równanie (4.7)
przyjmuje posta¢:

λ1(x′)2 + λ2(y′)2 = 1 (4.8)

W szczególno±ci równanie to opisuje:

• elips¦, je±li λ1, λ2 > 0,

• hiperbol¦, je±li λ1 > 0 > λ2 lub λ2 > 0 > λ1,

• zbiór pusty, je±li λ1, λ2 < 0.

Ponadto osie symetrii otrzymanej elipsy lub hiperboli to osie nowego ukªadu wspóªrz¦d-
nych (czyli proste o wektorach kierunkowych v1 i v2).

Dowód. Przypadek B = 0 nie wymaga zmiany ukªadu wspóªrz¦dnych (nowy ukªad i stary ukªad
pokrywaj¡ si¦) i zostaª rozpatrzony w Fakcie 4.9.

Przyjmijmy, »e B 6= 0. Równanie Ax2 +Bxy+Cy2 = 1 mo»na zapisa¢ w formie macierzowej:

(
x y

)(A B
2

B
2 C

)(
x
y

)
= 1 czyli X>QX = 1 (4.9)

gdzie X =

(
x
y

)
, Q =

(
A B

2
B
2 C

)
. Iloczyn macierzy po lewej stronie równo±ci to macierz rozmiaru

1×1, któr¡ uto»samiamy z pojedyncz¡ liczb¡ rzeczywist¡. Macierz Q jest macierz¡ symetryczn¡,
wi¦c zgodnie z Twierdzeniem Spektralnym diagonalizuje si¦, czyli:

Q =

(
v1x v2x

v1y v2y

)(
λ1 0
0 λ2

)(
v1x v2x

v1y v2y

)−1

czyli Q = PDP−1

gdzie λ1 i λ2 to warto±ci wªasne Q, a v1 =

(
v1x

v1y

)
i v2 =

(
v2x

v2y

)
to odpowiadaj¡ce im wektory

wªasne. Wektory wªasne v1 i v2 s¡ prostopadªe (zgodnie z Twierdzeniem Spektralnym) i mo»na
je wybra¢ tak, by |v1| = |v2| = 1 (przeskalowany wektor wªasny te» jest wektorem wªasnym).
Wobec tego macierz P jest macierz¡ izometrii (jej kolumny to prostopadªe wektory dªugo±ci 1),
czyli:

P T = P−1

Poniewa» Q = PDP−1, wi¦c równanie (4.9) przyjmuje posta¢:

X>(PDP−1)X = 1

któr¡ zgodnie ze wzorem na transponowanie iloczynu macierzy (Fakt 2.66) mo»na przeksztaªci¢
do:

(P>X)>D(P−1X) = 1, czyli (P−1X)>D(P−1X) = 1

Wprowadzamy nowy ukªad wspóªrz¦dnych, dla których v1 i v2 b¦d¡ wersorami. Nowy ukªad
wspóªrz¦dnych b¦dzie prostok¡tny (bo wersory s¡ prostopadªe) i b¦dzie miaª tak¡ sam¡ jednostk¦
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co stary ukªad (bo jako nowe wersory wybrali±my wektory dªugo±ci 1) oraz zgodnie z Faktem 4.3
X = PX ′, czyli P−1X = X ′. St¡d badane równanie przyjmuje posta¢:

(X ′)>D(X ′) = 1 czyli
(
x′ y′

)(λ1 0
0 λ2

)(
x′

y′

)
= 1 czyli λ1(x′)2 + λ2(y′)2 = 1

Przykªad 2

Narysuj krzyw¡ o równaniu 11x2 − 24xy + 4y2 = 1.
Rozwi¡zanie. Zgodnie z Twierdzeniem 4.10 szukamy warto±ci i wektorów wªasnych macierzy

Q =

(
11 −12
−12 4

)
. Jej wielomian charakterystyczny to

χQ(x) = det

(
11− x −12
−12 4− x

)
= (11− x)(4− x)− 144 = x2 − 15x− 100 = (x− 20)(x+ 5)

czyli warto±ciami wªasnymi s¡ λ1 = 20 i λ2 = −5. Wektory wªasne dla warto±ci wªasnej λ1 to
rozwi¡zania równania:(

11 −12
−12 4

)(
x
y

)
= 20

(
x
y

)
czyli

{
11x− 12y = 20x

−12x+ 4y = 20y

tzn. punkty le»¡ce na prostej 3x + 4y = 0. Przykªadem (niezerowego) wektora wªasnego jest(
4
−3

)
, a poniewa» potrzebujemy wektora jednostkowego, wi¦c dziel¡c go przez jego dªugo±¢

otrzymujemy: v1 =

(
4
5
−3

5

)
. Podobnie ustalamy v2 =

(
3
5
4
5

)
. Zaznaczamy nowy ukªad wspóª-

rz¦dnych i szkicujemy w nowym ukªadzie wspóªrz¦dnych (zgodnie z procedur¡) hiperbol¦ o
równaniu:

20(x′)2 − 5(y′)2 = 1

x

y

x′

y′

− 1√
20

1√
20

1√
5

− 1√
5
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Przykªad 3

Narysuj krzyw¡ o równaniu 34x2 − 24xy + 41y2 = 1.
Rozwi¡zanie. Zgodnie z Twierdzeniem 4.10 szukamy warto±ci i wektorów wªasnych macierzy

Q =

(
34 −12
−12 41

)
. Jej wielomian charakterystyczny to

χQ(x) = det

(
34− x −12
−12 41− x

)
= (34−x)(41−x)− 144 = x2− 75x+ 1250 = (x− 25)(x− 50)

czyli warto±ciami wªasnymi s¡ λ1 = 25 i λ2 = 50. Wektory wªasne dla warto±ci wªasnej λ1 to
rozwi¡zania równania:(

34 −12
−12 41

)(
x
y

)
= 25

(
x
y

)
, czyli

{
34x− 12y = 25x

−12x+ 41y = 25y

tzn. punkty le»¡ce na prostej 3x− 4y = 0. Przykªadem (niezerowego) wektora wªasnego jest(
4
3

)
, a poniewa» potrzebujemy jednostkowego wektora wªasnego, wi¦c dziel¡c go przez jego

dªugo±¢ otrzymujemy: v1 =

(
4
5
3
5

)
. Podobnie ustalamy v2 =

(
−3

5
4
5

)
. Zaznaczamy nowy ukªad

wspóªrz¦dnych i szkicujemy w nowym ukªadzie wspóªrz¦dnych elips¦ o równaniu:

25(x′)2 + 50(y′)2 = 1

x

y

x′

y′

−1
5

1
5

1
5
√

2

− 1
5
√

2

Przykªad 4

Narysuj krzyw¡ o równaniu xy = 1 (czyli �szkoln¡� hiperbol¦ o równaniu y = 1
x).

Rozwi¡zanie. Zgodnie z Twierdzeniem 4.10 szukamy warto±ci i wektorów wªasnych macierzy

Q =

(
0 1

2
1
2 0

)
. Jej wielomian charakterystyczny to

χQ(x) = det

(
−x 1

2
1
2 −x

)
= x2 − 1

4 = (x− 1
2)(x+ 1

2)

czyli warto±ciami wªasnymi s¡ λ1 = 1
2 i λ2 = −1

2 . Wektory wªasne dla warto±ci wªasnej λ1 to
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rozwi¡zania równania:(
0 1

2
1
2 0

)(
x
y

)
= 1

2

(
x
y

)
czyli

{
1
2y = 1

2x
1
2x = 1

2y

wi¦c v1 =

(
x
x

)
, a poniewa» szukamy jednostkowego wektora wªasnego, to v1 =

(√
2

2√
2

2

)
. Po-

dobnie ustalamy, »e v2 =

(
−
√

2
2√
2

2

)
. Zaznaczamy nowy ukªad wspóªrz¦dnych i szkicujemy w

nowym ukªadzie wspóªrz¦dnych (zgodnie z procedur¡) hiperbol¦ o równaniu:

1
2(x′)2 − 1

2(y′)2 = 1

x

y

x′
y′

− 1√
2

1√
2

1√
2

− 1√
2
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Rozdziaª 5

Liczby zespolone

5.1 Dziaªania na liczbach zespolonych

De�nicja 5.1

Liczby zespolone to liczby postaci a+bi, gdzie a, b ∈ R, za± i to taka liczba (nierzeczywista),
dla której i2 = −1 (my±limy: i =

√
−1). Liczb¦ a nazywamy cz¦±ci¡ rzeczywist¡ liczby

zespolonej z = a+ bi (i oznaczamy Rez), a liczb¦ b � cz¦±ci¡ urojon¡ liczby zespolonej z
(i oznaczamy Imz).

Zbiór liczb rzeczywistych R jest podzbiorem zbioru liczb zespolonych (oznaczanego C), tzn.
ka»da liczba rzeczywista r ∈ R jest liczb¡ zespolon¡ o zerowej cz¦±ci urojonej: r = r + 0 · i.
Wzajemne relacje wszystkich poznanych zbiorów liczb przedstawia rysunek poni»ej.

N
Z
Q
R
C

Dziaªania na liczbach zespolonych okre±lamy tak, by zachowane byªy prawa dziaªa« obowi¡-
zuj¡ce dla liczb rzeczywistych, w szczególno±ci przemienno±¢ i ª¡czno±¢ dodawania i mno»enia
i rozdzielno±¢ mno»enia wzgl¦dem dodawania oraz by dziaªania na liczbach rzeczywistych byªy
szczególnym przypadkiem dziaªa« na liczbach zespolonych. St¡d nast¦puj¡ce de�nicje:

De�nicja 5.2

Dodawanie, odejmowanie, mno»enie i dzielenie liczb zespolonych a+ ib i c+ id (za wyj¡t-
kiem dzielenia przez 0) de�niujemy nast¦puj¡co:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

(a+ ib)− (c+ id) = (a− c) + i(b− d)

(a+ ib) · (c+ id) = (ac− bd) + i(bc+ ad)

a+ ib

c+ id
=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

139
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O ile de�nicja dodawania i odejmowania wydaje si¦ naturalna, o tyle de�nicje mno»enia i
dzielenia wymagaj¡ wytªumaczenia. Wymna»aj¡c liczby zespolone a + ib i c + id oraz stosu-
j¡c prawo rozdzielno±ci mno»enia wzgl¦dem dodawania (oraz warunek i2 = −1) otrzymujemy
zapowiedziany wzór:

(a+ ib) · (c+ id) = a · c+ ib · c+ a · id+ ib · id = ac+ i(bc+ ad) + i2bd = (ac− bd) + i(bc+ ad)

Wzór na iloraz liczb zespolonych równie» wyprowadzamy przy pomocy prawa rozdzielno±ci
mno»enia wzgl¦dem dodawania, wykorzystuj¡c mechanizm stosowany przy usuwaniu niewymier-
no±ci z mianownika:

a+ ib

c+ id
=

(a+ ib)(c− id)

(c+ id)(c− id)
=

(ac+ bd) + i(bc− ad)

c2 − (id)2
=

(ac+ bd) + i(bc− ad)

c2 + d2
=
ac+ bd

c2 + d2
+i
bc− ad
c2 + d2

Wynika st¡d, »e dzielenie przez liczb¦ zespolon¡ c+ id jest wykonalne, o ile c2 + d2 6= 0, czyli o
ile c i d nie s¡ jednocze±nie zerami (tzn. za wyj¡tkiem dzielenia przez liczb¦ 0 = 0 + 0i).

Przykªad 1

Wykona¢ dzielenie (1 + i) : (1 + 2i).
Rozwi¡zanie.

1 + i

1 + 2i
=

(1 + i)(1− 2i)

(1 + 2i)(1− 2i)
=

1 + i− 2i+ 2

1 + 4
=

3− i
5

= 3
5 −

1
5 i

Zasadniczym powodem wprowadzenia liczb zespolonych jest to, »e umo»liwiaj¡ znalezienie
pierwiastków dowolnego równania wielomianowego (ka»dy wielomian ma przynajmniej jeden pier-
wiastek zespolony, nawet gdy nie ma »adnych pierwiastków rzeczywistych). Pierwszym przykªa-
dem jest wyliczenie pierwiastka kwadratowego z liczby rzeczywistej ujemnej (czyli rozwi¡zywanie
równania wielomianowego x2 + c = 0, gdzie c > 0):

√
−1 = i,

√
−4 =

√
−1 ·

√
4 = 2i,

√
−5 =

√
−1 ·
√

5 = i
√

5

(powy»sze wyliczenia stanowi¡ tylko poªow¦ prawdy, o czym mówi Fakt 5.10).

Przykªad 2

Obliczy¢
√
i.

Rozwi¡zanie. Niech
√
i = a+ bi, gdzie a i b to liczby rzeczywiste. Wówczas:

(a+ bi)2 = i, czyli (a2 − b2) + 2abi = i

Dwie liczby zespolone s¡ równe wtedy i tylko wtedy, gdy równe s¡ zarówno ich cz¦±ci rzeczy-
wiste, jak i urojone, czyli: {

a2 − b2 = 0

2ab = 1

Rozwi¡zuj¡c ten ukªad równa« (w liczbach rzeczywistych) otrzymujemy a = b =
√

2
2 lub

a = b = −
√

2
2 . St¡d:

√
i =

√
2

2
+ i

√
2

2
lub −

√
2

2
− i
√

2

2

Wyja±nienie, dlaczego otrzymali±my dwa rozwi¡zania zawarte jest w Fakcie 5.10.

Liczby rzeczywiste przedstawiamy jako punkty na prostej (osi liczbowej). Liczby zespolone
przedstawiamy jako punkty na pªaszczy¹nie, gdzie cz¦±¢ rzeczywista i cz¦±¢ urojona odpowiadaj¡

wspóªrz¦dnym punktu pªaszczyzny (tzn. liczba a+ bi odpowiada punktowi
(
a
b

)
).
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x

y

1 2 3 4 50

i

2i

3i

1 + 2i

3 + i

5 + 3i

Dodawanie liczb zespolonych odbywa si¦ jak dodawanie wektorów. Nietrudno si¦ o tym
przekona¢ porównuj¡c dodawanie wektorów:(

a
b

)
+

(
c
d

)
=

(
a+ c
b+ d

)
z dodawaniem liczb zespolonych:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

Wektor
(
a+ c
b+ d

)
oraz liczba zespolona (a+ c) + i(b+ d) oznaczaj¡ ten sam punkt pªaszczyzny.

x

y

z1

z2

z1 + z2

Fakt 5.3: Nierówno±¢ trójk¡ta

Dla dowolnych liczb zespolonych z1 i z2 zachodzi warunek

|z1 + z2| ≤ |z1|+ |z2|

Dowód. Traktuj¡c liczby zespolone jako wektory na pªaszczy¹nie zauwa»amy, »e jest to inaczej
zapisana nierówno±¢ trójk¡ta dla wektorów na pªaszczy¹nie (Fakt 1.21).

Wiemy, »e punkty na pªaszczy¹nie mo»na opisywa¢ podaj¡c wspóªrz¦dne kartezja«skie (x i y)
albo wspóªrz¦dne biegunowe (promie« r i k¡t θ). To drugie przedstawienie jest znacznie wygod-
niejsze przy mno»eniu liczb zespolonych, dlatego wspóªrz¦dne biegunowe dla liczb zespolonych
maj¡ swoje specjalne nazwy:
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De�nicja 5.4

Je±li liczb¦ zespolon¡ z = a + ib przedstawimy w postaci punktu
(
a
b

)
=

(
r cos θ
r sin θ

)
na

pªaszczy¹nie, to wspóªrz¦dne biegunowe r i θ tego punktu b¦dziemy nazywa¢:

• r � moduªem liczby zespolonej z (ozn. |z|),

• θ � argumentem liczby zespolonej z (ozn. argz).

W ten sposób otrzymujemy przedstawienie trygonometryczne liczby zespolonej z:

z = r(cos θ + i sin θ) (5.1)

Zwró¢my uwag¦, »e argument liczby zespolonej z (jako k¡t mi¦dzy wektorem z a dodatni¡
póªosi¡ Ox) jest wyznaczony modulo 2π (tzn. dodanie caªkowitej wielokrotno±ci 2π nie zmienia
argz).

Fakt 5.5

Dla dowolnej liczby zespolonej z = a + ib (gdzie a i b to odpowiednio cz¦±¢ rzeczywista i
urojona) zachodzi:

|z| =
√
a2 + b2

argz = arctg
b

a
lub arctg

b

a
+ π

Ustalenie któr¡ z dwóch warto±ci przyjmuje argz wymaga ustalenia, w której ¢wiartce
znajduje si¦ liczba zespolona z.

Dowód. Zgodnie z de�nicj¡, je±li oznaczymy |z| = r oraz argz = θ, to:

a = r cos θ oraz b = r sin θ

St¡d √
a2 + b2 =

√
r2 cos2 θ + r2 sin2 θ =

√
r2(sin2 θ + cos2 θ) =

√
r2 = r

jako, »e r ≥ 0. Ponadto:

b

a
=

sin θ

cos θ
= tg θ czyli θ = arctg

b

a
lub arctg

b

a
+ π

jako »e funkcja tg ma okres π, wi¦c znaj¡c tg θ nie otrzymujemy peªnej informacji o k¡cie θ.

Przykªad 3

Przedstaw w postaci trygonometrycznej liczby zespolone z1 = 1 + i oraz 1 + 2i.
Rozwi¡zanie. Nietrudno obliczy¢ moduªy obu liczb:

|z1| = r1 =
√

12 + 12 =
√

2 oraz |z2| = r2 =
√

12 + 22 =
√

5

Ich argumenty to:

argz1 = arctg 1
1 = arctg 1 = π

4 oraz argz2 = arctg 2

St¡d:
z1 =

√
2 · (cos π4 + i sin π

4 )

z2 =
√

5 · (cos θ + i sin θ), gdzie θ = arctg 2
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Warto±¢ argz1 mo»na równie» (bez »adnych rachunków) odczyta¢ z rysunku:

x

y

i

1

z1

π
4 x

y

z2
2i

1

θ

Przedstawienie trygonometryczne liczby zespolonej pozwala lepiej zrozumie¢ operacj¦ mno-
»enia liczb zespolonych:

Fakt 5.6

Dla dowolnych (niezerowych) liczb zespolonych z1 i z2 zachodz¡ warunki:

|z1 · z2| = |z1| · |z2| oraz arg(z1z2) = argz1 + argz2 mod 2π (5.2)

Innymi sªowy:

r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2) = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) (5.3)

Dowód. Je±li z1 = r1(cos θ1 + i sin θ1) oraz z2 = r2(cos θ2 + i sin θ2), to:

z1 · z2 = r1(cos θ1 + i sin θ1) · r2(cos θ2 + i sin θ2) =

r1r2((cos θ1 cos θ2−sin θ1 sin θ2)+i(cos θ1 sin θ2+sin θ1 cos θ2)) = r1r2(cos(θ1+θ2)+i sin(θ1+θ2))

x

y

z1
r1

z2

r 2

z1 + z2

r 1
· r

2

θ1 + θ2

θ1θ2

Analogiczne wzory zachodz¡ dla dzielenia liczb zespolonych:
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Fakt 5.7

Dla dowolnych (niezerowych) liczb zespolonych z1 i z2 zachodz¡ warunki:∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

oraz arg
(
z1

z2

)
= argz1 − argz2 mod 2π (5.4)

Innymi sªowy:

r1(cos θ1 + i sin θ1)

r2(cos θ2 + i sin θ2)
=
r1

r2
(cos(θ1 − θ2) + i sin(θ1 − θ2)) (5.5)

Dowód. Z Faktu 5.6 zastosowanego dla liczb zespolonych z1
z2

i z2 otrzymujemy:

∣∣∣∣z1

z2

∣∣∣∣ · |z2| =
∣∣∣∣z1

z2
· z2

∣∣∣∣ = |z1|

arg
(
z1

z2

)
+ argz2 = arg

(
z1

z2
· z2

)
= argz1 mod 2π

co po przeksztaªceniu daje wzory (5.4).

Szczególnym przypadkiem wzoru (5.5) (w sytuacji z1 = 1 = 1(cos 0 + i sin 0)) jest wzór na
odwrotno±¢ liczby zespolonej:

Fakt 5.8

Dla dowolnej liczby zespolonej z 6= 0 zachodz¡ warunki:

|z−1| = |z|−1 oraz arg(z−1) = −argz

Innymi sªowy:

(r(cos θ + i sin θ))−1 = (r−1)(cos(−θ) + i sin(−θ)) = (r−1)(cos θ − i sin θ) (5.6)

Wzór (5.3) w przypadku r1 = r2 = r oraz θ1 = θ2 = θ przyjmuje posta¢:

[r(cos θ + i sin θ)]2 = r2(cos 2θ + i sin 2θ) (5.7)

Indukcyjnie mo»emy udowodni¢ jego nast¦puj¡ce uogólnienie:

Fakt 5.9

Je±li liczb¦ zespolon¡ z zapiszemy w postaci trygonometrycznej z = r(cos θ + i sin θ), to
dla dowolnego n caªkowitego zachodzi:

[r(cos θ + i sin θ)]n = rn(cosnθ + i sinnθ) (5.8)

W szczególno±ci prawdziwy jest wzór (zwany wzorem de Moivre'a):

(cos θ + i sin θ)n = cosnθ + i sinnθ
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θ
θθθ

θ
θ θ θ

x

y

z1

z2z3

z4

z5

z6

z7

z8

Dowód. Przypadek n ≥ 0 dowodzimy indukcyjnie. Dla n = 0 teza jest oczywista. Je±li wzór
(5.8) jest prawdziwy dla n = k, to dla n = k + 1, zgodnie ze wzorem (5.3), otrzymujemy:

[r(cos θ+ i sin θ)]k+1 = [r(cos θ+ i sin θ)]k ·r(cos θ+ i sin θ) = rk(cos kθ+ i sin kθ) ·r(cos θ+ i sin θ)

= rk+1((cos kθ cos θ − sin kθ sin θ) + i(sin kθ cos θ + cos kθ sin θ))

= rk+1(cos(k + 1)θ + i sin(k + 1)θ)

Na mocy zasady indukcji matematycznej to dowodzi przypadku n ≥ 0.
W przypadku n < 0 oznaczmy n = −k. Wówczas k > 0 i stosuj¡c udowodnion¡ ju» cz¦±¢

faktu oraz wzór (5.6) otrzymujemy:

[r(cos θ + i sin θ)]−k =
[
(r(cos θ + i sin θ))k

]−1
= [rk(cos kθ + i sin kθ)]−1

= r−k(cos(−kθ) + i sin(−kθ))

Przykªad 4

Obliczy¢ (1 + i)100 oraz (1 + 2i)100.
Rozwi¡zanie. Korzystaj¡c z wyznaczonych w poprzednim przykªadzie postaci trygonometrycz-
nych, otrzymujemy:

(1 + i)100 =
(√

2 · (cos π4 + i sin π
4 )
)100

=
(√

2
)100 ·

(
cos 100π

4 + i sin 100π
4

)
= 250 · (cos 25π + sin 25π) = −250

oraz dla θ = arctg 2:

(1 + 2i)100 =
(√

5 · (cos θ + i sin θ)
)100

=
(√

5
)100

(cos(100θ) + i sin(100θ))

= 550(cos(100θ) + i sin(100θ))

Fakt 5.9 mo»na wykorzysta¢ równie» do wyznaczenia pierwiastka n-tego stopnia. Zgodnie z
de�nicj¡ pierwiastkowania, n

√
z to taka liczba zespolona w, »e

wn = z (5.9)
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Przedstawiaj¡c w postaci trygonometrycznej z = r(cos θ + i sin θ) oraz w = s(cosϕ + i sinϕ),
warunek (5.9) mo»na zapisa¢ jako:

(s(cosϕ+ i sinϕ))n = r(cos θ + i sin θ)

czyli zgodnie ze wzorem de Moivre'a:

sn · (cos(nϕ) + i sin(nϕ)) = r · (cos θ + i sin θ)

Dwie liczby zespolone s¡ równe, gdy ich moduªy s¡ równe oraz ich argumenty s¡ równe modulo
2π, wi¦c:

sn = r oraz nϕ = θ mod 2π

St¡d dostajemy moduª szukanej liczby w:

|w| = s = n
√
r

oraz n ró»nych mo»liwych argumentów liczby w:

ϕ = θ
n , lub ϕ = θ+2π

n lub ϕ = θ+4π
n lub . . . lub ϕ = θ+2(n−1)π

n

Oznacza to, »e udowodnili±my nast¦puj¡cy fakt:

Fakt 5.10

(Niezerowa) liczba zespolona z = r(cos θ + i sin θ) ma n ró»nych pierwiastków n-tego
stopnia:

w0 = n
√
r · (cos θ

n + i sin θ
n)

w1 = n
√
r · (cos θ+2π

n + i sin θ+2π
n )

w2 = n
√
r · (cos θ+4π

n + i sin θ+4π
n )

. . .

wn−1 = n
√
r · (cos θ+2(n−1)π

n + i sin θ+2(n−1)π
n )

Niestety nie ma mo»liwo±ci podania jednego pierwiastka n-tego stopnia z liczby zespolonej z
� zawsze otrzymujemy n równoprawnych pierwiastków. Niejednoznaczno±¢ t¦ cz¦±ciowo mo»na
zaobserwowa¢ ju» przy pierwiastkowaniu dodatnich liczb rzeczywistych, np.

√
4 mo»e by¢ równy

2 (bo 22 = 4) lub −2 (bo (−2)2 = 4). Wykonuj¡c pierwiastkowanie liczb rzeczywistych zawsze
odrzucali±my jedn¡ z mo»liwo±ci (ujemn¡), tak, by pierwiastkowanie dawaªo jednoznaczny wynik.
W przypadku pierwiastkowania liczb zespolonych nie da si¦ w sensowny sposób wybra¢ jednej z
n mo»liwo±ci.

Przykªad 5

Obliczy¢
√
i.

Rozwi¡zanie. Poniewa» i = 1 · (cos π2 + i sin π
2 ), wi¦c

√
i ma nast¦puj¡ce dwie warto±ci:

w0 = 1 · (cos π4 + i sin π
4 ) =

√
2

2 + i
√

2
2

w1 = 1 · (cos 3π
4 + i sin 3π

4 ) = −
√

2
2 − i

√
2

2

dokªadnie jak w Przykªadzie 2.
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Przykªad 6

Obiczy¢ 3
√

8i.
Rozwi¡zanie. Poniewa» 8i = 8 · (cos π2 + i sin π

2 ), wi¦c 3
√

8i ma nast¦puj¡ce trzy warto±ci:

w0 = 2 · (cos π6 + i sin π
6 ) = 2 · (

√
3

2 + 1
2 i) =

√
3 + i

w1 = 2 · (cos 5π
6 + i sin 5π

6 ) = 2 · (−
√

3
2 + 1

2 i) = −
√

3 + i

w2 = 2 · (cos 3π
2 + i sin 3π

2 ) = 2 · (−i) = −2i

Przykªad 7

Obiczy¢ 4
√
−1 + i.

Rozwi¡zanie. Poniewa» −1 + i =
√

2 · (cos 3π
4 + i sin 3π

4 ), wi¦c 4
√
−1 + i ma nast¦puj¡ce cztery

warto±ci:
w0 =

8
√

2 · (cos 3π
16 + i sin 3π

16 )

w1 =
8
√

2 · (cos 11π
16 + i sin 11π

16 )

w2 =
8
√

2 · (cos 19π
16 + i sin 19π

16 )

w3 =
8
√

2 · (cos 27π
16 + i sin 27π

16 )

Zasada mówi¡ca, »e istnieje n ró»nych pierwiastków n-tego stopnia dotyczy nie tylko pier-
wiastkowania liczb nierzeczywistych, ale równie» pierwiastkowania liczb rzeczywistych � ka»da
niezerowa liczba rzeczywista ma n ró»nych zespolonych pierwiastków n-tego stopnia.

Przykªad 8

Wyznaczy¢ wszystkie pierwiastki szóstego stopnia z 1.
Rozwi¡zanie. Poniewa» 1 = cos 0 + sin 0, wi¦c 6

√
1 ma nast¦puj¡ce sze±¢ warto±ci:

w0 = cos 0 + i sin 0 = 1

w1 = cos π3 + i sin π
3 = 1

2 +
√

3
2 i

w2 = cos 2π
3 + i sin 2π

3 = −1
2 +

√
3

2 i

w3 = cosπ + i sinπ = −1

w4 = cos 4π
3 + i sin 4π

3 = −1
2 −

√
3

2 i

w5 = cos 5π
3 + i sin 5π

3 = 1
2 −

√
3

2 i

Fakt 5.11

Dla dowolnej niezerowej liczby zespolonej z pierwiastki z liczby z:

• stopnia 2 (pierwiastki kwadratowe) to dwie liczby przeciwne,

• stopnia n (gdzie n ≥ 3) to wierzchoªki pewnego n-k¡ta foremnego o ±rodku w 0.

Dowód. Zauwa»my, »e wszystkie pierwiastki z liczby z = r(cos θ+i sin θ) maj¡ jednakowy moduª
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(równy n
√
r), za± argumenty kolejnych pierwiastków ró»ni¡ si¦ o 2π

n . W przypadku n = 2 otrzy-
mujemy wi¦c dwie liczby przeciwne (ró»nica argumentów wynosi π), za± w przypadku n ≥ 3
otrzymujemy punkty le»¡ce w równych odst¦pach na okr¦gu o ±rodku 0 i promieniu n

√
r (na

rysunku pokazano przypadek n = 5).

x

y

z

w0

w1

w2

w3 w4

2π
5

2π
5

2π
5 2π

5

2π
5

Alternatywnym (i cz¦sto wygodniejszym od postaci trygonometrycznej) sposobem zapisu
liczb zespolonych jest posta¢ wykªadnicza.

De�nicja 5.12

Funkcj¦ wykªadnicz¡ ez dla argumentów zespolonych z = x + iy (gdzie x i y to liczby
rzeczywiste) de�niujemy nast¦puj¡co:

ex+iy = ex(cos y + i sin y) (5.10)

W szczególno±ci, dla dowolnej liczby rzeczywistej:

eiy = cos y + i sin y (5.11)

Wstawiaj¡c we wzorze (5.11) y = π otrzymujemy sªynny wzór Eulera:

eπi = −1

Wzory (5.3), (5.5), (5.6) i (5.8), w postaci wykªadniczej przyjmuj¡ posta¢ dobrze znanych
(dla argumentów rzeczywistych) wªasno±ci pot¦gowania:

Fakt 5.13

Dla dowolnych liczb zespolonych z1 i z2 oraz dowolnej liczby caªkowitej n zachodz¡ wzory:

1) ez1 · ez2 = ez1+z2

2)
ez1

ez2
= ez1−z2

3) (ez)−1 = e−z

4) (ez)n = enz

Dowód. Oznaczmy z1 = a+ ib oraz z2 = c+ id. Wówczas:

ez1 · ez2 = ea+ib · ec+id = ea(cos b+ i sin b) · ec(cos d+ i sin d) = ea · ec(cos b+ i sin b)(cos d+ i sin d)

Copyright c© Tomasz Elsner, 2019



5.2. WIELOMIANY ZESPOLONE 149

= ea+c(cos(b+ d) + i sin(b+ d)) = e(a+c)+i(b+d) = ez1+z2

Pozostaªe wªasno±ci dowodzimy analogicznie.

5.2 Wielomiany zespolone

Równania liniowe (jak równie» ukªady równa« liniowych) w liczbach zespolonych rozwi¡zuje si¦
dokªadnie tak samo, jak w liczbach rzeczywistych.

Przykªad 1

Znajd¹ wszystkie pary liczb zespolonych z i w speªniaj¡ce nast¦puj¡cy ukªad równa«:{
(1 + i)z + w = (1 + 2i)

iz + (1− i)w = (2 + i)

Rozwi¡zanie (sposób I). Stosuj¡c metod¦ podstawiania otrzymujemy:

w = (1 + 2i)− (1 + i)z

co podstawiamy do drugiego równania otrzymuj¡c:

iz + (1− i)
(
(1 + 2i)− (1 + i)z

)
= (2 + i)

(−2 + i)z + (3 + i) = (2 + i) czyli z =
−1

−2 + i
= 2

5 + 1
5 i

sk¡d
w = (1 + 2i)− (1 + i)z = (1 + 2i)− (1 + i)(2

5 + 1
5 i) = 4

5 + 7
5 i

Rozwi¡zanie (sposób II). Stosuj¡c wzory Cramera otrzymujemy:

D = det

(
1 + i 1
i 1− i

)
= (1 + i)(1− i)− 1 · i = 2− i 6= 0

Dz = det

(
1 + 2i 1
2 + i 1− i

)
= (1 + 2i)(1− i)− 1 · (2 + i) = 1

Dw = det

(
1 + i 1 + 2i
i 2 + i

)
= (1 + i)(2 + i)− i · (1 + 2i) = 3 + 2i

St¡d:

z =
Dz

D
=

1

2− i
= 2

5 + 1
5 i

w =
Dw

D
=

3 + 2i

2− i
= 4

5 + 7
5 i

Zasadniczym powodem wprowadzenia liczb zespolonych byªa potrzeba znalezienia rozwi¡-
zywania równa« wielomianowych, które w zbiorze liczb rzeczywistych nie miaªy pierwiastków.
Zacznijmy od równania kwadratowego:
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Fakt 5.14

Dla dowolnych a, b, c ∈ C, gdzie a 6= 0 równanie az2 + bz + c = 0 ma dwa pierwiastki:

z =
−b±

√
∆

2a
, gdzie ∆ = b2 − 4ac (5.12)

W przypadku, gdy ∆ = 0 powy»szy wzór daje jeden (podwójny) pierwiastek.

Dowód. Rozwa»ane równanie mo»na przeksztaªci¢ w nast¦puj¡cy sposób:

z2 +
b

a
z +

c

a
= 0

(
z +

b

2a

)2

=
b2 − 4ac

4a2(
z +

b

2a

)2

=

(√
∆

2a

)2

St¡d

z +
b

2a
= ±
√

∆

2a
czyli z =

−b±
√

∆

2a

Zauwa»my, »e w zwi¡zku z tym, »e
√

∆ jest niejednoznaczny (ma dwie warto±ci), powstaje
problem, któr¡ z nich nale»y wstawi¢ do wzoru (5.12). Poniewa» jednak zgodnie z Faktem 5.25
pierwiastki kwadratowe z ∆ to liczby przeciwne, za± we wzorze (5.12) wyst¦puje ±

√
∆, wi¦c

wybór warto±ci nie ma wpªywu na otrzymane pierwiastki.

Przykªad 2

Rozwi¡za¢ równanie kwadratowe (w liczbach zespolonych):

iz2 + (2i− 2)z − 1 = 0

Rozwi¡zanie. ∆ = (2i− 2)2 + 4i = −4i = 4(cos 3π
2 + i sin 3π

2 ), wi¦c
√

∆ to jedna z liczb:

2(cos 3π
4 + i sin 3π

4 ) = 2(−
√

2
2 + i

√
2

2 ) = −
√

2 + i
√

2

2(cos 7π
4 + i sin 7π

4 ) = 2(
√

2
2 − i

√
2

2 ) =
√

2− i
√

2

St¡d:

z1 =
−(2i− 2)−

√
2 + i

√
2

2i
= (−1 +

√
2

2 ) + i(1 +
√

2
2 )

z2 =
−(2i− 2) +

√
2− i

√
2

2i
= (−1−

√
2

2 ) + i(1−
√

2
2 )

De�nicja 5.15

Wielomian W (z) o wspóªczynnikach zespolonych nazywamy podzielnym przez wielomian
P (z) (co oznaczamy P (z)|W (z)), je±li istnieje taki wielomian A(z) o wspóªczynnikach
zespolonych, »e W (z) = P (z) ·A(z) dla dowolnego z ∈ C.
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Twierdzenie 5.16: Twierdzenie Bezouta

Dany jest wielomian W (z) o wspóªczynnikach zespolonych oraz liczba zespolona a. Wów-
czas W (a) = 0 wtedy i tylko wtedy, gdy (z − a)|W (z).

Dowód. Znany ze szkoªy algorytm dzielenia wielomianów pozwala wykona¢ dzielenie z reszt¡
dowolnych dwóch wielomianów o wspóªczynnikach zespolonych, przy czym reszta z dzielenia jest
wielomianem stopnia mniejszego ni» dzielnik. Wykonuj¡c dzielenie wielomianów W (z) : (z − a)
otrzymujemy iloraz A(z) i reszt¦ R(z), czyli:

W (z) = A(z) · (z − a) +R(z)

Poniewa» stopie« wielomianu R(z) (reszty) jest mniejszy od stopnia wielomianu z − a (który
wynosi 1), wi¦c wielomian R(z) = r jest wielomianem staªym. Wobec tego dla dowolnej warto±ci
z zachodzi równo±¢:

W (z) = A(z) · (z − a) + r

gdzie a i r to pewne ustalone liczby zespolone. Podstawiaj¡c z = a otrzymujemy:

W (a) = r

czyli warto±¢ wielomianu W w punkcie a jest równa reszcie z dzielenia W (z) przez (z− a). St¡d
W (a) = 0 wtedy i tylko wtedy, gdy W (z) dzieli si¦ bez reszty przez (z − a).

Wniosek 5.17

Je±li a1, . . . , an s¡ (parami ró»nymi) pierwiastkami wielomianu W o wspóªczynnikach ze-
spolonych, to:

W (z) = (z − a1)(z − a2) · · · · · (z − an) · P (z)

dla pewnego wielomianu P .

Dowód. Prowadzimy indukcj¦ wzgl¦dem n. Dla n = 1 jest to bezpo±redni wniosek z Twierdzenia
Bezouta. Zaªó»my, »e teza jest prawdziwa dla n = k i rozwa»my wielomianW maj¡cy pierwiastki
a1, . . . , ak+1. Z zaªo»enia indukcynego:

W (z) = (z − a1)(z − a2) · · · · · (z − ak) · P (z)

dla pewnego wielomianu P . Podstawiaj¡c z = ak+1 i korzystaj¡c z faktu, »e jest to pierwiastek
wielomianu W otrzymujemy:

0 = W (ak+1) = (ak+1 − a1)(ak+1 − a2) · · · · · (ak+1 − ak) · P (ak+1)

Poniewa» a1, . . . , ak+1 s¡ parami ró»ne, wi¦c P (ak+1) = 0, czyli zgodnie z Twierdzeniem Bezouta:

P (z) = (z − ak+1) ·Q(z)

dla pewnego wielomianu Q. St¡d:

W (z) = (z − a1)(z − a2) · · · · · (z − ak)(z − ak+1) ·Q(z)
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Powy»szy wniosek stanowi motywacj¦ dla nast¦puj¡cej de�nicji pierwiastka wielokrotnego:

De�nicja 5.18

Niech liczba zespolona a b¦dzie pierwiastkiem wielomianu zespolonego W . Krotno±ci¡
pierwiastka a nazywamy tak¡ liczb¦ k, »e:

W (z) = (z − a)k ·A(z) (5.13)

gdzie a nie jest pierwiastkiem wielomianu A.

Zgodnie z Twierdzeniem Bezouta krotno±¢ ka»dego pierwiastka wielomianu wynosi przynaj-
mniej 1.

Wniosek 5.19

Wielomian stopnia n o wspóªczynnikach rzeczywistych ma co najwy»ej n pierwiastków
rzeczywistych (licz¡c z krotno±ciami).

Dowód. Je±li liczby a1, . . . , ak s¡ pierwiastkami wielomianu W , a ich krotno±ci wynosz¡, odpo-
wiednio, s1, . . . , sk, to

W (x) = (x− a1)s1(x− a2)s2 · · · · · (x− ak)sk ·A(x)

Porównuj¡c stopnie wielomianów po lewej i po prawej stronie równo±ci otrzymujemy:

n = degW = s1 + · · ·+ sk + degA ≥ s1 + · · ·+ sk

Poni»sze twierdzenie to najwa»niejsze twierdzenie dotycz¡ce liczb zespolonych (i gªównym po-
wodem zainteresowania liczbami zespolonymi). Dowód tego twierdzenia jest do±¢ skomplikowany
i wykracza poza zakres niniejszego skryptu.

Twierdzenie 5.20: Zasadnicze twierdzenie algebry

Wielomian stopnia n o wspóªczynnikach zespolonych ma dokªadnie n pierwiastków zespo-
lonych (licz¡c z krotno±ciami). Innymi sªowy, wielomian zespolony W mo»na rozªo»y¢ na
iloczyn czynników liniowych, tzn.

W (z) = a(z − z1)(z − z2) · · · · · (z − zn)

gdzie z1, . . . , zn to (niekoniecznie ró»ne) pierwiastki wielomianu W .

W przypadku rozwa»ania wielomianów o wspóªczynnikach rzeczywistych, wa»n¡ operacj¡
okazuje si¦ operacja sprz¦»enia liczby zespolonej:

De�nicja 5.21

Sprz¦»eniem liczby zespolonej z = a+ ib nazywamy liczb¦ zespolon¡ z̄ = a− ib. Geome-
trycznie z̄ to obraz z przez odbicie wzgl¦dem osi rzeczywistej.
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Fakt 5.22

Dla dowolnych liczb zespolonych z1, z2 oraz dowolnej liczby naturalnej n zachodz¡ nast¦-
puj¡ce wªasno±ci:

1) z1 ± z2 = z̄1 ± z̄2

2) z1 · z2 = z̄1 · z̄2

3) z1/z2 = z̄1/z̄2

4) (z1)n = z̄1
n

Dowody tych prostych wªasno±ci pozostawiamy czytelnikowi.

Fakt 5.23

Je±li liczba zespolona z0 = a + bi jest pierwiastkiem wielomianu W o wspóªczynnikach
rzeczywistych, to liczba zespolona z̄0 = a− bi te» jest jego pierwiastkiem.

Dowód. Niech W (z) = anz
n + · · · + a1z + a0, gdzie a0, . . . , an to liczby rzeczywiste. Zgodnie z

zaªo»eniem:
0 = anz

n
0 + · · ·+ a1z0 + a0

Sprz¦gaj¡c obie strony równania i korzystaj¡c z Faktu 5.22 otrzymujemy:

0 = anzn0 + · · ·+ a1z0 + a0 = anzn0 + · · ·+ a1z0 + a0 = an · (z0)n + · · ·+ a1 · z0 + a0

Poniewa» liczby ai s¡ rzeczywiste, wi¦c āi = ai, sk¡d:

0 = an(z̄0)n + · · ·+ a1z̄0 + a0 = W (z̄0)

czyli z̄0 te» jest pierwiastkiem wielomianu W .

Wniosek 5.24

Dowolny wielomian rzeczywisty mo»na rozªo»y¢ na iloczyn (rzeczywistych) czynników li-
niowych i kwadratowych.

Dowód. Prowadzimy dowód indukcyjny ze wzgl¦du na stopie« wielomianu. Wielomian stopnia
1 w oczywisty sposób speªnia tez¦. Zaªó»my, »e wszystkie wielomiany stopnia k lub mniejszego
rozkªadaj¡ si¦ na iloczyn wielomianów stopnia 1 i 2. Niech W b¦dzie wielomianem stopnia
k + 1 (o wspóªczynnikach rzeczywistych). Zgodnie z Zasadniczym Twierdzeniem Algebry ma on
pierwiastek zesplony z = a+ bi.

Je±li b = 0 (tzn. pierwiastek z jest liczb¡ rzeczywist¡), to zgodnie z Twierdzenie Bezouta
wielomian W (x) jest podzielny przez wielomian (x− a), czyli:

W (x) = (x− a) ·A(x)

gdzie A jest wielomianem o wspóªczynnikach rzeczywistych stopnia k, a zatem zgodnie z zaªo»e-
niem indukcyjnym jest iloczynem wielomianów stopnia 1 i 2 o wspóªczynnikach rzeczywistych.
St¡d t¦ sam¡ wªasno±¢ ma wielomian W .

Je±li b 6= 0 (tzn. pierwiastek z = a+ ib nie jest liczb¡ rzeczywist¡), to zgodnie z Faktem 5.23
liczba z̄ = a− ib te» jest pierwiastkiem wielomianu W . St¡d, zgodnie z Twierdzeniem Bezouta:

W (x) = (x− (a+ ib))(x− (a− ib)) ·A(x)
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gdzie A jest wielomianem o wspóªczynnikach zespolonych (gdy» powstaje z dzielenia W (x) przez
wielomian o wspóªczynnikach zespolonych). Poniewa» jednak po wymno»eniu czynników linio-
wych powy»sza równo±¢ przyjmuje posta¢:

W (x) = (x2 − 2ax+ a2 + b2) ·A(x)

wi¦c okazuje si¦, »e wielomian A jest wielomianem o wspóªczynnikach rzeczywistych (gdy» po-
wstaje z dzielenia W (x) przez wielomian o wspóªczynnikach rzeczywistych). Zgodnie z zaªo»e-
niem indukcyjnym A jest iloczynem wielomianów stopnia 1 i 2 o wspóªczynnikach rzeczywistych,
a zatem t¦ sam¡ wªasno±¢ ma wielomian W .

W przypadku wielomianów o wspóªczynnikach caªkowitych znajdowanie pierwiastków mo»e
uªatwi¢ nast¦puj¡cy fakt:

Fakt 5.25

Niech W (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 b¦dzie wielomianem o wspóªczynnikach

caªkowitych. Je±li W
(
p

q

)
= 0, gdzie p i q to liczby caªkowite wzgl¦dnie pierwsze, to:

q|an oraz p|a0

Dowód.

0 = W

(
p

q

)
= an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ · · ·+ a1

(
p

q

)
+ a0

wi¦c (mno»¡c stronami przez qn):

0 = anp
n + an−1p

n−1q · · ·+ a1pq
n−1 + a0q

n

Lewa strona równo±ci jest podzielna przez p oraz wszystkie skªadniki po prawej stronie inne ni»
a0q

n s¡ podzielne przez p. St¡d równie» skªadnik a0q
n dzieli si¦ przez p, co wobec wzgl¦dnej

pierwszo±¢i p i q daje p|a0. Podobnie dowodzimy, »e q|an.

Przykªad 3

Rozªo»y¢ wielomian W (z) = z3 − 2z2 + 5z − 4 na:

1) iloczyn wielomianów zespolonych pierwszego stopnia,

2) iloczyn wielomianów rzeczywistych stopnia pierwszego lub drugiego.

Rozwi¡zanie. Korzystaj¡c z Faktu 5.25 wyznaczamy pierwiastek wymierny z = 1 (wystarczy
sprawdzi¢ liczby ±4, ±2, ±1). Wykonuj¡c dzielenie wielomianów otrzymujemy:

W (z) = (z − 1)(z2 − z + 4)

Czynnik kwadratowy jest nierozkªadalny nad liczbami rzeczywistymi, natomiast nad liczbami
zespolonymi otrzymujemy rozkªad:

W (z) = (z − 1)(z − 1+i
√

15
2 )(z − 1−i

√
15

2 )
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Przykªad 4

Rozªo»y¢ wielomian W (z) = z4 + 2z3 − 6z2 + 10z + 25 na

1) iloczyn wielomianów zespolonych pierwszego stopnia,

2) iloczyn wielomianów rzeczywistych stopnia pierwszego lub drugiego.

wiedz¡c, »e liczba 1 + 2i jest pierwiastkiem tego wielomianu.

Rozwi¡zanie. Poniewa» W jest wielomianem o wspóªczynnikach rzeczywistych, wi¦c zgodnie z
Faktem 5.25 skoro 1+2i jest jego pierwiastkiem, to 1 + 2i = 1−2i te» jest jego pierwiastkiem.
Wobec tego W dzieli si¦ przez wielomian (z− (1 + 2i))(z− (1− 2i)) = z2− 2z+ 5. Wykonuj¡c
dzielenie otrzymujemy:

W (z) = (z2 − 2z + 5)(z2 + 4z + 5)

�aden z czynników kwadratowych nie ma pierwiastków rzeczywistych, natomiast nad liczbami
zespolonymi otrzymujemy rozkªad:

W (z) = (z − (1 + 2i))(z − (1− 2i))(z − (−2 + i))(z − (−2− i))

Przykªad 5

Obliczy¢
(

1 −1
1 1

)50

.

Rozwi¡zanie. Wyliczamy wielomian charakterystyczny macierzy:

det

(
1− λ −1

1 1− λ

)
= (1− λ)2 + 1 = λ2 − 2λ+ 2

Równanie λ2 − 2λ+ 2 = 0 nie ma pierwiastków rzeczywistych, ale ma pierwiastki zespolone:

∆ = 4− 8 = −4, wi¦c λ =
2±
√
−4

2
=

2± 2i

2
= 1± i

Wyliczamy wektory wªasne dla λ1 = 1 + i:(
1 −1
1 1

)(
x
y

)
= (1 + i)

(
x
y

)
{
x− y = (1 + i)x

x+ y = (1 + i)y
sk¡d

{
y = −ix
−ix = y

czyli wektory wªasne s¡ postaci
(
x
−ix

)
. Podobnie wyliczamy wektory wªasne

(
x
ix

)
dla war-

to±ci wªasnej λ2 = 1− i. Zatem diagonalizacja macierzy wygl¡da nast¦puj¡co:(
1 −1
1 1

)
=

(
1 1
−i i

)(
1 + i 0

0 1− i

)(
1 1
−i i

)−1

St¡d: (
1 −1
1 1

)50

=

(
1 1
−i i

)(
1 + i 0

0 1− i

)50(
1 1
−i i

)−1

=

(
1 1
−i i

)(
(1 + i)50 0

0 (1− i)50

)(
1
2

1
2 i

1
2 −1

2 i

)
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Wykorzystuj¡c posta¢ trygonometryczn¡ obliczamy pot¦gi (1 + i)50 i (1− i)50:

(1 + i)50 =
(√

2(cos π4 + i sin π
4 ))
)50

= (
√

2)50(cos 50π
4 + i sin 50π

4 ) = 225i

(1− i)50 =
(√

2(cos−π
4 + i sin−π

4 ))
)50

= (
√

2)50(cos−50π
4 + i sin−50π

4 ) = −225i

Zatem: (
1 −1
1 1

)50

=

(
1 1
−i i

)(
225i 0

0 −225i

)(
1
2

1
2 i

1
2 −1

2 i

)
=

(
0 −225

225 0

)

W powy»szym przykªadzie nieprzypadkowo nierzeczywiste warto±ci wªasne byªy sprz¦»onymi
liczbami rzeczywistymi λ i λ̄, a odpowiadaj¡ce im wektory wªasne byªy wektorami sprz¦»onymi
v i v̄ (wektorem sprz¦»onym do v = ( xy ) nazywamy wektor v̄ =

(
x̄
ȳ

)
), co pokazuje poni»szy fakt.

Fakt 5.26

Je±li macierz A ∈ M2×2 o wyrazach rzeczywistych ma nierzeczywist¡ warto±¢ wªasn¡
λ, a przynale»¡cy do niej (zespolony) niezerowy wektor to v, to liczba λ̄ równie» jest
warto±ci¡ wªasn¡, a przynale»¡cy do niej wektor to v̄.

Dowód. Zgodnie z zaªo»eniem:
A · v = λ · v

Sprz¦gaj¡c obie strony równania (i korzystaj¡c z wªasno±ci sprz¦»enia opisanych w Fakcie 5.22)
otrzymujemy:

Ā · v̄ = λ̄ · v̄

gdzie sprz¦»enie macierzy oznacza sprz¦»enie wszystkich jej wyrazów. Poniewa» macierz A ma
wyrazy rzeczywiste, wi¦c Ā = A, czyli

A · v̄ = λ̄ · v̄

a zatem v̄ jest niezerowym (zespolonym) wektorem wªasnym macierzy A dla (zespolonej) warto±ci
wªasnej λ̄.

Wniosek 5.27

Je±li A jest macierz¡ 2 × 2 o wyrazach rzeczywistych, to zachodzi jedna z poni»szych
sytuacji:

1) A ma 2 rzeczywiste warto±ci wªasne λ1 i λ2 i dla ka»dej z nich prost¡ wektorów
wªasnych,

2) A ma 1 (rzeczywist¡) warto±¢ wªasn¡ λ i prost¡ wektorów wªasnych,

3) A ma 1 (rzeczywist¡) warto±¢ wªasn¡ λ i pªaszczyzn¦ wektorów wªasnych,

4) A ma 2 nierzeczywiste warto±ci wªasne λ i λ̄.

W przypadkach (1), (3) i (4) macierz A jest diagonalizowalna (w sytuacji (4) przy u»yciu
liczb zespolonych). W przypadku (2) macierz A nie jest diagonalizowalna.

Dowód. Zgodnie z Wnioskiem 3.8 je±li nie zachodzi »aden z przypadków (1)�(3), to macierz A nie
ma rzeczywistych warto±ci wªasnych. Zgodnie z Zasadniczym Twierdzeniem Algebry wielomian
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charakterystyczny χA (jak ka»dy wielomian) ma przynajmniej jeden pierwiastek zespolony λ.
Poniewa» wspóªczynniki wielomianu χA s¡ rzeczywiste, wi¦c zgodnie z Faktem 5.26 wielomian
ten ma równie» pierwiastek zespolony λ̄, czyli zachodzi przypadek (4).

Macierz A diagonalizuje si¦, je±li ma dwa niewspóªliniowe wektory wªasne (dla ró»nych war-
to±ci wªasnych lub, je±li warto±¢ wªasna jest tylko jedna, dla tej samej warto±ci wªasnej). Takie
wektory istniej¡ w przypadkach (1), (3) i (4), natomiast nie istniej¡ w przypadku (2).
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Rozdziaª 6

Wektory w przestrzeni R3

6.1 Wektory, proste i pªaszczyzny

De�nicja 6.1

Par¦ uporz¡dkowan¡ punktów przestrzeni trójwymiarowej (A,B) nazywamy wektorem w
R3 o pocz¡tku A i ko«cu B i oznaczamy

−−→
AB. Dªugo±ci¡ wektora

−−→
AB nazywamy dªugo±¢

odcinka AB, a jego kierunkiem � prost¡ AB (przy czym przyjmujemy, »e proste równolegªe
wyznaczaj¡ ten sam kierunek). Wektor o ustalonej dªugo±ci i kierunu mo»e mie¢ dwa ró»ne
zwroty. Dwa wektory s¡ równe, je±li maj¡ jednakowe dªugo±ci, kierunki i zwroty1.

Szczególnym przypadkiem jest wektor zerowy, tzn. wektor, którego koniec i pocz¡tek s¡
jednakowe. Wektor taki nie ma okre±lonego kierunku, ani zwrotu, a jego dªugo±¢ to 0. Jest tylko
jeden wektor zerowy.

Fakt 6.2

Wektory
−−→
AB i

−−→
CD s¡ równe wtedy i tylko wtedy, gdy czworok¡t ABCD jest równolegªo-

bokiem, czyli jeden z tych wektorów powstaje przez przesuni¦cie równolegªe drugiego.

W szczególno±ci ka»dy wektor mo»na przesun¡¢ równolegle tak, by jego pocz¡tkiem byª punkt

O =
(

0
0
0

)
. Taki wektor

−→
OA b¦dziemy w skrócie oznacza¢

−→
A lub A (podobnie jak na pªaszczy¹-

nie, pocz¡tek ukªadu wspóªrz¦dnych b¦dziemy uznawa¢ za �domy±lny� pocz¡tek wektora oraz
uto»samia¢ punkty R3 z wektorami w R3 o pocz¡tku O).

x

y

z

O B

A

C

−−→
BC =

−→
OA =

−→
A

1Powy»sz¡ de�nicj¦ mo»na precyzyjniej sformuªowa¢ przy u»yciu poj¦¢: relacja równowa»no±ci i klasa abstrakcji
(poznawanych w ramach Wst¦pu do matematyki). Kierunek prostej to klasa abstrakcji relacji równolegªo±ci
prostych (która to relacja jest relacj¡ równowa»no±ci). Wektor to klasa abstrakcji opisanej w de�nicji relacji
równowa»no±ci uporz¡dkowanych par punktów.
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Na zbiorze wektorów w R3 wprowadzamy, analogicznie jak na pªaszczy¹nie, dziaªania doda-
wania wektorów i mno»enia wektorów przez skalar.

De�nicja 6.3

Suma wektorów
−−→
AB i

−−→
BC nazywamy wektor

−→
AC (reguªa przykªadania). Sum¡ wekto-

rów
−−→
AB i

−−→
AD nazywamy przek¡tn¡

−→
AC równolegªoboku ABCD (reguªa równolegªoboku).

Aby wyznaczy¢ sum¦ wektorów w pozostaªych przypadkach nale»y te wektory przesun¡¢
równolegle tak, by móc zastosowa¢ jedn¡ z powy»szych reguª dodawania.

A

Bu

C

v
u+

v

A

B

C
D

v
u+

v

u

Komentarz przy De�nicji 1.3 mówi¡cy, »e wynik dodawania dwóch wektorów nie zale»y od
zastosowanej reguªy dodawania pozostaje prawdziwy dla wektorów w R3 (jego uzasadnienie po-
zostaje bez zmian).

De�nicja 6.4

Niech t b¦dzie liczb¡ rzeczywist¡, za± u wektorem w R3. Wówczas t · u jest wektorem o
dªugo±ci |t| · |u|, o kierunku wyznaczonym przez wektor u i o zwrocie zgodnym z u, gdy
t > 0 lub przeciwnym do u, gdy t < 0. Je±li t = 0, to 0 · u = 0. Wektor (−1) · u = u
nazywamy wektorem przeciwnym do u i oznaczamy −u.

De�nicja 6.5

Je±li A =
(
x0
y0
z0

)
oraz B =

(
x1
y1
z1

)
s¡ punktami pªaszczyzny, to wspóªrz¦dnymi wektora

−−→
AB

nazywamy (uporz¡dkowan¡) trójk¦ liczb:

−−→
AB =

x1 − x0

y1 − y0

z1 − z0


Wspóªrz¦dne wektora

−−→
AB interpretujemy jako przesuni¦cia w kierunkach osi x, y, z potrzebne

dla przemieszczenia z punktu A do punktu B. Warto±¢ bezwzgl¦dna wspóªrz¦dnej podaje dªu-
go±¢ przesuni¦cia, natomiast znak wspóªrz¦dnej rozró»nia pomi¦dzy przesuni¦ciem w kierunku
dodatnim a ujemnym (kierunek dodatni wyznaczaj¡ strzaªki na osiach wspóªrz¦dnych). Wektor

zerowy ma wspóªrz¦dne 0 =
(

0
0
0

)
.

Poniewa» wektor nie ma ustalonego pocz¡tku ani ko«ca (dwa wektory s¡ równe, je±li jeden
z nich jest przesuni¦ciem równolegªym drugiego), wi¦c aby powy»sza de�nicja wspóªrz¦dnych
wektora miaªa sens, równe wektory powinny mie¢ jednakowe wspóªrz¦dne. St¡d potrzeba udo-
wodnienia nast¦puj¡cego faktu:

Fakt 6.6

Dwa wektory s¡ równe wtedy i tylko wtedy, gdy maj¡ równe odpowiednie wspóªrz¦dne.
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Dowód. Oznaczmy A =
(
x0
y0
z0

)
, B =

(
x1
y1
z1

)
oraz A′ =

(
x′0
y′0
z′0

)
, B′ =

(
x′1
y′1
z′1

)
. Na poni»szym rysunku

wida¢, »e
−−→
AB =

−−→
A′B′ wtedy i tylko wtedy, gdy

−→
AP =

−−→
A′P ′ oraz

−→
AQ =

−−→
A′Q′ oraz

−→
AR =

−−→
A′R′,

czyli wtedy i tylko wtedy, gdy x1 − x0 = x′1 − x′0 oraz y1 − y0 = y′1 − y′0 oraz z1 − z0 = z′1 − z′0,
tzn. wektory

−−→
AB i

−−→
A′B′ maj¡ równe wspóªrz¦dne.

x

y

z

A P

Q
R

BA′ P ′

Q′
R′

B′

Wspóªrz¦dne wektora v (o domy±lnym pocz¡tku O) s¡ wyznaczone przez rzuty (prostok¡tne)
punktu v na osie ukªadu wspóªrz¦dnych (pierwszy rysunek). Wspóªrz¦dne v mo»na te» interpre-
towa¢ nast¦puj¡co: pierwsze dwie wspóªrz¦dne to wspóªrz¦dne rzutu (prostok¡tnego) punktu v
na pªaszczyzn¦ Oxy, a trzecia wspóªrz¦dna jest wyznaczona przez rzut punktu v na o± Oz (drugi
rysunek).

x

y

z

·

·

·

x

y

z

v =
(
x
y
z

)

x

y

z

·

·

·

x

y

z

v =
(
x
y
z

)

Fakt 6.7

Dodawanie wektorów oraz mno»enie wektorów przez skalar wyra»a si¦ we wspóªrz¦dnych
nast¦puj¡co: x0

y0

z0

+

x1

y1

z1

 =

x0 + x1

y0 + y1

z0 + z1


t ·

x0

y0

z0

 =

t · x0

t · y0

t · z0



Dowód. Poni»szy rysunek pokazuje uzasadnienie dla pierwszej wspóªrz¦dnej (w sytuacji gdy
x0, x1 > 0). Rozpatrzenie pozostaªych przypadków pozostawiamy czytelnikowi.
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x

y

z

x0 x1

x0 + x1

x

y

z

x0

t · x0

Fakt 6.8

Dla dowolnego wektora
−−→
AB zachodzi:

−−→
AB = B −A.

Dowód. Zgodnie z reguª¡ dodawania wektorów
−−→
AB =

−→
AO +

−−→
OB. Pami¦taj¡c, »e O =

(
0
0
0

)
jest

domy±lnym pocz¡tkiem ka»dego wektora otrzymujemy:
−−→
AB =

−→
AO +

−−→
OB = −

−→
OA+

−−→
OB = −A+B = B −A

Prawa dziaªa« na wektorach w R3 s¡ analogiczne do praw dziaªa« na wektorach na pªasz-
czy¹nie, a ich dowody s¡ podobne do dowodu Faktu 1.12:

Fakt 6.9

Dla dowolnych wektorów u, v, w oraz dowolnych skalarów s, t zachodz¡ nast¦puj¡ce
wªasno±ci:

1) u+ v = v + u (przemienno±¢ +)
2) (u+ v) + w = u+ (v + w) (ª¡czno±¢ +)
3) 0 + u = u+ 0 = u (element neutralny +)
4) u+ (−u) = (−u) + u = 0 (element przeciwny)
5) (s+ t) · u = s · u+ t · u (rozdzielno±¢ · wzgl¦dem +)
6) t · (u+ v) = t · u+ t · v (rozdzielno±¢ · wzgl¦dem +)
7) s · (t · v) = (s · t) · v (ª¡czno±¢ mno»enia skalarów)
8) 1 · u = u

Przykªad 1

Wyznaczy¢ wspóªrz¦dne ±rodka odcinka AB, je±li A =
(
x0
y0
z0

)
i B =

(
x1
y1
z1

)
.

Rozwi¡zanie. Zauwa»my, »e
−→
AS = 1

2

−−→
AB, czyli S −A = 1

2(B −A)

A
BS

St¡d dostajemy:

S = A+ 1
2B −

1
2A = 1

2(A+B) =

x0+x1
2

y0+y1
2

z0+z1
2


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Fakt 6.10

Dªugo±¢ wektora
(
x
y
z

)
wynosi √

x2 + y2 + z2

Odlegªo±¢ punktów A =
(
x0
y0
z0

)
i B =

(
x1
y1
z1

)
wynosi√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

Dowód. Oznaczmy P =
(
x
y
z

)
. Na mocy (dwukrotnie zatosowanego) Twierdzenia Pitagorasa:

|OP |2 = |OQ|2 + |PQ|2 = (|OR|2 + |RQ|2) + |PQ|2

st¡d:
|P | =

√
|OR|2 + |RQ|2 + |PQ|2 =

√
x2 + y2 + z2

x

y

z

P

Q

R

·

·

W takim razie odlegªo±¢ punktów A i B wynosi:

|
−−→
AB| = |B −A| =

∣∣∣∣∣∣
x1 − x0

y1 − y0

z1 − z0

∣∣∣∣∣∣ =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

Wniosek 6.11

Równanie sfery o ±rodku w punkcie
(
a
b
c

)
i promieniu r ma posta¢:

(x− a)2 + (y − b)2 + (z − c)2 = r2

Dowód. Sfera o ±rodku
(
a
b
c

)
i promieniu r to zbiór punktów

(
x
y
z

)
odlegªych o r od punktu

(
a
b
c

)
,

czyli speªniaj¡cych warunek √
(x− a)2 + (y − b)2 + (z − c)2 = r

Poniewa» obie strony równania s¡ dodatnie, wi¦c podnosz¡c równanie stronami do kwadratu
otrzymujemy równowa»n¡ posta¢:

(x− a)2 + (y − b)2 + (z − c)2 = r2
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Fakt 6.12: Nierówno±¢ trójk¡ta

Dla dowolnych wektorów u, v speªniony jest nast¦puj¡cy warunek:

|u+ v| ≤ |u|+ |v|

przy czym równo±¢ zachodzi wtedy i tylko wtedy, gdy wektory u i v s¡ wspóªliniowe i maj¡
zgodne zwroty.

Dowód. Dowód Faktu 1.21 mo»na w niezmienionej postaci zastosowa¢ do wektorów w R3.

De�nicja 6.13

Wektory u i v nazywamy wspóªliniowymi (równolegªymi) je±li le»¡ na jednej prostej prze-
chodz¡cej przez 0.
Wektory u, v i w nazywamy wspóªpªaszczyznowymi, je±li le»¡ na jednej pªaszczy¹nie prze-
chodz¡cej przez 0.
Par¦ niewspóªliniowych wektorów u, v lub trójk¦ niewspóªpªaszczyznowych wektorów u,
v, w nazywamy wektorami liniowo niezale»nymi.

De�nicja 6.14

Kombinacj¡ liniow¡ wektorów u i v nazywamy ka»dy wektor postaci αu+ βv gdzie α i β
s¡ dowolnymi skalarami (nazywanymi wspóªczynnikami tej kombinacji liniowej).
Kombinacj¡ liniow¡ wektorów u, v, w nazywamy ka»dy wektor postaci αu+βv+γw gdzie
α, β, γ s¡ dowolnymi skalarami (nazywanymi wspóªczynnikami tej kombinacji liniowej).

De�nicja 6.15

Wersorami w przestrzeni R3 nazywamy wektory e1 =
(

1
0
0

)
, e2 =

(
0
1
0

)
, e3 =

(
0
0
1

)
.

Fakt 6.16

Ka»dy wektor
(
x
y
z

)
∈ R3 mo»na przedstawi¢ jako kombinacj¦ liniow¡ wersorów, przy czym

wspóªczynnikami tej kombinacji s¡ wspóªrz¦dne wektora:xy
z

 = x

1
0
0

+ y

0
1
0

+ z

0
0
1

 = x · e1 + y · e2 + z · e3

Fakt 6.17

1) Wektory u i v w R3 s¡ wspóªliniowe wtedy i tylko wtedy, gdy istnieje taka liczba
rzeczywista t, »e u = tv lub v = tu.

2) Wektory u, v, w w R3 s¡ wspóªpªaszczyznowe wtedy i tylko wtedy, gdy jeden z tych
wektorów jest kombinacj¡ liniow¡ dwóch pozostaªych.

Dowód. (1) Je±li oba wektory u i v s¡ niezerowe, to u = tv oraz v = 1
tu dla pewnego t ∈ R.

Je±li u = 0, to u = 0 · v (i analogicznie v = 0 · u w sytuacji, gdy v = 0).
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(2) Zaªó»my, »e wektory u i v nie s¡ wspóªliniowe. Wektor w le»y na pªaszczy¹nie rozpi¦tej
przez u i v wtedy i tylko wtedy, gdy w = αu + βv dla pewnych α, β ∈ R, co pokazuje poni»szy
rysunek:

x

y

z

αu

βv

u

v

w

Je±li natomiast u i v s¡ wspóªliniowe, to u = tv+0w lub v = tu+0w, a równocze±nie wektory
u, v, w le»¡ na jednej pªaszczy¹nie.

Wniosek 6.18

Dana jest pªaszczyzna π w R3 przechodz¡ca przez punkt P i dwa niewspóªliniowe wektory
u i v równolegªe do π. Wówczas ka»dy punkt X pªaszczyzny π jest postaci:

X = P + su+ tv (6.1)

dla pewnych skalarów s i t. Wzór (6.1) to równanie parametryczne pªaszczyzny.

Dowód. Niech X b¦dzie dowolnym punktem pªaszczyzny przechodz¡cej przez punkt P i równo-
legªej do wektorów u i v. Zgodnie z Faktem 6.17 wektor

−−→
PX jest kombinacj¡ liniow¡ wektorów

u i v, czyli dla pewnych skalarów s i t zachodzi:

X − P =
−−→
PX = su+ tv

sk¡d
X = P + su+ tv

su

tv

u

v

X

P

Przyjmuj¡c X =
(
x
y
z

)
, P =

( p1
p2
p3

)
, u =

(
u1
u2
u3

)
, v =

(
v1
v2
v3

)
mo»emy równanie parametryczne

pªaszczyzny potraktowa¢ jako ukªad 3 równa« z 5 niewiadomymi (x, y, z, s, t). Eliminuj¡c
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(przy pomocy metody podstawiania) niewiadome s i t otrzymamy jedno równanie z trzema
niewiadomymi, zwane równaniem ogólnym pªaszczyzny, czyli:

Fakt 6.19

Zbiór punktów
(
x
y
z

)
speªniaj¡cych dla pewnych ustalonych liczb rzeczywistych A, B, C,

D (gdzie przynajmniej jedna z liczb A, B, C jest niezerowa) równanie:

Ax+By + Cz +D = 0

jest pªaszczyzn¡. Równanie to nazywamy równaniem ogólnym pªaszczyzny.

Tym razem zamiast dowodu ogólnego przypadku, poka»emy przykªad zastosowania opisanej
powy»ej metody zamiany postaci parametrycznej równania pªaszczyzny na posta¢ ogóln¡. For-
malny dowód powy»szego faktu przeprowadzony zostanie w Fakcie ?? (i b¦dzie wykorzystywaª
iloczyn skalarny wektorów w R3).

Przykªad 2

Dana jest pªaszczyzna o równaniu parametrycznym
(
x
y
z

)
=
(

1
2
1

)
+ s

(
1
1
1

)
+ t
(

2
1
0

)
. Wyznacz

równanie ogólne tej pªaszczyzny.
Rozwi¡zanie. Zapisujemy równanie parametryczne w postaci ukªadu 3 równa« liniowych z 5
niewiadomymi (x, y, z, s, t): 

x = 1 + s+ 2t

y = 2 + s+ t

z = 1 + s

i przy pomocy metody podstawiania eliminujemy niewiadome s i t:

s = z − 1 −→

{
x = 1 + (z − 1) + 2t

y = 2 + (z − 1) + t

czyli {
x = z + 2t

t = y − z − 1
−→ x = z + 2(y − z − 1)

sk¡d otrzymujemy równanie ogólne pªaszczyzny:

x− 2y + z + 2 = 0

Przykªad 3

Dana jest pªaszczyzna o równaniu ogólnym 2x+ 3y− 4z − 1 = 0. Wyznacz równanie parame-
tryczne tej pªaszczyzny.
Rozwi¡zanie. Potrzebujemy trzech (niewspóªliniowych) punktów P , A, B tej pªaszczyzny.
Wówczas przyjmuj¡c u =

−→
PA i v =

−−→
PB otrzymamy równanie parametryczne. Mo»emy przyj¡¢

np. P =
(

1
1
1

)
, A =

(−1
1
0

)
, B =

(
0
−1
−1

)
. Wówczas u =

−→
PA =

(−2
0
1

)
i v =

−−→
PB =

(
0
−2
−2

)
, sk¡d

otrzymujemy parametryczne równanie pªaszczyzny:

X =

1
1
1

+ s

−2
0
1

+ t

 0
−2
−2


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Fakt, »e wybrane punkty P , A i B nie s¡ wspóªliniowe rozpoznajemy po tym, »e wektory
−→
PA

i
−−→
PB nie s¡ wspóªliniowe.

Przykªad 4

Opisz pªaszczyzn¦ przechodz¡c¡ przez punkty P =
(

1
2
0

)
, Q =

(
1
1
−1

)
, R =

(
3
1
4

)
przy pomocy:

(a) równania parametrycznego,

(b) równania ogólnego.

Rozwi¡zanie. (a) Szukana pªaszczyzna przechodzi przez punkt P =
(

1
2
0

)
i jest równolegªa do

wektorów
−−→
PQ =

(
0
−1
−1

)
oraz

−→
PR =

(
2
−1
4

)
, wi¦c ma równanie parametryczne:

X =

1
2
0

+ s

 0
−1
−1

+ t

 2
−1
4


(b) Szukamy pªaszczyzny o równaniu Ax+By +Cz +D = 0 przechodz¡cej przez punkty

P , Q, R, musimy zatem rozwi¡za¢ nast¦puj¡cy ukªad równa«:
A+ 2B +D = 0

A+B − C +D = 0

3A+B + 4C +D = 0

St¡d (metod¡ podstawiania) otrzymujemy:
A = −5

9D

B = −2
9D

C = 2
9D

Równanie pªaszczyzny jest niejednoznaczne (mo»na je mno»y¢ stronami przez dowoln¡ liczb¦),
wi¦c mo»emy przyj¡¢ np. D = −9, otrzymuj¡c równanie 5x+ 2y − 2z − 9 = 0.

Fakt 6.20

Dana jest prosta w R3 przechodz¡ca przez punkt P i równolegªa do wektora v. Wówczas
ka»dy punkt X tej prostej jest postaci:

X = P + tv

dla pewnego skalara t. Posta¢ t¦ nazywamy równaniem parametrycznym prostej, a wektor
v � wektorem kierunkowym prostej.

Dowód. Niech X b¦dzie dowolnym punktem prostej przechodz¡cej przez punkt P i równolegªej
do wektora v.

P

X

v
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Wówczas wektory
−−→
PX i v s¡ wspóªliniowe, czyli dla pewnego skalara t zachodzi:

X − P =
−−→
PX = tv

sk¡d
X = P + tv

Przyjmuj¡c X =
(
x
y
z

)
, P =

( p1
p2
p3

)
, v =

(
v1
v2
v3

)
mo»emy równanie parametryczne prostej

potraktowa¢ jako ukªad 3 równa« z 4 niewiadomymi (x, y, z, t). Eliminuj¡c (przy pomocy
metody podstawiania) niewiadom¡ t otrzymamy dwa równania z trzema niewiadomymi, czyli
posta¢ kraw¦dziow¡ prostej w R3.

Fakt 6.21

Prost¡ w R3 mo»na przedstawi¢ w postaci zbioru punktów speªniaj¡cych ukªad równa«:{
Ax+By + Cz +D = 0

A′x+B′y + C ′z +D = 0
(6.2)

Je±li prosta przechodzi przez punkt P =
(
x0
y0
z0

)
i ma wektor kierunkowy v =

(
a
b
c

)
taki, »e

a, b, c 6= 0, to powy»szy ukªad równa« mo»na zapisa¢ w postaci:

x− x0

a
=
y − y0

b
=
z − z0

c
(6.3)

Przedstawienia (6.2) i (6.3) nazywamy postaciami kraw¦dziowymi prostej.

Dowód. Prost¡ w R3 mo»na przedstawi¢ jako cz¦±¢ wspóln¡ dwóch przecinaj¡cych si¦ pªaszczyzn,
co daje przedstawienie w postaci (6.2).

Szczególn¡ posta¢ (6.3) postaci kraw¦dziowej mo»na otrzyma¢ przeksztaªcaj¡c równanie pa-
rametryczne prostej:xy

z

 =

x0

y0

z0

+ t

ab
c

 czyli


x = x0 + at

y = y0 + bt

z = z0 + ct

do postaci:

t =
x− x0

a
=
y − y0

b
=
z − z0

c

sk¡d otrzymujemy (6.3).

Przykªad 5

Znajd¹ przedstawienie parametryczne oraz kraw¦dziowe wspólnej prostej pªaszczyzn o równa-
niach 2x+ 3y − z − 1 = 0 i x+ y − 2z + 4 = 0.
Rozwi¡zanie. Przedstawienie kraw¦dziowe w postaci (6.3) to:{

2x+ 3y − z − 1 = 0

x+ 3y − 2z + 4 = 0

Rozwi¡zuj¡c ten ukªad równa« metod¡ podstawiania (podstawiaj¡c z = 2x + 3y − 1) otrzy-
mujemy

−3x− 3y + 6 = 0 czyli y = −x+ 2
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a zatem rozwi¡zanie jest postaci: 
x = x

y = −x+ 2

z = −x+ 5

co daje równanie parametryczne wspólnej prostej obu pªaszczyzn:xy
z

 =

0
2
5

+ t

 1
−1
−1


oraz posta¢ kraw¦dziow¡ (6.3):

x

1
=
y − 2

−1
=
z − 5

−1

Przykªad 6

Napisz równanie parametryczne i posta¢ kraw¦dziow¡ prostej przechodz¡cej przez punkt P =(
2
3
5

)
i równolegªej do wektora v =

(
8
5
−3

)
.

Rozwi¡zanie. Równanie parametryczne prostej to:xy
z

 =

2
3
5

+ t

 8
5
−3


a posta¢ kraw¦dziowa to:

x− 2

8
=
y − 3

5
=
z − 5

−3

Przykªad 7

Wyznacz punkt przeci¦cia prostej o równaniu parametrycznym
(
x
y
z

)
=
(−1

1
3

)
+ t
(

2
1
3

)
i pªasz-

czyzny o równaniu ogólnym 2x+ 3y − z − 2 = 0.
Rozwi¡zanie. Rozwi¡zujemy ukªad 4 równa« z 4 niewiadomymi:

x = −1 + 2t

y = 1 + t

z = 3 + 3t

2x+ 3y − z − 2 = 0

otzymuj¡c jedyne rozwi¡zanie: 
x = 1

y = 2

z = 6

t = 1

czyli punkt przeci¦cia to
(

1
2
6

)
.
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Przykªad 8

Wyznacz punkt przeci¦cia prostej o równaniu parametrycznym
(
x
y
z

)
=
(

1
1
1

)
+ t
(

1
−1
2

)
i pªasz-

czyzny o równaniu parametrycznym
(
x
y
z

)
=
(

1
0
1

)
+ s

(
1
−1
2

)
+ t
(

0
3
0

)
.

Rozwi¡zanie. Rozwi¡zujemy ukªad 6 równa« z 6 niewiadomymi. Zwracamy uwag¦, »e w tym
celu musimy zmieni¢ nazw¦ parametru z równania parametrycznego prostej dla unikni¦cia
kolizji oznacze«: 

x = 1 + t′

y = 1− t′

z = 1 + 2t′

x = 1 + s

y = −s+ 3t

z = 1 + 2s

Rozwi¡zaniem ukªadu jest: 

x = 5

y = −3

z = 9

t′ = 4

s = 4

t = 1
3

czyli punkt przeci¦cia to
(

5
−3
9

)
.

Przykªad 9

Wyznacz punkt przeci¦cia prostej o postaci kraw¦dziowej x−2
2 = y− 1 = z + 2 i pªaszczyzny o

równaniu parametrycznym
(
x
y
z

)
=
(

1
2
−1

)
+ s

(
3
−1
2

)
+ t
(

1
4
−2

)
.

Rozwi¡zanie. Rozwi¡zujemy ukªad 5 równa« z 5 niewiadomymi:

1
2(x− 2) = y − 1

y − 1 = z + 2

x = 1 + 3s+ 2t

y = 2− s+ 6t

z = −1 + 2s− 3t

Rozwi¡zaniem ukªadu jest: 

x = 8

y = 4

z = 1

s = 2

t = 1

czyli punkt przeci¦cia to
(

8
4
1

)
.
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Przykªad 10

Ustal czy proste o równaniach parametrycznych
(
x
y
z

)
=
(

2
1
0

)
+ t
(

1
1
1

)
i
(
x
y
z

)
=
(

3
1
−1

)
+ t
(

1
2
0

)
przecinaj¡ si¦.
Rozwi¡zanie. Musimy ustali¢, czy poni»szy ukªad 6 równa« z 5 niewiadomymi ma rozwi¡za-
nie. Zwracamy uwag¦, »e dla unikni¦cia kolizji oznacze« musimy zmieni¢ nazw¦ parametru w
jednym z równa« prostych: 

x = 2 + t

y = 1 + t

z = t

x = 3 + s

y = 1 + 2s

z = −1

Rozwi¡zuj¡c (metod¡ podstawiania) powy»szy ukªad równa« dochodzimy do sprzeczno±ci, a
zatem podane proste nie przecinaj¡ si¦.

Przykªad 11

Ustal czy proste o przedstawieniach kraw¦dziowych x − 4 = y + 3 = z
4 i x+7

6 = y + 4 = z+2
3

przecinaj¡ si¦.
Rozwi¡zanie. Musimy ustali¢, czy poni»szy ukªad 4 równa« z 3 niewiadomymi ma rozwi¡zanie.

x− 4 = y + 3

y + 3 = 1
4z

1
6(x+ 7) = y + 4

y + 4 =
z + 2

3

Rozwi¡zuj¡c ukªad równa« otrzymujemy:
x = 5

y = −2

z = 4

czyli proste przecinaj¡ si¦ w punkcie
(

5
−2
4

)
.

6.2 Iloczyn skalarny i iloczyn wektorowy

De�nicja 6.22

Iloczynem skalarnym wektorów u i v w R3 nazywamy liczb¦:

u ◦ v = |u| · |v| · cos∠(u, v)

gdzie ∠(u, v) oznacza miar¦ mniejszego z k¡tów utworzonych przez wektory u i v.

Przeksztaªcaj¡c powy»szy wzór otrzymujemy (znany z poprzednich rozdziaªów) wzór na k¡t
mi¦dzy dwoma wektorami:
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Fakt 6.23

Je±li ϕ jest k¡tem mi¦dzy niezerowymi wektorami u, v ∈ R3, to:

cosϕ =
u ◦ v
|u| · |v|

W szczególno±ci iloczyn skalarny u ◦ v jest dodatni, gdy k¡t mi¦dzy u i v jest ostry, równy
0, gdy k¡t jest prosty i ujemny, gdy k¡t jest rozwarty.

Poniewa» cos θ ∈ [−1, 1], wi¦c jako kolejny wniosek z de�nicji otrzymujemy (równie» znan¡ z
poprzednich rozdziaªów) nierówno±¢ Schwarza:

Fakt 6.24: Nierówno±¢ Schwarza

Dla dowolnych wektorów u, v ∈ R3 zachodzi nierówno±¢:

|u ◦ v| ≤ |u| · |v|

przy czym równo±¢ zachodzi wtedy i tylko wtedy, gdy wektory u i v s¡ wspóªliniowe.

Podobnie jak dla iloczynu skalarnego na pªaszczy¹nie, równie» iloczyn skalarny wektorów
w R3 ma charakteryzacj¦ algebraiczn¡ (analogiczn¡ do Faktu 1.28). Tym razem dowód tej
charakteryzacji jest trudniejszy i wykracza poza ramy niniejszego skryptu.

Fakt 6.25

Iloczynem skalarnym wektorów
(
x1
y1
z1

)
i
(
x2
y2
z2

)
jest liczba:x1

y1

z1

 ◦
x2

y2

z2

 = x1x2 + y1y2 + z1z2

Podstawowe wªasno±ci iloczynu skalarnego wektorów w R3 s¡ takie jak dla iloczynu skalarnego
na pªaszczy¹nie. Równie» poni»szy dowód jest powtórzeniem dowodu Faktu 1.30.

Fakt 6.26

Dla dowolnych wektorów u, v, w ∈ R3 oraz dowolnego skalara t zachodzi:

1) u ◦ v = v ◦ u (przemienno±¢ ◦)
2) u ◦ (v + w) = u ◦ v + u ◦ w (rozdzielno±¢ ◦ wzgl¦dem +)

(v + w) ◦ u = v ◦ u+ w ◦ u
3) (tu) ◦ v = t(u ◦ v) (ª¡czno±¢)
4) u ◦ u = |u|2
5) u ◦ v = 0 wtedy i tylko wtedy, gdy u ⊥ v

Dowód. Bezpo±rednio z De�nicji 6.22 wynika (1). Wªasno±ci (4) i (5) to dwa szczególne przypa-
dek De�nicji 6.22 (gdy θ = 0 oraz gdy θ = π

2 ). Podobnie jak na pªaszczy¹nie, przyjmujemy, »e
wektor zerowy jest prostopadªy do ka»dego innego wektora.

Dla dowodu wªasno±ci (2) i (3) skorzystamy z algebraicznej charakteryzacji iloczynu skalar-

nego (Fakt 6.25). Przyjmuj¡c u =
(
x1
y1
z1

)
, v =

(
x2
y2
z2

)
, w =

(
x3
y3
z3

)
dostajemy:

u ◦ (v + w) = x1 · (x2 + x3) + y1 · (y2 + y3) + z1 · (z2 + z3)

= (x1x2 + y1y2 + z1z2) + (x1x3 + y1y3 + z1z3) = u ◦ v + u ◦ w
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Druga równo±¢ z punktu (2) wynika z przemienno±ci iloczynu skalarnego (wªasno±¢ (1)). Wªa-
sno±¢ (3) dowodzimy podobnie:

(tu) ◦ v = (tx1) · x2 + (ty1) · y2 + (tz1) · z2 = t · (x1 · x2 + y1 · y2 + z1 · z2) = t · (u ◦ v)

Fakt 6.27

Je±li przynajmniej jedna z liczb A, B, C jest niezerowa, to zbiór punktów speªniaj¡cych
równanie

Ax+By + Cz +D = 0 (6.4)

jest pªaszczyzn¡, a wektor n =
(
A
B
C

)
jest wektorem prostopadªym do tej pªaszczyzny

(nazywamy go wektorem normalnym tej pªaszczyzny).

Dowód. Niech Q =
(
x0
y0
z0

)
b¦dzie dowolnym punktem speªniaj¡cym równanie (6.4), tzn.

Ax0 +By0 + Cz0 +D = 0 czyli D = −(Ax0 +By0 + Cz0)

·Q

P

Wówczas dla dowolnego punktu P =
(
x
y
z

)
zachodzi:

−−→
QP ◦n = A(x−x0)+B(y−y0)+C(z−z0) = Ax+By+Cz−(Ax0+By0+Cz0) = Ax+By+Cz+D

czyli zbiór punktów P =
(
x
y
z

)
takich, »e wektor

−−→
QP jest prostopadªy do wektora n jest opisywany

równaniem:
Ax+By + Cz +D = 0

Fakt 6.28

Je±li pªaszczyzny π1 i π2 przecinaj¡ si¦, to tworz¡ dwie pary równych k¡tów dwu±ciennych
o miarach α i π−α. Wówczas k¡t mi¦dzy wektorami normalnymi tych pªaszczyzn wynosi
α lub π − α. W szczególno±ci:

• pªaszczyzny s¡ równolegªe ⇐⇒ ich wektory normalne s¡ równolegªe,

• pªaszczyzny s¡ prostopadªe ⇐⇒ ich wektory normalne s¡ prostopadªe.

Dowód. Poni»szy rysunek przedstawia przekrój przecinaj¡cych si¦ pªaszczyzn pªaszczyzn¡ pro-
stopadª¡ do wspólnej prostej.

π1 π2

α ·
· β

π1 π2

α
π − α

··
β
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Jak wida¢, je±li mniejszy z k¡tów mi¦dzy pªaszczyznami ma miar¦ α, to k¡t β mi¦dzy ich
wektorami normalnymi, w zale»no±ci od wzajemnego poªo»enia tych wektorów, ma miar¦

β = 2π − π
2 −

π
2 − α = π − α lub β = 2π − π

2 −
π
2 − (π − α) = α

W szczególno±ci:

• wektory normalne s¡ równolegªe wtedy i tylko wtedy, gdy β = 0 lub β = π, a zatem α = 0
lub α = π, czyli wtedy i tylko wtedy, gdy pªaszczyzny s¡ równolegªe;

• wektory normalne s¡ prostopadªe wtedy i tylko wtedy, gdy β = π
2 , czyli α = π

2 , tzn.
pªaszczyzny s¡ prostopadªe.

Fakt 6.29

Je±li prosta ` przecina pªaszczyzn¦ π pod k¡tem ostrym α, to miara k¡ta mi¦dzy wektorem
normalnym pªaszczyzny π a wektorem kierunkowym prostej ` wynosi π2 −α lub π

2 +α. W
szczególno±ci:

• prosta ` jest równolegªa do pªaszczyzny π ⇐⇒ wektory kierunkowy prostej ` jest
prostopadªy do wektora normalnego pªaszczyzny π,

• prosta ` jest prostopadªa do pªaszczyzny π ⇐⇒ wektory kierunkowy prostej ` jest
równolegªy do wektora normalnego pªaszczyzny π,

Dowód. Poni»szy rysunek przekrój pªaszczyzny π pªaszczyzn¡ zawieraj¡c¡ prost¡ ` i prostopadª¡
do pªaszczyzny π.

`

πα ·
β

`

πα · β

Jak wida¢, je±li mniejszy z k¡tów mi¦dzy prost¡ ` a pªaszczyzn¡ π ma miar¦ α, to k¡t β
mi¦dzy wektorem kierunkowym prostej ` a wektorem normalnym pªaszczyzny π, w zale»no±ci od
wzajemnego poªo»enia tych wektorów, ma miar¦

β = π
2 − α lub β = π − (π2 − α) = π

2 + α

W szczególno±ci:

• prosta ` jest równolegªa do pªaszczyzny π wtedy i tylko wtedy, gdy β = 0 lub β = π, a
zatem α = π

2 , czyli wtedy i tylko wtedy, gdy wektor kierunkowy prostej ` jest prostopadªy
do wektora normalnego pªaszczyzny π;

• prosta ` jest prostopadªa do pªaszczyzny π wtedy i tylko wtedy, gdy β = π
2 , a zatem α = 0,

czyli wtedy i tylko wtedy, gdy wektor kierunkowy prostej ` jest równolegªy do wektora
normalnego pªaszczyzny π.
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Przykªad 1

Napisz równanie pªaszczyzny przechodz¡cej przez punkt
(

3
2
1

)
i równolegªej do pªaszczyzny o

równaniu 3x− 5y + 2z + 1 = 0.
Rozwi¡zanie. Pªaszczyzny równolegªe maj¡ równolegªe wektory normalne, szukana pªaszczy-

zna ma wi¦c równanie 3x− 5y+ 2z+D = 0. Podstawiaj¡c punkt
(

3
2
1

)
wyliczamy D = −1.

Przykªad 2

Napisz równanie pªaszczyzny przechodz¡cej przez punkt
(

1
2
0

)
i prostopadªej do prostej o rów-

naniu parametrycznym X =
(

2
5
3

)
+ t
(

1
6
2

)
.

Rozwi¡zanie. Pªaszczyzna jest prostopadªa do prostej, je±li wektor kierunkowy prostej jest
wektorem normalnym pªaszczyzny. St¡d szukana pªaszczyzna ma równanie x+6y+2z+D = 0.

Podstawiaj¡c punkt
(

1
2
0

)
wyliczamy D = −13.

Przykªad 3

Wyznacz miar¦ k¡ta ostrego mi¦dzy pªaszczyznami o równaniach 2x + 3y + z + 1 = 0 i 3x +
4y − 5z + 2 = 0.
Rozwi¡zanie. Pªaszczyzny tworz¡ k¡ty o miarach α i π − α (jeden z nich jest ostry, a drugi
rozwarty), gdzie α to miara k¡ta mi¦dzy ich wektorami normalnymi. Zatem:

α = arccos

(
2
3
1

)
◦
(

3
4
−5

)
∣∣∣( 2

3
1

)∣∣∣ · ∣∣∣( 3
4
−5

)∣∣∣ = arccos
13√

14 ·
√

50
= arccos

13
√

7

70

Poniewa» cosα > 0, wi¦c α jest szukanym k¡tem ostrym.

Przykªad 4

Wyznacz miar¦ k¡ta mi¦dzy pªaszczyzn¡ o równaniu 3x+ y − 2z + 4 = 0 a prost¡ o równaniu

parametrycznym X =
(

8
1
3

)
+ t
(

2
4
1

)
.

Rozwi¡zanie. K¡t β mi¦dzy wektorem normalnym pªaszczyzny a wektorem kierunkowym pro-
stej to:

cosβ =

(
3
1
−2

)
◦
(

2
4
1

)
∣∣∣( 3

1
−2

)∣∣∣ · ∣∣∣( 2
4
1

)∣∣∣ =
8√

14 ·
√

21
=

4
√

6

21

Poniewa» cosβ > 0, wi¦c k¡t β jest k¡tem ostrym, a zatem k¡t mi¦dzy prost¡ a pªaszczyzn¡
to k¡t π

2 − β.

Fakt 6.30

Rzut prostopadªy wektora u na wektor v jest wektorem

pv(u) =
u ◦ v
v ◦ v

· v =
u ◦ v
|v|2

· v

Dowód. Rzut na wektor v jest wektorem postaci pv(u) = t · v, dla pewnego skalara t.

Copyright c© Tomasz Elsner, 2019



176 ROZDZIA� 6. WEKTORY W PRZESTRZENI R3

v

u

pv(u) = tv

u− tv

·

Poniewa» u− tv ⊥ v, wi¦c:

0 = (u− tv) ◦ v = (u ◦ v)− t(v ◦ v) sk¡d t =
u ◦ v
v ◦ v

Fakt 6.31

Odlegªo±¢ punktu P =
(
x0
y0
z0

)
od pªaszczyzny π o równaniu Ax+By+Cz+D = 0 wynosi

d =
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2

Dowód. We¹my dowolny punkt Q =
(
x1
y1
z1

)
na pªaszczy¹nie π. Odlegªo±¢ punktu P od pªaszczy-

zny π to dªugo±¢ rzutu wektora
−−→
QP =

( x0−x1
y0−y1
z0−z1

)
na wektor normalny n =

(
a
b
c

)
:

·

·

P

Q

d =
∣∣∣pn(
−−→
QP )

∣∣∣ =

∣∣∣∣∣
−−→
QP ◦ n
n ◦ n

· n

∣∣∣∣∣ =

∣∣∣∣A(x0 − x1) +B(y0 − y1) + C(z0 − z1)

A2 +B2 + C2

∣∣∣∣ · |n|
=
|A(x0 − x1) +B(y0 − y1) + C(z0 − z1)|

A2 +B2 + C2
·
√
A2 +B2 + C2 =

|(Ax0 +By0 + Cz0)− (Ax1 +By1 + Cz1)|√
A2 +B2 + C2

Punkt Q =
(
x1
y1
z1

)
le»y na pªaszczy¹nie π, czyli Ax1 +By1 +Cz1 +D = 0, sk¡d otrzymujemy

Ax1 +By1 + Cz1 = −D. Zatem:

d =
|Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2
(6.5)

Na zbiorze wektorów R3 mo»na wprowadzi¢ dodatkowe dziaªanie (nie maj¡ce swojego odpo-
wiednika dla wektorów na pªaszczy¹nie) zwane iloczynem wektorowym.

De�nicja 6.32

Iloczynem wektorowym wektorów u, v ∈ R3 (oznaczanym u × v) nazywamy wektor o
dªugo±ci |u| · |v| · sin∠(u, v), kierunku prostopadªym do obu wektorów u i v oraz zwrocie
ustalonym zgodnie z �reguª¡ prawej dªoni�.
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v

u

u× v

··

W powy»szej de�nicji kierunek i zwrot nie s¡ dobrze okre±lone w sytuacji, gdy u = 0 lub
v = 0. Niemniej w tym przypadku |0 × v| = 0 (lub |u × 0| = 0), wi¦c iloczyn wektorowy jest
dobrze okre±lony (jest wektorem zerowym).

Fakt 6.33

Pole równolegªoboku rozpi¦tego w R3 przez wektory u i v wynosi |u × v|. Pole trójk¡ta
rozpi¦tego w R3 przez wektory u i v wynosi 1

2 |u× v|.

Dowód. Pole trójk¡ta rozpi¦tego przez wektory u i v wynosi:

1
2 · |u| · |v| · sin∠(u, v) = 1

2 |u× v|

Pole równolegªoboku jest 2 razy wi¦ksze, wi¦c wynosi |u× v|.

Fakt 6.34

Iloczyn wektorowy dwóch wektorów w R3 we wspóªrz¦dnych wyra»a si¦ nast¦puj¡cym
wzorem:

x0

y0

z0

×
x1

y1

z1

 =


+ det

(
y0 y1

z0 z1

)
−det

(
x0 x1

z0 z1

)
+ det

(
x0 x1

y0 y1

)

 =

y0z1 − y1z0

z0x1 − z1x0

x0y1 − x1y0



Dowód. Najpierw sprawdzimy, »e kierunek wektora po prawej stronie równo±ci jest zgodny z
kierunkiem iloczynu wektorowego, czyli »e wektor ten jest prostopadªy do ka»dego z wektorów(
x0
y0
z0

)
i
(
x1
y1
z1

)
:y0z1 − y1z0

z0x1 − z1x0

x0y1 − x1y0

 ◦
x0

y0

z0

 = (y0z1 − y1z0)x0 + (z0x1 − z1x0)y0 + (x0y1 − x1y0)z0 = 0

y0z1 − y1z0

z0x1 − z1x0

x0y1 − x1y0

 ◦
x1

y1

z1

 = (y0z1 − y1z0)x1 + (z0x1 − z1x0)y1 + (x0y1 − x1y0)z1 = 0

Nast¦pnie sprawdzimy, czy dªugo±¢ wektora po prawej stronie równo±ci jest taka jak dªugo±¢
iloczynu wektorowego. W tym celu zauwa»my, »e oznaczaj¡c θ = ∠(u, v) otrzymujemy:

(|u× v|)2 + (u ◦ v)2 = (|u||v| sin θ)2 + (|u||v| cos θ)2 = |u|2|v|2(sin2 θ + cos2 θ) = |u|2|v|2

czyli

(|u× v|)2 = |u|2|v|2 − (u ◦ v)2 = (x2
0 + y2

0 + z2
0)(x2

1 + y2
1 + z2

1)− (x0x1 + y0y1 + z0z1)2 =
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(x0y1)2 +(x0z1)2 +(y0x1)2 +(y0z1)2 +(z0x1)2 +(z0y1)2−2(x0x1y0y1)−2(y0y1z0z1)−2(z0z1x0x1)

= (y0z1 − y1z0)2 + (z0x1 − z1x0)2 + (x0y1 − x1y0)2

czyli dªugo±¢ zgadza si¦ ze wzorem. Sprawdzenie zwrotu pomijamy, jako wykraczaj¡ce poza
ramy niniejszego skryptu.

Fakt 6.35

Dla dowolnych wektorów u, v, w ∈ R3 oraz dowolnego skalara t ∈ R zachodzi:

1) u× v = −(v × u) (antysymetryczno±¢ ×)
2) (u+ v)× w = (u× w) + (v × w) (rozdzielno±¢ × wzgl¦dem +)

u× (v + w) = (u× v) + (u× w)
3) (tu)× v = u× (tv) = t(u× v)
4) u× v = 0 wtedy i tylko wtedy, gdy u i v s¡ wspóªliniowe

Dowód. Zgodnie z De�nicj¡ 6.32 zamiana kolejno±ci wektorów w iloczynie wektorowym zmienia
zwrot na przeciwny, ale nie zmienia jego dªugo±ci ani kierunku, st¡d dostajemy wªasno±¢ (1).

Z tej samej de�nicji wynika równie», »e u × v = 0 wtedy i tylko wtedy, gdy sin∠(u, v) = 0,
czyli wektory u i v s¡ wspóªliniowe (obejmuje to równie» przypadek, gdy jeden z wektorów jest
zerowy), sk¡d dostajemy wªasno±¢ (4).

Dla dowodu wªasno±ci (2) posªu»ymy si¦ charakteryzacj¡ algebraiczn¡ iloczynu wektorowego

z Faktu 6.34. Przyjmuj¡c u =
(
x1
y1
z1

)
, v =

(
x2
y2
z2

)
, w =

(
x3
y3
z3

)
dostajemy:

u× (v+w) =

 y1(z2 + z3)− (y2 + y3)z1

z1(x2 + x3)− (z2 + z3)x1

x1(y2 + y3)− (x2 + x3)y1

 =

y1z2 − y2z1

z1x2 − z2x1

x1y2 − x2y1

+

y1z3 − y3z1

z1x3 − z3x1

x1y3 − x3y1

 = u×v+u×w

Dowód drugiej cz¦±ci wªasno±ci (2) oraz dowód wªasno±ci (3) przebiegaj¡ podobnie.

Iloczyn wektorowy pozwala ªatwo wyznacza¢ wektor prostopadªy do dwóch danych wektorów
w R3, co uªatwia wyznaczanie wektora normalnego pªaszczyzny.

Przykªad 5

Zamie« posta¢ parametryczn¡ X =
(

1
2
0

)
+ s

(
1
1
2

)
+ t
(

3
1
5

)
równania pªaszczyzny na równanie

ogólne.

Rozwi¡zanie. Szukana pªaszczyzna jest równolegªa do wektorów u =
(

1
1
2

)
i v =

(
3
1
5

)
. St¡d jej

wektor normalny to wektor prostopadªy do u i v, mo»emy wi¦c przyj¡¢ jako wektor normalny:

u× v =

1
1
2

×
3

1
5

 =

 1 · 5− 2 · 1
−(1 · 5− 2 · 3)

1 · 1− 1 · 3

 =

 3
1
−2


St¡d równanie pªaszczyzny to:

3x+ y − 2z +D = 0

a korzystaj¡c z faktu, »e do pªaszczyzny nale»y punkt P =
(

1
2
0

)
, wyliczamy D = −5.

Przykªad 6

Napisz równanie pªaszczyzny przechodz¡cej przez punkty P =
(

1
1
1

)
, Q =

(
2
1
3

)
, R =

(
4
6
1

)
.

Rozwi¡zanie. Szukana pªaszczyzna jest równolegªa do wektorów
−−→
PQ =

(
1
0
2

)
i
−→
PR =

(
3
5
0

)
.
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Podobnie jak w poprzednim przykªadzie, wektor normalny tej pªaszczyzny, to:

−−→
PQ×

−→
PR =

1
0
2

×
3

5
0

 =

−10
6
5


St¡d równanie pªaszczyzny to:

−10x+ 6y + 5z +D = 0

a korzystaj¡c z faktu, »e do pªaszczyzny nale»y punkt P =
(

1
1
1

)
, wyliczamy D = −1.

6.3 Wyznacznik i macierz odwrotna

De�nicja 6.36

Wyznacznikiem trójki wektorów (u, v, w) w R3 (inaczej: macierzy 3×3, której kolumnami
s¡ wektory u, v, w) nazywamy liczb¦:

det(u, v, w) = (u× v) ◦ w

Iloczyn (u× v) ◦ w czasami nazywany jest iloczynem mieszanym wektorów.

Fakt 6.37

Obj¦to±¢ równolegªo±cianu rozpi¦tego przez wektory u, v, w wyra»a si¦ wzorem
|det(u, v, w)|. Obj¦to±¢ czworo±cianu rozpi¦tego przez te same wektory to 1

6 | det(u, v, w)|

Dowód. Zauwa»my, »e pole równolegªoboku b¦d¡cego podstaw¡ równolegªo±cianu to P = |v×w|,
natomiast dªugo±¢ wysoko±ci równolegªo±cianu to h = |u| · sinα, gdzie α to k¡t nachylenia
wektora u do pªaszczyzny podstawy. K¡t mi¦dzy wektorem u, a wektorem v × w (normalnym
do pªaszczyzny podstawy) wynosi β = π

2 −α (pierwszy rysunek) lub β = π
2 +α (drugi rysunek),

sk¡d:

V = P · h = |v × w| · |u| sinα = |v × w| · |u| · ± cosβ = ±u ◦ (v × w) = ±det(u, v, w)

Obj¦to±¢ czworo±cianu obliczamy analogicznie, z t¡ ró»nic¡, »e pole podstawy to 1
2 |v×w|, czyli:

V = 1
3P · h = 1

3 ·
1
2 |v × w| · |u| sinα = 1

6 |v × w| · |u| · ± cosβ = ±1
6u ◦ (v × w) = ±1

6 det(u, v, w)

v

w

v
×
w

u

h
·β

v

w

v
×
w

u

h
·

β v

w

v
×
w

u

h
·β
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Powy»szy fakt pokazuje geometryczn¡ interpretacj¦ warto±ci bezwzgl¦dnej wyznacznika. In-
terpretacja znaku wyznacznika zwi¡zana jest z poj¦ciem orientacji trójki wektorów.

De�nicja 6.38

Trójk¦ wektorów (v1, v2, v3) w R3 nazywamy dodatnio zorientowan¡, je±li v3 le»y w tej
samej póªprzestrzeni wyznaczonej przez wektory v1 i v2, co wektor v1 × v2, a ujemnie
zorientowan¡, je±li v3 le»y w przeciwnej póªprzestrzeni.

v1

v2

v3

(v1, v2, v3) dodatnio zorientowana

v1

v2

v3

(v1, v2, v3) ujemnie zorientowana

Nieformalnie, trójka wektorów (v1, v2, v3) jest dodatnio zorientowana, je±li wektory te mo»na
przedstawi¢ przy pomocy trzech palców prawej r¦ki: kciuka (v1), palca wskazuj¡cego (v2) i palca
±rodkowego (v3). Przykªadem trójki wektorów dodatnio zorientowanej jest trójka wersorów:
(e1, e2, e3).

Fakt 6.39

Dane s¡ wektory v1, v2, v3 ∈ R3. Wówczas:

• det(v1, v2, v3) > 0 ⇐⇒ trójka wektorów (v1, v2, v3) jest dodatnio zorientowana,

• det(v1, v2, v3) < 0 ⇐⇒ trójka wektorów (v1, v2, v3) jest ujemnie zorientowana,

• det(v1, v2, v3) = 0 ⇐⇒ wektory v1, v2, v3 s¡ wspóªpªaszczyznowe.

W szczególno±ci macierz o dwóch jednakowych kolumnach (a nawet o dwóch wspóªlinio-
wych kolumnach) ma zerowy wyznacznik.

Dowód. Jak wida¢ na poni»szych rysunkach, k¡t mi¦dzy wektorami v3 i v1 × v2 jest ostry (lub
zerowy), gdy trójka (v1, v2, v3) jest dodatnio zorientowana i rozwarty, gdy trójka (v1, v2, v3) jest
ujemnie zorientowana. St¡d det(v1, v2, v3) = (v1×v2)◦v3 jest dodatnie przy dodatniej orientacji
i ujemne przy ujemnej orientacji.

v1

v2

v3

v 1
×
v 2

(v1, v2, v3) dodatnio zorientowana

v1

v2

v3

v 1
×
v 2

(v1, v2, v3) ujemnie zorientowana

Zgodnie z Faktem 6.37 det(v1, v2, v3) = 0 wtedy i tylko wtedy, gdy obj¦to±¢ równolegªo±cianu
rozpi¦tego przez v1, v2 i v3 wynosi 0, czyli wektory te le»¡ na jednej pªaszczy¹nie (równolegªo±cian
degeneruje si¦).
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De�nicja 6.40

Znakowan¡ obj¦to±ci¡ równolegªo±cianu rozpi¦tego przez wektory u, v, w ∈ R3 b¦dziemy
nazywa¢ obj¦to±¢ równolegªo±cianu rozpi¦tego przez u, v, w ze znakiem + lub − w zale»-
no±ci od tego, czy trójka (u, v, w) jest dodatnio czy ujemnie zorientowana.

Fakt 6.41

Znakowana obj¦to±¢ równolegªo±cianu rozpi¦tego przez trójk¦ wektorów (u, v, w) wynosi
det(u, v, w).

Fakt 6.42

Zamiana kolejno±ci dowolnych dwóch z wektorów zamienia orientacj¦ trójki wektorów na
przeciwn¡.

Dowód. Nietrudno zauwa»y¢, »e cykliczna zamiana wektorów w trójce wektorów zachowuje orien-
tacj¦, tzn. trójki wektorów:

(v1, v2, v3) oraz (v3, v1, v2) oraz (v2, v3, v1)

s¡ jednakowo zorientowane i jednocze±nie przeciwnie zorientowane ni» ka»da z nast¦puj¡cych
trójek wektorów:

(v2, v1, v3) oraz (v3, v2, v1) oraz (v1, v3, v2)

�atwo st¡d zobaczy¢, »e ka»da zamiana kolejno±ci dwóch wektorów zmienia orientacj¦ caªej
trójki.

Wniosek 6.43

Zamiana miejscami dwóch kolumn macierzy A ∈ M3×3 zmienia wyznacznik tej macierzy
na przeciwny.

Fakt 6.44

Dla dowolnej macierzy A ∈M3×3 zachodzi detA = detA>.

Dowód. Oznaczmy

A =

a1 b1 c1

a2 b2 c2

a3 b3 c3

 czyli A> =

a1 a2 a3

b1 b2 b3
c1 c2 c3


Wówczas zgodnie z De�nicj¡ 6.36 mamy:

detA = a2b3c1 − a3b2c1 − a1b3c2 + a3b1c2 + a1b2c3 − a2b1c3 = detA>

Wniosek 6.45

Zamiana miejscami dwóch wierszy macierzy 3 × 3 zmienia wyznacznik tej macierzy na
przeciwny. Macierz 3 × 3 o dwóch wspóªliniowych wierszach (w szczególno±ci o dwóch
równych wierszach) ma zerowy wyznacznik.
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Dowód. Zgodnie z Faktem 6.44 transpozycja macierzy nie zmienia wyznacznika. Poniewa» trans-
pozycja macierzy zamienia kolumny na wiersze (a wiersze na kolumny), wi¦c odpowiedniki Faktu
6.39 i Wniosku 6.43 zachodz¡ równie» dla wierszy.

Nast¦puj¡ca wªasno±¢ wyznacznika b¦dzie potrzebna do udowodnienia wzorów Cramera dla
ukªadów trzech równa« liniowych z trzema niewiadomymi:

Fakt 6.46

Dla dowolnych wektorów u, v, w, u′, v′, w′ ∈ R3 oraz dowolnego skalara t ∈ R zachodz¡
nast¦puj¡ce wªasno±ci:

det(u+ u′, v, w) = det(u, v, w) + det(u′, v, w)

det(u, v + v′, w) = det(u, v, w) + det(u, v′, w)

det(u, v, w + w′) = det(u, v, w) + det(u, v, w′)

zwane addytywno±ci¡ wzgl¦dem pierwszej/drugiej/trzeciej kolumny oraz

det(tu, v, w) = t det(u, v, w)

det(u, tv, w) = tdet(u, v, w)

det(u, v, tw) = tdet(u, v, w)

zwane jednorodno±ci¡ wzgl¦dem pierwszej/drugiej/trzeciej kolumny.

Dowód. Zapisuj¡c wyznacznik w postaci iloczynu mieszanego (det(u, v, w) = (u × v) ◦ w) nie-
trudno zobaczy¢, »e addytywno±¢ wyznacznika wzgl¦dem ka»dej kolumny wynika z rozdzielno-
±ci iloczynu wektorowego wzgl¦dem dodawania wektorów oraz rozdzielno±ci iloczynu skalarnego
wzgl¦dem dodawania wektorów:

((u+ u′)× v) ◦ w = ((u× v) + (u′ × v)) ◦ w = (u× v) ◦ w + (u′ × v) ◦ w

(u× (v + v′)) ◦ w = ((u× v) + (u× v′)) ◦ w = (u× v) ◦ w + (u× v′) ◦ w

(u× v) ◦ (w + w′) = (u× v) ◦ w + (u× v) ◦ w′

W podobny sposób (korzystaj¡c z wªasno±ci iloczynu wektorowego i iloczynu skalarnego) dowo-
dzimy jednorodno±ci wzgl¦dem ka»dej kolumny:

((tu)× v) ◦ w = (t(u× v)) ◦ w = t · (u× v) ◦ w

(u× (tv)) ◦ w = (t(u× v)) ◦ w = t · (u× v) ◦ w

(u× v) ◦ (tw) = t · (u× v) ◦ w
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Fakt 6.47

Dana jest macierz M =

a1 b1 c1

a2 b2 c2

a3 b3 c3

. Oznaczmy przez Ai macierz 2× 2 powstaª¡ z M

przez usuni¦cie wiersza i kolumny zawieraj¡cej wyraz ai, gdzie , i = 1, 2, 3. Analogicznie
okre±lamy Bi oraz Ci. Wówczas:

detM = +a1 detA1 − a2 detA2 + a3 detA3

detM = −b1 detB1 + b2 detB2 − b3 detB3

detM = +c1 detC1 − c2 detC2 + c3 detC3

(wzory te nazywamy rozwini¦ciem wzgl¦dem pierwszej/drugiej/trzeciej kolumny) oraz

detM = +a1 detA1 − b1 detB1 + c1 detC1

detM = −a2 detA2 + b2 detB2 − c2 detC2

detM = +a3 detA3 − b3 detB3 + c3 detC3

(wzory te nazywamy rozwini¦ciem wzgl¦dem pierwszego/drugiego/trzeciego wiersza).

Zwró¢my uwag¦, »e znaki + i − pojawiaj¡ce si¦ w powy»szych wzorach przy ai, bi, ci zale»¡
od poªo»enia wyrazu macierzy w nast¦puj¡cy sposób:+ − +

− + −
+ − +



Dowód. Oznaczmy a =
(
a1
a2
a3

)
, b =

(
b1
b2
b3

)
, c =

(
c1
c2
c3

)
. Rozwini¦cie wzgl¦dem trzeciej kolumny to

bezpo±rednie zastosowanie De�nicji 6.36 i Faktu 6.34, jako »e

det(a, b, c) = (a× b) ◦ c =

 C1

−C2

C3

 ◦
c1

c2

c3

 = c1C1 − c2C2 + c3C3

Na mocy Wniosku 6.43 otrzymujemy rozwini¦cie wzgl¦dem drugiej kolumny:

det(a, b, c) = −det(a, c, b) = −(a× c) ◦ b = −

 B1

−B2

B3

 ◦
b1b2
b3

 = −b1B1 + b2B2 − b3B3

oraz rozwini¦cie wzgl¦dem pierwszej kolumny:

det(a, b, c) = −det(b, a, c) = det(b, c, a) = (b× c) ◦ a =

 A1

−A2

A3

 ◦
a1

a2

a3

 = a1A1 − a2A2 + a3A3

Wzory na rozwini¦cie wzgl¦dem wybranego wiersza wynikaj¡ z Faktu 6.44.
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Przykªad 1

Oblicz wyznaczniki nast¦puj¡cych macierzy:1 0 2
3 0 1
4 2 1

 1 2 5
3 1 1
0 4 0

 1 2 1
1 0 1
3 1 1

 2 3 4
1 5 1
4 6 8

 1 2 1
1 4 1
3 2 3


Rozwi¡zanie. Zauwa»my, »e najoptymalniejszym (tzn. wymagaj¡cym najmniejszej ilo±ci ra-
chunków) sposobem wyliczania wyznacznika jest rozwini¦cie wzgl¦dem wiersza lub kolumny
zawieraj¡cej mo»liwie du»¡ liczb¦ zer. W zwi¡zku z tym pierwszy wyznacznik wyliczamy
rozwijaj¡c wzgl¦dem drugiej kolumny:

det

1 0 2
3 0 1
4 2 1

 = +2 · det

(
3 0
4 2

)
= 2 · 6 = 12

drugi wyznacznik wyliczamy rozwijaj¡c wzgl¦dem trzeciego wiersza:

det

1 2 5
3 1 1
0 4 0

 = −4 · det

(
1 5
3 1

)
= −4 · (−14) = 56

a trzeci � rozwijaj¡c wzgl¦dem drugiego wiersza:

det

1 2 1
1 0 1
3 1 1

 = −1 · det

(
2 1
1 1

)
− 1 · det

(
1 2
3 1

)
= −1 + 5 = 4

Czwarta macierz ma dwa wspóªliniowe wiersze, za± pi¡ta macierz ma dwie wspóªliniowe (nawet
równe) kolumny, wi¦c obie te macierze maj¡ (zgodnie z Faktem ??) wyznacznik równy 0.

Fakt 6.48

Pªaszczyzna o równaniu Ax+By+Cz+D = 0 dzieli przestrze« R3 na dwie póªprzestrzenie.
Jedna z tych póªprzestrzeni skªada si¦ z punktów speªniaj¡cych warunek:

Ax+By + Cz +D ≥ 0

a druga z póªprzestrzeni skªada si¦ z punktów speªniaj¡cych warunek:

Ax+By + Cz +D ≤ 0

Pªaszczyzn¦ graniczn¡ zaliczamy do obu póªprzestrzeni.

Dowód. Zaªó»my, »e A,C 6= 0 (przypadek gdy jeden ze wspóªczynników jest zerowy pozosta-
wiamy do rozpatrzenia czytelnikowi). Do pªaszczyzny o równaniu Ax+By+Cz+D = 0 nale»y

punkt P =
( 0

0
−D/C

)
, a wektory u =

(
B/A
−1
0

)
i v =

( 1
0

−A/C

)
to niewspóªliniowe wektory równole-

gªe do tej pªaszczyzny (ªatwo sprawdzi¢, »e s¡ prostopadªe do wektora normalnego pªaszczyzny).

Jedna z póªprzestrzeni skªada si¦ z takich punktów X =
(
x
y
z

)
, »e trójka (u, v,

−−→
PX) jest dodat-

nio zorientowana, a druga z takich punktów X, »e trójka (u, v,
−−→
PX) jest ujemnie zorientowana.
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Wobec tego, zgodnie z Faktem 6.39 nierówno±¢ opisuj¡ca jedn¡ póªprzestrze« to:

det(u, v,
−−→
PX) > 0 czyli det

B/A 1 x
−1 0 y
0 −A/C z +D/C

 > 0

a wi¦c (wyliczaj¡c wyznacznik) otrzumujemy:

Ax+By + Cz +D > 0

W podobny sposób pokazujemy, »e druga póªprzestrze« jest opisywana przez nierówno±¢:

A

C
x+

B

C
y + z +

D

C
> 0 czyli Ax+By + Cz +D < 0

Poniewa» pªaszczyzn¦ graniczn¡ (o równaniu Ax+By+Cz+D = 0) zaliczamy do obu póªprze-
strzeni, wi¦c ostre nierówno±ci zamieniamy na sªabe.

Przykªad 2

Czy punkty
(

1
2
1

)
i
(

4
1
1

)
le»¡ po tej samej stronie pªaszczyzny o równaniu 2x+ y− 4z− 1 = 0?

Rozwi¡zanie. Wspóªrz¦dne pierwszego punktu speªniaj¡ nierówno±¢ 2x + y − 4z − 1 < 0, za±
wspóªrz¦dne drugiego punktu speªniaj¡ nierówno±¢ 2x + y − 4z − 1 > 0, czyli punkty te le»¡
po przeciwnych stronach podanej pªaszczyzny.

De�nicja 6.49

Znakowan¡ odlegªo±ci¡ punktu P ∈ R3 od pªaszczyzny π b¦dziemy nazywa¢ odlegªo±¢
punktu P od pªaszczyzny π ze znakiem + lub − w zale»no±ci od tego, po której stronie
pªaszczyzny π znajduje si¦ punkt P .

Podobnie jak w przypadku znakowanej odlegªo±ci punktu na pªaszczy¹nie od prostej, de�nicja
ta jest troch¦ niejednoznaczna. Podobnie jak poprzednio, niejednoznaczno±¢ ta nie b¦dzie miaªa
znaczenia w praktycznych zastosowaniach.

Wniosek 6.50

Znakowana odlegªo±¢ punktu P =
(
x0
y0
z0

)
od pªaszczyzny o równaniu Ax+By+Cz+D = 0

wynosi:

d =
Ax0 +By0 + Cz0 +D√

A2 +B2 + C2

Wyznaczniki macierzy 3× 3 pomog¡ nam w rozwi¡zywaniu ukªadów 3 równa« liniowych z 3
niewiadomymi, podobnie jak wyznaczniki macierzy 2 × 2 pomagaªy w rozwi¡zywaniu ukªadów
2 równa« liniowych z 2 niewiadomymi. Zacznijmy od analizy mo»liwych zbiorów rozwi¡za«
pojedynczego równania liniowego z trzema niewiadomymi.
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Fakt 6.51

Zbiór rozwi¡za« pojedynczego równania liniowego z niewiadomymi x, y, z:

ax+ by + cz = p

jest jednym z nast¦puj¡cych zbiorów:

• pªaszczyzn¡, gdy przynajmniej jeden z parametrów a, b, c jest niezerowy,

• caª¡ przestrzeni¡, gdy a = b = c = p = 0,

• zbiorem pustym, gdy a = b = c = 0, ale p 6= 0.

Dowód. Je±li przynajmniej jeden z parametrów a, b, c jest niezerowy, to zgodnie z Faktem 6.27
otrzymujemy równanie pªaszczyzny. Je±li a = b = c = 0, to równanie ma posta¢ 0 = p i jest
równaniem sprzecznym (gdy p 6= 0) lub to»samo±ciowym (gdy p = 0).

Fakt 6.52

Zbiór rozwi¡za« ukªadu trzech równa« liniowych z niewiadomymi x, y, z:
a1x+ b1y + c1z = p1

a2x+ b2y + c2z = p2

a3x+ b3y + c3z = p3

jest punktem, prost¡, pªaszczyzn¡, caª¡ przestrzeni¡ R3 lub zbiorem pustym.

Dowód. Je±li wszystkie trzy równania ukªadu to równania pªaszczyzn, to otrzymujemy:

• pªaszczyzn¦, je±li wszystkie trzy pªaszczyzny si¦ pokrywaj¡,

• zbiór pusty, je±li w±ród tych pªaszczyzn s¡ dwie ró»ne pªaszczyzny równolegªe,

• prost¡, punkt lub zbiór pusty w przeciwnym wypadku (dwie ró»ne nierównolegªe pªasz-
czyzny przecinaj¡ si¦ wzdªu» prostej, a prosta ta albo nale»y do trzeciej pªaszczyzny, albo
przecina j¡ w jednym punkcie, albo jest do niej równolegªa).

Je±li w±ród równa« ukªadu jest równanie sprzeczne, to caªy ukªad jest sprzeczny. Je±li jest
jedno równanie to»samo±ciowe, to otrzymujemy cz¦±¢ wspóln¡ dwóch pªaszczyzn (czyli zbiór
pusty, prost¡ lub pªaszczyzn¦). Je±li s¡ dwa równania to»samo±ciowe, to otrzymujemy równanie
pªaszczyzny, za± je±li wszystkie trzy równania s¡ to»samo±ciowe, to rozwi¡zaniem jest ka»dy
punkt R3.
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Fakt 6.53: Wzory Cramera

Dany jest nast¦puj¡cy ukªad równa« z niewiadomymi x, y, z:
a1x+ b1y + c1z = p1

a2x+ b2y + c2z = p2

a3x+ b3y + c3z = p3

Wyznacznik D = det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 nazywamy wyznacznikiem gªównym ukªadu.

Je±li D 6= 0, to powy»szy ukªad ma dokªadnie jedno rozwi¡zanie, zadane wzorem:
x = Dx

D

y =
Dy
D

z = Dz
D

gdzie

Dx = det

p1 b1 c1

p2 b2 c2

p3 b3 c3

 Dy = det

a1 p1 c1

a2 p2 c2

a3 p3 c3

 Dz = det

a1 b1 p1

a2 b2 p2

a3 b3 p3


Powy»szy ukªad mo»emy zapisa¢ w wersji macierzowej:a1 b1 c1

a2 b2 c2

a3 b3 c3

xy
z

 =

p1

p2

p3


gdzie macierz 3× 3 po lewej stronie to macierz gªówna ukªadu.

Dowód. Oznaczmy:

a =

a1

a2

a3

 , b =

b1b2
b3

 , c =

c1

c2

c3

 , p =

p1

p2

p3


Ukªad równa« mo»na zapisa¢ w postaci wektorowej:

x · a+ y · b+ z · c = p

sk¡d, traktuj¡c lew¡ i praw¡ stron¦ równo±ci jako pierwsz¡ kolumn¦ macierzy, dostajemy (pa-
mi¦tamy, »e a, b, c, p to wektory, za± x, y, z to skalary):

det(x · a+ y · b+ z · c, b, c) = det(p, b, c)

co z uwagi na addytywno±¢ i jednorodno±¢ wyznacznika wzgl¦dem pierwszej kolumny (Fakt 6.46)
mo»emy przeksztaªci¢ do postaci:

det(xa, b, c) + det(yb, b, c) + det(zc, b, c) = det(p, b, c)

x · det(a, b, c) + y · det(b, b, c) + z · det(c, b, c) = det(p, b, c)

Poniewa» wyznacznik macierzy o dwóch jednakowych kolumnach jest równy zero (Fakt 6.39),
wi¦c

x · det(a, b, c) = det(p, b, c), czyli x =
det(p, b, c)

det(a, b, c)
=
Dx

D
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o ile D 6= 0. Podobnie dowodzimy, »e:

y =
det(a, p, c)

det(a, b, c)
=
Dy

D
oraz z =

det(a, b, p)

det(a, b, c)
=
Dz

D

Fakt 6.54

Je±li w R3 dane s¡ trzy liniowo niezale»ne wektory u, v, w, to ka»dy wektor p mo»na
jednoznacznie przedstawi¢ w postaci kombinacji liniowej tych wektorów, tzn. istniej¡
α, β, γ ∈ R, dla których:

p = αu+ βv + γw

Dowód. Je±li wspóªrz¦dne wektorów oznaczymy:

u =

u1

u2

u3

 , v =

v1

v2

v3

 , w =

w1

w2

w3

 , p =

p1

p2

p3


to rozwa»ane równanie mo»na zapisa¢ w postaci ukªadu trzech równa« liniowych z niewiadomymi
α, β i γ: 

αu1 + βv1 + γw1 = p1

αu2 + βv2 + γw2 = p2

αu3 + βv3 + γw3 = p3

Wyznacznik gªówny tego ukªadu to det(u, v, w), który na mocy Faktu 7.7 jest niezerowy (bo
wektory u, v, w s¡ niewspóªpªaszczyznowe). Wobec tego, zgodnie z Faktem 6.53, ukªad ten ma
jednoznaczne rozwi¡zanie.
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Rozdziaª 7

Przeksztaªcenia przestrzeni R3

7.1 Przeksztaªcenia liniowe i a�niczne

De�nicja 7.1

Przeksztaªcenie F : Rk → Rl nazywamy przeksztaªceniem a�nicznym je±li jest zadane
wzorem:

F (X) = A ·X + v

oraz przeksztaªceniem liniowym je±li jest zadane wzorem:

F (X) = A ·X

gdzie A jest macierz¡ rozmiaru l × k, a v jest wektorem z Rl.

Mno»enie oznacza mno»enie macierzy, które dla macierzy dowolnych rozmiarów zostaªo okre-
±lone w De�nicji 2.9. W niniejszym rozdziale wymiary k i l przestrzeni Rk i Rl b¦d¡ równe 1, 2
lub 3.

Oczywisty zwi¡zek mi¦dzy przeksztaªceniami a�nicznymi a liniowymi jest nast¦puj¡cy:

Fakt 7.2

Przeksztaªcenie a�niczne F : Rk → Rl jest przeksztaªceniem liniowym wtedy i tylko wtedy,
gdy F (0) = 0.

Rozdziaª zaczniemy od zapoznania si¦ z przykªadami przeksztaªce« a�nicznych F : R3 → R3,
stanowi¡cych trójwymiarowe uogólnienia przeksztaªce« pªaszczyzny poznanych w Rozdziale 2.1.

1

Translacja (przesuni¦cie) o wektor v to przeksztaªcenie, które do-
wolny punkt X przeprowadza na taki punkt X ′, »e:

−−→
XX ′ = v X

X ′

~v

2

Rzut (prostok¡tny) na prost¡ ` to przeksztaªcenie, które dowolny
punkt X przeprowadza na taki punkt X ′ le»¡cy na prostej `, »e:

−−→
XX ′ ⊥ `

X ′

X
`

·

3

Rzut (prostok¡tny) na pªaszczyzn¦ π to przeksztaªcenie, które do-
wolny punkt X przeprowadza na taki punkt X ′ le»¡cy na pªasz-
czy¹nie π, »e:

−−→
XX ′ ⊥ π

X ′

X

π·

189
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4
Odbicie (symetria) wzgl¦dem prostej ` to przeksztaªcenie, które

dowolny punkt X przeprowadza na taki punkt X ′, »e
−−→
XX ′ ⊥ `

oraz ±rodek odcinka XX ′ le»y na prostej `.

X

X ′

`

·

5

Odbicie (symetria) wzgl¦dem pªaszczyzny π to przeksztaªcenie,
które dowolny punkt X przeprowadza na taki punkt X ′, »e−−→
XX ′ ⊥ π oraz X i X ′ znajduj¡ si¦ w równych odlegªo±ciach od
pªaszczyzny π i po przeciwnych jej stronach.

X ′

X

π·

6

Powinowactwo prostok¡tne o skali k 6= 0 wzgl¦dem prostej ` to
przeksztaªcenie, które dowolny punkt X przeprowadza na taki
punkt X ′, »e:

−−→
XX ′ = k ·

−−→
XX

gdzie X jest rzutem (prostok¡tnym) punktu X na prost¡ `.

X ′

X

X

`

·

7

Powinowactwo prostok¡tne o skali k 6= 0 wzgl¦dem pªaszczyzny π
to przeksztaªcenie, które dowolny punkt X przeprowadza na taki
punkt X ′, »e:

−−→
XX ′ = k ·

−−→
XX

gdzie X jest rzutem (prostok¡tnym) punktu X na pªaszczyzn¦ π.

X ′

X

X

π·

8

Obrót o k¡t θ wokóª prostej ` to przeksztaªcenie, które dowolny
punkt X przeprowadza na taki punkt X ′, »e |XX ′| = |XX| oraz
k¡t ∠XXX ′ ma miar¦ θ, gdzie X jest rzutem (prostok¡tnym)
punktuX na prost¡ `. Istniej¡ dwa obroty wokóª ` o k¡t θ ró»ni¡ce
si¦ wybranym kierunkiem obrotu.

`

X
X

X ′

θ

9

Jednokªadno±¢ o ±rodku S i skali k 6= 0 to przeksztaªcenie, które
dowolny punkt X przeprowadza na taki punkt X ′, »e:

−−→
SX ′ = k ·

−−→
SX S

X

X ′

10

Odbicie wzgl¦dem punktu S (symetria ±rodkowa o ±rodku S) to
przeksztaªcenie, które dowolny punkt X przeprowadza na taki
punkt X ′, »e punkt S jest ±rodkiem odcinka XX ′. X

X ′

S

11

Rzut uko±ny na pªaszczyzn¦ π w kierunku wektora v to przeksztaª-
cenie, które dowolny punkt X przeprowadza na taki punkt X ′ le-
»¡cy na plaszczy¹nie π, »e:−−→

XX ′ ‖ v
π

X ′

X

v
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12

Powinowactwo ±cinaj¡ce o pªaszczy¹nie π i wektorze v (gdzie v
jest wektorem równolegªym do pªaszczyzny π) to przeksztaªcenie,
które dowolny punkt X przeprowadza na taki punkt X ′, »e:

−−→
XX ′ = d(X) · v

gdzie d(X) to znakowana odlegªo±¢ punktu X od pªaszczyzny π.

π

X ′

X

vd

·

Przeksztaªceniami a�nicznymi R3 → R3 s¡ równie»:

• przeksztaªcenie identyczno±ciowe, czyli przeksztaªcenie F : R3 → R3 zde�niowane wzorem:
F (X) = X (ka»dy punkt przechodzi na siebie),

• przeksztaªcenie staªe, czyli przeksztaªcenie, przy którym ka»dy punkt ma taki sam obraz,

np. G : R3 → R3 zde�niowane wzorem: G(X) =
(

2
3
1

)
,

• przeksztaªcenie zerowe (szczególny przypadek przeksztaªcenia staªego), czyli przeksztaªce-
nie H : R3 → R3 zde�niowane wzorem H(X) = 0.

W±ród przeksztaªce« a�nicznych R3 → R3 mo»na wyró»ni¢ szczególn¡ klas¦ przeksztaªce«
zwanych izometriami:

De�nicja 7.3

Izometria R3 to przeksztaªcenie F : R3 → R3, które zachowuje odlegªo±ci, tzn. dla
dowolnych A,B ∈ R3 zachodzi

|
−−→
A′B′| = |

−−→
AB|

Izometria liniowa R3 to izometria R3, która jest równocze±nie przeksztaªceniem liniowym.
Macierz izometrii liniowej nazywamy macierz¡ izometrii.

Fakt, »e izometrie to szczególne przykªady przeksztaªce« a�nicznych nie jest prostym wnio-
skiem z de�nicji, ale twierdzeniem, którego dowód wykracza poza ramy niniejszego skryptu:

Twierdzenie 7.4

Ka»da izometria R3 jest przeksztaªceniem a�nicznym.

Wniosek 7.5

Izometria F przestrzeni R3 jest liniowa wtedy i tylko wtedy, gdy F (0) = 0.

Dowód. Ka»da izometria F przestrzeni R3 jest przeksztaªceniem a�nicznym, a zatem jest liniowa
wtedy i tylko wtedy, gdy F (0) = 0.

Fakt 7.6

Je±li F jest izometri¡ R3, to dowolna �gura jest przystaj¡ca do swojego obrazu przez
przeksztaªcenie F . W szczególno±ci izometria R3 zachowuje k¡ty mi¦dzy odcinkami, pola
�gur pªaskich oraz obj¦to±ci.

Dowód. Izometria R3 zachowuje odlegªo±ci punktów, czyli w szczególno±ci zachowuje dªugo±ci
boków dowolnego trójk¡ta. Poniewa» dwa trójk¡ty o odpowiednich bokach jednakowej dªugo±ci s¡
przystaj¡ce (cecha przystawania bbb), wi¦c ich odpowiednie k¡ty s¡ tej samej miary. Oznacza to,
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»e izometria zachowuje miary k¡tów. Przeksztaªcenie zachowuj¡ce dªugo±ci odcinków oraz miary
k¡tów przeprowadza dowolny wielok¡t na wielok¡t do niego przystaj¡cy (fakt ten prawdziwy jest
równie» dla dowolnej �gury, aczkolwiek jego dowód jest znacznie trudniejszy). W szczególno±ci,
obrazem ka»dej �gury pªaskiej przez izometri¦ jest �gura o tym samym polu. Przeksztaªcenie
zachowuj¡ce dªugo±ci odcinków i miary k¡tów przeprowadza dowolny wielo±cian na wielo±cian
do niego przystaj¡cy (fakt ten jest prawdziwy dla dowolnej �gury). W szczególno±ci obrazem
ka»dej �gury jest �gura o tej samej obj¦to±ci.

Przykªad 1

Napisz wzór translacji Tv o wektor v =
(

2
1
3

)
.

Rozwi¡zanie.

Tv

xy
z

 =

x+ 2
y + 1
z + 3

 =

1 0 0
0 1 0
0 0 1

xy
z

+

2
1
3



Przykªad 2

Napisz wzór rzutu Pπ na pªaszczyzn¦ π o równaniu 2x+ 3y − z + 4 = 0.

Rozwi¡zanie. Wybierzmy jakikolwiek punkt na pªaszczy¹nie π, np. Q =
(

0
0
4

)
. Dla dowolnego

punktu X oznaczmy przez X ′ jego rzut na pªaszczyzn¦ π oraz przez X jego rzut na prost¡
prostopadª¡ do pªaszczyzny π, przechodz¡c¡ przez Q.

·

·

X

X ′

X

Q

Wektor
−−→
QX jest rzutem wektora

−−→
QX na wektor n =

(
2
3
−1

)
normalny do pªaszczyzny π. Wobec

tego:

−−→
QX = pn(

−−→
QX) =

(X −Q) ◦ n
n ◦ n

· n =
2x+ 3y − (z − 4)

14
·

 2
3
−1

 =
1

14

 4x+ 6y − 2z + 8
6x+ 9y − 3z + 12
−2x− 3y + z − 4


Poniewa»

−−→
QX =

−−→
QX ′ +

−−−→
QX ′′, wi¦c

X ′ = Q+
−−→
QX ′ = Q+

−−→
QX −

−−→
QX =

0
0
4

+

 x
y

z − 4

− 1
14

 4x+ 6y − 2z + 8
6x+ 9y − 3z + 12
−2x− 3y + z − 4



= 1
14

 10x− 6y + 2z − 8
−6x+ 5y + 3z − 12
2x+ 3y + 13z + 4

 =

 5
7 −3

7
1
7

−3
7

5
14

3
14

1
7

3
14

13
14

X +

−4
7
−6

7
2
7


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Przykªad 3

Napisz wzór odbicia Sπ wzgl¦dem pªaszczyzny π o równaniu 2x+ 3y − z + 4 = 0.
Rozwi¡zanie. Oznaczmy obraz punktu X przez odbicie jako X ′′, natomiast przez X ′ oznaczmy
rzut (prostok¡tny) X na pªaszczyzn¦ π, wyznaczony w poprzednim przykªadzie. Wówczas X ′

jest ±rodkiem odcinka XX ′′, czyli:

1

2
(X +X ′′) = X ′

sk¡d otrzymujemy:

X ′′ = 2X ′ −X = 1
7

 10x− 6y + 2z − 8
−6x+ 5y + 3z − 12
2x+ 3y + 13z + 4

−
xy
z

 = 1
7

 3x− 6y + 2z − 8
−6x− 2y + 3z − 12

2x+ 3y + 6z + 4



=

 3
7 −6

7
2
7

−6
7 −2

7
3
7

2
7

3
7

6
7

X +

−8
7

−12
7

4
7



Przykªad 4

Napisz wzór powinowactwa prostok¡tnego F o skali k = 2 wzgl¦dem pªaszczyzny π o równaniu
2x+ 3y − z + 4 = 0.
Rozwi¡zanie. Oznaczmy obraz punktu X przez powinowactwo jako X ′′, natomiast przez X ′

oznaczmy rzut (prostok¡tny) X na pªaszczyzn¦ π, wyznaczony w poprzednim przykªadzie.
Wówczas: −−−→

X ′X ′′ = 2 ·
−−→
X ′X czyli X ′′ −X ′ = 2(X −X ′)

sk¡d otrzymujemy:

X ′′ = 2X −X ′ = 2

xy
z

− 1
14

 10x− 6y + 2z − 8
−6x+ 5y + 3z − 12
2x+ 3y + 13z + 4

 = 1
14

 18x+ 6y − 2z + 8
6x+ 23y − 3z + 12
−2x− 3y + 15z − 4



=

 9
7

3
7 −1

7
3
7

23
14 − 3

14
−1

7
3
14

15
14

X +

 4
7
6
7
−2

7



Przykªad 5

Napisz wzór rzutu P` na prost¡ ` o równaniu
(
x
y
z

)
= t
(

3
2
1

)
+
(

1
0
1

)
.

Rozwi¡zanie. Obrazem punktu X =
(
x
y
z

)
jest taki punkt X ′ le»¡cy na prostej `, »e XX ′ ⊥ `,

czyli:

X ′ =

3t+ 1
2t
t+ 1

 oraz

3t+ 1− x
2t− y
t+ 1− z

 ◦
3

2
1

 = 0

czyli

3(3t+ 1− x) + 2(2t− y) + (t+ 1− z) = 0 sk¡d t = 1
14(3x+ 2y + z − 4)
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zatem

X ′ = 1
14

−5x+ 6y + 3z + 2
6x− 10y + 2z − 8
3x+ 2y − 13z + 10

 =

− 5
14

3
7

3
14

3
7 −5

7
1
7

3
14

1
7 −13

14

X +

 1
7
−4

7
5
7



Przykªad 6

Napisz wzór odbicia S` wzgl¦dem prostej ` o równaniu
(
x
y
z

)
= t
(

3
2
1

)
+
(

1
0
1

)
.

Rozwi¡zanie. Oznaczmy obraz punktu X =
(
x
y
z

)
przez X ′′, za± przez X ′ rzut punktu X na

prost¡ ` (wyznaczony w poprzednim przykªadzie). Wówczas X ′ jest ±rodkiem odcinka XX ′′,
czyli:

1

2
(X +X ′′) = X ′

sk¡d otrzymujemy:

X ′′ = 2X ′ −X = 1
7

−5x+ 6y + 3z + 2
6x− 10y + 2z − 8
3x+ 2y − 13z + 10

−
xy
z

 = 1
7

−12x+ 6y + 3z + 2
6x− 17y + 2z − 8
3x+ 2y − 20z + 10



=

−12
7

6
7

3
7

6
7 −17

7
2
7

3
7

2
7 −20

7

X +

 2
7
−8

7
10
7



Przykªad 7

Napisz wzór symetrii ±rodkowej o ±rodku S =
(

1
2
4

)
.

Rozwi¡zanie. Oznaczmy obraz punktu X =
(
x
y
z

)
przez X ′. Punkt S jest ±rodkiem odcinka

XX ′, wi¦c:
S = 1

2(X +X ′)

czyli

X ′ = 2S −X = 2 ·

1
2
4

−
xy
z

 =

2− x
4− y
8− z

 =

−1 0 0
0 −1 0
0 0 −1

xy
z

+

2
4
8



Przykªad 8

Napisz wzór jednokªadno±ci DS
k o skali k = 4 i ±rodku S =

(
2
1
1

)
.

Rozwi¡zanie. Oznaczmy obraz punktu X =
(
x
y
z

)
przez X ′. Wówczas:

−−→
SX ′ = 4 ·

−−→
SX czyli X ′ − S = 4(X − S)

sk¡d

X ′ = 4X − 3S = 4 ·

xy
z

− 3 ·

2
1
1

 =

4x− 6
4y − 3
4z − 3

 =

4 0 0
0 4 0
0 0 4

xy
z

+

−6
−3
−3


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Przykªad 9

Napisz wzór rzutu uko±nego w kierunku wektora v =
(

1
1
1

)
na pªaszczyzn¦ π o równaniu

2x+ y + z + 1 = 0.

Rozwi¡zanie. Oznaczmy obraz punktu X =
(
x
y
z

)
przez X ′ =

(
x′

y′

z′

)
. Szukamy takiego punktu

X ′ le»¡cego na pªaszczy¹nie π, »e
−−→
XX ′‖v. Wobec tego mamy rozwi¡za¢ ukªad równa« z

niewiadomymi x′, y′, z′:
2x′ + y′ + z′ + 1 = 0x
′ − x
y′ − y
z′ − z

×
1

1

1

 =

0

0

0

 czyli


2x′ + y′ + z′ + 1 = 0

x′ − x = y′ − y
x− x′ = z − z′

y′ − y = z′ − z

Rozwi¡zuj¡c ten ukªad równa« otrzymujemy:
x′ = 1

4(2x− y − z − 1)

y′ = 1
4(−2x+ 3y − z − 1)

z′ = 1
4(−2x− y + 3z − 1)

Przykªad 10

Napisz wzór powinowactwa ±cinaj¡cego o pªaszczy¹nie o równaniu 2x − y + 2 = 1 i wektorze

v =
(

1
4
1

)
.

Rozwi¡zanie. Oznaczmy obraz punktu X =
(
x
y
z

)
przez X ′. Wówczas:

−−→
XX ′ = d(X) · v

gdzie d(X) = 2x−y+2z−1
3 to znakowana odlegªo±¢ punktu X od pªaszczyzny. Zatem:

X ′ =

xy
z

+
2x− y + 2z − 1

3
·

1
4
1

 = 1
3

5x− y + 2z − 1
8x− y + 8z − 4
2x− y + 5z − 1



=

5
3 −1

3
2
3

8
3 −1

3
8
3

2
3 −1

3
5
3

+

−1
3
−4

3
−1

3


Kolejne przykªady to przykªady przeksztaªce« liniowych, dla których dziedzina i przeciwdzie-

dzina maj¡ ró»ne wymiary (czyli macierz przeksztaªcenia nie jest macierz¡ kwadratow¡).

Przykªad 11

Przeksztaªcenie F : R3 → R przypisuje ka»demu punktowi X znakowan¡ odlegªo±¢ od pªasz-
czyzny o równaniu 2x − 2y + z = 0. Sprawd¹, »e F jest przeksztaªceniem liniowym i podaj
jego macierz.
Rozwi¡zanie.

F

xy
z

 =
2x− 2y + z√

22 + (−2)2 + 12
=

2

3
x− 2

3
y +

1

3
z =

(
2
3 −2

3
1
3

)
·

xy
z


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czyli F jest przeksztaªceniem liniowym o macierzy
(

2
3 −2

3
1
3

)
.

Przykªad 12

Przeksztaªcenie F : R3 → R dane jest wzorem F (X) = X ◦ v, gdzie v =
(

1
2
1

)
. Sprawd¹, »e F

jest przeksztaªceniem liniowym i podaj jego macierz.
Rozwi¡zanie.

F

xy
z

 =

xy
z

 ◦
1

2
1

 = x+ 2y + z =
(
1 2 1

)
·

xy
z


czyli F jest przeksztaªceniem liniowym o macierzy

(
1 2 1

)
.

Przykªad 13

Przeksztaªcenie F : R3 → R3 dane jest wzorem F (X) = X × v, gdzie v =
(

1
2
1

)
. Sprawd¹, »e

F jest przeksztaªceniem liniowym i podaj jego macierz.
Rozwi¡zanie.

F

xy
z

 =

xy
z

×
1

2
1

 =

y − 2z
z − x
2x− y

 =

 0 1 −2
−1 0 1
2 −1 0

xy
z



czyli F jest przeksztaªceniem liniowym o macierzy

 0 1 −2
−1 0 1
2 −1 0

.

Przykªad 14

Przeksztaªcenie F : R2 → R3 dane jest wzorem F

((
s
t

))
= s

1
3
4

+ t

1
0
5

. Sprawd¹, »e F

jest przeksztaªceniem liniowym i podaj jego macierz.
Rozwi¡zanie.

F

((
s
t

))
=

 s+ t
3s

4s+ 5t

 =

1 1
3 0
4 5

(s
t

)

czyli F jest przeksztaªceniem liniowym o macierzy

1 1
3 0
4 5

.

Przykªad 15

Przeksztaªcenie F : R3 → R2 przypisuje ka»demu punktowi X par¦ liczb
(
d1(X)
d2(X)

)
, gdzie

d1(X) to znakowana odlegªo±¢ punktu X od pªaszczyzny o równaniu 8x− y + 4z = 0, a d2 to
znakowana odlegªo±¢ punktu X od pªaszczyzny od równaniu x+ 2y + 2z = 0. Sprawd¹, »e F
jest przeksztaªceniem liniowym i podaj jego macierz.
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Rozwi¡zanie.

F

xy
z

 =

d1

((
x
y
z

))
d2

((
x
y
z

)) =

(
1
9(8x− y + 4z)
1
3(x+ 2y + 2z)

)
=

(
8
9 −1

9
4
9

1
3

2
3

2
3

)
·

xy
z


czyli F jest przeksztaªceniem liniowym o macierzy

(
8
9 −1

9
4
9

1
3

2
3

2
3

)
.

Przykªad 16

Przeksztaªcenie F : R3 → R przypisuje ka»demu wektorowi X znakowan¡ obj¦to±¢ czworo-

±cianu rozpi¦tego przez trójk¦ wektorów (X,u, v), gdzie u =
(

1
2
1

)
, v =

(
0
1
3

)
. Sprawd¹, »e F

jest przeksztaªceniem liniowym i podaj jego macierz.
Rozwi¡zanie. Rozwijaj¡c wyznacznik wzgl¦dem pierwszego wiersza otrzymujemy:

F

xy
z

 =
1

6
det

x 1 0
y 2 1
z 1 3

 =
1

6
(5x− 3y + z) =

(
5
6 −1

2
1
6

)
·

xy
z


czyli F jest przeksztaªceniem liniowym o macierzy

(
5
6 −1

2
1
6

)
.

7.2 Macierz przeksztaªcenia

Przedstawione w Rozdziale 2.2 de�nicje dodawania macierzy (De�nicja 2.6), mno»enia macierzy
przez skalar (De�nicja 2.7) oraz mno»enia macierzy (De�nicja 2.9) obejmuj¡ macierze wszelkich
rozmiarów, w szczególno±ci macierze 3×3 rozwa»ane w niniejszym rozdziale. Równie» wªasno±ci
tych dziaªa« (Fakt 2.8 i Fakt 2.10) pozostaj¡ prawdziwe.

W zwi¡zku z tym mo»na udowodni¢ nast¦puj¡ce wªasno±ci przeksztaªce« liniowych R3, ana-
logiczne do poznanych wªasno±ci przeksztaªce« pªaszczyzny.

Fakt 7.7

Przeksztaªcenie F : R3 → R3 jest przeksztaªceniem liniowym wtedy i tylko wtedy, gdy dla
dowolnych wektorów u i v oraz dowolnego skalara t zachodz¡ wªasno±ci:

1) F (u+ v) = F (u) + F (v) (addytywno±¢)
2) F (t · u) = t · F (u) (jednorodno±¢)

Wªasno±¢ F (0) = 0 (wymieniana w analogicznym Fakcie 2.11) zostaªa tu pomini¦ta, gdy»
stanowi szczególny przypadek wªasno±ci (2) (dla t = 0).

Dowód. ⇒ Niech F : R3 → R3 b¦dzie przeksztaªceniem liniowym o macierzy m(F ) = A. Wów-
czas wªasno±¢ (1) wynika z rozdzielno±ci mno»enia macierzy wzgl¦dem dodawania:

F (u+ v) = A · (u+ v) = A · u+A · v = F (u) + F (v)

za± wªasno±¢ (2) wynika z Faktu 2.10:

F (t · u) = A · (tu) = t · (Au) = t · F (u)

⇐ Zaªó»my teraz, »e przeksztaªcenie F : R3 → R3 jest addytywne i jednorodne. Poka»emy
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»e jest ono liniowe. Oznaczmy obrazy wersorów przez:

F (e1) =

a1

a2

a3

 F (e2) =

b1b2
b3

 F (e3) =

c1

c2

c3


Wówczas z addytywno±ci i jednorodno±ci F wynika, »e dla dowolnego wektora

(
x
y
z

)
zachodzi:

F

xy
z

 = F (xe1 + ye2 + ze3) = F (xe1) + F (ye2) + F (ze3) = xF (e1) + yF (e2) + zF (e3)

= x

a1

a2

a3

+ y

b1b2
b3

+ z

c1

c2

c3

 =

a1 b1 c1

a2 b2 c2

a3 b3 c3

xy
z


czyli F jest przeksztaªceniem liniowym.

Przykªad 1

Dane jest przeksztaªcenie liniowe F : R3 → R3. O wektorach u, v, w ∈ R3 wiadomo, »e:

F (u+v+w) =
(

4
4
0

)
, F (2u+v−w) =

(
3
−1
−2

)
, F (u−v+2w) =

(
1
7
3

)
. Oblicz F (u), F (v), F (w).

Rozwi¡zanie. Korzystaj¡c z addytywno±ci i jednorodno±ci przeksztaªcenia liniowego otrzymu-
jemy ukªad trzech równa« wektorowych z trzema niewiadomymi F (u), F (v), F (w):

F (u) + F (v) + F (w) =
(

4
4
0

)
2F (u) + F (v)− F (w) =

(
3
−1
−2

)
F (u)− F (v) + 2F (w) =

(
1
7
3

)
Rozwi¡zuj¡c metod¡ podstawiania dostajemy F (u) =

(
1
1
0

)
, F (v) =

(
2
0
−1

)
, F (w) =

(
1
3
1

)
.

Fakt 7.8

Je±li

a1 b1 c1

a2 b2 c2

a3 b3 c3

 jest macierz¡ przeksztaªcenia liniowego F : R3 → R3, to:

a1

a2

a3

 = F (e1)

b1b2
b3

 = F (e2)

c1

c2

c3

 = F (e3)

Dowód.

F (e1) = F

1
0
0

 =

a1 b1 c1

a2 b2 c2

a3 b3 c3

1
0
0

 =

a1

a2

a3


Podobnie obliczamy F (e2) i F (e3).
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Przykªad 2

Wyznacz macierze nast¦puj¡cych przeksztaªce« liniowych:

(a) odbicie wzgl¦dem pªaszczyzny o równaniu x = y,

(b) odbicie wzgl¦dem prostej
(
x
y
z

)
= t
(

1
1
0

)
,

(c) obrót o k¡t θ wokóª osi Oz.

Rozwi¡zanie. Zgodnie z Faktem 7.8 wystarczy wyznaczy¢ obrazy trzech wersorów. Wobec
tego macierzami tymi s¡:

(a)

0 1 0
1 0 0
0 0 1

, (b)

0 1 0
1 0 0
0 0 −1

, (c)

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Zgodnie z Faktem 7.8, znajomo±¢ obrazów trzech wersorów jednoznacznie wyznacza prze-

ksztaªcenie liniowe F : R3 → R3. Fakt ten mo»na uogólni¢, zamieniaj¡c trzy wersory na dowolne
trzy liniowo niezale»ne wektory:

Fakt 7.9

Przeksztaªcenie liniowe R3 jest jednoznacznie wyznaczone przez obrazy dowolnych trzech
liniowo niezale»nych wektorów, tzn. je±li dane s¡ liniowo niezale»ne wektory u, v,
w oraz dowolne wektory u′, v′, w′, to istnieje dokªadnie jedno przeksztaªcenie liniowe
F : R3 → R3 takie, »e

F (u) = u′ F (v) = v′ F (w) = w′

Dowód. Oznaczmy u =
(
u1
u2
u3

)
, v =

(
v1
v2
v3

)
, w =

(
w1
w2
w3

)
oraz u′ =

(
u′1
u′2
u′3

)
, v′ =

(
v′1
v′2
v′3

)
, w′ =

(
w′1
w′2
w′3

)
.

Szukamy macierzy

a1 b1 c1

a2 b2 c2

a3 b3 c3

 takiej, »e:



a1 b1 c1

a2 b2 c2

a3 b3 c3


u1

u2

u3

 =

u
′
1

u′2
u′3


a1 b1 c1

a2 b2 c2

a3 b3 c3


v1

v2

v3

 =

v
′
1

v′2
v′3


a1 b1 c1

a2 b2 c2

a3 b3 c3


w1

w2

w3

 =

w
′
1

w′2
w′3


Powy»szy ukªad mo»na zapisa¢ jako ukªad 9 równa« skalarnych z 9 niewiadomymi (ai, bi, ci,
gdzie i = 1, 2, 3), które mo»na podzieli¢ na 3 ukªady 3 równa« z 3 niewiadomymi (i-ty ukªad
b¦dzie miaª niewiadome ai, bi, ci):
a1u1 + b1u2 + c1u3 = u′1
a1v1 + b1v2 + c1v3 = v′1
a1w1 + b1w2 + c1w3 = w′1


a2u1 + b2u2 + c2u3 = u′2
a2v1 + b2v2 + c2v3 = v′2
a2w1 + b2w2 + c2w3 = w′2


a3u1 + b3u2 + c3u3 = u′3
a3v1 + b3v2 + c3v3 = v′3
a3w1 + b3w2 + c3w3 = w′3
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Wyznacznik gªówny ka»dego z tych ukªadów jest taki sam i wynosi:

det

u1 u2 u3

v1 v2 v3

w1 w2 w3

 = det


u1 v1 w1

u2 v2 w2

u3 v3 w3

>
 = det

u1 v1 w1

u2 v2 w2

u3 v3 w3

 6= 0

jako »e zgodnie z Faktem ?? transpozycja macierzy nie zmienia wyznacznika oraz zgodnie z
zaªo»eniem wektory u, v, w s¡ liniowo niezale»ne (nie le»¡ na jednej pªaszczy¹nie). Wobec tego,
zgodnie ze wzorami Cramera (Fakt 6.53) ka»dy z ukªadów ma jednoznaczne rozwi¡zanie. St¡d

istnieje dokªadnie jedna macierz

a1 b1 c1

a2 b2 c2

a3 b3 c3

, czyli dokªadnie jedno przeksztaªcenie liniowe F

speªniaj¡ce warunki zadania.

Fakt 7.10

Niech F : R3 → R3 b¦dzie przeksztaªceniem a�nicznym. Wówczas ka»dy z poni»szych
zbiorów jest punktem lub prost¡ lub pªaszczyzn¡ lub R3 lub zbiorem pustym:

• zbiór punktów staªych F ,

• przeciwobraz F−1[v] dowolnie wybranego punktu v.

Dowód. Niech F b¦dzie dane wzorem:

F

xy
z

 =

a1 b1 c1

a2 b2 c2

a3 b3 c3

xy
z

+

p1

p2

p3


Wówczas zbiór punktów staªych to zbiór rozwi¡za« ukªadu równa« (z niewiadomymi x, y, z):

a1 b1 c1

a2 b2 c2

a3 b3 c3

xy
z

+

p1

p2

p3

 =

xy
z

 czyli


(a1 − 1)x+ b1y + c1z = −p1

(a2 − 1)x+ b2y + c2z = −p2

(a3 − 1)x+ b3y + c3z = −p3

Zgodnie z Faktem 6.53 zbiorem rozwi¡za« takiego ukªadu jest punkt, prosta, pªaszczyzna, R3

lub zbiór pusty.
Podobnie przedstawiamy przeciwobraz punktu v jako zbiór rozwi¡za« ukªadu 3 równa« linio-

wych z 3 niewiadomymi, dochodz¡c do tej samej konkluzji.

Fakt 7.11

Ka»de przeksztaªcenie a�niczne F : R3 → R3 jest zªo»eniem przeksztaªcenia liniowego i
translacji.

Dowód. Przeksztaªcenie F ma wzór F (X) = AX + v, gdzie A jest macierz¡ 3 × 3, a v jest
wektorem z R3. Wówczas F = Tv ◦G, gdzie G(X) = AX jest przeksztaªceniem liniowym.
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Fakt 7.12

Dane s¡ przeksztaªcenia F : R3 → R3 i G : R3 → R3.

1) Je±li F i G s¡ a�niczne, to F ◦G oraz F−1 (o ile F jest odwracalne) te» s¡ a�niczne.

2) Je±li F i G s¡ liniowe, to F ◦G oraz F−1 (o ile F jest odwracalne) te» s¡ liniowe.

3) Je±li F i G s¡ izometriami, to F ◦ G oraz F−1 (o ile F jest odwracalne) te» s¡
izometriami.

4) Je±li F i G s¡ izometriami liniowymi, to F ◦ G oraz F−1 (o ile F jest odwracalne)
te» s¡ izometriami liniowymi.

Dowód. (1) Je±li F (X) = AX + v i G(X) = BX + w, to:

(F ◦G)(X) = F (G(X)) = A(BX + w) + v = (AB)X + (Aw + v)

czyli F ◦G jest przeksztaªceniem a�nicznym. Z kolei przeksztaªcenie odwrotne do F istnieje wtedy
i tylko wtedy, gdy macierz A jest odwracalna, i dane jest wówczas wzorem F−1(X) = A−1X −
A−1v (nietrudno sprawdzi¢, »e zªo»enie F−1 i F jest przeksztaªceniem identyczno±ciowym.

Dowód (2) jest podobny. Dla dowodu (3) zauwa»my, »e skoro F i G zachowuj¡ odlegªo±ci
(jako izometrie), to F ◦G i F−1 równie». Wªasno±¢ (4) wynika z (2) i (3).

Fakt 7.13

Niech F : R3 → R3 i G : R3 → R3 b¦d¡ przeksztaªceniami liniowymi. Wówczas:

m(F ◦G) = m(F ) ·m(G)

m(F−1) = (m(F ))−1

W szczególno±ci F jest odwracalne ⇐⇒ m(F ) jest macierz¡ odwracaln¡ (tzn. detm(F ) 6=
0).

Dowód. Je±li A i B s¡ takimi macierzami, »e F (X) = AX i G(X) = BX, to

(F ◦G)(X) = F (G(X)) = A ·BX = (AB)X, czyli m(F ◦G) = AB

St¡d:

I = m(Id) = m(F ◦ F−1) = m(F ) ·m(F−1), czyli m(F−1) = (m(F ))−1

De�nicja 7.14

Przeksztaªcenie liniowe F : R3 → R3 zachowuje orientacj¦, je±li dla dowolnej trójki li-
niowo niezale»nych wektorów (u, v, w), trójki (u, v, w) i (F (u), F (v), F (w)) maj¡ jedna-
kowe orientacje, a zmienia orientacj¦, je±li dla dowolnej trójki liniowo niezale»nych wek-
torów (u, v, w) trójki (u, v, w) i (F (u), F (v), F (w)) maj¡ przeciwne orientacje.

Copyright c© Tomasz Elsner, 2019



202 ROZDZIA� 7. PRZEKSZTA�CENIA PRZESTRZENI R3

Fakt 7.15

Niech F : R3 → R3 b¦dzie przeksztaªceniem liniowym. Wówczas:

1) F skaluje obj¦to±ci �gur | det(m(F ))| razy,

2) det(m(F )) > 0, je±li F zachowuje orientacj¦ oraz det(m(F )) < 0, je±li F zmienia
orientacj¦.

Wniosek 7.16

Wyznacznik macierzy izometrii to ±1.

Dowód. Izometria liniowa zachowuje obj¦to±ci, wi¦c wyznacznik jej macierzy A speªnia warunek
| detA| = 1.

Fakt 7.17

Niech A b¦dzie macierz¡ 3× 3. Wówczas nast¦puj¡ce warunki s¡ równowa»ne:

1) A jest macierz¡ izometrii,

2) kolumny A s¡ parami prostopadªymi wektorami dªugo±ci 1,

3) wiersze A s¡ parami prostopadªymi wektorami dªugo±ci 1,

4) A−1 = A>.

Fakt 7.18

Macierz¡ identyczno±ciow¡ 3 × 3 nazywamy macierz I =

1 0 0
0 1 0
0 0 1

. Macierz ta ma t¦

wªasno±¢, »e:
AI = A oraz IA = A

dla dowolnej takiej macierzy A dla której dane dziaªanie jest wykonalne.

De�nicja 7.19

Macierz¡ odwrotn¡ do macierzy P ∈M3×3 nazywamy tak¡ macierz P−1 ∈M3×3, »e

P · P−1 = P−1 · P = I

Macierz, dla której istnieje macierz odwrotna nazywamy macierz¡ odwracaln¡.

Zwró¢my uwag¦, »e ze wzgl¦du na nieprzemienno±¢ mno»enia macierzy de�nicja musi wy-
maga¢ by iloczyn macierzy P i P−1 byª macierz¡ identyczno±ciow¡ niezale»nie od kolejno±ci
czynników.
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Fakt 7.20

Dla dowolnych macierzy A i B rozmiaru 3× 3 zachodz¡ nast¦puj¡ce wªasno±ci:

1) det(AB) = detA · detB

2) det(A−1) = (detA)−1 (o ile A jest odwracalna)

Dowód. Wªasno±¢ (1) mo»na udowodni¢ przy pomocy »mudnego rachunku, który pomijamy.
Wªasno±¢ (2) jest wnioskiem z wªasno±ci (1), gdy» dla odwracalnej macierzy A zachodzi:

1 = det I = det(A ·A−1) = detA · det(A−1)

sk¡d

det(A−1) =
1

detA

Fakt 7.21

Dla dowolnych odwracalnych macierzy A i B rozmiaru 3×3 zachodzi: (AB)−1 = B−1A−1

Niech P =

a1 b1 c1

a2 b2 c2

a3 b3 c3

. Szukamy macierzy odwrotnej do P , tzn. macierzy

x1 y1 z1

x2 y2 z2

x3 y3 z3

,

dla której zachodz¡ równo±ci:a1 b1 c1

a2 b2 c2

a3 b3 c3

x1 y1 z1

x2 y2 z2

x3 y3 z3

 =

1 0 0
0 1 0
0 0 1

 i

x1 y1 z1

x2 y2 z2

x3 y3 z3

a1 b1 c1

a2 b2 c2

a3 b3 c3

 =

1 0 0
0 1 0
0 0 1


(7.1)

Pierwsze z równa« (7.1) mo»na zapisa¢ w postaci trzech równa« wektorowych:

a1 b1 c1

a2 b2 c2

a3 b3 c3


x1

x2

x3

 =

1

0

0


a1 b1 c1

a2 b2 c2

a3 b3 c3


y1

y2

y3

 =

0

1

0


a1 b1 c1

a2 b2 c2

a3 b3 c3


z1

z2

z3

 =

0

0

1


(7.2)

które mo»na zapisa¢ jako trzy ukªady 3 równa« liniowych z 3 niewiadomymi:
a1x1 + b1x2 + c1x3 = 1

a2x1 + b2x2 + c2x3 = 0

a3x1 + b3x2 + c3x3 = 0


a1y1 + b1y2 + c1y3 = 0

a2y1 + b2y2 + c2y3 = 1

a3y1 + b3y2 + c3y3 = 0


a1z1 + b1z2 + c1z3 = 0

a2z1 + b2z2 + c2z3 = 0

a3z1 + b3z2 + c3z3 = 1
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Je±li det

a1 b1 c1

a2 b2 c2

a3 b3 c3

 6= 0, to zgodnie ze wzorami Cramera ka»dy z powy»szych ukªadów ma

jednoznaczne rozwi¡zanie:

x1 =
1

detP
det

1 b1 c1

0 b2 c2

0 b3 c3

 = +
1

detM
det

(
b2 c2

b3 c3

)
= +

1

detP
·A1

x2 =
1

detP
det

a1 1 c1

a2 0 c2

a3 0 c3

 = +
1

detM
det

(
a2 c2

a3 c3

)
= − 1

detP
·B1

x3 =
1

detP
det

a1 b1 1
a2 b2 0
a3 b3 0

 = +
1

detM
det

(
a2 b2
a3 b3

)
= +

1

detP
· C1

gdzie przez Ai, Bi, Ci oznaczamy wyznacznik macierzy 2 × 2 powstaªej przez wykre±lenie z
macierzy A wiersza i kolumny zawieraj¡cych, odpowiednio, wyraz ai, bi lub ci. Analogicznie
wyliczamy:

y1 =
1

detP
·A2 y2 =

1

detP
·B2 y3 =

1

detP
· C2

z1 =
1

detP
·A3 z2 =

1

detP
·B3 z3 =

1

detP
· C3

wobec czego szukan¡ macierz¡ odwrotn¡ powinna by¢ macierz:x1 y1 z1

x2 y2 z2

x3 y3 z3

 =
1

detP

+A1 −B1 +C1

−A2 +B2 −C2

+A3 −B3 +C3

>

Poniewa» mno»enie macierzy nie jest przemienne, wi¦c musimy jeszcze sprawdzi¢, »e znaleziona
macierz speªnia równie» drugie z równa« (7.1). Sprawdzenie tego pozostawiamy czytelnikowi.

Fakt 7.22

Macierz P =

a1 b1 c1

a2 b2 c2

a3 b3 c3

 jest odwracalna wtedy i tylko wtedy, gdy detP 6= 0, a

macierz¡ do niej odwrotn¡ jest macierz:

P−1 =
1

detP

+A1 −B1 +C1

−A2 +B2 −C2

+A3 −B3 +C3

>

gdzie Ai, Bi, Ci oznaczaj¡ wyznacznik macierzy 2 × 2 powstaªej przez wykre±lenie z
macierzy P wiersza i kolumny zawieraj¡cego, odpowiednio, wyraz ai, bi lub ci.

Dowód. Przed sformuªowaniem faktu wyprowadzili±my powy»szy wzór na macierz odwrotn¡.
Pozostaje uzasadni¢, »e w przypadku, gdy detP = 0, macierz P nie jest odwracalna. Ale je±li
macierz P jest odwracalna, to zachodzi P · P−1 = I, co na mocy Faktu 7.20 poci¡ga:

detP · det(P−1) = 1

wi¦c w przypadku detP = 0, to otrzymujemy sprzeczno±¢.
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Rozdziaª 8

Diagonalizacja macierzy 3× 3

8.1 Wektory wªasne i warto±ci wªasne

De�nicja 8.1

Wektor wªasny przeksztaªcenia liniowego F : R3 → R3 to wektor X speªniaj¡cy warunek:

F (X) = λ ·X

natomiast wektor wªasny macierzy A rozmiaru 3× 3, to wektor X speªniaj¡cy warunek

AX = λX

dla pewnej liczby rzeczywistej λ. W obu przypadkach, je±li X 6= 0, to liczb¦ λ nazywamy
warto±ci¡ wªasn¡ przeksztaªcenia F lub macierzy A, za±X wektorem wªasnym dla warto±ci
wªasnej λ. Wektor X = 0 jest wektorem wªasnym dla ka»dej warto±ci wªasnej λ.

Przykªad 1

Wyznacz warto±ci i wektory wªasne odbicia Sπ wzgl¦dem pªaszczyzny π.
Rozwi¡zanie. Dla dowolnego wektora v1 na pªaszczy¹nie π zachodzi F (v1) = v1 = 1 · v1, czyli
λ1 = 1 jest warto±ci¡ wªasn¡ przeksztaªcenia, a pªaszczyzna π jest zbiorem wektorów wªasnych
dla λ1.

x

y

z

λ1 = +1

λ2 = −1

·

Dla dowolnego wektora v2 prostopadªego do pªaszczyzny π zachodzi F (v2) = −v2 =
(−1) · v2, czyli λ2 = −1 jest warto±ci¡ wªasn¡ przeksztaªcenia, a prosta prostopadªa do π
przechodz¡ca przez 0 jest zbiorem wektorów wªasnych dla λ2.

Je±li wektor v3 nie jest równolegªy ani prostopadªy do π, to wektory v3 i F (v3) maj¡ ró»ne
kierunki, przeksztaªcenie nie ma zatem wi¦cej wektorów ani warto±ci wªasnych.
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206 ROZDZIA� 8. DIAGONALIZACJA MACIERZY 3× 3

Przykªad 2

Wyznacz warto±ci i wektory wªasne obrotu wokóª prostej ` (przechodz¡cej przez 0) o k¡t θ
(gdzie θ 6= 0 i θ 6= π).
Rozwi¡zanie. Ka»dy punkt prostej ` (czyli wektor równolegªy do prostej `) jest punktem sta-
ªym obrotu, st¡d prosta ` to zbiór wektorów wªasnych dla warto±ci wªasnej λ = +1. Obrót
wokóª ` zmienia natomiast kierunek ka»dego wektora nierównolegªego do `, wi¦c przeksztaªce-
nie nie ma wi¦cej wektorów wªasnych, ani warto±ci wªasnych.

x

y

z

λ1 = +1

Przykªad 3

Wyznacz warto±ci i wektory wªasne jednokªadno±ci o ±rodku O i skali k.
Rozwi¡zanie. Podobnie jak dla jednokªadno±ci na pªaszczy¹nie, ka»dy wektor jest wektorem
wªasnym dla warto±ci wªasnej k, gdy» dla dowolnego wektora v zachodzi:

Dk(v) = k · v

Przykªad 4

Wyznacz warto±ci i wektory wªasne powinowactwa ±cinaj¡cego o pªaszczy¹nie π i wektorze v.
Rozwi¡zanie. Nietrudno zauwa»y¢, »e poza punktami staªymi (czyli wektorami wªasnymi dla
warto±ci wªasnej λ1 = 1) ka»dy wektor zmienia kierunek. Wobec tego jedynymi wektorami
wªasnymi s¡ punkty pªaszczyzny π (dla warto±ci wªasnej λ1 = 1).

x

y

z

λ1 = +1

Je±li mamy podan¡ macierz przeksztaªcenia liniowego, to wyznaczanie warto±ci i wektorów
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wªasnych mo»na sprowadzi¢ do rozwi¡zywania równa«, jak to pokazuje poni»szy fakt.

Fakt 8.2

1) Warto±ci wªasne przeksztaªcenia liniowego F : R3 → R3 to pierwiastki wielomianu
charakterystycznego χF (λ) = det(m(F )− λ Id) przeksztaªcenia F , czyli rozwi¡zania
równania:

det(m(F )− λ Id) = 0

2) Warto±ci wªasne macierzy A ∈M3×3 to pierwiastki wielomianu charakterystycznego
χA(λ) = det(A− λI) macierzy A, czyli rozwi¡zania równania:

det(A− λI) = 0

Dowód. Niech A b¦dzie macierz¡ przeksztaªcenia F , tzn. F (X) = AX. Warunek:

F (X) = λX (w wersji macierzowej A ·X = λX)

mo»na zapisa¢ w postaci

(F − λ Id)(X) = 0 (w wersji macierzowej (A− λI) ·X = 0)

Zatem λ jest warto±ci¡ wªasn¡ F wtedy i tylko wtedy, gdy równanie macierzowe

(A− λI) ·X = 0 (8.1)

ma niezerowe rozwi¡zanie. Poniewa» wektor X = 0 jest rozwi¡zaniem (8.1) niezale»nie od
warto±ci λ, wi¦c szukamy takich λ, dla których (8.1) ma przynajmniej dwa rozwi¡zania (X = 0 i
rozwi¡zanie niezerowe). Równanie (8.1) to ukªad cramerowski 3×3 o macierzy gªównej (A−λI),
który zgodnie z Faktem 6.53 ma wi¦cej ni» jedno rozwi¡zanie wtedy i tylko wtedy, gdy

det(A− λI) = 0

Wobec tego warto±ciami wªasnymi s¡ pierwiastki λ równania det(A− λI) = 0.

Przykªad 5

Znajd¹ wszystkie warto±ci wªasne i wektory wªasne przeksztaªcenia liniowego F : R3 → R3 o
wzorze:

F (X) =

3 1 −1
1 2 −1
1 0 1

X

Rozwi¡zanie. Tym razem, w odró»nieniu od poprzednich przykªadów, wygodniej b¦dzie zacz¡¢
od wyznaczenia warto±ci wªasnych. Zgodnie z Faktem 8.2 warto±ci wªasne przeksztaªcenia F ,
to pierwiastki wielomianu charakterystycznego:

χF (λ) = det

3− λ 1 −1
1 2− λ −1
1 0 1− λ

 = (3− λ)(2− λ)(1− λ)− 1− (1− λ) + (2− λ)

= (3− λ)(2− λ)(1− λ)

czyli liczby λ1 = 1, λ2 = 2, λ3 = 3. Wyznaczmy teraz wektory wªasne dla warto±ci wªasnej

Copyright c© Tomasz Elsner, 2019



208 ROZDZIA� 8. DIAGONALIZACJA MACIERZY 3× 3

λ1 = 1. Zgodnie z de�nicj¡, s¡ to rozwi¡zania równania:3 1 −1
1 2 −1
1 0 1

xy
z

 = 1 ·

xy
z

 czyli


3x+ y − z = x

x+ 2y − z = y

x+ z = z

Rozwi¡zanie tego ukªadu to: {
z = y

x = 0

czyli wektorami wªasnymi dla warto±ci wªasnej 1 s¡ wektory postaci
(

0
y
y

)
. Analogicznie wy-

znaczamy wektory wªasne dla warto±ci wªasnej λ2 = 2 otrzymuj¡c
(
x
0
x

)
oraz dla warto±ci

wªasnej λ3 = 3 otrzymuj¡c
(

2z
z
z

)
. Tak wi¦c badane przeksztaªcenie ma 3 warto±ci wªasne, a

dla ka»dej z nich prost¡ wektorów wªasnych.

Wniosek 8.3

Macierz A ∈ M3×3 (przeksztaªcenie liniowe F : R3 → R3) ma co najwy»ej 3 warto±ci
wªasne.

Dowód. Warto±ci wªasne macierzy A =

a1 b1 c1

a2 b2 c2

a3 b3 c3

 to pierwiastki wielomianu charaktery-

stycznego:

χA(x) = det

a1 − x b1 c1

a2 b2 − x c2

a3 b3 c3 − x


= (a1 − x)(b2 − x)(c3 − x) + b1c2a3 + c1a2b3 − (a1 − x)c2b3 − b1a2(c3 − x)− c1(b2 − x)a3

który jest wielomianem stopnia 3. Poniewa» wielomian stopnia 3 ma co najwy»ej 3 pierwiastki,
wi¦c macierz A ma co najwy»ej 3 warto±ci wªasne.

Fakt 8.4

Niezerowy wektor wªasny macierzy A ∈M3×3 o wyrazach rzeczywistych (przeksztaªcenia
liniowego F : R3 → R3) przynale»y tylko do jednej warto±ci wªasnej.

Dowód. Zaªó»my (nie wprost), »e X jest niezerowym wektorem wªasnym macierzy A dla dwóch
ró»nych warto±ci wªasnych λ1 i λ2. Oznacza to, »e:{

AX = λ1X

AX = λ2X

St¡d

λ1X = λ2X czyli (λ1 − λ2)X = 0

sk¡d otrzymujemy sprzeczno±¢, gdzy» λ1 − λ2 6= 0 oraz X 6= 0.
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Fakt 8.5

Je±li λ jest warto±ci¡ wªasn¡ macierzy A ∈M3×3 o wyrazach rzeczywistych (przeksztaªce-
nia liniowego F : R3 → R3), to zbiór wektorów wªasnych dla λ jest albo prost¡ (przecho-
dz¡c¡ przez 0), albo pªaszczyzn¡ (przechodz¡c¡ przez 0), albo caª¡ przestrzeni¡ R3.

Dowód. Oznaczmy A =

a1 b1 c1

a2 b2 c2

a3 b3 c3

. Zbiór wektorów X =

xy
z

 wªasnych dla warto±ci

wªasnej λ to zbiór rozwi¡za« nast¦puj¡cego ukªadu równa« (z niewiadomymi x, y i z):

a1 b1 c1

a2 b2 c2

a3 b3 c3

 = λ

xy
z

 czyli


a1x+ b1y + c1z = λx

a2x+ b2y + c2z = λy

a3x+ b3y + c3z = λz

Po przeksztaªceniu otrzymujemy ukªad cramerowski:
(a1 − λ)x+ b1y + c1z = 0

a2x+ (b2 − λ)y + c2z = 0

a3x+ b3y + (c3 − λ)z = 0

Zbiór rozwi¡za« takiego ukªadu to (zgodnie z Faktem 6.52) zbiór pusty, punkt, prosta, pªasz-
czyzna lub caªa przestrze«. Poniewa» x = y = z = 0 speªnia ten ukªad równa«, a skoro λ jest
warto±ci¡ wªasn¡, to ukªad ma oprócz tego przynajmniej jedno niezerowe rozwi¡zanie, wi¦c lista
mo»liwych zbiorów rozwi¡za« to: prosta zawieraj¡ca punkt 0, pªaszczyzna zawieraj¡ca punkt 0
oraz caªa przestrze«.

Fakt 8.6

Ka»dy wielomian zmiennej rzeczywistej stopnia nieparzystego (w szczególno±ci wielomian
trzeciego stopnia) ma przynajmniej jeden pierwiatek rzeczywisty.

Dowód. Zgodnie z Wnioskiem 5.24 wielomian rzeczywisty rozkªada si¦ na iloczyn wielomianów
(rzeczywistych) stopnia pierwszego i drugiego. W rozkªadzie wielomianu W stopnia 3 musi by¢
przynajmniej jeden czynnik stopnia pierwszego, czyli:

W (x) = (x− a) ·A(x)

co (zgodnie z Twierdzeniem Bezouta) oznacza, »e a jest pierwiastkiem wielomianu W .

Wniosek 8.7

Macierz 3× 3 o wyrazach rzeczywistych ma przynajmniej jedn¡ rzeczywist¡ warto±¢ wªa-
sn¡.

Dowód. Je±li macierz A ∈ M3×3 ma wyrazy rzeczywiste, to jej wielomian charakterystyczny
χA(x) jest wielomianem stopnia 3 zmiannej rzeczywistej. Zgodnie z Faktem 8.6 taki wielomian
ma przynajmniej jeden pierwiastek rzeczywisty, czyli macierz A ma przynajmniej jedn¡ rzeczy-
wist¡ warto±¢ wªasn¡.
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Fakt 8.8

Je±li u, v, w s¡ niezerowymi wektorami wªasnymi macierzy A ∈M3×3 o wyrazach rzeczy-
wistych (przeksztaªcenia liniowego F : R3 → R3) dla parami ró»nych warto±ci wªasnych
λ, µ, ν, to wektor w nie le»y na pªaszczy¹nie rozpi¦tej przez wektory u i v.

Dowód. Gdyby w le»aª na pªaszczy¹nie rozpi¦tej przez u i v, to dla pewnych α, β ∈ R zachodzi-
ªoby:

w = αu+ βv (8.2)

gdzie α, β 6= 0, gdy» w nie mo»e by¢ wspóªliniowe z u, ani z v (Fakt 8.4). Zatem:

F (w) = F (αu+ βv) = αF (u) + βF (v)

co z uwagi na to, »e u, v i w s¡ wektorami wªasnymi daje:

νw = αλu+ βµv (8.3)

�¡cz¡c równania (8.2) z (8.3) otrzymujemy:

ν(αu+ βv) = αλu+ βµv czyli α(ν − λ) · u = β(µ− ν) · v

co oznacza, »e u i v s¡ wspóªliniowe, wbrew Faktowi 8.4. Otrzymana sprzeczno±¢ dowodzi, »e w
nie mo»e le»e¢ na pªaszczy¹nie rozpi¦tej przez u i v.

Wniosek 8.9

Zbiór wektorów wªasnych macierzy 3× 3 o wyrazach rzeczywistych (przeksztaªcenia linio-
wego F : R3 → R3) jest jednym z poni»szych zbiorów:

x

y

z

3 warto±ci wªasne

x

y

z

2 warto±ci wªasne

x

y

z

2 warto±ci wªasne

x

y

z

1 warto±¢ wªasna

x

y

z

1 warto±¢ wªasna

x

y

z

1 warto±¢ wªasna
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Dowód. Zgodnie z Wnioskiem 8.9 oraz Faktem 8.6 macierz 3×3 o wyrazach rzeczywistych ma 1, 2
lub 3 rzeczywiste warto±ci wªasne. Zbiór wektorów wªasnych dla ka»dej z tych warto±ci wªasnych
to (zgodnie z Faktem 8.5) prosta przechodz¡ca przez 0, pªaszczyzna przechodz¡ca przez 0 lub
caªa przestrze«, przy czym zbiory wektorów wªasnych dla ró»nych warto±ci wªasnych nie mog¡
mie¢ punktów wspólnych inny ni» punkt 0.

Wobec tego:

• je±li macierz ma tylko 1 warto±¢ wªasn¡ λ1, to zbiór jej wektorów wªasnych dla λ1 jest
prost¡ przechodz¡c¡ przez 0, pªaszczyzn¡ przechodz¡ca przez 0 lub caª¡ przestrzeni¡;

• je±li macierz ma 2 warto±ci wªasne λ1 i λ2, to zbiory wektorów wªasnych to dwie ró»ne
proste przechodz¡ce przez 0 lub pªaszczyzna przechodz¡ca przez 0 i nie le»¡ca na niej
prosta przechodz¡ca przez 0 (w ka»dym innym przypadku zbiór wektorów wªasnych dla λ1

i zbiór wektorów wªasnych dla λ2 miaªyby punkt wspólny inny ni» 0);

• je±li macierz ma 3 warto±ci wªasne λ1, λ2 i λ3, to zbiory wektorów wªasnych to albo trzy
proste, albo dwie proste i pªaszczyzna (w ka»dym innym przypadku istniaªby niezerowy
wektor nale»¡cy do dwóch ró»nych warto±ci wªasnych). Je±li jednak dwa z tych zbiorów
s¡ prostymi, a trzeci pªaszczyzn¡, to mo»emy znale¹¢ takie trzy niezerowe wektory wªasne
u, v, w (po jednym z ka»dego z tych zbiorów), »e w le»y na pªaszczy¹nie rozpi¦tej przez u
i v, wbrew Faktowi 8.8. W zwi¡zku z tym ka»dy z trzech zbiorów jest prost¡ i proste ta
(zgodnie z Faktem 8.8) nie le»¡ na jednej pªaszczy¹nie.

St¡d mo»liwe s¡ tylko sytuacje przestawione na rysunkach. Przykªady z pocz¡tku rozdziaªu
pokazuj¡, »e ka»da z tych sytuacji faktycznie mo»e mie¢ miejsce.

8.2 Diagonalizacja macierzy

Twierdzenie 8.10: Diagonalizacja macierzy

Je±li A jest macierz¡ 3× 3, która ma trzy parami ró»ne warto±ci wªasne λ, µ i ν, to

A = PDP−1, gdzie D =

λ 0 0
0 µ 0
0 0 ν

 , P =

u1 v1 w1

u2 v2 w2

u3 v3 w3


przy czym u =

(
u1
u2
u3

)
, v =

(
v1
v2
v3

)
i w =

(
w1
w2
w3

)
to wektory wªasne odpowiednio dla λ, µ i ν.

Dowód. Niech u =
(
u1
u2
u3

)
, v =

(
v1
v2
v3

)
i w =

(
w1
w2
w3

)
b¦d¡ niezerowymi wektorami wªasnymi odpo-

wiednio dla warto±ci wªasnych λ, µ i ν macierzy A. Oznaczmy P =

u1 v1 w1

u2 v2 w2

u3 v3 w3

. Macierz

AP jest macierz¡ 3× 3, a zgodnie z zasadami mno»enia macierzy, wektory:

AP

1
0
0

 = A

u1 v1 w1

u2 v2 w2

u3 v3 w3

1
0
0

 = A

u1

u2

u3

 = λ

u1

u2

u3

 =

λu1

λu2

λu3



AP

0
1
0

 = A

u1 v1 w1

u2 v2 w2

u3 v3 w3

0
1
0

 = A

v1

v2

v3

 = µ

v1

v2

v3

 =

µv1

µv2

µv3


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AP

0
0
1

 = A

u1 v1 w1

u2 v2 w2

u3 v3 w3

0
0
1

 = A

w1

w2

w3

 = ν

w1

w2

w3

 =

νv1

νv2

νv3


s¡ odpowiednio pierwsz¡, drug¡ i trzeci¡ kolumn¡ macierzy AP , wobec czego:

AP =

λu1 µv1 νw1

λu2 µv2 νw2

λu3 µv3 νw3

 =

u1 v1 w1

u2 v2 w2

u3 v3 w3

λ 0 0
0 µ 0
0 0 ν

 = PD

Skoro AP = PD, a macierz P jest odwracalna (bo wektory u, v, w s¡ niewspóªpªaszczy-
znowe), to A = PDP−1.

Fakt 8.11

Niech A b¦dzie macierz¡ 3× 3, za± D i P takimi macierzami 3× 3, »e P jest odwracalna
oraz A = PDP−1. Wówczas dla dowolnej liczby naturalnej n zachodzi wzór:

An = PDnP−1

Dowód. Przeprowad¹my indukcj¦ wzgl¦dem n. Dla n = 1 teza jest oczywista. Zaªó»my, »e dla
pewnej warto±ci n = k zachodzi Ak = PDkP−1. Wówczas dla n = k + 1 otrzymujemy:

Ak+1 = Ak ·A = PDkP−1 · PDP−1 = PDk(P−1 · P )DP−1

= P (DkID)P−1 = P (DkD)P−1 = P (Dk+1)P−1

Fakt 8.12

Dla dowolnej liczby naturalnej n zachodzi:a 0 0
0 b 0
0 0 c

n

=

an 0 0
0 bn 0
0 0 cn


Dowód powy»szego faktu pozostawiamy czytelnikowi jako ¢wiczenie.

Przykªad 1

Obliczy¢

2 1 1
0 3 2
0 1 2

40

.

Rozwi¡zanie. Wyznaczamy wielomian charakterystyczny χ(λ) = −λ3 + 7λ2 − 14λ + 8 oraz
warto±ci wªasne:

λ1 = 4 λ2 = 2 λ3 = 1

Ka»dej warto±ci wªasnej odpowiada caªa prosta wektorów wªasnych. Wybieramy przykªadowe
(niezerowe) wektory wªasne:

v1 =

3
4
2

 v2 =

1
0
0

 v3 =

 0
−1
1


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i diagonalizujemy macierz:2 1 1
0 3 2
0 1 2

200

=

 3 1 0
−1 0 4
1 0 2

4 0 0
0 2 0
0 0 1

40 3 1 0
−1 0 4
1 0 2

−1

=

240 279 − 239 279 − 239

0 1
3(281 + 1) 1

3(281 − 2)
0 1

3(280 − 1) 1
3(280 + 2)



Przykªad 2

Ci¡g (an) zadany jest nast¦puj¡c¡ rekurencj¡:
a0 = 1

a1 = 0

a2 = 6

an+1 = 4an − 1an−1 − 6an−2, gdy n ≥ 1

Znajd¹ (zwarty) wzór na an.
Rozwi¡zanie. Rekurencj¦ powy»sz¡ mo»na zapisa¢ w postaci:an+1

an
an−1

 =

4 −1 −6
1 0 0
0 1 0

 an
an−1

an−2


St¡d otrzymujemy:an+2

an+1

an

 =

4 −1 −6
1 0 0
0 1 0

na2

a1

a0

 =

4 −1 −6
1 0 0
0 1 0

n6
0
1


Obliczaj¡c pot¦g¦ macierzy dostajemy:an+2

an+1

an

 =

3n+2 − 2n+2 + (−1)n+2

3n+1 − 2n+1 + (−1)n+1

3n − 2n + (−1)n


czyli an = 3n − 2n + (−1)n.

Przykªad 3

Wyznaczy¢ macierze nast¦puj¡cych przeksztaªce« liniowych:

(a) odbicie Sπ wzgl¦dem pªaszczyzny π o równaniu x+ 2y + 3z = 0,

(b) odbicie wzgl¦dem prostej ` danej ukªadem równa« x−2
3 = y+1

2 = z
4 .

Rozwi¡zanie. (a) Warto±ci wªasne odbicia Sπ to +1 (wektory wªasne tworz¡ pªaszczyzn¦ x+

2y + 3z = 0) i −1 (wektory wªasne tworz¡ prost¡
(
x
y
z

)
= t

(
1
2
3

)
). Wobec tego mo»emy

wybra¢ trzy liniowo niezale»ne (niewspóªpªaszczyznowe) wektory wªasne, np.
(

3
0
−1

)
i
(

2
−1
0

)
dla warto±ci wªasnej 1 i

(
1
2
3

)
dla warto±ci wªasnej −1. Wobec tego diagonalizacja macierzy

wygl¡da nast¦puj¡co: 3 2 1
0 −1 2
−1 0 3

1 0 0
0 1 0
0 0 −1

 3 2 1
0 −1 2
−1 0 3

−1

=
1

7

 6 −2 −3
−2 3 −6
−3 −6 −2


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Twierdzenie 8.13: Twierdzenie spektralne dla R3

Symetryczna macierz A rozmiaru 3×3 diagonalizuje si¦ bez u»ycia liczb zespolonych, tzn.

A = PDP−1

i to w taki sposób, »e kolumny macierzy P s¡ wektorami prostopadªymi.

Dowód. Poka»emy twierdzenie w przypadku, gdy wielomian charakterystyczny A nie ma pier-
wiastków wielokrotnych (rzeczywistych ani nawet zespolonych). Przypadek pierwiastków wielo-
krotnych wykracza poza ramy niniejszego skryptu.

Je±li wielomian charakterystyczny A ma pierwiastek nierzeczywisty λ, to ma równie» pier-

wiastek λ̄. Niezerowe wektory wªasne dla λ i λ̄ to odpowiednio v =

(
a1+ib1
a2+ib2
a3+ib3

)
i v̄ =

(
a1−ib1
a2−ib2
a3−ib3

)
.

Wówczas:
λ(v ◦ v̄) = (λv) ◦ v̄ = (Av) ◦ v̄ = (Av)> · v̄ = v>A>v̄ = v>Av̄

λ̄(v ◦ v̄) = v ◦ (λ̄v̄) = v ◦ (Av̄) = v>Av̄

Wobec tego
λ(v ◦ v̄) = λ̄(v ◦ v̄)

Poniewa» v ◦ v̄ = a2
1 + b21 +a2

2 + b22 +a2
3 + b23 jest niezerow¡ liczb¡ (bo v to niezerowy wektor), wi¦c

λ = λ̄, czyli λ jest liczb¡ rzeczywist¡, wbrew zaªo»eniu. Wobec tego A ma wyª¡cznie rzeczywiste
warto±ci wªasne.

Niech teraz u i v b¦d¡ wektorami wªasnymi dla ró»nych warto±ci wªasnych λ i µ. Zauwa»my,
»e:

λ(u ◦ v) = (λu) ◦ v = (λu)>v = (Au)>v = u>A>v = u>Av

µ(u ◦ v) = u ◦ (µv) = u> · µv = u>Av

Zatem λ(u ◦ v) = µ(u ◦ v), co wobec λ 6= µ daje u ◦ v = 0, czyli u i v s¡ prostopadªe.

Fakt 8.14

Je±li A jest macierz¡ 3 × 3, to A i A> maj¡ jednakowy wielomian charakterystyczny i
jednakowe warto±ci wªasne.

Dowód. Rozwa»ane wielomiany charakterystyczne to

χA(x) = det(A− xI) oraz χA> = det(A> − xI)

Zauwa»my, »e:
(A− xI)> = A> − xI> = A> − xI

Poniewa» transponowanie macierzy nie zmienia wyznacznika (Fakt 6.44), wi¦c:

χA(x) = det(A− xI) = det(A− xI)> = det(A> − xI) = χA>(x)
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Rozdziaª 9

Zamiana ukªadu wspóªrz¦dnych w

przestrzeni R3

9.1 Nowy ukªad wspóªrz¦dnych

De�nicja 9.1

Ukªadem wspóªrz¦dnych w R3 nazwiemy trzy proste (nazywane osiami x, y, z) nie le-
»¡ce na jednej pªaszczy¹nie i przecinaj¡ce si¦ w jednym punkcie (nazywanym pocz¡tkiem
ukªadu wspóªrz¦dnych i oznaczanym O) oraz niezerowe wektory e′1, e

′
2, e

′
3 równolegªe,

odpowiednio, do osi x, y, z, nazywane wersorami i wyznaczaj¡ce jednostk¦ na ka»dej z
osi.
Wspóªrz¦dnymi wektora (punktu) v w nazywamy takie liczby x′, y′ i z′, »e:

v = x′e′1 + y′e′2 + z′e′3

W przypadku równoczesnego posªugiwania si¦ wspóªrz¦dnymi w dwóch ró»nych ukªadach
wspóªrz¦dnych, b¦dziemy stosowa¢ oznaczenia [v]stary i [v]nowy, znane z Rozdziaªu 4.1. Podobnie
jak w Rozdziale 4.1 b¦dziemy rozwa»a¢ jedynie sytuacj¦, gdy pocz¡tek ukªadu wspóªrz¦dnych O
jest taki sam zarówno w nowym, jak i w starym ukªadzie wspóªrz¦dnym, tzn.

[O]stary = [O]nowy =
(

0
0
0

)
Pozwala to pozosta¢ przy dotychczasowej konwencji uto»samiania punktów i wektorów (tzn.
−→
OA = A), gdy» pocz¡tek ukªadu wspóªrz¦dnych (b¦d¡cy domy±lnym pocz¡tkiem wektora) nie
zale»y od wyboru ukªadu.

Przykªad 1

Dany jest nowy ukªad wspóªrz¦dnych, którego wersorami s¡ wektory
(

2
1
0

)
,
(

1
1
1

)
i
(

3
1
2

)
. Wy-

znacz:

(a) nowe wspóªrz¦dne wektora v =
(

1
2
0

)
(tzn. [v]stary =

(
1
2
0

)
),

(b) stare wspóªrz¦dne wektora w, takiego »e [w]nowy =
(

4
2
1

)
.

Rozwi¡zanie. (a) Szukamy nowych wspóªrz¦dnych, tzn. takich x′, y′ i z′, »e

v = x′e′1 + y′e′2 + z′e′3

215
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Oznacza to rozwi¡zywanie ukªadu równa«:1
2
0

 = x′

2
1
0

+ y′

1
1
1

+ z′

3
1
2

 czyli


1 = 2x′ + y′ + 3z′

2 = x′ + y′ + z′

0 = y′ + 2z′

sk¡d otrzymujemy x′ = 1, y′ = 2, z′ = −1.
(b) Skoro nowe wspóªrz¦dne wektora w to 4, 2 i 1, to:

w = 4e′1 + 2e′2 + e′3 = 4

2
1
0

+ 2

1
1
1

+

3
1
2

 =

13
7
4



Fakt 9.2

Je±li e′1, e
′
2 i e′3 s¡ wersorami nowego ukªadu wspóªrz¦dnych, to dla dowolnego wektora v

zachodzi:
[v]stary = P · [v]nowy (9.1)

gdzie P jest macierz¡, której kolumnami s¡ stare wspóªrz¦dne nowych wersorów, tzn.

P = ([e′1]stary, [e
′
2]stary, [e

′
3]stary)

Macierz P nazywamy macierz¡ zamiany wspóªrz¦dnych.

Dowód. Wektor v mo»na zapisa¢ w postaci kombinacji liniowej starych wersorów:

v = xe1 + ye2 + ze3, czyli [v]stary =

xy
z


oraz w postaci kombinacji liniowej nowych wersorów:

v = x′e′1 + y′e′2 + z′e′3, czyli [v]nowy =

x′y′
z′


Je±li oznaczymy stare wspóªrz¦dne nowych wersorów jak nast¦puje:

[e′1]stary =

a1

a2

a3

 czyli e′1 = a1e1 + a2e2 + a3e3

[e′2]stary =

b1b2
b3

 czyli e′2 = b1e1 + b2e2 + b3e3

[e′3]stary =

c1

c2

c3

 czyli e′3 = c1e1 + c2e2 + c3e3

to

v = x′e′1 + y′e′2 + z′e′3 = x′(a1e1 + a2e2 + a3e3) + y′(b1e1 + b2e2 + b3e3) + z′(c1e1 + c2e2 + c3e3)
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= (x′a1 + y′b1 + z′c1)e1 + (x′a2 + y′b2 + z′c2)e2 + (x′a3 + y′b3 + z′c3)e3

Zatem stare wspóªrz¦dne wektora v to:

[v]stary =

x′a1 + y′b1 + z′c1

x′a2 + y′b2 + z′c2

x′a3 + y′b3 + z′c3

 =

a1 b1 c1

a2 b2 c2

a3 b3 c3

x′y′
z′

 = P · [v]nowy

Rozwa»my jeszcze raz Przykªad 1, tym razem opieraj¡c jego rozwi¡zanie na wzorze (9.1)

Przykªad 2

Dany jest nowy ukªad wspóªrz¦dnych, którego wersorami s¡ wektory
(

2
1
0

)
,
(

1
1
1

)
i
(

3
1
2

)
. Wy-

znacz:

(a) nowe wspóªrz¦dne wektora v =
(

1
2
0

)
(tzn. [v]stary =

(
1
2
0

)
),

(b) stare wspóªrz¦dne wektora w, takiego »e [w]nowy =
(

4
2
1

)
.

Rozwi¡zanie. Wersory nowego ukªadu wspóªrz¦dnych to
(

2
1
0

)
,
(

1
1
1

)
i
(

3
1
2

)
, co oznacza:

[e′1]stary =

2
1
0

 [e′2]stary =

1
1
1

 [e′3]stary =

3
1
2


Wobec tego macierz P z Faktu 9.2 ma posta¢:

P =

2 1 3
1 1 1
0 1 2


St¡d, zgodnie z Faktem 9.2, otrzymujemy:

(a) [v]stary =

2 1 3
1 1 1
0 1 2

 · [v]nowy, sk¡d

[v]nowy =

2 1 3
1 1 1
0 1 2

−1

· [v]stary = 1
3

 1 1 −2
−2 4 1
1 −2 1

1
2
0

 =

 1
2
−1


(b) [w]stary =

2 1 3
1 1 1
0 1 2

 · [w]nowy =

2 1 3
1 1 1
0 1 2

4
2
1

 =

13
7
4



Przykªad 3

Wersorami nowego ukªadu wspóªrz¦dnych s¡ wektory
(

1
1
1

)
,
(

1
−2
1

)
,
(

1
0
−1

)
. Wyznacz:

(a) w nowych wspóªrz¦dnych równanie pªaszczyzny, która w starych wspóªrz¦dnych ma rów-
nanie x+ y + 2z + 3 = 0,

(b) w starych wspóªrz¦dnych równanie pªaszczyzny, która w nowych wspóªrz¦dnych ma rów-
nanie 2x′ − y′ + z′ = 0.

Copyright c© Tomasz Elsner, 2019



218 ROZDZIA� 9. ZAMIANA UK�ADU WSPÓ�RZ�DNYCH W PRZESTRZENI R3

Rozwi¡zanie. (a) Zgodnie ze wzorem (9.1) mamy:xy
z

 =

1 1 1
1 −2 0
1 1 −1

x′y′
z′

 czyli


x = x′ + y′ + z′

y = x′ − 2y′

z = x′ + y′ − z′

St¡d:

x+ y + 2z + 3 = (x′ + y′ + z′) + (x′ − 2y′) + 2(x′ + y′ − z′) + 3 = 4x′ + y′ − z′ + 3

czyli równanie pªaszczyzny to 4x′ + y′ − z′ + 3 = 0.
(b) Wyznaczaj¡c z ukªadu równa« z punktu (a) wspóªrz¦dne x′, y′, z′ otrzymujemy:

x′ = 1
3x+ 1

3y + 1
3z

y′ = 1
6x−

1
3y + 1

6z

z′ = 1
2x−

1
2z

Wobec tego:

2x′ − y′ + z′ = 2(1
3x+ 1

3y + 1
3z)− (1

6x−
1
3y + 1

6z) + (1
2x−

1
2z) = x+ y

czyli równanie pªaszczyzny to x+ y = 0.

Je±li zmieniamy ukªad wspóªrz¦dnych, to zmianie ulegn¡ równie» macierze przeksztaªce«
liniowych. Dla rozró»nienia macierzy przeksztaªcenia liniowego F w starym i nowym ukªadzie
wspóªrz¦dnych, b¦dziemy je oznacza¢, odpowiednio, mstary(F ) i mnowy(F ).

De�nicja 9.3

Dane jest przeksztaªcenie liniowe F : R3 → R3. Macierz¡ F w starym ukªadzie wspóª-
rz¦dnych nazywamy macierz mstary(F ) speªniaj¡c¡ dla dowolnego wektora X warunek:

[F (X)]stary = mstary(F ) · [X]stary

Macierz¡ F w nowym ukªadzie wspóªrz¦dnych nazywamy macierz mnowy(F ) speªniaj¡c¡
dla dowolnego wektora X warunek:

[F (X)]nowy = mnowy(F ) · [X]nowy

Fakt 9.4

Je±li

a1 b1 c1

a2 b2 c2

a3 b3 c3

 jest macierz¡ przeksztaªcenia liniowego F : R3 → R3 w (nowym)

ukªadzie wspóªrz¦dnych o wersorach e′1, e
′
2 i e′3, to:a1

a2

a3

 = [F (e′1)]nowy

b1b2
b3

 = [F (e′2)]nowy

c1

c2

c3

 = [F (e′3)]nowy

(tzn. kolumny macierzy przeksztaªcenia to nowe wspóªrz¦dne obrazów nowych wersorów).
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Dowód.

[F (e′1)]nowy = mnowy(F ) · [e′1]nowy =

a1 b1 c1

a2 b2 c2

a3 b3 c3

1
0
0

 =

a1

a2

a3


[F (e′2)]nowy = mnowy(F ) · [e′2]nowy =

a1 b1 c1

a2 b2 c2

a3 b3 c3

0
1
0

 =

b1b2
b3


[F (e′3)]nowy = mnowy(F ) · [e′3]nowy =

a1 b1 c1

a2 b2 c2

a3 b3 c3

0
0
1

 =

c1

c2

c3



Operowanie macierzami przeksztaªce« w nowych i starych wspóªrz¦dnych bardzo upraszcza
nast¦puj¡cy fakt:

Fakt 9.5

Niech e′1, e
′
2 i e′3 b¦d¡ wersorami nowego ukªadu wspóªrz¦dnych, za± P macierz¡ zamiany

wspóªrz¦dnych (tzn. P = ([e′1]stary, [e
′
2]stary, [e

′
3]stary)). Wówczas dla dowolnego prze-

ksztaªcenia liniowego F : R3 → R3 zachodzi wzór:

mstary(F ) = P ·mnowy(F ) · P−1 (9.2)

Dowód. Zgodnie z De�nicj¡ 9.3 mamy:

[F (X)]nowy = mnowy(F ) · [X]nowy

Zgodnie z Faktem 9.2 zastosowanym dla wektora X:

[X]stary = P · [X]nowy, czyli P−1 · [X]stary = [X]nowy

Zgodnie z Faktem 9.2 zastosowanym dla wektora F (X):

[F (X)]stary = P · [F (X)]nowy

�¡cz¡c te wzory otrzymujemy:

[F (X)]stary = P · [F (X)]nowy = P ·mnowy(F ) · [X]nowy = P ·mnowy(F ) · P−1 · [X]stary

Porównuj¡c otrzymany wzór:

[F (X)]stary = P ·mnowy(F ) · P−1 · [X]stary

z de�nicj¡:
[F (X)]stary = mstary(F ) · [X]stary

dostajemy szukany wzór:
mstary(F ) = P ·mnowy(F ) · P−1

Przykªad 4

Dany jest nowy ukªad wspóªrz¦dnych o wersorach e′1 =
(

1
1
1

)
, e′2 =

(
1
−1
1

)
i e′3 =

(
1
1
−1

)
.
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(a) Przeksztaªcenie liniowe F : R3 → R3 w nowym ukªadzie ma macierz

0 1 2
3 0 2
1 4 1

. Wy-

znacz macierz F w starym ukªadzie.

(b) Przeksztaªcenie liniowe G : R3 → R3 w starym ukªadzie ma macierz

4 2 1
4 1 1
0 0 1

. Wy-

znacz macierz G w nowym ukªadzie.

Rozwi¡zanie. Macierz zamiany wspóªrz¦dnych to P =

1 1 1
1 −1 1
1 1 −1

. Zgodnie z Faktem 9.5:

mstary(F ) = P ·mnowy(F ) · P−1

=

1 1 1
1 −1 1
1 1 −1

0 1 2
3 0 2
1 4 1

1 1 1
1 −1 1
1 1 −1

−1

= 1
2

10 −1 −1
6 −7 −3
0 5 −1


oraz

mstary(G) = P ·mnowy(G) · P−1

sk¡d otrzymujemy:
mnowy(G) = P−1 ·mstary(G) · P

=

1 1 1
1 −1 1
1 1 −1

−14 2 1
4 1 1
0 0 1

1 1 1
1 −1 1
1 1 −1

 = 1
2

7 5 3
1 −1 1
6 2 6



Przykªad 5

Napisz macierz obrotu R o k¡t 60◦ wokóª prostej o równaniu parametrycznym
(
x
y
z

)
= t
(

1
2
2

)
.

Rozwi¡zanie. W poprzednich rozdziaªach wyprowadzili±my wzór na obrót wokóª osi Oz. Aby
skorzysta¢ z tego wzoru, wprowadzimy taki nowy ukªad wspóªrz¦dych, by rozwa»any obrót
byª obrotem wokóª osi Oz′. Nowy ukªad wspóªrz¦dnych musi by¢ prostok¡tny (wersory musz¡
by¢ parami prostopadªe) i nowe wersory musz¡ by¢ tej samej dªugo±ci. Przyjmujemy:

e′3 = 1
3

(
1
2
2

)
, e′2 = 1√

2

(
0
1
−1

)
, e′1 = e′2 × e′3 = 1

3
√

2

(
4
−1
−1

)
Wobec tego, zgodnie z Faktem 9.5, otrzymujemy:

mstary(R) = P ·mnowy(R) · P−1

=


4

3
√

2
0 1

3

− 1
3
√

2
1√
2

2
3

− 1
3
√

2
− 1√

2
2
3


cos 60◦ − sin 60◦ 0

sin 60◦ cos 60◦ 0
0 0 1




4
3
√

2
0 1

3

− 1
3
√

2
1√
2

2
3

− 1
3
√

2
− 1√

2
2
3


−1
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0 UK�ADY RÓWNA�

Rozwi¡zywanie ukªadów równa« metod¡ podstawiania.

ZADANIA

1. Rozwi¡» wymienione poni»ej ukªady 3 równa« z 3 niewiadomymi metod¡ podstawiania.
x− 4y + 5z = 1

x− 3y + 6z = 3

−x+ 7y − z = 6

(a)


2x+ 5y + z = 1

3x+ 8y + z = 2

x+ 5y − z = 4

(b)


x+ 3y + z = 1

2x+ 4y + z = 1

2x+ 8y + 4z = 5

(c)

2. Rozwi¡» wymienione poni»ej ukªady 4 równa« z 4 niewiadomymi metod¡ podstawiania.
x+ 2y + z + 3t = 4

x+ 3y + 3z + 5t = 7

−2x− y + 5z + 2t = 3

−2x− 2y + 4z + 3t = 3

(a)


3x+ y + 2z + t = 6

x+ y + z − t = 2

7x+ y + 3z + 4t = 12

2x− y − z + 2t = 1

(b)


x+ y + 2z + t = 3

x+ 2y + 3z + 2t = 4

x+ 2y + 5z + 3t = 9

−x+ y + 2z + 3t = 5

(c)

3. Pola powierzchni ±cian pewnego prostopadªo±cianu s¡ równe 24, 18 i 27. Znajd¹ wymiary
tego prostopadªo±cianu.

4. Ka»dy wyraz pewnego pi¦ciowyrazowego ci¡gu (poza wyrazami pierwszym i ostatnim) jest
sum¡ wyrazu po nim nast¦puj¡cego i wyrazu go poprzedzaj¡cego. Wiemy te», »e suma
wszystkich wyrazów ci¡gu wynosi 5 oraz »e suma pierwszego, drugiego i ostatniego wyrazu
wynosi 2. Znajd¹ ten ci¡g.

5. Znajd¹ taki wielomian W (x) stopnia drugiego, »e W (1) = 2, W (2) = 3, W (3) = 5.

6. Znajd¹ równanie okr¦gu przechodz¡cego przez punkty A =
(−1

3

)
, B =

(
7
−1

)
, C =

(−2
−4

)
.

7. Korzystaj¡c z faktu, »e ±rodek odcinka o ko«cach ( x1y1 ) i ( x2y2 ) ma wspóªrz¦dne
( 1

2 (x1+x2)

1
2 (y1+y2)

)
,

znajd¹ wspóªrz¦dne wierzchoªków pi¦ciok¡ta, którego ±rodki kolejnych boków s¡ punktami
A =

(−1
2

)
, B = ( 0

6 ), C = ( 5
5 ), D = ( 6

1 ), E = ( 2
0 ).

8. Kwadrat magiczny to tablica 3 × 3 wypeªniona liczbami tak, »e suma liczb w ka»dym
wierszu, w ka»dej kolumnie i na ka»dej z obu przek¡tnych jest taka sama. Znajd¹ taki
kwadrat magiczny, by w jego ±rodkowym polu byªa liczba 5, w lewym górnym rogu � liczba
6, a w prawym górnym rogu � liczba 8.
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1.1 POJ�CIE WEKTORA

Wektor na pªaszczy¹nie (de�nicja geometryczna). Wspóªrz¦dne wektora (zapis kolumnowy). Dodawanie

wektorów i mno»enie przez skalar. Wektor przeciwny i odejmowanie wektorów. Wªasno±ci dziaªa« na

wektorach. Wspóªliniowo±¢. Kombinacja liniowa dwóch wektorów. Wersory. Wektory w geometrii.

Dªugo±¢ wektora. Równanie okr¦gu. Wzajemne poªo»enie dwóch okr¦gów. Nierówno±¢ trójk¡ta.

�WICZENIA

1. Przez punkt P na pªaszczy¹nie poprowadzono proste prostopadªe do osi ukªadu wspóª-
rz¦dnych. Znajd¹ wspóªrz¦dne punktów przeci¦cia tych prostych z osiami, oraz odlegªo±ci
punktu P od ka»dej z osi, je±li:

P = ( 3
7 )(a) P =

(−4
−2

)
(b) P = ( xy )(c)

2. Wyznacz wspóªrz¦dne wektorów
−−→
AB,

−−→
BC,

−→
AC, je±li A = ( 1

3 ), B =
(−1

5

)
, C =

(
2
−1

)
.

3. Wiedz¡c, »e A = ( 2
3 ),
−−→
AB =

(−3
8

)
,
−→
CA = ( 1

5 ) wyznacz wspóªrz¦dne punktów B i C.

4. Dane s¡ wektory ~u = ( 3
4 ) i ~v = ( 2

1 ). Wyznacz wspóªrz¦dne wektorów −~u, ~u + ~v, ~u − ~v,
2~u+ 3~v, 4~u− 3~v.

5. Znajd¹ taki wektor ~v, »e ( 7
1 )− 3~v = ( 1

2 ).

6. W±ród wektorów: ( 2
1 ), ( 5

0 ),
(−1

2

)
, ( 0

0 ), ( 6
3 ), ( 1

0 ),
(

2
−4

)
wska» wszystkie pary wektorów

wspóªliniowych.

7. Znajd¹ dªugo±ci wszystkich wektorów z poprzedniego ¢wiczenia.

8. Punkty A = ( 1
2 ), B = ( 3

1 ), C = ( 4
5 ), D =

(−1
5

)
s¡ wierzchoªkami pewnego czworok¡ta.

Oblicz dªugo±ci boków i przek¡tnych tego czworok¡ta.

9. Podaj przykªad niezerowego wektora v, takiego »e |u+ v| = |u|+ |v|, je±li u = ( 2
3 ).

10. Napisz równanie okr¦gu o ±rodku S i promieniu r, je±li:

S = ( 2
3 ) i r = 3,(a) S =

(−5
1

)
i r = 2.(b)

11. Okre±l wzajemne poªo»enie okr¦gów o ±rodkach A1 i A2 i promieniach r1 i r2, gdzie:

A1 = ( 1
2 ), r1 = 1, A2 =

(
5
−1

)
, r2 = 4,(a) A1 = ( 4

1 ), r1 = 8, A2 = ( 5
5 ), r2 = 3,(b)

A1 = ( 2
6 ), r1 = 4, A2 = ( 5

3 ), r2 = 2,(c) A1 = ( 7
2 ), r1 = 2, A2 = ( 3

8 ), r2 = 5,(d)

ZADANIA

1. Dane s¡ wektory ~u = ( 1
2 ) i ~v = ( 1

3 ). Przedstaw ka»dy z wektorów ( 1
1 ), ( 1

0 ), ( 0
1 ) w postaci

kombinacji liniowej wektorów ~u i ~v.

2. Znajd¹ na osi Ox wszystkie punkty równooddalone od punktów A =
(−1

4

)
i B = ( 6

3 ).

3. Dane s¡ punkty A =
(

2
−1

)
, B = ( 1

3 ), C = ( 0
4 ). Znajd¹ taki punkt D na osi Ox, »eby:

odcinki AB i CD byªy równolegªe,(a) odcinki AC i BD byªy równolegªe.(b)

4. Znajd¹ takie wektory ~u i ~v, które speªniaj¡ ukªad równa«:

{
3~u− 2~v =

(−1
4

)
2~u+ ~v = ( 4

5 )
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5. Niech A = ( 1
1 ), B =

(
5
−7

)
. Znajd¹ wspóªrz¦dne punktu P dziel¡cego odcinek AB:

w stosunku 1 : 3,(a) w stosunku 1 : 4,(b) w stosunku 3 : 5.(c)

6. �rodkami boków pewnego trójk¡ta s¡ punkty P = ( 2
3 ), Q = ( 5

1 ), R = ( 3
4 ). Znajd¹ wspóª-

rz¦dne wierzchoªków tego trójk¡ta.

7. Znajd¹ ±rodek i promie« okr¦gu zadanego równaniem:

x2 + 6x+ y2 + 8y = 0,(a) x2 + x+ y2 + 2y = 4,(b) x2 − 3x+ y2 + y = 0.(c)

8. O wektorach u i v wiemy, »e |u| = 2 i |v| = 5. Jaka mo»e by¢ dªugo±¢ wektora u+ v? Podaj
wszystkie mo»liwo±ci.

9. Uzasadnij, »e dla dowolnych punktów pªaszczyzny A, B, C, D, E speªniony jest warunek:
−−→
AB +

−−→
BC +

−−→
CD =

−−→
AD,(a)

−−→
AB +

−−→
BC +

−−→
CD +

−−→
DE =

−→
AE.(b)

10. W równolegªoboku ABCD oznaczmy
−−→
AB = ~u i

−−→
AD = ~v. Wyznacz (przy pomocy ~u i ~v)

wektory
−→
AC,

−−→
BD,

−→
CA,

−−→
DB.

11. Wyznacz wspóªrz¦dne czwartego wierzchoªka równolegªoboku ABCD, je±li znane s¡ wspóª-
rz¦dne nast¦puj¡cych trzech jego wierzchoªków:

A = ( 3
2 ), B =

(−1
0

)
, C = ( 2

1 ),(a) A = ( 1
1 ), B = ( 3

1 ), D =
(−2
−1

)
,(b)

12. Ustal, czy okr¦gi o ±rednicach AB i CD, gdzie A = ( 1
2 ), B = ( 5

4 ), C = ( 8
0 ), D = ( 4

4 )
przecinaj¡ si¦.

13. *Oznaczmy przez K, L, M , N ±rodki kolejnych boków czworok¡ta ABCD. Udowodnij, »e
±rodek odcinka KM pokrywa si¦ ze ±rodkiem odcinka LN .

14. *Punkt P dzieli bok AB trójk¡ta ABC w stosunku 2 : 1, za± punkt S dzieli odcinek CP w
stosunku 1 : 3. Wyznacz wspóªrz¦dne punktu S, je±li A = ( 1

3 ), B = ( 7
6 ), C = ( 3

1 ).

15. *Na pªaszczy¹nie dany jest prostok¡t o bokach dªugo±ci a i b. Uzasadnij, »e dla dowol-
nego punktu P ±rednia kwadratów odlegªo±ci P od wierzchoªków prostok¡ta oraz kwadrat
odlegªo±ci P od ±rodka prostok¡ta ró»ni¡ si¦ o pewn¡ staª¡, niezale»n¡ od wyboru punktu
P .

16. *Uzasadnij pozostaªe wªasno±ci dziaªa« na wektorach z Faktu 1.12.
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1.2 RÓWNANIE PROSTEJ

Równanie ogólne prostej. Równanie parametryczne prostej (posta¢ wektorowa i we wspóªrz¦dnych).

Wektor kierunkowy prostej.

�WICZENIA

1. Sprawd¹, które z punktów ( 1
1 ), ( 2

3 ),
(−1

2

)
le»¡ na prostej o równaniu:

( xy ) = t ( 1
1 ) +

(−2
1

)
,(a) 2x− 3y + 1 = 0.(b)

2. Napisz trzy ró»ne:

równania ogólne prostej o równaniu 3x− 2y + 7 = 0,(a)

równania parametryczne prostej o równaniu ( xy ) = t ( 3
1 ) + ( 1

2 ).(b)

3. Zamie« równanie ogólne podanej prostej na równanie parametryczne:

2y − 5x+ 3 = 0,(a) 4x+ 3y + 1 = 0,(b) −2x+ y + 1 = 0.(c)

4. Zamie« równanie parametryczne podanej prostej na równanie ogólne:

( xy ) = t
(−1

2

)
+ ( 1

1 ),(a) ( xy ) = t ( 1
2 ) + ( 3

1 ),(b) ( xy ) = t ( 1
1 ) +

(−1
2

)
.(c)

5. Napisz równanie prostej przechodz¡cej przez punkt ( 4
5 ) i równolegªej do wektora

(−1
2

)
:

w postaci parametrycznej,(a) w postaci ogólnej.(b)

6. Napisz równanie prostej przechodz¡cej przez punkt ( 1
2 ), która jest równolegªa do prostej:

o równaniu ( xy ) = t ( 4
1 ) + ( 1

1 ),(a) o równaniu 2x+ 3y − 4 = 0.(b)

7. Dane s¡ punkty P =
(−1

4

)
i Q =

(
6
−1

)
. Napisz równanie prostej PQ:

w postaci parametrycznej,(a) w postaci ogólnej.(b)

8. Znajd¹ punkt przeci¦cia prostych:

4x− y − 2 = 0 i x− 3y + 5 = 0,(a) 3x+ y + 1 = 0 i ( xy ) = t
(−2

1

)
+ ( 1

0 ),(b)

( xy ) = t ( 1
2 )+( 1

1 ) i ( xy ) = t ( 3
1 )+

(−1
2

)
.(c)

ZADANIA

1. Dany jest trójk¡t ABC, gdzie A = ( 1
1 ), B = ( 5

2 ), C =
(−1

3

)
. Przez punkt C poprowadzono

prost¡ równolegª¡ do boku AB, a przez punkt B poprowadzono prost¡ równolegª¡ do boku
AC. Wyznacz punkt przeci¦cia tych prostych posªuguj¡c si¦:

równaniami prostych w postaci ogólnej,(a) równaniami w postaci parametrycznej,(b)

rachunkiem wektorowym.(c)

2. Dany jest czworok¡t ABCD, gdzie A = ( 1
2 ), B = ( 3

1 ), C = ( 4
5 ), D =

(−1
5

)
. Wyznacz

punkt przeci¦cia przek¡tnych tego czworok¡ta, posªuguj¡c si¦ równaniami prostych AC i
BD:

w postaci ogólnej,(a) w postaci parametrycznej,(b)

jednym w postaci parametrycznej, a drugim w postaci ogólnej.(c)
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3. Rozstrzygnij, czy w±ród podanych poni»ej punktów s¡ trzy punkty le»¡ce na jednej prostej
oraz wska» wszystkie takie trójki punktów: ( 2

1 ),
(

0
−5

)
, ( 0

0 ), ( 3
4 ), ( 6

3 ).

4. Znajd¹ punkty przeci¦cia prostej o równaniu x− 2y+ 1 = 0 z okr¦giem o ±rodku w punkcie
( 1

2 ) i promieniu 2.

5. *Wyznacz punkt przeci¦cia prostej o równaniu 3x+αy−1 = 0 (gdzie α jest pewn¡ ustalon¡
liczb¡ rzeczywist¡) z prost¡ o równaniu ( xy ) = t

(−1
4

)
+ ( 1

1 ) .

6. *Uzasadnij, »e wspóªczynnik kierunkowy prostej, tzn. wspóªczynnik a w równaniu y = ax+b
to tangens k¡ta nachylenia prostej do dodatniej póªosi Ox.
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1.3 ILOCZYN SKALARNY

Iloczyn skalarny (wzór geometryczny i algebraiczny). Posta¢ biegunowa wektora. Nierówno±¢ Schwarza.

K¡t mi¦dzy wektorami i mi¦dzy prostymi. Wektor normalny do prostej. Zastosowania iloczynu skalarnego

(twierdzenie kosinusów, rzut prostopadªy wektora na wektor, odlegªo±¢ punktu od prostej). Znakowana

odlegªo±¢ od prostej.

�WICZENIA

1. Wyznacz cosinus k¡ta mi¦dzy ka»d¡ par¡ spo±ród wektorów: u = ( 1
2 ), v =

(−4
2

)
, w = ( 1

1 ).
Ustal, który z tych k¡tów jest ostry, który prosty, a który rozwarty.

2. Zapisz wektory ( 1
1 ) i

(−1
1

)
w postaci biegunowej, tzn w postaci

(
r cos θ
r sin θ

)
dla pewnych r i θ.

3. Znajd¹ wektor jednostkowy, który jest: (a) wspóªliniowy, (b) prostopadªy, do wektora ( 3
4 ).

Ile jest takich wektorów?

4. Oblicz odlegªo±¢ (oraz znakowan¡ odlegªo±¢) podanego punktu od prostej o podanym rów-
naniu:

( 2
3 ) i 3x− 4y + 2 = 0,(a) ( 6

1 ) i −x+ 5y+ 1 = 0,(b)
(

1
−1

)
i 2x−5y+3 = 0.(c)

5. Napisz równanie ogólne i parametryczne prostej przechodz¡cej przez punkt ( 1
3 ), która jest:

(a) prostopadªa, (b) równolegªa, do wektora ( 4
1 ).

6. Napisz równanie prostej przechodz¡cej przez punkt ( 2
1 ), która jest: (a) prostopadªa, (b) rów-

nolegªa, do prostej o równaniu 5x− 4y + 3 = 0.

7. Napisz równanie prostej przechodz¡cej przez punkt ( 1
3 ), która jest: (a) prostopadªa, (b) rów-

nolegªa, do prostej o równaniu ( xy ) = t ( 1
7 ) + ( 3

4 ).

8. Znajd¹ rzut wektora u na wektor v oraz rzut wektora v na wektor u, gdzie u = ( 1
2 ), v = ( 3

1 ).

9. Je±li |u| = 5, za± |v| = 3, to jakie warto±ci mo»e przyjmowa¢ iloczyn skalarny u ◦ v? Podaj
wszystkie mo»liwo±ci.

ZADANIA

1. Dany jest czworok¡t ABCD, gdzie A = ( 0
2 ), B = ( 2

1 ), C = ( 3
5 ), D = ( 1

4 ). Wyznacz miary
wszystkich k¡tów tego czworok¡ta. Ustal, które z tych k¡tów s¡ ostre, które proste, a które
rozwarte.

2. W trójkacie ABC dane s¡ wspóªrz¦dne wierzchoªków A = ( 1
2 ) i B = ( 5

8 ). Ustal, czy trójk¡t
ten jest ostrok¡tny, prostok¡tny, czy rozwartok¡tny, je±li:

C = ( 8
6 ),(a) C =

(−2
6

)
,(b) C = ( 4

3 ).(c)

Oblicz dªugo±ci boków w znalezionym trójk¡cie prostok¡tnym i upewnij si¦, »e speªniaj¡
one Twierdzenie Pitagorasa.

3. Dany jest trójk¡t ABC o wierzchoªkach A = ( 1
2 ), B = ( 3

1 ), C = ( 4
4 ). Wyznacz:

równania ogólne prostych zawieraj¡cych boki trójk¡ta ABC,(a)

dªugo±ci wysoko±ci trójk¡ta ABC (przy pomocy wzoru na odlegªo±¢ punktu od prostej),(b)

równania ogólne prostych zawieraj¡cych wysoko±ci trójk¡ta ABC,(c)

punkt przeci¦cia wysoko±ci trójk¡ta ABC.(d)
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4. W trójk¡cie z poprzedniego zadania wyznacz spodek ka»dej wysoko±ci (tzn. koniec wyso-
ko±ci le»¡cy na podstawie trójk¡ta) na dwa sposoby:

wyznaczaj¡c punkt przeci¦cia prostej zawieraj¡cej bok i prostej zawieraj¡cej wysoko±¢,(a)

wykorzystuj¡c wzór na rzut wektora na wektor oraz rachunek wektorowy.(b)

5. Wyznacz miar¦ k¡ta ostrego mi¦dzy prostymi:

2x+ 3y − 1 = 0 i 2x− y + 5 = 0,(a) ( xy ) = t ( 2
1 )+( 3

0 ) i ( xy ) = t
(−1

1

)
+( 3

2 ).(b)

6. Oblicz odlegªo±¢ punktu ( 4
1 ) od prostej o równaniu ( xy ) = t ( 3

4 ) + ( 1
2 ).

7. Dany jest punkt P =
(−1

2

)
oraz prosta o równaniu ( xy ) = t

(
3
−1

)
+( 0

1 ). Na tej prostej obrano

punkt A = ( 0
1 ). Wyznacz rzut wektora

−→
AP na wektor kierunkowy prostej i wykorzystaj

otrzymany wynik do znalezienia rzutu punktu P na t¡ prost¡.

8. Ustal wzajemne poªo»enie prostej o równaniu 3x− 4y + 1 = 0 oraz okr¦gu o równaniu:

x2 + y2 − 2y = 0,(a) x2−4x+y2+2y = −1,(b) x2−6x+y2+2y = −1.(c)

9. Wiedz¡c, »e u ◦ v = 3, v ◦ w = 4 u ◦ w = 0 oraz |v| = 1 i |u| = 5, oblicz:

v ◦ (u+ v),(a) (u+ v) ◦ (u− v),(b) (u+ w) ◦ (u+ v).(c)

10. Napisz równanie stycznej do okr¦gu o równaniu (x− 2)2 + (y − 3)2 = 5, która przechodzi:
(a) przez punkt ( 1

1 ), (b) przez punkt
(−1

2

)
. Ile jest takich stycznych? Wyznacz je wszystkie.

11. Znajd¹ wektor v tworz¡cy jednakowe k¡ty z wektorami A = ( 1
7 ) i B = ( 1

1 ), a nast¦pnie
wykorzystaj go do napisania równania prostej b¦d¡cej dwusieczn¡ k¡ta ∠AOB (tzn. prostej
tworz¡cej jednakowe k¡ty z ramionami k¡ta).

12. *Punkty A = ( a0 ) i B =
(−a

0

)
s¡ ko«cami ±rednicy pewnego okr¦gu. Uzasadnij (przy

pomocy iloczynu skalarnego), »e dla dowolnego punktu C = ( xy ) le»¡cego na tym okr¦gu,
k¡t ∠ACB jest prosty.

13. *Uzasadnij, »e dla dowolnych wektorów u i v zachodz¡ wzory:

(u+ v) ◦ (u− v) = |u|2 − |v|2(a) |u+ v|2 + |u− v|2 = 2|u|2 + 2|v|2(b)

Zinterpretuj oba te wzory odwoªuj¡c si¦ do boków i przek¡tnych równolegªoboku rozpi¦tego
przez wektory u i v.
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1.4 WYZNACZNIK

Wyznacznik pary wektorów. Pole trójk¡ta i równolegªoboku. Orientacja pary wektorów. Pole dowol-

nego wielok¡ta jako suma wyznaczników. Znakowane pole. Nierówno±¢ póªpªaszczyzny. Geometryczna

interpretacja ukªadu równa«. Wzory Cramera. Rozkªad wektora na kombinacj¦ liniow¡ dwóch niewspóª-

liniowych wektorów.

�WICZENIA

1. Oblicz wyznacznik pary wektorów det(u, v), je±li:

u = ( 1
2 ), v = ( 2

1 ),(a) u =
(−3

5

)
, v =

(−1
−2

)
,(b) u = ( 3

1 ), v =
(

4
−2

)
.(c)

2. Sprawd¹, które z poni»szych par wektorów maj¡ dodatni¡, a które ujemn¡ orientacj¦:

(( 2
3 ) , ( 1

4 )),(a)
((−2

1

)
,
(

5
−1

))
,(b)

(
( 1

0 ) ,
(−3

2

))
,(c)

((
1
−1

)
,
(−3

1

))
.(d)

3. Oblicz pole (a) trójk¡ta, (b) równolegªoboku rozpi¦tego przez wektory
(−1

3

)
i ( 2

5 ).

4. W±ród punktów ( 1
1 ), ( 0

3 ), ( 2
3 ), ( 5

1 ),
(−1

2

)
wska» wszystkie pary punktów le»¡cych po prze-

ciwnych stronach prostej o równaniu 3x− 4y + 2 = 0.

5. Oblicz pole trójk¡ta ABC, gdzie A = ( 2
3 ), B =

(−1
4

)
, C = ( 5

1 ).

6. Rozwi¡» metod¡ wyznaczników nast¦puj¡ce ukªady równa«:{
7x− 5y = −1

5x+ 2y = 3
(a)

{
4x− 3y = −3

2x+ y = 6
(b)

{
x− 3y = 1

−3x+ 9y = 3
(c)

ZADANIA

1. Rozstrzygnij, które z punktów ( 2
1 ),

(−2
3

)
, ( 1

1 ),
(

4
−2

)
le»¡ �powy»ej�, a której �poni»ej�

prostej o równaniu 2x+ 3y − 4 = 0.

2. Oblicz pole trójk¡ta o wierzchoªkach A = ( a0 ), B =
(

0
b

)
, C = ( 2

3 ), gdzie a i b s¡ pewnymi
liczbami rzeczywistymi.

3. Oblicz pole:

czworok¡ta ABCD, gdzie A = ( 1
2 ), B = ( 4

3 ), C = ( 3
5 ), D =

(−2
3

)
,(a)

pi¦ciok¡ta ABCDE, gdzie A =
(−1

1

)
, B =

(
2
−3

)
, C =

(
4
−1

)
, D = ( 5

4 ), E = ( 0
6 ).(b)

4. Przedstaw wektor
(

1
−2

)
w postaci kombinacji liniowej wektorów ( 1

1 ) i ( 2
3 ), rozwi¡zuj¡c

odpowiedni ukªad równa« metod¡ wyznaczników.

5. Ustal przy pomocy wyznacznika, dla jakich warto±ci parametru a wektory ( a+1
a ) i

(
8

a+3

)
s¡ wspóªliniowe.

6. Wyznacz wszystkie takie punkty, których odlegªo±¢ od prostej o równaniu x − y + 3 = 0

wynosi
√

2
2 , za± odlegªo±¢ od punktu ( 2

2 ) wynosi
√

10.

7. Dane s¡ wierzchoªki A = ( 0
0 ) i B = ( 1

3 ) trójk¡ta ABC. Wyznacz wszystkie mo»liwe
poªo»enia wierzchoªka C, je±li pole trójk¡ta wynosi 3, a miara k¡ta α przy wierzchoªku A
speªnia warunek cosα =

√
10

10 .
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2.1 PRZEKSZTA�CENIA LINIOWE I AFINICZNE

Przeksztaªcenia liniowe i a�niczne pªaszczyzny. Przykªady: translacja, obrót, odbicie, rzut prostok¡tny,

rzut uko±ny, jednokªadno±¢, powinowactwo prostok¡tne, powinowactwo ±cinaj¡ce. Macierz przeksztaªce-

nia liniowego.

�WICZENIA

1. Ustal, kiedy nast¦puj¡ce przeksztaªcenie a�niczne jest przeksztaªceniem liniowym:

obrót(a) odbicie(b) jednokªadno±¢(c)

rzut (prostok¡tny)(d) rzut uko±ny(e) powinowactwo prostok¡tne(f)

powinowactwo ±cinaj¡ce(g) translacja(h) symetria ±rodkowa(i)

2. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

przeksztaªcenie zerowe,(a) przeksztaªcenie identyczno±ciowe.(b)

3. Napisz (korzystaj¡c z odpowiedniego wzoru) macierz obrotu wokóª punktu O o k¡t:

90◦(a) −90◦(b) −60◦(c) 180◦(d) 30◦(e)
Dla ka»dego obrotu zaznacz na rysunku obrazy punktów ( 1

0 ) i ( 0
1 ).

4. Napisz wzory nast¦puj¡cych przeksztaªce« a�nicznych:

translacja o wektor ( 1
2 ),(a) odbicie wzgl¦dem osi Ox,(b)

odbicie wzgl¦dem osi Oy,(c) symetria ±rodkowa wzgl¦dem punktuO,(d)

jednokªadno±¢ o ±rodku O i skali −2,(e) jednokªadno±¢ o ±rodku O i skali 1
2 ,(f)

powinowactwo prostok¡tne o osi Ox i
skali 2,

(g) powinowactwo prostok¡tne o osi Oy i
skali 2,

(h)

powinowactwo ±cinaj¡ce o osiOx i wek-
torze ( 1

0 ),
(i) powinowactwo ±cinaj¡ce o osiOy i wek-

torze ( 0
1 ).

(j)

W przypadku przeksztaªce« liniowych, podaj macierz przeksztaªcenia.

5. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

rzut (prostok¡tny) na prost¡ o równaniu 2x+ y = 0,(a)

odbicie wzgl¦dem prostej o równaniu 2x+ y = 0,(b)

powinowactwo prostok¡tne o skali −2 i osi o równaniu 2x+ y = 0,(c)

powinowactwo prostok¡tne o skali 1
2 i osi o równaniu 2x+ y = 0,(d)

rzut uko±ny na prost¡ o równaniu 2x+ y = 0 w kierunku wektora
(−1

1

)
,(e)

powinowactwo ±cinaj¡ce o osi b¦d¡cej prost¡ o równaniu 2x+ y = 0 i wektorze
(

1
−2

)
.(f)

6. Znajd¹ obrazy punktów ( 1
0 ), ( 0

1 ) i ( 1
1 ) przez ka»de z przeksztaªce« z ¢wiczenia 5.

7. Je±li rzut prostok¡tny na prost¡ ` potraktujemy jako szczególny przypadek rzutu uko±nego
na prost¡ `, to jaki wektor b¦dzie kierunkiem rzutu?

8. Uzasadnij, »e ka»da z poni»szych par skªada si¦ z dwóch równych (jednakowych) przeksztaª-
ce« pªaszczyzny:

obrót o k¡t −θ wokóª punktu S i obrót o k¡t 2π − θ wokóª punktu S,(a)

symetria ±rodkowa o ±rodku S i obrót o k¡t π wokóª punktu S,(b)

jednokªadno±¢ o skali 1 i identyczno±¢.(c)
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1. Napisz w postaci R(X) = AX + v wzór obrotu wokóª punktu P = ( 1
1 ) o k¡t:

90◦(a) −90◦(b) −60◦(c) 180◦(d) 30◦(e)

Porównaj otrzymane macierze A z macierzami obrotu o ten sam k¡t wokóª punktu O (otrzy-
manymi w ¢wiczeniu 3). Dla ka»dego obrotu zaznacz na rysunku obrazy punktów ( 1

0 ) i ( 0
1 ).

2. Napisz w postaci F (X) = AX + v wzory nast¦puj¡cych przeksztaªce« a�nicznych:

translacja o wektor ( 5
3 ),(a) odbicie wzgl¦dem prostej y = 2,(b)

odbicie wzgl¦dem prostej x = 3,(c) symetria ±rodkowa wzgl¦dem punktu ( 4
1 ),(d)

jednokªadno±¢ o ±rodku ( 2
1 ) i skali −2,(e) jednokªadno±¢ o ±rodku ( 2

1 ) i skali 1
2 ,(f)

powinowactwo prostok¡tne o osi y = 2
i skali 2,

(g) powinowactwo prostok¡tne o osi x = 3
i skali 2,

(h)

powinowactwo ±cinaj¡ce o osi y = 2 i
wektorze ( 1

0 ),
(i) powinowactwo ±cinaj¡ce o osi x = 3 i

wektorze ( 0
1 ).

(j)

Porównaj otrzymane macierze A z macierzami z ¢wiczenia 4.

3. Niech ` b¦dzie prost¡ o równaniu 3x− y + 2 = 0. Napisz w postaci F (X) = AX + v wzory
nast¦puj¡cych przeksztaªce« a�nicznych:

rzut (prostok¡tny) na prost¡ `(a)

odbicie wzgl¦dem prostej `,(b)

powinowactwo prostok¡tne o skali 4 i osi `,(c)

powinowactwo prostok¡tne o skali −1
3 i osi `,(d)

4. Napisz w postaci F (X) = AX+v wzór rzutu uko±nego na prost¡ o równaniu 4x−3y+1 = 0
w kierunku wektora ( 2

3 ).

5. Napisz w postaci F (X) = AX + v wzór powinowactwa ±cinaj¡cego o osi 3x+ 4y − 1 = 0 i
wektorze

(
4
−3

)
.

6. Znajd¹ obrazy punktu ( 1
2 ) przez ka»de z przeksztaªce« z zadania 2.

7. Znajd¹ rzut (prostok¡tny) punktu ( 1
3 ) na prost¡ o równaniu x + y + 1 = 0, a nast¦pnie

punkt symetryczny do punktu ( 1
3 ) wzgl¦dem tej prostej.

8. Uzasadnij, »e ka»da z poni»szych par skªada si¦ z dwóch równych (jednakowych) przeksztaª-
ce« pªaszczyzny:

symetria ±rodkowa o ±rodku S i jednokªadno±¢ o ±rodku S i skali −1,(a)

odbicie wzgl¦dem prostej ` i powinowactwo prostok¡tne o osi ` i skali −1,(b)

powinowactwo prostok¡tne o skali 1 i identyczno±¢(c)

9. *Odbiciem z po±lizgiem o osi ` i wektorze v (równolegªym do `) nazywamy przeksztaªce-
nie pªaszczyzny, które ka»dy punkt pªaszczyzny przesuwa o wektor v, a nast¦pnie odbija
wzgl¦dem prostej `. Napisz wzór odbicia z po±lizgiem o osi x+ y + 1 = 0 i wektorze

(
2
−2

)
.
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2.2 MACIERZE

Macierze. Dodawanie macierzy i mno»enie macierzy przez skalar. Mno»enie macierzy. Addytywno±¢ i

jednorodno±¢ przeksztaªcenia. Wyznaczanie macierzy przeksztaªcenia liniowego na podstawie obrazów

dwóch punktów. Punkty staªe przeksztaªcenia.

�WICZENIA

1. Oblicz 2A+B, 3C −B +A, A− C, A+B + C, gdzie:

A =

(
1 1
−1 3

)
, B =

(
1 2
0 −3

)
, C =

(
3 −2
1 0

)

2. Ustal, które pary poni»szych macierzy mo»na pomno»y¢ i wykonaj te mno»enia. Pami¦taj,
»e mno»enie macierzy nie jest przemienne.

(
3 2 1
−1 4 2

) 2 1
3 −1
2 −2

 (
2 7 1

) (
4 1
−1 0

) (
3
2

) (
1 −1
0 4

) (
3 −1

)  1
3
−2



3. Sprawd¹, »e macierz I =

(
1 0
0 1

)
ma t¦ wªasno±¢, »e dla dowolnej macierzy A rozmiaru

2× 2 zachodzi A · I = I ·A = A oraz »e dla dowolnego wektora v ∈ R2 zachodzi I · v = v

4. Sprawd¹, »e dla dowolnego wektora X zachodzi warunek
(
a 0
0 a

)
X = aX.

5. O przeksztaªceniu liniowym F : R2 → R2 wiadomo, »e dla pewnych wektorów u i v zachodzi
F (u) =

(
3
−1

)
oraz F (v) = ( 5

2 ). Oblicz F (u+ v), F (u− v) i F (2u+ 3v).

6. O przeksztaªceniu liniowym F : R2 → R2 wiadomo, »e dla pewnych wektorów u i v zachodzi
F (u+ v) = ( 2

3 ) oraz F (u− v) = ( 4
1 ). Oblicz F (u) i F (v).

7. Znajd¹ macierz przeksztaªcenia liniowego przeprowadzaj¡cego punkty ( 1
0 ) i ( 0

1 ) odpowiednio
na ( 2

3 ) i ( 4
1 ).

8. Wyznacz (bez »adnych rachunków) obrazy wersorów oraz macierze nast¦puj¡cych prze-
ksztaªce« liniowych:

symetria ±rodkowa wzgl¦dem O,(a) odbicie wzgl¦dem osi Ox,(b)

odbicie wzgl¦dem osi Oy,(c) obrót o −90◦ wokóª O,(d)

jednokªadno±¢ o ±rodku O i skali 2,(e) powinowactwo prostok¡tne o osi Ox i
skali 1

2 .
(f)

9. Ile jest takich przeksztaªce« liniowych pªaszczyzny, które punkty ( 1
1 ) i ( 2

1 ) przeksztaªcaj¡
odpowiednio na punkty ( 2

1 ) i ( 4
0 )? Znajd¹ je wszystkie.

10. Ile jest takich przeksztaªce« a�nicznych pªaszczyzny, które punkty ( 0
1 ), ( 1

0 ) i ( 1
1 ) przepro-

wadzaj¡ odpowiednio na punkty ( 3
2 ), ( 2

1 ), ( 4
2 )? Wyznacz wszystkie takie przeksztaªcenia.

11. Wyznacz (bez »adnych oblicze«) wszystkie punkty staªe ka»dego z przeksztaªce« z ¢wicze«
4�5 do rozdziaªu 2.1.
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1. Macierz postaci D =

(
a 0
0 b

)
nazywamy macierz¡ diagonaln¡. Co si¦ dzieje z wierszami

lub kolumnami macierzy 2× 2, je±li pomno»ymy j¡ przez macierz diagonaln¡ D:

z lewej strony,(a) z prawej strony.(b)

2. Sprawd¹, »e je±li A =

(
a 0
0 a

)
, to dla dowolnej macierzy B rozmiaru 2×2 zachodzi warunek

A ·B = B ·A. Wytªumacz, powoªuj¡c si¦ na poprzednie zadanie.

3. Co si¦ dzieje z wierszami lub kolumnami macierzy
(
a b
c d

)
, je±li pomno»ymy j¡:

z lewej strony przez
(

1 1
0 1

)
,(a) z prawej strony przez

(
1 1
0 1

)
,(b)

z lewej strony przez
(

1 0
1 1

)
,(c) z prawej strony przez

(
1 0
1 1

)
.(d)

4. Uzasadnij, »e je±li F : R2 → R2 jest przeksztaªceniem liniowym, u i v dowolnymi wekto-
rami, za± α i β dowolnymi skalarami, to zachodzi wzór F (αu + βv) = αF (u) + βF (v).
W szczególno±ci uzasadnij, »e F (u− v) = F (u)− F (v).

5. O przeksztaªceniu liniowym F : R2 → R2 wiadomo, »e dla pewnych wektorów u i v zachodzi
F (u+ 2v) = ( 1

7 ) oraz F (u+ v) =
(−1

3

)
. Oblicz F (u), F (v) i F (4u+ 3v).

6. Wyznacz obrazy wersorów oraz macierze nast¦puj¡cych przeksztaªce« liniowych:

symetria wzgl¦dem prostej y + x = 0,(a)

rzut (prostopadªy) na prost¡ y = x,(b)

rzut uko±ny w kierunku wektora ( 1
0 ) na prost¡ y = x,(c)

symetria wzgl¦dem prostej nachylonej do osi Ox pod k¡tem 15◦.(d)

7. Dane jest przeksztaªcenie liniowe F , takie »e F (( 1
4 )) = ( 2

3 ) oraz F (( 2
1 )) = ( 1

1 ). Wyznacz
F (( 3

5 )), F (( 2
8 )), F (

(−4
−2

)
), F (

(−1
3

)
):

korzystaj¡c z addytywno±ci i jednorodno±ci F ,(a)

rozwi¡zuj¡c ukªad równa«.(b)

8. Znajd¹ przeksztaªcenie liniowe, które punkty ( 1
1 ) i ( 2

1 ) przeprowadza odpowiednio na ( 1
0 ) i

( 0
2 ).

9. Ile jest takich przeksztaªce« a�nicznych pªaszczyzny, które punkty ( 3
2 ), ( 2

1 ) i ( 1
1 ) przeksztaª-

caj¡ odpowiednio na punkty ( 1
0 ), ( 0

1 ) i ( 4
1 )? Wyznacz wszystkie takie przeksztaªcenia.

10. Wyznacz (bez »adnych oblicze«) wszystkie punkty staªe ka»dego z przeksztaªce« z zada« 2
i 3 do rozdziaªu 2.1.

11. Znajd¹ wszystkie punkty staªe ka»dego z poni»szych przeksztaªce« a�nicznych:

F (X) =

(
1 0
2 1

)
X +

(
0
2

)
,(a) G(X) =

(
−1 1
0 3

)
X +

(
1
−2

)
,(b)

H(X) =

(
−3

5
4
5

4
5

3
5

)
X.(c)
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12. Podaj du»o przykªadów przeksztaªce« a�nicznych oraz przeksztaªce« liniowych, dla których
zbiór punktów staªych jest:

punktem,(a) prost¡,(b) pªaszczyzn¡.(c)

13. Znajd¹ taki punkt X, który jest przeprowadzany przez przeksztaªcenie F na punkt ( 5
2 ),

gdzie przeksztaªcenie F jest zde�niowane wzorem F (X) =

(
2 3
−1 0

)
X.

14. Wzór pewnego obrotu ma posta¢: F (X) =

(
0 1
−1 0

)
X +

(
−2
4

)
. Znajd¹ punkt staªy tego

przeksztaªcenia, a nast¦pnie podaj:

±rodek tego obrotu,(a) k¡t tego obrotu.(b)

15. Wzór pewnego odbicia ma posta¢: F (X) =

(
3
5

4
5

4
5 −3

5

)
X +

(
1
−2

)
. Znajd¹ punkty staªe

tego przeksztaªcenia, a nast¦pnie podaj o± odbicia.

16. *Uzasadnij, »e obrót o k¡t θ wokóª punktu P ma wzór F (X) =

(
cos θ − sin θ
sin θ cos θ

)
X + v dla

pewnego wektora v (zale»nego od wyboru punktu P ).
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2.3 SK�ADANIE PRZEKSZTA�CE�

Skªadanie przeksztaªce« liniowych i a�nicznych. Skªadanie przeksztaªce« liniowych a mno»enie macierzy.

Rozkªad przeksztaªcenia a�nicznego na przeksztaªcenie liniowe i translacj¦.

�WICZENIA

1. Niech Tv oznacza translacj¦ o wektor v = ( 4
2 ), Sx i Sy odbicia wzgl¦dem osi, odpowiednio,

Ox i Oy, S` symetri¦ wzgl¦dem prostej ` o równaniu x = y, SO i SA symetrie ±rodkowe o
±rodkach O = ( 0

0 ) i A = ( 1
1 ). Napisz wzory nast¦puj¡cych przeksztaªe« liniowych:

Tv ◦ Tv(a) Sx ◦ SO oraz SO ◦ Sx(b)

Tv ◦ Sx oraz Sx ◦ Tv(c) SO ◦ Tv oraz Tv ◦ SO(d)

SO ◦ SA oraz SA ◦ SO(e)

2. Niech Rθ oznacza obrót o k¡t θ wokóª punktu O = ( 0
0 ). Ustal (bez wykonywania rachunków)

czym jest zªo»enie:

R90◦ ◦R90◦(a) R90◦ ◦R−90◦(b) R30◦ ◦R−60◦(c)

a nast¦pnie potwierd¹ to odpowiednim rachunkiem na macierzach.

3. Uzasadnij, »e zªo»enie dwóch obrotów wokóª tego samego punktu jest obrotem. Jaki jest
k¡t tego obrotu?

4. Znajd¹ macierze przeksztaªce« liniowych F ◦G i G ◦ F oraz G ◦H i H ◦G, gdzie:

F (X) =

(
0 2
−2 0

)
X, G(X) =

(
−1 2
1 0

)
X, H(X) =

(
−3 2
0 1

)
X

5. Przedstaw przeksztaªcenie F w postaci zªo»enia Tv ◦G, gdzie G jest przeksztaªceniem linio-
wym, a Tv translacj¡, je±li:

F (X) =

(
2 3
1 0

)
X +

(
1
1

)
,(a) F (X) =

(
1 −1
1 −1

)
X +

(
2
−1

)
,(b)

F (X) =

(
1 4
2 0

)
X +

(
2
1

)
.(c)

6. Przedstaw ka»de z nast¦puj¡cych przeksztaªce« a�nicznych w postaci Tv ◦F ◦T−v, gdzie Tv
i T−v to translacje o wektor, odpowiednio, v i −v, natomiast F to przeksztaªcenie liniowe.

obrót wokóª punktu A = ( 1
1 ) o k¡t 90◦,(a)

symetria ±rodkowa wzgl¦dem punktu B = ( 3
1 ).(b)

ZADANIA

1. Wyznacz wzory nast¦puj¡cych zªo»e« przeksztaªce« liniowych (gdzie S` oznacza odbicie
wzgl¦dem prostej `, P` � rzut na prost¡ `, za± Rθ � obrót o k¡t θ wokóª O). Napisz macierze
tych zªo»e«.

Sl ◦R90◦ oraz R90◦ ◦ Sl, gdzie l jest prost¡ o równaniu x+ 2y = 0(a)

Sl ◦ Pk oraz Pk ◦ Sl, gdzie l ma równanie x+ 2y = 0, a k ma równanie 3x− 4y = 0(b)
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2. Znajd¹ wzory przeksztaªce« a�nicznych F ◦G, G ◦ F , F ◦H i H ◦ F , gdzie:

F (X) =

(
1 0
2 1

)
X +

(
0
2

)
, G(X) =

(
1 1
0 3

)
X +

(
1
−2

)
, H(X) =

(
−3 4
4 3

)
X

3. Przedstaw ka»de z przeksztaªce« a�nicznych z ¢wiczenia 5 w postaci zªo»enia G ◦ Tu, gdzie
G jest przeksztaªceniem liniowym, a Tu translacj¡.

4. Napisz wzór jednokªadno±ci D1 o ±rodku ( 0
0 ) i skali k oraz jednokªadno±ci D2 o ±rodku ( 1

0 )
i skali l, a nast¦pnie wzór zªo»enia D1 ◦ D2. Czy zªo»enie tych jednokªadno±ci mo»e by¢
translacj¡?

5. Sprawd¹, »e zªo»enie symetrii ±rodkowych o ±rodkach A i B jest translacj¡ o wektor 2
−−→
AB

lub 2
−−→
BA (w zale»no±ci od kolejno±ci zªo»e«).

6. Napisz macierz odbicia Sy wzgl¦dem osiOy oraz macierz odbicia S` wzgl¦dem prostej x+y =
0, a nast¦pnie macierze przeksztaªce« Sy ◦S` i S` ◦Sy. Rozpoznaj jakimi przeksztaªceniami
s¡ te zªo»enia.

7. Wska» (mo»liwie du»o i mo»liwie ró»norodnych) przykªadów takich przeksztaªce« a�nicz-
nych F , »e F ◦ F = Id.

8. Dla danego przeksztaªcenia F znajd¹ takie przeksztaªcenie G, »e F ◦G = Id. Sprawd¹, czy
prawd¡ jest, »e G ◦ F = Id:

F = Rθ (obrót),(a) F = S` (odbicie),(b) F = Tv (translacja).(c)

9. Przekstaw ka»de z nast¦puj¡cych przeksztaªce« a�nicznych w postaci Tv ◦F ◦T−v, gdzie Tv
i T−v to translacje o wektor, odpowiednio, v i −v, natomiast F to przeksztaªcenie liniowe.

jednokªadno±¢ o ±rodku A = ( 2
1 ) i skali 2,(a)

odbicie wzgl¦dem prostej o równaniu x+ y + 1 = 0,(b)

rzut (prostok¡tny) na prost¡ o równaniu x+ y + 1 = 0,(c)

powinowactwo prostok¡tne o osi x+ y + 1 = 0 i skali 3.(d)

10. *Podaj przykªad dwóch obrotów R1 i R2 wokóª ró»nych punktów o k¡ty inne ni» 0 i π tak,
aby R1 ◦R2 byªo translacj¡.

11. *Uzasadnij, »e je±li k i l s¡ prostymi równolegªymi, to Sk ◦ Sl jest translacj¡. Jaki b¦dzie
wektor tej translacji? Czy Sk ◦ Sl = Sl ◦ Sk?

12. *Uzasadnij, »e je±li k i l s¡ prostymi przecinaj¡cymi si¦, to Sk ◦Sl jest obrotem. Jaki b¦dzie
k¡t tego obrotu? Czy Sk ◦ Sl = Sl ◦ Sk?
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2.4 IZOMETRIE

Izometrie pªaszczyzny. Izometrie liniowe. Macierz izometrii. Klasy�kacja izometrii liniowych. Geome-

tryczna interpretacja wyznacznika przeksztaªcenia liniowego. Przeksztaªcenia zachowuj¡ce i zmieniaj¡ce

orientacj¦.

�WICZENIA

1. Rozstrzygnij które z poni»szych macierzy s¡ macierzami izometrii:(
3
5

4
5

−4
5

3
5

)
,

(
−3

5
4
5

4
5

3
5

)
,

(
0 0
−1 1

)
,

(
1 1
1 0

)
,

(
0 −1
1 0

)

2. Ustal, które z izometrii z poprzedniego ¢wiczenia zachowuj¡, a które zmieniaj¡ orientacj¦.

3. Podaj du»o przykªadów przeksztaªce«, które s¡:

izometriami liniowymi,(a) izometriami, które nie s¡ liniowe,(b)

liniowe, ale nie s¡ izometriami,(c) a�niczne, ale nie s¡ liniowe,(d)

a�niczne, ale nie s¡ izometriami.(e)

4. Czy jednokªadno±¢ o skali ujemnej zachowuje czy zmienia orientacj¦?

ZADANIA

1. Uzupeªnij nast¦puj¡ce macierze do macierzy izometrii (na wszystkie mo»liwe sposoby):(
1 ∗
∗ ∗

)
,

(
3
5 ∗
∗ ∗

)
,

(√
2

2 ∗
∗ ∗

)

2. Rozstrzygnij, które z nast¦puj¡cych macierzy izometrii s¡ macierzami obrotu, a które ma-
cierzami symetrii. W przypadku obrotu ustal k¡t obrotu, a w przypadku symetrii ustal o±
symetrii.( √

2
2

√
2

2

−
√

2
2

√
2

2

)
,

(
−
√

2
2

√
2

2√
2

2

√
2

2

)
,

(
3
5

4
5

4
5 −3

5

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)

3. Podaj przykªad przeksztaªcenia liniowego:

które zachowuje k¡ty, ale nie jest izometri¡;(a)

które zachowuje pola, ale nie jest izometri¡;(b)

które zachowuje pola i przeprowadza wersor ( 0
1 ) na siebie, ale nie jest izometri¡.(c)

4. Znajd¹ wszystkie izometrie liniowe, które przeprowadzaj¡ punkt ( 1
2 ) na punkt

(−2
1

)
, a

nast¦pnie napisz ich macierze.

5. Sprawd¹, które z poni»szych przeksztaªce« zachowuj¡ pole i które zachowuj¡ orientacj¦.

F (X) =

(
3 2
1 −1

)
X,(a) G(X) =

(
2 0
0 −1

2

)
X,(b) H(X) =

(
3
5

4
5

−4
5

3
5

)
X.(c)

6. Dla ka»dego z przeksztaªce« liniowych z zadania 5 narysuj obraz kwadratu rozpi¦tego przez
wersory. Oblicz pole otrzymanego równolegªoboku i porównaj z wyznacznikiem macierzy.
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7. Korzystaj¡c z twierdzenia o klasy�kacji izometrii liniowych uzasadnij, »e zªo»enie dwóch
symetrii wzgl¦dem przecinaj¡cych si¦ prostych jest obrotem.

8. Uzasadnij, »e zªo»enie dwóch przeksztaªce« zmieniaj¡cych orientacj¦ lub dwóch przeksztaª-
ce« zachowuj¡cych orientacj¦ jest przeksztaªceniem zachowuj¡cym orientacj¦. Jaka b¦dzie
odpowied¹ w przypadku zªo»enia przeksztaªcenia zachowuj¡cego orientacj¦ z przeksztaªce-
niem zmieniaj¡cym orientacj¦?

9. Czy powinowactwo prostok¡tne zachowuje czy zmienia orientacj¦?

10. Uzasadnij, »e:

izometria liniowa pªaszczyzny zachowuj¡ca orientacj¦ jest obrotem,(a)

izometria liniowa zmieniaj¡ca orientacj¦ jest odbiciem wzgl¦dem prostej.(b)

Czy podobne fakty s¡ prawdziwe dla izometrii, która nie jest liniowa?

11. *Uzasadnij, »e:

zªo»enie izometrii jest izometri¡,(a)

zªo»enie izometrii liniowych jest izometri¡ liniow¡.(b)

12. *Dane jest izometria pªaszczyzny o wzorze F (X) = AX + v. Znajd¹ tak¡ translacj¦ T , »e
T ◦ F jest izometri¡ liniow¡ oraz wywnioskuj st¡d, »e A jest macierz¡ izometrii.
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2.5 PRZEKSZTA�CENIA RÓ�NOWARTO�CIOWE I �NA�

Przeksztaªcenia liniowe R→ R2, R2 → R oraz R→ R. Przeksztaªcenia ró»nowarto±ciowe i �na�. Obraz i

przeciwobraz.

�WICZENIA

1. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

F : R2 → R, gdzie F (X) to znakowana odlegªo±¢ X od prostej 2x− 3y = 0,(a)

F : R2 → R, gdzie F (X) to znakowane pole trójk¡ta OAX, gdzie A = ( 2
1 ),(b)

F : R2 → R, gdzie F (X) = ( 2
3 ) ◦X,(c)

F : R→ R2, gdzie F (t) = t ( 4
1 ),(d)

F : R→ R, gdzie F (t) = 2t.(e)

2. Wyznacz obraz punktu ( 1
3 ) przez przeksztaªcenia (a)�(c) z ¢wiczenia 1 oraz obraz punktu

4 przez przeksztaªcenia (d)�(e) z ¢wiczenia 1.

3. Wyznacz przeciwobraz punktu 2 przez przeksztaªcenia (a)�(c) i (e) z ¢wiczenia 1 oraz prze-
ciwobraz punktu ( 8

2 ) przez przeksztaªcenie (d) z ¢wiczenia 1.

4. Podaj przykªad przeksztaªcenia liniowego F pªaszczyzny oraz punktu pªaszczyzny, którego
przeciwobraz przez przeksztaªcenie F jest:

zbiorem pustym,(a) punktem,(b) prost¡,(c) pªaszczyzn¡.(d)

5. Wyznacz obraz punktu ( 1
1 ) przez nast¦puj¡ce przeksztaªcenia a�niczne pªaszczyzny:

symetria ±rodkowa wzgl¦dem punktu ( 2
1 ),(a)

odbicie wzgl¦dem osi Ox,(b)

przeksztaªcenie F : R2 → R2 o wzorze F (X) =

(
2 1
0 3

)
X,(c)

przeksztaªcenie G : R2 → R2 o wzorze G(X) =

(
1 0
4 1

)
X +

(
1
1

)
.(d)

6. Wyznacz przeciwobrazy punktów ( 1
0 ) i ( 0

1 ) przez nast¦puj¡ce przeksztaªcenia a�niczne
pªaszczyzny:

rzut (prostok¡tny) na o± Ox,(a)

odbicie wzgl¦dem punktu ( 1
1 ),(b)

przeksztaªcenie F : R2 → R2 o wzorze F (X) =

(
1 1
1 0

)
X,(c)

przeksztaªcenie G : R2 → R2 o wzorze G(X) =

(
1 1
1 1

)
X +

(
−1
0

)
,(d)

7. Sprawd¹, które z poni»szych przeksztaªce« pªaszczyzny s¡ ró»nowarto±ciowe, a które s¡ �na�:

symetria wzgl¦dem punktu ( 1
2 ),(a)

powinowactwo prostok¡tne wzgl¦dem prostej x+ y = 0 o skali 2,(b)

rzut uko±ny wzdªu» wektora ( 2
1 ) na prost¡ o równaniu x+ y = 0,(c)

przeksztaªcenie zerowe.(d)
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ZADANIA

1. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

F : R2 → R, gdzie F (X) to znakowana odlegªo±¢ X od prostej ax+ by = 0,(a)

F : R2 → R, gdzie F (X) to znakowane pole trójk¡ta OAX, gdzie A = ( a1a2 ),(b)

F : R2 → R, gdzie F (X) = ( v1v2 ) ◦X,(c)

F : R→ R2, gdzie F (t) = t ( pq ),(d)

F : R→ R, gdzie F (t) = at.(e)

2. Wyznacz obraz punktu ( 1
1 ) przez przeksztaªcenia (a)�(c) z zadania 1 oraz obraz punktu 2

przez przeksztaªcenia (d)�(e) z zadania 1.

3. Wyznacz przeciwobraz punktu 0 przez przeksztaªcenia (a)�(c) i (e) z zadania 1.

4. Wyznacz przeciwobraz punktu ( 0
0 ) przez przeksztaªcenie (d) z zadania 1, w zale»no±ci od

warto±ci parametrów p i q.

5. Wyznacz obraz punktu ( 1
1 ) przez nast¦puj¡ce przeksztaªcenia a�niczne pªaszczyzny:

symetria ±rodkowa wzgl¦dem punktu ( 2
1 ),(a)

odbicie wzgl¦dem osi Ox,(b)

przeksztaªcenie F : R2 → R2 o wzorze F (X) =

(
2 1
0 3

)
X,(c)

przeksztaªcenie G : R2 → R2 o wzorze G(X) =

(
1 0
4 1

)
X +

(
1
1

)
.(d)

6. Wyznacz przeciwobrazy punktów ( 1
1 ) i ( 2

0 ) przez nast¦puj¡ce przeksztaªcenia a�niczne
pªaszczyzny:

rzut (prostok¡tny) na prost¡ o równaniu x+ y − 2 = 0,(a)

odbicie wzgl¦dem prostej o równaniu x = y,(b)

przeksztaªcenie F : R2 → R2 o wzorze F (X) =

(
2 2
2 2

)
X,(c)

przeksztaªcenie G : R2 → R2 o wzorze G(X) =

(
1 2
3 0

)
X +

(
1
0

)
.(d)

7. Sprawd¹, które z poni»szych przeksztaªce« s¡ ró»nowarto±ciowe, a które s¡ �na�:

RPθ : R2 → R2 b¦d¡ce obrotem wokóª punktu P o k¡t θ,(a)

P` : R2 → R2 b¦d¡ce rzutem (prostok¡tnym) na prost¡ `,(b)

F : R2 → R2, gdzie F (X) = P , gdzie P jest danym punktem,(c)

F : R2 → R, gdzie F (X) to znakowane pole trójk¡ta OAX, gdzie A jest danym
punktem,

(d)

F : R→ R2, gdzie F (t) = t · ( 2
3 ).(e)

8. *Uzasadnij, »e je±li przeksztaªcenia F : R2 → R2 i G : R2 → R2 s¡ ró»nowarto±ciowe,
to F ◦ G te» jest ró»nowarto±ciowe. Znajd¹ przykªad pokazuj¡cy, »e F ◦ G nie musi by¢
ró»nowarto±ciowe, je±li tylko jedno z przeksztaªce« F i G jest ró»nowarto±ciowe.

9. *Uzasadnij, »e je±li przeksztaªcenia F : R2 → R2 i G : R2 → R2 s¡ �na�, to F ◦G te» jest �na�.
Znajd¹ przykªad pokazuj¡cy, »e F ◦ G nie musi by¢ �na�, je±li tylko jedno z przeksztaªce«
F i G jest �na�.
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2.6 PRZEKSZTA�CENIA ODWROTNE

Przeksztaªcenie odwrotne. Macierz odwrotna. Transpozycja macierzy. Równania macierzowe.

�WICZENIA

1. Znajd¹ macierze odwrotne do podanych ni»ej macierzy i sprawd¹ (wykonuj¡c odpowiednie
mno»enia), »e faktycznie s¡ one macierzami odwrotnymi:(

3 1
2 −2

) (
−1 2
−3 5

) (
1 1
1 2

) (
3 4
4 7

)

2. Znajd¹ macierze transponowane do ka»dej z podanych ni»ej macierzy:(
1 2
0 3

) (
3
2

) (
3 1

) (
1 2
2 3

)

3. Podaj kilka przykªadów symetrycznych macierzy 2 × 2, a nast¦pnie napisz ogóln¡ posta¢
symetrycznej macierzy 2× 2.

4. Oblicz AB−1, A−1B, A−1B−1 oraz A>B i AB>, gdzie A =

(
1 2
1 3

)
, B =

(
0 1
2 0

)
.

5. Rozwi¡» nast¦puj¡ce równania macierzowe:(
2 1
−3 2

)(
x
y

)
=

(
4
1

)
(a)

(
3 4
−1 0

)(
x
y

)
=

(
5
−3

)
(b)

(
7 5
−2 −3

)(
x
y

)
=

(
−2
3

)
(c)

6. Rozstrzygnij czym s¡ przeksztaªcenia odwrotne do obrotu Rπ/3, jednokªadno±ci D 1
2
, jed-

nokªadno±ci D−2, symetrii Sx=y. Napisz macierz ka»dego z tych przeksztaªce« oraz prze-
ksztaªcenia do« odwrotnego.

7. Napisz wzór przeksztaªcenia odwrotnego do ka»dego z poni»szych przeksztaªce« liniowych:

F (X) =

(
1 1
1 0

)
X(a) G(X) =

(
1 5
3 −2

)
X(b) H(X) =

(
2 −2
1 0

)
X(c)

8. Sprawd¹, »e ka»da z poni»szych macierzy jest macierz¡ izometrii, a nast¦pnie wyznacz
macierze do nich odwrotne:( √

2
2

√
2

2

−
√

2
2

√
2

2

)
,

(
−
√

2
2

√
2

2√
2

2

√
2

2

)
,

(
3
5

4
5

4
5 −3

5

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)

ZADANIA

1. Ustal rozmiary macierzy A, B i C i rozwi¡» poni»sze równania macierzowe:

(
2 1
−1 3

)
A =

(
1 0
5 −2

)
B

(
3 1
9 4

)
=

1 2
0 −1
1 3

 C

(
2 1
−1 3

)
=

(
1 4
−2 1

)
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2. Znajd¹ macierz 2× 2 speªniaj¡c¡ nast¦puj¡ce równanie:(
2 0
−1 2

)
A

(
−3 1
−2 1

)
=

(
3 1
0 1

)

3. Oblicz iloczyny
(

2 3
1 −1

)(
1
2

)
i
(

2 3
1 −1

)(
5
1

)
, a nast¦pnie (bez wykonywania »adnych

dodatkowych rachunków) podaj wynik mno»enia macierzy
(

2 3
1 −1

)(
1 5
2 1

)
.

4. Napisz wzór przeksztaªcenia liniowego, które przeprowadza punkt ( 1
2 ) na punkt

(−1
3

)
, a

punkt ( 1
1 ) na punkt ( 2

4 ). Zrób to na dwa sposoby:

rozwi¡zuj¡c ukªad 4 równa« z 4 niewiadomymi(a)

rozwi¡zuj¡c jedno równanie macierzowe i korzystaj¡c z zadania 3(b)

5. Znajd¹ takie przeksztaªcenie a�niczne pªaszczyzny, które jest odwrotne do przeksztaªcenia:

F (X) =

(
1 2
2 3

)
X +

(
1
1

)

6. Wyznacz (bez »adnych rachunków) przeksztaªcenia odwrotne do nast¦puj¡cych przeksztaª-
ce« a�nicznych pªaszczyzny lub uzasadnij, »e przeksztaªcenie odwrotne nie istnieje:

translacja o wektor v,(a) rzut (prostok¡tny) na prost¡ `,(b)

odbicie wzgl¦dem prostej `,(c) symetria ±rodkowa o ±rodku S,(d)

obrót o k¡t θ wokóª punktu S,(e) jednokªadno±¢ o ±rodku S i skali k 6= 0,(f)

powinowactwo prostok¡tne o osi ` i skali
k 6= 0,

(g) powinowactwo ±cinaj¡ce o osi ` i wek-
torze v,

(h)

przeksztaªcenie staªe,(i) przeksztaªcenie identyczno±ciowe,(j)

rzut uko±ny na prost¡ ` w kierunku
wektora v.

(k)

7. Udowodnij, »e je±li (ró»nowarto±ciowe) przeksztaªcenie liniowe F zmienia orientacj¦, to prze-
ksztaªcenie odwrotne F−1 równie».

8. Przeksztaªcenie liniowe F zwi¦ksza wszystkie pola 2 razy. Jak skaluje pola przeksztaªcenie
odwrotne F−1?

9. Zapisz ka»d¡ z poni»szych liczb:

2x2 + 4xy + y2 − x2 + 7xy 3x2 − 8xy + y2 ax2 + bxy + cy2

jako iloczyn (w odpowiedniej kolejno±ci) wektorów ( xy ) i ( xy )> oraz macierzy symetrycznej.

10. Przeprowad¹ dowód faktu (AB)> = B> ·A> dla macierzy 2× 2.

11. Uzasadnij, »e je±li X jest wektorem, a A macierz¡ symetryczn¡ 2 × 2, to (X>AX)> =
X>AX.

12. Rozstrzygnij, czy macierz odwrotna do symetrycznej macierzy 2 × 2 zawsze jest macierz¡
symetryczn¡.

13. Czy iloczyn symetrycznych macierzy 2 × 2 jest zawsze macierz¡ symetryczn¡? Je±li tak,
podaj uzasadnienie. Je±li nie, podaj kontrprzykªad.

Copyright c© Tomasz Elsner, 2019



243

3.1 WARTO�CI W�ASNE I WEKTORY W�ASNE

Warto±ci wªasne i wektory wªasne. Wielomian charakterystyczny. Wzory Viete'a.

�WICZENIA

1. Sprawd¹, które z wektorów
(

1
−1

)
,
(−1

2

)
, ( 1

0 ),
(

1
−2

)
s¡ wektorami wªasnymi macierzy

(
2 3
0 −1

)
.

2. Wyznacz wielomiany charakterystyczne, warto±ci wªasne i wektory wªasne nast¦puj¡cych
macierzy:(

1 1
1 −1

)
,

(
1 1
1 1

)
,

(
2 1
1 2

)
,

(
3 −1
1 1

)
,

(
3 1
0 3

)
,

(
6 2
4 −1

)

3. Wyznacz wielomian charakterystyczny, warto±ci wªasne i wektory wªasne macierzy
(
a 0
0 b

)
(zwanej macierz¡ diagonaln¡).

4. Znajd¹ (bezpo±rednio z de�nicji) wszystkie warto±ci wªasne i wektory wªasne jednokªadno±ci
o skali 5 i ±rodku 0 oraz przeksztaªcenia identyczno±ciowego.

5. Dla jakich warto±ci parametru p macierz
(

0 p
1 2

)
ma dwie warto±ci wªasne?

6. O ka»dej z poni»szych macierzy wiadomo, »e maj¡ dwie warto±ci wªasne. Ustal jakie znaki
maj¡ te warto±ci wªasne (bez ich wyliczania).(

5 2
2 1

) (
3 4
4 2

) (
1 −1
−1 −3

) (
1 2
2 1

)

ZADANIA

1. Znajd¹ (bezpo±rednio z de�nicji) wszystkie warto±ci wªasne i wektory wªasne przeksztaªcenia
zerowego oraz symetrii ±rodkowej wzgl¦dem pocz¡tku ukªadu wspóªrz¦dnych.

2. Znajd¹ (bezpo±rednio z de�nicji) wszystkie warto±ci wªasne i wektory wªasne powinowactwa
prostok¡tnego o skali k 6= 0 i osi `.

3. Jakie warto±ci wªasne mo»e mie¢ izometria liniowa? Podaj wszystkie mo»liwo±ci i ka»d¡
zilustruj przykªadem.

4. Uzasadnij, »e przeksztaªcenie liniowe, które ma warto±¢ wªasn¡ zero nie jest ró»nowarto-
±ciowe.

5. Wyznacz wielomian charakterystyczny, warto±ci wªasne i wektory wªasne macierzy
(
a c
0 b

)
(zwanej macierz¡ górnotrójk¡tn¡). Czym ró»ni si¦ przypadek a 6= b od przypadku a = b?

6. Ustal liczb¦ warto±ci wªasnych macierzy
(

1 p
−p 3

)
w zale»no±ci od warto±ci parametru p.

7. Ustal jaki ±lad i wyznacznik ma macierz o wielomianie charakterystycznym λ2 − 4λ+ 5, a
nast¦pnie napisz macierz o takim wielomianie charakterystycznym.
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8. Udowodnij (indukcyjnie), »e dla dowolnych rzeczywistych a i b i dowolnego n naturalnego

zachodzi wzór:
(
a 0
0 b

)n
=

(
an 0
0 bn

)
9. Udowodnij, »e je±li przeksztaªcenie liniowe F speªnia warunek F (u + v) = F (u − v) dla

pewnych niezerowych wektorów u i v, to v jest wektorem wªasnym F . Dla jakiej warto±ci
wªasnej?

10. Macierz A speªnia warunek A2 = A. Jakie warto±ci wªasne mo»e mie¢ ta macierz?

11. Przeksztaªcenie liniowe F speªnia warunek F ◦ F = F . Jakie warto±ci wªasne mo»e mie¢
to przeksztaªcenie? Podaj przynajmniej trzy przykªady przeksztaªce« speªniaj¡cych ten
warunek. Zauwa» zwi¡zek tego zadania z poprzednim.

12. Uzasadnij, »e je»eli v jest (niezerowym) wektorem wªasnym macierzy A dla warto±ci wªasnej
λ, to v jest te» wektorem wªasnym macierzy A2 dla warto±ci wªasnej λ2.

13. Uzasadnij, »e je»eli v jest (niezerowym) wektorem wªasnym przeksztaªcenia F dla warto±ci
wªasnej λ, to v jest te» wektorem wªasnym przeksztaªcenia F ◦ F dla warto±ci wªasnej λ2.
Zauwa» zwi¡zek tego zadania z poprzednim.

14. *Uzasadnij, »e je±li F jest przeksztaªceniem liniowym speªniaj¡cym warunek F ◦ F = 0, to
F nie ma niezerowych warto±ci wªasnych.

15. *Niech v b¦dzie (niezerowym) wektorem wªasnym zarówno dla przeksztaªcenia liniowego
F , jak i dla przeksztaªcenia liniowego G. Uzasadnij, »e v jest wektorem wªasnym dla
przeksztaªcenia F ◦G.

16. *Uzasadnij, »e je±li v jest (niezerowym) wektorem wªasnym dla przeksztaªcenia liniowego
F oraz dla G jest takim przeksztaªceniem liniowym, »e zachodzi warunek G ◦ F = F ◦ G,
to G(v) te» jest wektorem wªasnym dla F .
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3.2 DIAGONALIZACJA MACIERZY

Diagonalizacja macierzy. Zastosowania diagonalizacji (pot¦gowania macierzy, wyznaczanie macierzy prze-

ksztaªcenia liniowego, rozwi¡zywanie rekurencji liniowych). Twierdzenie spektralne.

�WICZENIA

1. Ustal, które z poni»szych macierzy s¡ diagonalizowalne i je zdiagonalizuj (tzn. zapisz w
postaci PDP−1, gdzie D jest macierz¡ diagonaln¡):(

1 1
1 −1

)
,

(
1 1
1 1

)
,

(
2 1
1 2

)
,

(
3 −1
1 1

)
,

(
3 1
0 3

)
,

(
6 2
4 −1

)

2. Oblicz
(

1 1
1 −1

)10

oraz
(

0 1
1 0

)30

.

3. Podaj trzy przykªady macierzy 2 × 2, które maj¡ wszystkie wyrazy dodatnie i o których
mo»na (bez »adnych rachunków) stwierdzi¢, »e maj¡ dwie warto±ci wªasne.

4. Napisz diagonalizacj¦ jakiejkolwiek macierzy, która ma warto±ci wªasne 2 i 1. Wyznacz w
ten sposób macierz, która ma warto±ci wªasne 2 i 1.

5. Ustal dla jakiej warto±ci parametru b macierz górnotrójk¡tna
(
a b
0 a

)
jest diagonalizowalna.

ZADANIA

1. Oblicz
(

2 1
1 2

)100

oraz
(

6 2
4 −1

)n
2. Znajd¹ macierz przeksztaªcenia liniowego pªaszczyzny, które ma warto±ci wªasne 2 i 3 oraz

odpowiadaj¡ce im wektory wªasne ( 1
1 ) i ( 2

1 ). Wskazówka: napisz diagonalizacj¦ szukanej
macierzy.

3. Podaj dwa przykªady macierzy, które maj¡ tylko jedn¡ warto±¢ wªasn¡ i nie s¡ diagona-
lizowalne oraz dwa przykªady macierzy, które maj¡ tylko jedn¡ warto±¢ wªasn¡, ale s¡
diagonalizowalne.

4. Znajd¹ warto±ci i wektory wªasne, a nast¦pnie napisz macierz ka»dego z przeksztaªce«:

odbicie wzgl¦dem prostej o równaniu 2x+ 5y = 0,(a)

rzut prostopadªy na prost¡ o równaniu 7x− 2y = 0.(b)

5. Znajd¹ warto±ci i wektory wªasne, a nast¦pnie napisz macierz rzutu uko±nego na prost¡ o
równaniu 2x+ 3y = 0 wzdªu» wektora ( 1

1 ).

6. Korzystaj¡c z jednorodno±ci uzasadnij, »e je±li v jest wektorem wªasnym przeksztaªcenia
liniowego F dla warto±ci wªasnej λ, to tv (gdzie t jest dowolnym skalarem) te» jest wektorem
wªasnym F dla warto±ci wªasnej λ.

7. Korzystaj¡c z addytywno±ci uzasadnij, »e je±li u i v s¡ wektorami wªasnymi przeksztaªcenia
liniowego F dla warto±ci wªasnej λ, to u + v te» jest wektorem wªasnym F dla warto±ci
wªasnej λ.

8. Uzasadnij, »e je±li P i D to macierze 2× 2 i P jest odwracalna, to det(PDP−1) = detD.
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9. Udowodnij, »e je±li A, D, P s¡ macierzami 2 × 2, macierz D jest diagonalna, a macierz P
jest odwracalna, to zachodz¡ wzory:

(A−1)T = (AT )−1,(a) (PDP−1)T = (P T )−1DP T ,(b) (PDP T )T = PDP T .(c)

10. Dla ka»dej z poni»szych rekurencji liniowych:

oblicz setny wyraz ci¡gu (a100, b100, c100),(a)

zapisz wzór na n-ty wyraz ci¡gu (an, bn, cn).(b) 
a0 = 4

a1 = 5

an+2 = an+1 + 2an


b0 = 2

b1 = 5

bn+2 = 5bn+1 − 6bn


c0 = 0

c1 = 1

cn+2 = 3cn+1 − 2cn
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4.1 NOWY UK�AD WSPÓ�RZ�DNYCH

Nowy ukªad wspóªrz¦dnych (prostok¡tny i nieprostok¡tny). Wspóªrz¦dne wektora w starym i nowym

ukªadzie. Równanie prostej w starym i nowym ukªadzie wspóªrz¦dnych. Macierz przeksztaªcenia w

starych i nowych wspóªrz¦dnych. Macierz przeksztaªcenia w ukªadzie wyznaczonym przez wektory wªasne.

�WICZENIA

1. Wektory e′1 =
(−1

1

)
i e′2 = ( 1

1 ) s¡ wersorami nowego ukªadu wspóªrz¦dnych. Narysuj nowy
ukªad wspóªrz¦dnych i zaznacz wektory v i w takie, »e [v]nowy = ( 1

1 ) i [w]nowy = ( 2
1 ).

2. Wektory e′1 = ( 1
1 ) i e′2 = ( 2

1 ) s¡ wersorami nowego ukªadu wspóªrz¦dnych. Narysuj nowy
ukªad wspóªrz¦dnych (nie jest to ukªad prostok¡tny!) i zaznacz wektory e′1, e

′
2, 2e′1 + 3e′2.

Jakie s¡ nowe wspóªrz¦dne ka»dego z tych wektorów?

3. Wektory ( 2
1 ) i

(
1
−2

)
s¡ wersorami nowego ukªadu wspóªrz¦dnych. Jakie wspóªrz¦dne maj¡

wektory
(

3
−1

)
, ( 4

2 ),
(

2
−4

)
w nowym ukªadzie?

4. Wektory e′1 = ( 2
1 ) i e′2 =

(−1
2

)
s¡ wersorami nowego ukªadu wspóªrz¦dnych. Znajd¹ stare

wspóªrz¦dne wektorów v i w, dla których [v]nowy = ( 2
3 ) i [w]nowy = ( 1

5 ).

5. Ustal które z ukªadów wspóªrz¦dnych wprowadzonych w ¢wiczeniach 1�4 s¡ ukªadami pro-
stok¡tnymi.

6. Wersory nowego ukªadu wspóªrz¦dnych speªniaj¡ warunek: e′1 = −e1, e′2 = 2e2. Jakie s¡
nowe wspóªrz¦dne wektora v, dla którego [v]stary = ( xy )?

7. Dany jest nowy ukªad wspóªrz¦dnych o wersorach e′1 = ( 1
2 ) i e′2 = ( 1

1 ). Napisz w nowych
wspóªrz¦dnych równanie prostej, która w starych wspóªrz¦dnych ma równanie x+ 2y = 0.

8. Dany jest nowy ukªad wspóªrz¦dnych o wersorach e′1 = ( 1
1 ) i e′2 =

(−1
1

)
. Napisz w starych

wspóªrz¦dnych równanie prostej, która w nowych wspóªrz¦dnych ma równanie 3x′− y′ = 0.

9. Przeksztaªcenie liniowe F : R2 → R2 ma warto±ci wªasne λ1 = 2 i λ2 = −3, a odpowiadaj¡ce
im wektory wªasne to (odpowiednio) v1 = ( 4

1 ) i v2 = ( 2
5 ). Napisz macierz mnowy(F )

przeksztaªcenia F w nowym ukªadzie wspóªrz¦dnych, którego wersorami s¡ v1 i v2.

ZADANIA

1. Wektory e′1 = ( 3
1 ) i e′2 = ( 1

2 ) s¡ wersorami nowego ukªadu wspóªrz¦dnych. Znajd¹ stare
wspóªrz¦dne wektorów v i w, dla których [v]nowy = ( 1

4 ) i [w]nowy =
(

5
−2

)
.

2. Wektory e′1 =
(−1

3

)
i e′2 =

(
1
−1

)
s¡ wersorami nowego ukªadu wspóªrz¦dnych. Znajd¹ nowe

wspóªrz¦dne wektorów v i w, dla których [v]stary = ( 2
3 ) i [w]stary = ( 3

1 ).

3. Wektory e′1 =
(

1
−1

)
i e′2 = ( 1

1 ) s¡ wersorami nowego ukªadu wspóªrz¦dnych. Znajd¹ nowe
wspóªrz¦dne starych wersorów oraz stare wspóªrz¦dne nowych wersorów.

4. Znajd¹ taki ukªad wspóªrz¦dnych (tzn. wyznacz jego wersory), by wektory v = ( 2
1 ) i

w = ( 5
3 ) w nowym ukªadzie miaªy wspóªrz¦dne [v]nowy = ( 1

1 ), [w]nowy =
(−1

1

)
.

5. Znajd¹ taki prostok¡tny ukªad wspóªrz¦dnych (tzn. wyznacz jego wersory), by wektor
v = ( 1

1 ) miaª nowe wspóªrz¦dne [v]nowy = ( 2
1 ).
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6. Wersory nowego ukªadu wspóªrz¦dnych speªniaj¡ warunek: e′1 = 3e1 − 2e2, e′2 = e1 + 3e2.
Jakie s¡ nowe wspóªrz¦dne wektora v, dla którego [v]stary = ( xy )?

7. Wersory nowego ukªadu wspóªrz¦dnych speªniaj¡ warunek: e1 = e′1 + 3e′2, e2 = e′1 + e′2.
Jakie s¡ nowe wspóªrz¦dne wektora v, dla którego [v]stary = ( xy )?

8. Wektory e′1 = ( 1
1 ) i e′2 = ( 2

1 ) s¡ wersorami nowego ukªadu wspóªrz¦dnych. Wyznacz
równanie ka»dej z poni»szych prostych w nowych wspóªrz¦dnych:

3x+ 2y = 0(a) 2x− 5y + 1 = 0(b) ( xy ) = t ( 2
3 ) + ( 1

1 )(c)

9. Wektory e′1 =
(−1

1

)
i e′2 = ( 1

1 ) s¡ wersorami nowego ukªadu wspóªrz¦dnych. Wyznacz
w starym ukªadzie wspóªrz¦dnych równania prostych, które w nowych wspóªrz¦dnych s¡
zapisywane równaniami:

2x′ − 5y′ = 0(a) x′ + y′ + 1 = 0(b) −3x′ + 7y′ − 1 = 0(c)

10. W nowym ukªadzie wspóªrz¦dnych macierz przeksztaªcenia liniowego F : R2 → R2 jest
diagonalna. Co mo»na powiedzie¢ o wersorach tego ukªadu wspóªrz¦dnych?

11. Dany jest nowy ukªad wspóªrz¦dnych o wersorach e′1 = ( 1
2 ) i e′2 =

(
2
−1

)
. Macierz przeksztaª-

cenia liniowego F : R2 → R2 w starych wspóªrz¦dnych ma posta¢ mstary(F ) =

(
3 1
−1 4

)
.

Wyznacz macierz F w nowych wspóªrz¦dnych.

12. Dany jest nowy ukªad wspóªrz¦dnych o wersorach e′1 = ( 3
1 ) i e′2 = ( 1

3 ). Macierz przeksztaª-

cenia liniowego F : R2 → R2 w nowych wspóªrz¦dnych ma posta¢ mnowy(F ) =

(
2 2
1 1

)
.

Wyznacz macierz F w starych wspóªrz¦dnych.
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4.2 KRZYWE DRUGIEGO STOPNIA

Krzywe drugiego stopnia. Równanie elipsy i hiperboli. Równanie krzywej w nowym ukªadzie wspóªrz¦d-

nych.

�WICZENIA

1. Naszkicuj we wspólnym ukªadzie wspóªrz¦dnych krzywe o nast¦puj¡cych równaniach:

−x2 + 2y2 = 1(a) x2 + 2y2 = 1(b) x2 − 2y2 = 1(c)

2. Rozpoznaj krzyw¡ opisan¡ poni»szym równaniem oraz naszkicuj jej wykres:

2x2 + 4y2 = 1(a) −1
9x

2 + 1
4y

2 = 1(b) x2 − 4y2 = 1(c)

3. Zaznacz w ukªadzie wspóªrz¦dnych zbiór opisany nast¦puj¡cym równaniem:

x2 − 4y2 − 4 = 0(a) 2x2 − 9y2 + 4 = 0(b) x2 + 4y2 + 1 = 0(c)

4. Czy istnieje macierz symetryczna, która nie ma »adnych warto±ci wªasnych?

5. Ustal znaki warto±ci wªasnych nast¦puj¡cych macierzy symetrycznych:(
2 1
1 3

) (
5 −2
−2 7

) (
0 1
1 −6

) (
4 0
0 2

)

6. Przedstaw w postaci X>AX, gdzie A jest macierz¡ symetryczn¡, a X = ( xy ) ka»dy z
nast¦puj¡cych wielomianów drugiego stopnia:

2x2 − 4xy + 5y2(a) x2 − 7y2(b) 5x2 − 7xy(c)

ZADANIA

1. Ustal czym jest zbiór punktów pªaszczyzny opisany poni»szymi równaniami. Spróbuj zmi-
nimalizowa¢ liczb¦ potrzebnych rachunków.

4x2 + 3xy − 2y2 = 1(a) 3x2 − 2xy + y2 = −2(b) 5x2 − 4xy + y2 = 4(c)

2. Sprawd¹, »e ka»de z poni»szych równa« jest równaniem elipsy, a nast¦pnie wyznacz dªugo±ci
póªosi ka»dej z tych elips:

x2 + xy + y2 = 1(a) 2x2 + 2xy + 3y2 = 1(b) 3x2 − 3xy + y2 = 1(c)

3. Rozpoznaj i narysuj krzyw¡ opisan¡ równaniem:

−5x2 +24xy+5y2 = 1(a) x2 + xy + y2 = 1(b) −2x2 +12xy+7y2 = 1(c)

4. Czy istnieje macierz symetryczna 2× 2, która ma tylko jedn¡ warto±¢ wªasn¡? Co w takiej
sytuacji mo»na powiedzie¢ o zbiorze jej wektorów wªasnych?

5. Ustal jak wygl¡da zbiór punktów pªaszczyzny opisany równaniem Ax2+Cy2 = 1, gdy A = 0
lub C = 0.

6. Zdarzaj¡ si¦ przypadki, »e równanie drugiego stopnia zmiennych x i y (bez skªadników
liniowych) opisuje niepusty zbiór inny ni» elipsa i hiperbola. Rozstrzygnij czym jest zbiór
punktów opisanych ka»dym z poni»szych równa«:

x2 + 2xy + y2 = 0(a) x2 + 2xy + y2 = 1(b) x2 − y2 = 0(c)
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7. *Napisz równanie kwadratowe opisuj¡ce zbiór zªo»ony z dwóch przecinaj¡cych si¦ prostych
na pªaszczy¹nie: prostej 2x+ y = 0 i prostej 3x− 2y = 0.

8. *Znajd¹ przeksztaªcenie liniowe, które okr¡g o równaniu x2 + y2 = 1 przeksztaªca na elips¦
o równaniu x2

a2
+ y2

b2
= 1. Posªuguj¡c si¦ wyznacznikiem tego przeksztaªcenia wyprowad¹

wzór na pole obszaru ograniczonego t¡ elips¡.

9. *Krzyw¡ drugiego stopnia, któr¡ pomin¦li±my w rozwa»aniach z uwagi na pomini¦cie skªad-
ników liniowych jest parabola, czyli krzywa o równaniu y = ax2. Napisz równanie paraboli

y = 2x2 w prostok¡tnym ukªadzie wspóªrz¦dnych o wersorach
(

3
5
4
5

)
i
(

4
5

− 3
5

)
.
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5.1 LICZBY ZESPOLONE

Arytmetyka liczb zespolonych. Cz¦±¢ rzeczywista i urojona. Przedstawienie trygonometryczne liczby

zespolonej. Moduª i argument. Wzór de Moivre'a. Pot¦gowanie i pierwiastkowanie liczb zespolonych.

Posta¢ wykªadnicza liczby zespolonej.

�WICZENIA

1. Dane s¡ liczby zespolone z1 = 2+ i oraz z2 = 3−2i. Wykonaj nast¦puj¡ce dziaªania i wynik
przedstaw w postaci a+ bi.

z1z2(a) z1/z2(b) z2/z1(c) z−1
1(d)

z−1
2(e) z2

1(f)

2. Wyznacz cz¦±¢ rzeczywist¡ i urojon¡ dla ka»dej z nast¦puj¡cych liczb:

(2 + 3i)(1− 5i)(a) (1− 2i)/(3 + i)(b) (2 + 5i)2(c)

3. Dla ka»dej z wymienionych poni»ej liczb zespolonych znajd¹ moduª, argument, a nast¦pnie
zapisz j¡ w postaci trygonometrycznej:

2i(a)

−1 + i(b)

4− 4i(c)
√

3 + i(d)

−
√

3 + i(e)

4. Zaznacz na pªaszczy¹nie zespolonej liczb¦ z oraz liczby −z, iz, −z, z + (1 + i) dla ka»dej z
nast¦puj¡cych liczb:

z = 1 + i(a) z = 2 + 3i(b) z = 1− 5i(c) z = −3 + 2i(d)

Zauwa» pewn¡ prawidªowo±¢.

5. Korzystaj¡c ze wzoru de Moivre'a oblicz nast¦puj¡ce pot¦gi liczb zespolonych:

(1− i)10(a) (−
√

3+i)8(b) (
√

2+i
√

2)7(c) (−
√

3 + i)−1(d)

6. Dla ka»dej z liczb 1, i, −1, i+ 1, zaznacz na pªaszczy¹nie zespolonej (bez wyliczania cz¦±ci
rzeczywistej i urojonej) wszystkie pierwiastki:

stopnia 2(a) stopnia 3(b) stopnia 4(c)

Zauwa» pewn¡ prawidªowo±¢.

7. Korzystaj¡c z postaci trygonometrycznej wyznacz wszystkie pierwiastki:

stopnia 2 z liczby 4i(a) stopnia 3 z liczby 8i(b) stopnia 4 z liczby −16(c)

a nast¦pnie zaznacz je na pªaszczy¹nie zespolonej.

8. Zapisz wzór na iloczyn liczb zespolonych (cosα + i sinα) i (cosβ + i sinβ), a nast¦pnie
porównaj cz¦±ci rzeczywiste i urojone lewej i prawej strony równo±ci. Wyja±nij jak mo»na
u»y¢ tego wzoru do wyprowadzenia wzorów na cos(α+ β) i sin(α+ β).

9. Zapisz wzór na iloraz liczb zespolonych (cosα+ i sinα) i (cosβ + i sinβ) i (podobnie jak w
poprzednim ¢wiczeniu) u»yj go do wyprowadzenia wzorów na cos(α− β) i sin(α− β).

ZADANIA
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1. Uzasadnij nast¦puj¡ce wªasno±ci liczb zespolonych:

Re(z1 + z2) = Rez1 + Rez2(a) Re(iz) = −Imz(b)

Im(z1 + z2) = Imz1 + Imz2(c) Im(iz) = Rez(d)

2. Oblicz nast¦puj¡ce pot¦gi liczb zespolonych:

(1− i)40(a) (
√

3− i)10(b) (1− i
√

3)50(c)

3. Wyznacz wszystkie pierwiastki:

stopnia 3 z 2i(a) stopnia 3 z −1 + i(b) stopnia 2 z −4i(c)

4. Korzystaj¡c z postaci trygonometrycznej wyznacz wszystkie pierwiastki z 1:

stopnia 2(a) stopnia 3(b) stopnia 4(c) stopnia 6(d)

a nast¦pnie zaznacz je na pªaszczy¹nie zespolonej.

5. Opisz geometrycznie przeksztaªcenie F : C→ C pªaszczyzny zde�niowane wzorem:

F (z) = iz(a) F (z) = −z(b) F (z) = z + (1 + i)(c)

6. Uzasadnij, »e dla dowolnej dodatniej liczby rzeczywistej t oraz dowolnej liczby zespolonej z
zachodzi |tz| = t · |z| oraz | − z| = |z|.

7. Zapisz wzór na (cosα + i sinα)2, a nast¦pnie porównaj cz¦±ci rzeczywiste i urojone lewej
i prawej strony równo±ci. Wyja±nij jak w ten sposób mo»na przypomnie¢ sobie wzory na
cos(2α) i sin(2α).

8. W sposób podobny jak w poprzednim zadaniu wyprowad¹ (przy pomocy wzoru de Moivre'a)
wzory na cos(3α) i sin(3α).

9. Udowodnij, »e wszystkie pierwiastki stopnia n z 1 to liczby 1, w, w2, . . . , wn−1, gdzie w jest
pewnym pierwiastkiem z 1 (zwanym pierwiastkiem pierwotnym stopnia n z 1).

10. Liczba w 6= 1 jest pierwiastkiem stopnia n z jedynki. Oblicz sum¦ nast¦puj¡cego ci¡gu
geometrycznego: 1 + w + w2 + · · ·+ wn−1.

11. *Udowodnij, »e suma wszystkich pierwiastków stopnia n z liczby zespolonej z jest równa 0.
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5.2 WIELOMIANY ZESPOLONE

Wielomiany zespolone. Zasadnicze twierdzenie algebry. Sprz¦»enie liczby zespolonej. Rozkªad na czynniki

wielomianów rzeczywistych i zespolonych. Macierze o zespolonych warto±ciach wªasnych.

�WICZENIA

1. Rozwi¡» nast¦puj¡ce równania. Wynik zapisz w postaci a+ bi.

(1 + i)z + (2 + i) = (3 + 2i)(a) (2− i)z + (3 + 2i) = i(b)

2. Rozwi¡» nast¦puj¡ce równania (w liczbach zespolonych). Wynik zapisz w postaci a+ bi.

z2 + 2z + 2 = 0(a) 2z2 − 3z + 2 = 0(b)

z2 + 4z + 8 = 0(c) z2 + iz − 1 = 0(d)

3. Znajd¹ (zespolone) warto±ci wªasne i wektory wªasne nast¦puj¡cych macierzy:(
2 1
−1 2

)
(a)

(
5 −5
2 3

)
(b)

4. Rozªó» na iloczyn czynników liniowych (zespolonych) nast¦puj¡ce wielomiany:

z3 − 5z2 + 8z − 6(a) 2z3 − 9z2 + 30z − 13(b) z3 + 7z2 + 16z + 10(c)

ZADANIA

1. Rozwi¡» nast¦puj¡ce ukªady równa«:{
(1 + i)z + iw = (1 + i)

iz + (1− i)w = 1
(a)

{
iz + (i− 2)w = (3 + i)

z + (2 + i)w = 1
(b)

2. Przy pomocy diagonalizacji macierzy oblicz:(
2 −1
5 −2

)10

(a)
(

1 −1
3 −1

)15

(b)

3. Rozªó» na iloczyn zespolonych czynników liniowych oraz na iloczyn rzeczywistych czynników
liniowych lub kwadratowych poni»sze wielomiany, wiedz¡c, »e podana liczba z0 jest jednym
z pierwiastków.

z4 − 2z3 + 10z2 + 6z + 65, z0 = 2 + 3i,(a) z4 + 4, z0 = 1 + i(b)

4. Udowodnij nast¦puj¡ce wªasno±ci sprz¦»enia liczby zespolonej:

|z| = |z|(a) z · z = |z|2(b) z1 + z2 = z1 + z2(c)

z1 − z2 = z1 − z2(d) z1 · z2 = z1 · z2(e) z1/z2 = z1/z2(f)

5. Uzasadnij, »e wzory λ1 + λ2 = trA oraz λ1λ2 = detA s¡ prawdziwe równie» dla macierzy
2× 2, która ma zespolone warto±ci wªasne. Wykorzystaj te wzory do napisania macierzy o
wyrazach rzeczywistych, których warto±ci wªasne s¡ równe λ1 = 3 + 2i oraz λ2 = 3− 2i.

6. Napisz macierz obrotu o k¡t θ, a nast¦pnie wyznacz warto±ci i wektory wªasne tej macierzy.
Jakie s¡ moduªy i argumenty tych warto±ci wªasnych?

7. *Wykorzystaj diagonalizacj¦ macierzy o zespolonych warto±ciach wªasnych do wyprowadze-
nia zwartego wzoru ci¡gu zadanego rekurencj¡:

a0 = 1

a1 = 2

an+2 = 2an+1 − 2an, gdy n ≥ 0
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6.1 WEKTORY, PROSTE I P�ASZCZYZNY

Wektory w R3. Równanie sfery. Liniowa niezale»no±¢. Kombinacja liniowa. Równanie parametryczne i

ogólne pªaszczyzny. Równanie parametryczne i posta¢ kraw¦dziowa prostej w R3.

�WICZENIA

1. Wyznacz wspóªrz¦dne punktu P , który dzieli odcinek AB, gdzie A =
(

1
2
−1

)
, B =

(−1
3
5

)
, w

stosunku 2 : 1.

2. Wyznacz promie« i ±rodek sfery o równaniu x2 + 2x+ y2 − 4y + z2 = 9.

3. Spo±ród podanych ni»ej wektorów wypisz:

wszystkie pary wektorów wspóªliniowych(a) wszystkie trójki wektorów wspóªpªaszczyznowych(b)(
1
2
1

) (
1
1
1

) (
1
0
0

) (
1
−1
1

) (
1
0
1

) (−2
2
−2

)
4. Przedstaw wektor

(
4
−7
−1

)
w postaci kombinacji liniowej wektorów

(
1
1
1

)
,
(

2
1
−1

)
,
(

1
3
0

)
.

5. Znajd¹ równanie parametryczne pªaszczyzny o równaniu ogólnym 2x− 3y + z − 1 = 0.

6. Znajd¹ równanie ogólne pªaszczyzny o równaniu parametrycznym
(
x
y
z

)
=
(

1
0
1

)
+ s

(
1
2
−1

)
+

t
(

3
0
1

)
.

7. Znajd¹ równanie parametryczne prostej o postaci kraw¦dziowej: x−3
2 = y+4

3 = z−7
5 .

8. Znajd¹ posta¢ kraw¦dziow¡ prostej o równaniu parametrycznym:
(
x
y
z

)
=
(−1

1
−2

)
+ t
(

1
3
−2

)
.

9. Napisz równanie parametryczne oraz posta¢ kraw¦dziow¡ prostej przechodz¡cej przez punkt

P =
(

2
1
8

)
i równolegªej do wektora v =

(
1
2
5

)
.

ZADANIA

1. Wyznacz wspóªrz¦dne punktu P , który dzieli odcinek AB, gdzie A =
(
x0
y0
z0

)
, B =

(
x1
y1
z1

)
, w

stosunku 2 : 1.

2. Uzasadnij, »e ±rodek odcinka ª¡cz¡cego ±rodki kraw¦dzi AB i CD czworo±cianu ABCD
pokrywa si¦ ze ±rodkiem odcinka ª¡cz¡cego ±rodki kraw¦dzi AC i BD tego czworo±cianu.

3. Napisz równanie sfery o ±rednicy AB, gdzie A =
(

1
1
1

)
, B =

(
3
5
7

)
.

4. O wektorach u i v w R3 wiadomo, »e |u| = 3 oraz |v| = 7. Jaka mo»e by¢ dªugo±¢ wektora
u+ v? Podaj wszystkie mo»liwo±ci.

5. Napisz równanie ogólne i równanie parametryczne pªaszczyzny przechodz¡cej przez punkty(
1
1
1

)
,
(

2
0
3

)
,
(

1
0
4

)
.

6. Napisz równanie parametryczne i posta¢ kraw¦dziow¡ wspólnej prostej pªaszczyzn o rów-
naniach 2x+ y − z − 4 = 0 i 3x+ 3y − 2z − 9 = 0.

7. Napisz równanie parametryczne i posta¢ kraw¦dziow¡ wspólnej prostej pªaszczyzn o rów-

naniach
(
x
y
z

)
=
(

1
1
1

)
+ s

(
2
1
1

)
+ t
(

0
2
0

)
i
(
x
y
z

)
=
(−1

2
0

)
+ s

(
1
4
−2

)
+ t
(−1

5
−3

)
.
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8. Przedstaw prost¡ przechodz¡c¡ przez punkty
(

3
2
1

)
i
(

5
1
0

)
w postaci kraw¦dziowej oraz w

postaci parametrycznej.

9. Znajd¹ punkt wspólny podanej pªaszczyzny i podanej prostej:

2x+ 3y + z − 5 = 0 oraz x−3
2 = y−4

3 = z−6
5 ,(a)

x+ y + z − 2 = 0 oraz
(
x
y
z

)
=
(

0
−1
1

)
+ t
(

1
1
−1

)
,(b) (

x
y
z

)
=
(

1
1
1

)
+ s

(
1
−1
2

)
+ t
(

2
0
3

)
oraz x = y+1

2 = z+2
3 ,(c) (

x
y
z

)
=
(

2
0
0

)
+ s

(
1
1
1

)
+ t
(

0
3
4

)
oraz

(
x
y
z

)
=
(

1
2
5

)
+ t
(

1
1
3

)
.(d)

10. Ustal, czy proste o równaniach
(
x
y
z

)
=
(

1
0
1

)
+ t
(

1
1
1

)
i
(
x
y
z

)
=
(

2
3
0

)
+ t
(

1
0
2

)
przecinaj¡ si¦ i

znajd¹ ich punkt przeci¦cia (je±li istnieje).
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6.2 ILOCZYN SKALARNY I ILOCZYN WEKTOROWY

Iloczyn skalarny. K¡t mi¦dzy wektorami. Wektor normalny pªaszczyzny. K¡t mi¦dzy pªaszczyznami

oraz mi¦dzy pªaszczyzn¡ a prost¡. Rzut wektora na wektor. Odlegªo±¢ punktu od pªaszczyzny. Iloczyn

wektorowy i jego wªasno±ci. Pole równolegªoboku w R3.

�WICZENIA

1. Wyznacz miar¦ k¡ta mi¦dzy wektorami u =
(

1
2
3

)
i v =

(
1
−1
1

)
.

2. Wiedz¡c, »e |u| = 1, |v| = 2 i u ◦ v = −1 wyznacz (u+ 2v) ◦ (u+ v).

3. Wyznacz rzut wektora
(

1
2
3

)
na wektor

(
3
2
1

)
.

4. Wyznacz odlegªo±¢ punktu
(

1
−1
4

)
od pªaszczyzny o równaniu 2x− 3y + z + 1 = 0.

5. Oblicz pole równolegªoboku rozpi¦tego przez wektory
(

2
5
1

)
i
(

1
0
3

)
.

6. Oblicz pole trójk¡ta o wierzchoªkach A =
(

1
4
2

)
, B =

(
3
−1
1

)
, C =

(
1
5
0

)
.

7. Oblicz nast¦puj¡ce iloczyny skalarne, wektorowe i mieszane.(
3
1
2

)
×
(

1
0
1

)
(a)

(
3
1
2

)
◦
(

1
0
1

)
(b)

(
2
1
1

)
◦
((

1
2
1

)
×
(

3
1
5

))
(c)

8. Napisz równanie ogólne pªaszczyzny przechodz¡cej przez punkt
(

3
1
2

)
i prostopadªej do wek-

tora
(

1
−1
2

)
.

9. Napisz równanie ogólne pªaszczyzny przechodz¡cej przez punkt
(

1
0
1

)
i równolegªej do wek-

torów
(

1
2
2

)
i
(

3
1
−1

)
.

ZADANIA

1. O wektorach u, v, w wiadomo, »e |u| = 3, |v| = 2, |w| = 1, u ⊥ v, u ⊥ w oraz ∠(v, w) = π/3.
Oblicz u ◦ (u+ v+w) oraz (u+ v+w) ◦ (u+ v+w), a nast¦pnie wyznacz dªugo±¢ wektora
u+ v + w oraz miar¦ k¡ta mi¦dzy wektorami u i u+ v + w.

2. Znajd¹ miar¦ k¡ta mi¦dzy przek¡tnymi ±cian sze±cianu wychodz¡cymi ze wspólnego wierz-
choªka.

3. Znajd¹ rzut punktu P =
(

1
1
1

)
na pªaszczyzn¦ o równaniu x+ 2y+ z + 1 = 0 oraz rzut tego

punktu na prost¡ o równaniu parametrycznym
(
x
y
z

)
=
(

1
2
0

)
+ t
(

1
−1
0

)
.

4. Wyznacz pole ±ciany ABC czworo±cianu ABCD, gdzie A =
(

1
0
0

)
, B =

(
2
1
1

)
, C =

(
1
1
2

)
,

D =
(

2
3
1

)
oraz (wykorzystuj¡c wzór na odlegªo±¢ punktu od pªaszczyzny) dªugo±¢ wysoko±ci

czworo±cianu wychodz¡cej z wierzchoªka D.

5. Napisz równanie ogólne pªaszczyzny przechodz¡cej przez punkty P =
(

1
−1
0

)
, Q =

(−1
−1
1

)
,

R =
(−2

1
3

)
.
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6. Oblicz miar¦ k¡ta mi¦dzy pªaszczyznami:

2x+ 3y + z − 1 = 0 i 5x− 2y + z − 2 = 0,(a) (
x
y
z

)
=
(

1
0
0

)
+ s

(
1
1
1

)
+ t
(

1
2
−1

)
i
(
x
y
z

)
=
(

1
2
1

)
+ s

(
1
0
1

)
+ t
(

1
3
−1

)
(b)

7. Znajd¹ miar¦ k¡ta mi¦dzy prost¡ o równaniu parametrycznym
(
x
y
z

)
= t

(
1
1
1

)
+
(

1
0
1

)
a

pªaszczyzn¡ o równaniu x+ 2y + z = 0.

8. Wska», które z dziaªa«:

u× (v × w), u ◦ (v × w), (u ◦ v)× w, (u ◦ v) ◦ w

maj¡ sens dla wektorów u, v, w ∈ R3.

9. Upro±¢ ka»de z poni»szych wyra»e«:

(u× u)× u(a) (u× v) ◦ u(b) (u+v)×(u−v)(c) (u+v)◦(u−v)(d)

10. *Napisz równanie pªaszczyzny przechodz¡cej przez punkt
(

1
0
0

)
, która jest równolegªa do

prostej
(
x
y
z

)
=
(

1
0
1

)
+ t
(

0
1
1

)
i przecina prost¡ o równaniu

(
x
y
z

)
=
(

1
1
1

)
+ t
(

1
2
1

)
pod k¡tem

30◦.
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6.3 WYZNACZNIK

Wyznacznik. Znakowana obj¦to±¢ równolegªo±cianu i czworo±cianu. Orientacja trójki wektorów. Roz-

wini¦cie wyznacznika wzgl¦dem dowolnego wiersza/kolumny. Nierówno±¢ póªprzestrzeni. Znakowana

odlegªo±¢ punktu od pªaszczyzny. Wzory Cramera.

�WICZENIA

1. Oblicz obj¦to±¢ równolegªo±cianu oraz obj¦to±¢ czworo±cianu rozpi¦tego przez wektory
(

1
0
3

)
,(

4
1
2

)
,
(

0
5
3

)
.

2. Sprawd¹, która trójka wektorów jest zorientowana dodatnio, a która ujemnie:(
1
0
0

)
,
(

0
1
0

)
,
(

0
0
1

)
(a)

(
2
1
0

)
,
(

0
1
3

)
,
(

1
1
1

)
(b)

(
1
1
1

)
,
(

3
0
5

)
,
(

1
1
0

)
(c)

3. Oblicz wyznacznik ka»dej z poni»szych macierzy.3 1 −1
2 1 0
0 3 −2

  1 1 −1
1 −1 1
−1 1 1

 2 −1 0
0 4 2
1 1 1

 −1 3 2
1 0 4
0 3 6



4. Oblicz wyznacznik macierzy diagonalnej

a 0 0
0 b 0
0 0 c

.

5. Ustal czy punkty
(

1
2
1

)
i
(

2
1
−1

)
le»¡ po tej samej stronie pªaszczyzny o równaniu 3x− 2y +

z − 1 = 0

6. Rozwi¡» metod¡ Cramera te spo±ród poni»szych ukªadów równa«, które maj¡ niezerowy
wyznacznik gªówny:

2x− y − z = 4

3x+ 4y − 2z = 11

3x− 2y + 4z = 11


3x+ 2y + z = 5

2x+ 3y + z = 1

4x+ y + z = 9


x− 2z = 1

−x+ 2y + z = 2

3x+ y − 2z = 2

ZADANIA

1. Oblicz obj¦to±¢ czworo±cianu o wierzchoªkach A =
(

1
0
1

)
, B =

(
1
1
1

)
, C =

(
2
0
3

)
, D =

(
2
1
1

)
oraz pole jego ±ciany ABC.

2. Jak zmieni si¦ wyznacznik macierzy 3× 3, gdy:

cyklicznie zamienimy jej kolumny,(a)

cyklicznie zamienimy jej wiersze,(b)

wszystkie wyrazy macierzy przemno»ymy przez t,(c)

zmienimy znak wszystkich wyrazów macierzy.(d)

3. Oblicz wyznaczniki nast¦puj¡cych macierzy:1 2 0
4 1 5
3 2 0

 ,

1 −1 1
1 1 1
2 −2 2

 ,

3 2 0
1 1 1
4 1 7

 ,

1 1 1
1 2 4
1 3 9


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4. Oblicz wyznacznik macierzy górnotrójk¡tnej

a x y
0 b z
0 0 c

.

5. Przedstaw wektor
(

7
1
−1

)
w postaci kombinacji liniowej wektorów

(
1
0
1

)
,
(

1
1
1

)
,
(

2
1
0

)
.

6. Dowiedz si¦, na czym polega metoda obliczania wyznacznika 3× 3 zwana schemat Sarrusa
i sprawd¹, »e jest ona zgodna z przyj¦t¡ w tym skrypcie de�nicj¡ wyznacznika.

7. Dla jakich warto±ci parametru p wektory
(

1
2
p+1

)
,
( p
p−2

1

)
,
(

3
−1
2

)
s¡ liniowo niezale»ne?

8. Przedstaw wektor
(

0
1
0

)
w postaci kombinacji liniowej wektorów

(
1
2
p+1

)
,
( p
p−2

1

)
,
(

3
−1
2

)
, gdzie

parametr p przyjmuje jedn¡ z takich warto±ci, dla których powy»sza trójka wektorów jest
liniowo niezale»na.

9. *Uzasadnij, »e dodanie lub odj¦cie dowolnej krotno±ci jednej kolumny macierzy 3×3 od innej
kolumny tej macierzy nie zmienia wyznacznika. Wykorzystaj t¦ wªasno±¢ do sprowadzenia

macierzy

1 1 1
1 −1 1
0 1 1

 do macierzy górnotrójk¡tnej o tym samym wyznaczniku.

10. *Uzasadnij, »e dodanie lub odj¦cie dowolnej krotno±ci jednego wiersza macierzy 3 × 3 od
innego wiersza tej macierzy nie zmienia wyznacznika.
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7.1 PRZEKSZTA�CENIA LINIOWE I AFINICZNE

Przeksztaªcenia a�niczne i liniowe R3. Izometrie R3. Przykªady przeksztaªce« liniowych R3 → R, R3 →
R2, R→ R3, R2 → R3.

�WICZENIA

1. Ustal, kiedy nast¦puj¡ce przeksztaªcenie a�niczne jest przeksztaªceniem liniowym:

obrót wokóª prostej(a) odbicie wzgl¦dem pªaszczyzny(b)

odbicie wzgl¦dem prostej(c) jednokªadno±¢(d)

rzut na pªaszczyzn¦(e) rzut na prost¡(f)

translacja(g) symetria ±rodkowa(h)

2. Ustal, które z przeksztaªce« z ¢wiczenia 1 s¡ izometriami. Kiedy s¡ one izometriami linio-
wymi?

3. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

przeksztaªcenie zerowe,(a)

przeksztaªcenie identyczno±ciowe,(b)

jednokªadno±¢ o skali 2 i ±rodku O.(c)

4. Napisz wzory nast¦puj¡cych przeksztaªce« a�nicznych:

translacja o wektor
(

1
2
5

)
,(a)

odbicie wzgl¦dem osi Ox,(b)

odbicie wzgl¦dem osi Oy,(c)

odbicie wzgl¦dem pªaszczyzny Oxy,(d)

odbicie wzgl¦dem pªaszczyzny Oyz,(e)

symetria ±rodkowa wzgl¦dem punktu O,(f)

jednokªadno±¢ o ±rodku O i skali −2,(g)

jednokªadno±¢ o ±rodku O i skali 1
2 ,(h)

powinowactwo prostok¡tne o skali 2 wzgl¦dem pªaszczyzny Oxz,(i)

powinowactwo ±cinaj¡ce o pªaszczy¹nie Oxy i wektorze
(

2
1
0

)
.(j)

W przypadku przeksztaªce« liniowych, podaj macierz przeksztaªcenia.

5. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

rzut (prostok¡tny) na pªaszczyzn¦ o równaniu x+ y + 3z = 0,(a)

odbicie wzgl¦dem pªaszczyzny o równaniu x+ y + 3z = 0,(b)

powinowactwo prostok¡tne wzgl¦dem pªaszczyzny o równaniu x+ y+ 3z = 0 i skali −2,(c)

6. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

rzut (prostok¡tny) na prost¡ o równaniu
(
x
y
z

)
= t
(

2
2
1

)
+
(

2
0
1

)
,(a)

odbicie wzgl¦dem prostej o równaniu
(
x
y
z

)
= t

(
2
2
1

)
+
(

2
0
1

)
.(b)

7. Napisz w postaci F (X) = AX + v wzory nast¦puj¡cych przeksztaªce« a�nicznych:
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symetria ±rodkowa o ±rodku S =
(

4
1
2

)
,(a)

jednokªadno±¢ o ±rodku S =
(

3
2
0

)
i skali k = −3.(b)

8. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

F : R3 → R, gdzie F (X) to znakowana odlegªo±¢ X od pªaszczyzny 2x− 3y + 4z = 0,(a)

F : R3 → R, gdzie F (X) = X ◦
(

1
2
5

)
,(b)

F : R3 → R3, gdzie F (X) = X ×
(

1
2
5

)
,(c)

F : R2 → R3, gdzie F (( xy )) = x
(

1
0
1

)
+ y

(
2
1
3

)
,(d)

F : R3 → R, gdzie F (X) to znakowana obj¦to±¢ równolegªo±cianu rozpi¦tego przez

wektory (X,
(

1
0
1

)
,
(

1
1
1

)
).

(e)

ZADANIA

1. Napisz macierz:

symetrii wzgl¦dem pªaszczyzny 4x− 3y + 2z = 0,(a)

rzutu na pªaszczyzn¦ 4x− 3y + 2z = 0,(b)

symetrii wzgl¦dem prostej x−1
3 = y+2

2 = z
2 ,(c)

rzutu na prost¡ x−1
3 = y+2

2 = z
2 ,(d)

2. Napisz w postaci F (X) = AX + v wzory nast¦puj¡cych przeksztaªce« a�nicznych:

translacja o wektor
(

1
7
2

)
,(a) odbicie wzgl¦dem pªaszczyzny y = 3,(b)

odbicie wzgl¦dem prostej x = y = 1,(c) symetria ±rodkowa wzgl¦dem punktu
(

1
2
3

)
,(d)

jednokªadno±¢ o ±rodku
(

1
1
2

)
i skali 3,(e) powinowactwo prostok¡tne wzgl¦dem pªasz-

czyzny y = 3 i skali 4,
(f)

powinowactwo ±cinaj¡ce o pªaszczy¹nie

x = 2 i wektorze
(

0
1
1

)
.

(g)

3. Niech π b¦dzie pªaszczyzn¡ o równaniu 2x−y+2z+1 = 0. Napisz w postaci F (X) = AX+v
wzory nast¦puj¡cych przeksztaªce« a�nicznych:

rzut (prostok¡tny) na pªaszczyzn¦ π,(a)

odbicie wzgl¦dem pªaszczyzny π,(b)

powinowactwo prostok¡tne o skali −2 wzgl¦dem pªaszczyzny π.(c)

4. Niech ` b¦dzie prost¡ o równaniu parametrycznym
(
x
y
z

)
= t

(
1
1
1

)
+
(

1
0
1

)
. Napisz w postaci

F (X) = AX + v wzory nast¦puj¡cych przeksztaªce« a�nicznych:

rzut (prostok¡tny) na prost¡ `,(a)

odbicie wzgl¦dem prostej `,(b)

powinowactwo prostok¡tne o skali −2 wzgl¦dem prostej `.(c)
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5. Napisz w postaci F (X) = AX + v wzór rzutu uko±nego na pªaszczyzn¦ o równaniu x+ y+

z + 1 = 0 w kierunku wektora
(

1
0
2

)
.

6. Napisz w postaci F (X) = AX + v wzór powinowactwa ±cinaj¡cego o pªaszczy¹nie 2x− y+

2z − 1 = 0 i wektorze
(

1
0
−1

)
.

7. Znajd¹ rzut (prostok¡tny) punktu
(

1
2
−1

)
na pªaszczyzn¦ o równaniu x + y + z + 1 = 0, a

nast¦pnie punkt symetryczny do punktu
(

1
2
−1

)
wzgl¦dem tej pªaszczyzny.

8. Znajd¹ rzut (prostok¡tny) punktu
(

2
0
1

)
na prost¡

(
x
y
z

)
= t

(
2
2
1

)
+
(

1
0
0

)
, a nast¦pnie punkt

symetryczny do punktu
(

2
0
1

)
wzgl¦dem tej prostej.

9. Napisz macierze nast¦puj¡cych przeksztaªce« liniowych:

F : R3 → R, gdzie F (X) to znakowana odlegªo±¢ X od pªaszczyzny Ax+By+Cz = 0,(a)

F : R3 → R, gdzie F (X) = X ◦
(
p
q
r

)
,(b)

F : R3 → R3, gdzie F (X) = X ×
(
p
q
r

)
,(c)

F : R2 → R3, gdzie F (( xy )) = x
(
a
b
c

)
+ y

(
d
e
f

)
,(d)

F : R3 → R, gdzie F (X) to znakowana obj¦to±¢ równolegªo±cianu rozpi¦tego przez

wektory (X,
(
a
b
c

)
,
(
d
e
f

)
).

(e)

10. Dla ka»dego z przeksztaªce« z poprzedniego zadania ustal, czy jest ono:

ró»nowarto±ciowe,(a) �na�(b) odwracalne.(c)
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7.2 MACIERZE 3× 3

Macierz przeksztaªcenia liniowego. Addytywno±¢ i jednorodno±¢ przeksztaªce« liniowych. Skªadanie

przeksztaªce« liniowych. Geometryczna interpretacja wyznacznika macierzy przeksztaªcenia. Macierz

izometrii. Macierz odwrotna.

�WICZENIA

1. O przeksztaªceniu liniowym F : R3 → R3 wiadomo, »e dla pewnych wektorów u i v zachodzi

F (u) =
(

3
1
0

)
oraz F (v) =

(
2
0
1

)
. Oblicz F (u+ v), F (u− v) i F (4u+ 2v).

2. Znajd¹ macierz przeksztaªcenia liniowego F : R3 → R3 przeprowadzaj¡cego punkty
(

1
0
0

)
,(

0
1
0

)
i
(

0
0
1

)
odpowiednio na punkty

(
1
2
3

)
,
(

2
1
0

)
i
(

4
1
2

)
.

3. Wyznacz (bez »adnych rachunków) obrazy wersorów oraz macierze nast¦puj¡cych prze-
ksztaªce« liniowych R3:

symetria ±rodkowa wzgl¦dem O,(a) odbicie wzgl¦dem osi Oy,(b)

odbicie wzgl¦dem pªaszczyzny Oxz,(c) obrót o 90◦ wokóª Ox,(d)

jednokªadno±¢ o ±rodku O i skali 2,(e) rzut na pªaszczyzn¦ Oyz.(f)

4. Wyznacz (bez »adnych oblicze«) wszystkie punkty staªe ka»dego z przeksztaªce« z poprzed-
niego ¢wiczenia oraz przeksztaªcenia odwrotne do tych przeksztaªce« (o ile istniej¡).

5. Znajd¹ macierze przeksztaªce« liniowych F ◦G, G ◦ F oraz F−1 i G−1, gdzie:

F (X) =

1 0 1
0 2 1
1 3 0

X, G(X) =

3 1 0
2 0 4
1 1 1

X

6. Ile jest takich przeksztaªce« liniowych F : R3 → R3, które punkty
(

1
1
1

)
,
(

1
0
1

)
i
(

0
0
1

)
prze-

ksztaªcaj¡ odpowiednio na punkty
(

2
1
1

)
,
(

1
1
0

)
i
(

3
0
0

)
? Znajd¹ je wszystkie.

7. Znajd¹ macierz odwrotn¡ (o ile istnieje) dla ka»dej z poni»szych macierzy. Sprawd¹ (wyko-
nuj¡c odpowiednie mno»enia), »e faktycznie s¡ one macierzami odwrotnymi:3 1 −1

2 1 0
0 3 −2

  1 1 −1
1 −1 1
−1 1 1

 2 −1 0
0 4 2
1 1 1

 −1 3 2
1 0 4
0 3 6


8. Rozwi¡» nast¦puj¡ce równanie macierzowe:0 3 2

1 0 4
0 3 6

xy
z

 =

 3
−1
2


9. Rozstrzygnij która z poni»szych macierzy jest macierz¡ izometrii. Czy zachowuje ona, czy

te» zmienia orientacj¦? Wyznacz macierz do niej odwrotn¡.1
3

2
3

2
3

2
3

1
3 −2

3
2
3 −2

3
1
3

 ,

−1
3

2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3


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ZADANIA

1. O przeksztaªceniu liniowym F : R3 → R3 wiadomo, »e dla pewnych wektorów u i v zachodzi

F (3u+ v) =
(

1
2
3

)
oraz F (u+ v) =

(
1
0
1

)
. Oblicz F (u), F (v) i F (u+ 2v).

2. Wyznacz obrazy wersorów oraz macierze nast¦puj¡cych przeksztaªce« liniowych R3:

symetria wzgl¦dem pªaszczyzny y + z = 0,(a)

rzut (prostok¡tny) na pªaszczyzn¦ y = x,(b)

symetria wzgl¦dem prostej
(
x
y
z

)
= t

(
1
0
1

)
,(c)

rzut (prostok¡tny) na prost¡
(
x
y
z

)
= t

(
1
0
1

)
,(d)

rzut uko±ny w kierunku wektora
(

1
1
1

)
na pªaszczyzn¦ Oxy.(e)

3. Przeksztaªcenie F : R3 → R3 to obrót o 120◦ wokóª prostej x = y = z. Znajd¹ obrazy
wersorów przez F oraz napisz macierz F .

4. Dane jest przeksztaªcenie liniowe F , takie »e F (
(

1
1
0

)
) =

(
1
−1
1

)
, F (

(
1
0
1

)
) =

(
2
1
1

)
oraz

F (
(

0
1
1

)
) =

(−3
2
0

)
. Korzystaj¡c z addytywno±ci i jednorodno±ci F wyznacz F (

(
1
1
1

)
) i

F (
(

1
2
1

)
).

5. Znajd¹ przeksztaªcenie liniowe F : R3 → R3, które punkty
(

1
1
2

)
,
(

3
1
0

)
oraz

(
1
0
1

)
przepro-

wadza odpowiednio na
(

1
0
0

)
,
(

0
2
1

)
i
(

1
1
1

)
. Spróbuj zrobi¢ to rozwi¡zuj¡c jedno równanie

macierzowe.

6. Znajd¹ wszystkie punkty staªe przeksztaªcenia F : R3 → R3 danego wzorem:

F (X) =

2 0 2
1 1 1
0 1 0

X +

1
0
0



7. Wyznacz macierze A i B speªniaj¡ce poni»sze równania macierzowe:0 3 2
1 0 4
0 3 6

A =

1 0 1
0 1 0
0 0 1

  1 1 1
2 0 3
−1 0 0

B

 1 0 2
1 1 1
−1 3 0

 =

1 1 1
0 1 1
0 0 1



8. Sprawd¹, które z poni»szych przeksztaªce« liniowych R3 zwi¦kszaj¡ obj¦to±ci, które zmniej-
szaj¡ obj¦to±ci, które zachowuj¡ orientacj¦ i które zmieniaj¡ orientacj¦.

F (X) =

1 2 1
0 −3 1
0 0 −1

X,(a) G(X) =

1 0 1
0 −1

2 0
1 0 1

X,(b) H(X) =

2 0 1
0 1 1
3 1 −1

X.(c)

9. Podaj przykªad przeksztaªcenia liniowego F : R3 → R3 oraz punktu, którego przeciwobraz
przez przeksztaªcenie F jest:

zbiorem pustym,(a) punktem,(b) prost¡,(c) pªaszczyzn¡,(d) R3.(e)
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10. Wyznacz (bez »adnych rachunków) przeksztaªcenia odwrotne do nast¦puj¡cych przeksztaª-
ce« a�nicznych R3 lub uzasadnij, »e przeksztaªcenie odwrotne nie istnieje:

translacja o wektor v,(a) rzut (prostok¡tny) na pªaszczyzn¦ π,(b)

odbicie wzgl¦dem pªaszczyzny π,(c) symetria ±rodkowa o ±rodku S,(d)

obrót o k¡t θ wokóª prostej `,(e) rzut (prostok¡tny) na prost¡ `,(f)

odbicie wzgl¦dem prostej `,(g) jednokªadno±¢ o ±rodku S i skali k 6= 0,(h)

przeksztaªcenie staªe,(i) przeksztaªcenie identyczno±ciowe.(j)

11. Znajd¹ takie przeksztaªcenie a�niczne, które jest odwrotne do przeksztaªcenia F : R3 → R3

o wzorze:

F (X) =

1 2 1
0 1 3
0 0 4

X +

1
1
1


12. Wyznacz wzory przeksztaªce« a�nicznych F ◦G oraz G ◦ F , gdzie:

F (X) =

1 0 1
0 1 2
3 0 1

X +

1
0
2

 , G(X) =

1 1 1
0 1 2
3 0 0

X

13. Uzupeªnij poni»sz¡ macierz do macierzy izometrii (na wszystkie mo»liwe sposoby):1
3

2
3

2
3

2
3

1
3 −2

3
∗ ∗ ∗



14. Wyznacz przeciwobrazy punktów
(

1
0
0

)
,
(

0
1
0

)
i
(

0
0
1

)
przez nast¦puj¡ce przeksztaªcenia a�-

niczne R3:

rzut (prostok¡tny) na pªaszczyzn¦ Oxy,(a)

rzut (prostok¡tny) na o± Ox,(b)

przeksztaªcenie F : R3 → R3 o wzorze F (X) =

1 1 0
1 1 0
0 0 1

X,(c)

przeksztaªcenie G : R3 → R3 o wzorze G(X) =

1 1 0
0 1 0
0 0 2

X +

1
1
1

,(d)
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8.1 WARTO�CI W�ASNE I WEKTORY W�ASNE

Warto±ci wªasne i wektory wªasne. Wielomian charakterystyczny.

�WICZENIA

1. Sprawd¹, które z wektorów
(

1
1
1

)
,
(

1
0
0

)
,
(

1
0
1

)
,
(

1
2
−1

)
s¡ wektorami wªasnymi macierzy

3 0 −3
0 4 −4
0 −2 2

.

Dla jakich warto±ci wªasnych?

2. Wyznacz warto±ci wªasne oraz wektory wªasne nast¦puj¡cych macierzy:a 0 0
0 b 0
0 0 c

 a 1 0
0 a 0
0 0 b

 a 1 0
0 a 1
0 0 a



3. Znajd¹ (bezpo±rednio z de�nicji) wszystkie warto±ci wªasne i wektory wªasne symetrii ±rod-
kowej o ±rodku O, przeksztaªcenia zerowego oraz przeksztaªcenia identyczno±ciowego.

4. Wyznacz wektory wªasne i warto±ci wªasne nast¦puj¡cych przeksztaªce« R3:

obrót wokóª prostej
(
x
y
z

)
= t
(

1
2
7

)
,(a)

rzut prostok¡tny na pªaszczyzn¦ o równaniu x+ y + z = 0.(b)

5. Wyznacz wektory wªasne i warto±ci wªasne nast¦puj¡cych macierzy:3 0 0
0 2 −2
0 −1 1

 2 −5 5
1 −4 5
1 −1 2



ZADANIA

1. Wyznacz wektory wªasne i warto±ci wªasne nast¦puj¡cych przeksztaªce« R3:

symetria wzgl¦dem pªaszczyzny o równaniu 2x+ 3y − z = 0,(a)

powinowactwo prostok¡tne wzgl¦dem pªaszczyzny o równaniu 2x+ y+ z = 0 i skali −2,(b)

rzut uko±ny na pªaszczyzn¦ o równaniu x+ 2y − 4z = 0 w kierunku wektora
(

1
1
1

)
.(c)

2. Wyznacz wielomian charakterystyczny, warto±ci wªasne i wektory wªasne macierzy

a b c
0 d e
0 0 f


(zwanej macierz¡ górnotrójk¡tn¡).

3. Jakie (rzeczywiste) warto±ci wªasne mo»e mie¢ izometria liniowa R3? Podaj wszystkie
mo»liwo±ci i ka»d¡ zilustruj przykªadem.

4. Wyznacz zespolone warto±ci wªasne oraz zespolone wektory wªasne macierzy obrotu o k¡t
θ wokóª osi Oz.

5. Uzasadnij, »e wielomian charakterystyczny macierzy A rozmiaru 3× 3 ma posta¢ χA(λ) =
−λ3 + aλ2 + bλ+ c, gdzie a = trA oraz c = detA.

Copyright c© Tomasz Elsner, 2019



267

6. Warto±ciami wªasnymi macierzy A =

(
a b
c d

)
s¡ λ1 i λ2. Znajd¹, wielomian charaktery-

styczny oraz warto±ci wªasne macierzy B =

p 0 0
0 a b
0 c d

.

7. Macierz A rozmiaru 3 × 3 speªnia warunek A3 = A. Jakie warto±ci wªasne rzeczywiste, a
jakie warto±ci wªasne zespolone mo»e mie¢ ta macierz?

8. Uzasadnij, »e wielomian stopnia 3 o wspóªczynnikach rzeczywistych nie mo»e mie¢ podwój-
nego nierzeczywistego pierwiastka.

9. Uzasadnij, »e je»eli A to macierz 3 × 3 maj¡ca jedn¡ warto±¢ wªasn¡ λ, a zbiór wektorów
dla tej warto±ci wªasnej to caªa przestrze«, to A = λI.
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8.2 DIAGONALIZACJA MACIERZY

Diagonalizacja macierzy. Zastosowania diagonalizacji (pot¦gowanie macierzy, wyznaczanie macierzy prze-

ksztaªcenia liniowego, rozwi¡zywanie rekurencji liniowych). Twierdzenie spektralne.

�WICZENIA

1. Zdiagonalizuj nast¦puj¡ce macierze:−1 1 1
0 1 0
−6 3 4

 3 −1 −1
4 0 −3
1 −1 1

 9 −9 −1
3 −1 −1
2 −4 4

  7 −7 −3
2 0 −2
−1 −1 5



2. Oblicz nast¦puj¡c¡ pot¦g¦ macierzy (gdzie a, b, c to parami ró»ne liczby rzeczywiste):a 1 0
0 b 0
0 0 c

n

3. Znajd¹ macierz o warto±ciach wªasnych 1, 2, −1 i odpowiadaj¡cych im wektorach wªasnych(
1
2
0

)
,
(

1
1
1

)
,
(

3
1
2

)
.

4. Wska» kilka ró»nych przykªadów macierzy, które diagonalizuj¡ si¦ (i to bez u»ycia liczb
zespolonych). Wykorzystaj twierdzenie spektralne.

ZADANIA

1. Oblicz nast¦puj¡ce pot¦gi macierzy:−1 1 1
0 1 0
−6 3 4

10 −1 0 0
−2 1 1
0 0 2

10  7 −7 −3
2 0 −2
−1 −1 5

15

2. Rozwi¡» nast¦puj¡c¡ rekurencj¦:{
a0 = 2, a1 = −2, a2 = −4

an+3 = 2an+2 + an+1 − 2an

3. Uzasadnij, »e je±li macierz ma trzy niewspóªpªaszczyznowe wektory wªasne dla tej samej
warto±ci wªasnej, to jest macierz¡ diagonaln¡.

4. Uzasadnij, »e je±li D jest macierz¡ diagonaln¡, której wyrazy na przek¡tnej s¡ pierwiastkami
stopnia n z 1, to macierz A = PDP−1 speªnia warunek An = I.

5. Wykorzystuj¡c poprzednie zadanie, wska» du»o przykªadów takich macierzy A, »e A2 = I.

6. **Uzasadnij, »e je±li A = PDP−1 jest diagonalizacj¡ macierzy A o rozmiarach 3 × 3, to
(QP )D(QP )−1 jest diagonalizacj¡ macierzy QAQ−1, gdzie Q jest dowoln¡ macierz¡ 3× 3.
Wywnioskuj st¡d, »e zespolone warto±ci wªasne dowolnego obrotu o k¡t θ wokóª prostej s¡
takie same jak wyliczone w poprzednim zadaniu.
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9.1 NOWY UK�AD WSPÓ�RZ�DNYCH

Nowy ukªad wspóªrz¦dnych w R3. Macierz zamiany wspóªrz¦dnych. Równania pªaszczyzny i prostej w

nowych i starych wspóªrz¦dnych. Macierz przeksztaªcenia w starych i nowych wspóªrz¦dnych. Macierz

obrotu wokóª prostej w R3.

�WICZENIA

1. Zapisz w postaci X>AX, gdzie X =
(
x
y
z

)
, za± A jest macierz¡ symetryczn¡, nast¦puj¡ce

wielomiany kwadratowe trzech zmiennych:

x2 + 2xy − 3yz + 3y2 + z2(a)

3xy + 5yz − 2zx(b)

3x2 + 4y2 + 7z2 + 2xy + 8yz + 6zx(c)

2. Wektory e′1 =
(

1
1
0

)
, e′2 =

(
1
0
1

)
i e′3 =

(
0
1
1

)
s¡ wersorami nowego ukªadu wspóªrz¦dnych.

Narysuj nowy ukªad wspóªrz¦dnych (nie jest to ukªad prostok¡tny!) i zaznacz wektory e′1,
e′2, e

′
3, e
′
1 + e′2 + e′3. Jakie s¡ nowe wspóªrz¦dne ostatniego z tych wektorów? Jakie s¡ jego

stare wspóªrz¦dne?

3. Wektory
(

2
1
0

)
,
(

1
1
1

)
i
(

1
0
1

)
s¡ wersorami nowego ukªadu wspóªrz¦dnych. Jakie wspóªrz¦dne

maj¡ wektory
(

1
1
0

)
,
(

1
0
0

)
,
(

0
1
2

)
w tym nowym ukªadzie?

4. Wektory e′1 =
(

1
1
0

)
, e′2 =

(
1
0
1

)
, e′3 =

(
0
0
1

)
s¡ wersorami nowego ukªadu wspóªrz¦dnych.

Znajd¹ stare wspóªrz¦dne wektorów v i w, dla których [v]nowy =
(

2
3
1

)
i [w]nowy =

(−1
2
5

)
.

ZADANIA

1. Wprowadzaj¡c nowy ukªad wspóªrz¦dnych napisz diagonalizacje macierzy nast¦puj¡cych
przeksztaªce«:

symetrii wzgl¦dem pªaszczyzny 2x+ 3y − z = 0,(a)

rzutu na pªaszczyzn¦ 2x+ 3y − z = 0,(b)

symetrii wzgl¦dem prostej x2 = y
2 = z,(c)

rzutu na prost¡ x
2 = y

2 = z.(d)

2. Napisz macierz obrotu o k¡t 45◦ wokóª prostej x = y
2 = z

2 . Uwaga: s¡ dwa takie przeksztaª-
cenia (w zale»no±ci od kierunku obrotu). Znajd¹ macierze obydwu z nich.

3. Dane s¡ punkty A =
(

1
1
1

)
, B =

(
1
2
0

)
, C =

(
0
0
1

)
. Napisz macierz przeksztaªcenia liniowego

F , dla którego F (A) = B, F (B) = C, F (C) = A. Wskazówka: wprowad¹ nowy ukªad
wspóªrz¦dnych, gdzie wersorami b¦d¡ A, B i C.

4. Napisz macierz przeksztaªcenia liniowego F , dla którego F (u) = 2u, F (v) = w, F (w) = v,

gdzie u =
(

1
1
1

)
, v =

(
1
2
1

)
, w =

(
0
0
1

)
. Wskazówka: wprowad¹ nowy ukªad wspóªrz¦dnych.

5. Napisz macierz przeksztaªcenia liniowego F , dla którego F (u) = u + v, F (v) = w + 2u,

F (w) = u + v + w, gdzie u =
(

3
1
0

)
, v =

(
1
1
1

)
, w =

(
1
1
−1

)
. Wskazówka: wprowad¹ nowy

ukªad wspóªrz¦dnych.
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270 ZADANIA

6. Znajd¹ obrazy wektorów 2u+ 3v− 2w i 4u− v−w przez przeksztaªcenie F z poprzedniego
zadania. Wskazówka: u»yj macierzy przeksztaªcenia w nowym ukªadzie wspóªrz¦dnych.

7. Jak nale»y dobra¢ nowy ukªad wspóªrz¦dnych, aby dane przeksztaªcenie F : R3 → R3 w
nowym ukªadzie miaªo macierz diagonaln¡? Dla jakich przeksztaªce« jest to mo»liwe?
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Odpowiedzi

Rozdziaª 0 � Zadania
1.(a) x = 0, y = z = 1, (b) x = −5, y = 2, z = 1, (c) x = 1

2 , y = −1
2 , z = 2

2.(a) x = −1, y = 1, z = 0, t = 1, (b) x = 1, y = −1, z = 2, t = 0, (c) x = 0, y = −2,
z = 2, t = 1

3.4× 41
2 × 6

4.2, 7, 5, −2, −7

5.W (x) = 1
2x

2 − 1
2x+ 2

6.(x− 2)2 + (y + 1)2 = 25
Wskazówka: Zacznij od przeksztaªcenia ukªadu 3 równa« kwadratowych w ukªad skªadaj¡cy
si¦ z 1 równania kwadratowego i 2 równa« liniowych.

7.( 0
0 ),
(−2

4

)
, ( 2

8 ), ( 8
2 ), ( 4

0 )

8.

6 1 8
7 5 3
2 9 4


Rozdziaª 1.1 � �wiczenia
1.(a) ( 3

0 ), ( 0
7 ) oraz 3 i 7, (b)

(−4
0

)
,
(

0
−2

)
oraz 4 i 2, (c) ( x0 ),

(
0
y

)
oraz |x| i |y|.

2.
−−→
AB =

(−2
2

)
,
−−→
BC =

(
3
−6

)
,
−→
AC =

(
1
−4

)
3.B =

(−1
11

)
, C =

(
1
−2

)
4.−~u =

(−3
−4

)
, ~u+ ~v = ( 5

5 ), ~u− ~v = ( 1
3 ), 2~u+ 3~v = ( 12

11 ), 4~u− 3~v = ( 6
13 )

5.~v =
(

2
− 1

3

)
6.( 2

1 ) i ( 6
3 ), ( 5

0 ) i ( 1
0 ),
(−1

2

)
i
(

2
−4

)
oraz ( 0

0 ) i dowolny z pozostaªych wektorów.

7.|( 2
1 )| =

√
5, |( 5

0 )| = 5,
∣∣(−1

2

)∣∣ =
√

5, |( 0
0 )| = 0, |( 6

3 )| = 3
√

5, |( 1
0 )| = 1,

∣∣( 2
−4

)∣∣ = 2
√

5.

8.|AB| =
√

5, |BC| =
√

17, |CD| = 5, |DA| =
√

13, |AC| = 3
√

2, |BD| = 4
√

2.

9.Dowolny wektor wspóªliniowy z u i maj¡cy zwrot zgodny z u, np. v = ( 4
6 ).
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272 ODPOWIEDZI

10.(a) (x− 2)2 + (y − 3)2 = 9, (b) (x+ 5)2 + (y − 1)2 = 4

11.(a) styczne zewn¦trznie, (b) rozª¡czne wewn¦trznie, (c) przecinaj¡ce si¦, (d) rozª¡czne
zewn¦trznie.

Rozdziaª 1.1 � Zadania
1.( 1

1 ) = 2 · ( 1
2 )− ( 1

3 ), ( 1
0 ) = 3 · ( 1

2 )− 2 · ( 1
3 ), ( 0

1 ) = − ( 1
2 ) + ( 1

3 ).

2.( 2
0 )

3.(a) D = ( 1
0 ), (b) D =

(
11
5
0

)
.

4.~u = ( 1
2 ), ~v = ( 2

1 )

5.(a)
(

2
−1

)
, (b)

(
9
5

− 3
5

)
, (c)

(
5
2
−2

)
.

6.( 4
0 ), ( 6

2 ), ( 0
6 ).

7.(a)
(−3
−4

)
i 5, (b)

(
− 1

2
−1

)
i
√

21
2 , (c)

(
3
2

− 1
2

)
i
√

10
2 .

8.Dowolna liczba rzeczywista z przedziaªu [3, 7].

9.Wskazówka: Zastosuj (wielokrotnie) reguª¦ przykªadania.

10.
−→
AC = ~u+ ~v,

−−→
BD = ~v − ~u,

−→
CA = −~u− ~v,

−−→
DB = ~u− ~v.

11.(a) D = ( 6
3 ) (b) C =

(
0
−1

)
.

12.Tak.

13.Wskazówka: Zastosuj (wielokrotnie) wzór na ±rodek odcinka.

14.P = ( 5
5 ), S =

(
3 1
2

2

)
15.Wskazówka: Wprowad¹ ukªad wspóªrz¦dnych, gdzie ±rodkiem b¦dzie ±rodek prostok¡ta,
a boki b¦d¡ równolegªe do osi.

16.

Rozdziaª 1.2 � �wiczenia
1.(a)

(−1
2

)
, (b) ( 1

1 ).

2.(a) np. 6x− 4y+ 14 = 0, −3x+ 2y− 7 = 0, (b) np. ( xy ) = t ( 6
2 ) + ( 1

2 ), ( xy ) = t ( 3
1 ) + ( 4

3 ).

3.(a) np. ( xy ) = t ( 5
2 ) + ( 1

1 ), (b) np. ( xy ) = t
(

3
−4

)
+
(−1

1

)
, (c) np. ( xy ) = t ( 1

2 ) + ( 1
1 ).

4.(a) 2x+ y − 3 = 0, (b) 2x− y − 5 = 0, (c) x− y + 3 = 0,

5.(a) ( xy ) = t
(−1

2

)
+ ( 4

5 ), (b) 2x+ y − 13 = 0.

6.(a) ( xy ) = t ( 4
1 ) + ( 1

2 ), (b) 2x+ 3y − 8 = 0.

Copyright c© Tomasz Elsner, 2019



273

7.(a) ( xy ) = t
(

7
−5

)
+
(−1

4

)
, (b) 5x+ 7y − 23 = 0.

8.(a) ( 1
2 ), (b)

(
−3

5
4
5

)
, (c) ( 2

3 ).

Rozdziaª 1.2 � Zadania
1.( 3

4 )

2.

(
3
2
5
2

)
3.( 0

0 ), ( 2
1 ), ( 6

3 ) oraz
(

0
−5

)
, ( 2

1 ), ( 3
4 ).

4.( 3
2 ) i

(
− 1

5
2
5

)
.

5.Punkt o wspóªrz¦dnych x = 1−5α
3−4α i y = 11

3−4α (w przypadku gdy α 6= 3
4). W przypadku

gdy α = 3
4 proste te s¡ ró»ne i równolegªe.

6.Wskazówka: Rozwa» trójk¡t prostok¡tny, którego przyprostok¡tne s¡ równolegªe do osi
ukªadu wspóªrz¦dnych.

Rozdziaª 1.3 � �wiczenia
1.∠(u, v) = 90◦ (k¡t prosty), ∠(v, w) = arccos

(
−
√

10
10

)
(k¡t rozwarty), ∠(w, u) = arccos

(
3
√

10
10

)
(k¡t ostry).

2.( 1
1 ) =

(√
2 cos 45◦√
2 sin 45◦

)
,
(−1

1

)
=
(√

2 cos 135◦√
2 sin 135◦

)
,

3.(a)
(

3
5
4
5

)
oraz

(
− 3

5

− 4
5

)
, (a)

(
4
5

− 3
5

)
oraz

(
− 4

5
3
5

)
.

4.(a) 4
5 (znakowana: −4

5), (b) 0, (c)
10
√

29
29 (znakowana: +10

√
29

29 ).

5.(a) 4x+ y − 7 = 0 i ( xy ) = t
(

1
−4

)
+ ( 1

3 ), (b) x− 4y + 11 = 0 i ( xy ) = t ( 4
1 ) + ( 1

3 ).

6.(a) 4x+ 5y − 13 = 0, (b) 5x− 4y − 6 = 0.

7.(a) ( xy ) = t
(

7
−1

)
+ ( 1

3 ), (b) ( xy ) = t ( 1
7 ) + ( 1

3 ).

8.pv(u) =

(
3
2
1
2

)
, pu(v) = ( 1

2 )

9.Ka»da liczba z przedziaªu [−15, 15].

Rozdziaª 1.3 � Zadania
1.∠BAD = 90◦, ∠CBA = arccos 2

√
85

85 (k¡t ostry), ∠DCB = arccos 6
√

85
85 (k¡t ostry),

∠ADC = arccos(−4
5) (k¡t rozwarty),

2.(a) prostok¡tny (k¡t prosty przy wierzchoªku B), (b) ostrok¡tny, (c) rozwartok¡tny (k¡t
rozwarty przy wierzchoªku C).
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3.(a) AB: x+ 2y − 5 = 0, BC: 3x− y − 8 = 0, CA: 2x− 3y + 4 = 0.
(b) |AA′| = 7

√
10

10 , |BB′| = 7
√

13
13 , |CC ′| = 7

√
5

5 .
(c) AA′: x+ 3y − 7 = 0, BB′: 3x+ 2y − 11 = 0, CC ′: 2x− y − 4 = 0.

(d)
(

19
7
10
7

)

4.A′ =

(
3 1
10

1 3
10

)
, B′ =

(
25
13
34
13

)
, C ′ =

(
2 3
5

1 1
5

)
.

5.(a) arccos
√

65
65 , (b) arccos

√
10

10 ,

6.3

7.Rzut wektora to
(
− 6

5
2
5

)
. Rzut punktu na prost¡ to

(
− 6

5
7
5

)
.

8.(a) prosta przecinaj¡ca okr¡g, (b) prosta rozª¡czna z okr¦giem, (c) prosta przecinaj¡ca
okr¡g.

9.(a) 4, (b) 24, (c) 32.

10.(a) x+ 2y − 3 = 0, (b) 2x− y + 4 = 0 lub x+ 2y − 3 = 0.

11.Wektor ( 1
2 ) (lub jakakolwiek jego niezerowa wielokrotno±¢), prosta ( xy ) = t ( 1

2 ).

12.Wskazówka: Oblicz iloczyn skalarny
−→
CA ◦

−−→
CB i wykorzystaj równanie okr¦gu.

13.Wskazówka: Zastosuj wªasno±ci z Faktu 1.30 (podobnie jak w dowodzie twierdzenia
cosinusów).
(a) iloczyn skalarny wektorów wyznaczonych przez przek¡tne równolegªoboku = ró»nica
kwadratów dªugo±ci boków,
(b) suma kwadratów dªugo±ci przek¡tnych równolegªoboku = suma kwadratów dªugo±ci
czterech boków.

Rozdziaª 1.4 � �wiczenia
1.(a) −3, (b) 11, (c) −10.

2.(a) dodatnia, (b) ujemna, (c) dodatnia, (d) ujemna.

3.(a) 11
2 , (b) 11.

4.Po jednej stronie prostej le»¡: ( 1
1 ), ( 5

1 ), a po drugiej stronie: ( 0
3 ), ( 2

3 ),
(−1

2

)
.

5.3
2

6.(a) x = 1
3 , y = 2

3 , (b) x = 3
2 , y = 3, (c) ukªad sprzeczny.

Rozdziaª 1.4 � Zadania
1.( 2

1 ),
(−2

3

)
i ( 1

1 ) powy»ej,
(

4
−2

)
poni»ej.

2.1
2 |ab− 3a− 2b|

3.(a) 9, (b) 34.
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4.
(

1
−2

)
= 7 ( 1

1 )− 3 ( 2
3 ).

5.a = 1 lub a = 3.

6.( 1
5 ),
(−1

3

)
,
(−1

1

)
, ( 3

5 ).

7.( 2
0 ),
(
− 8

5
6
5

)
.

Rozdziaª 2.1 � �wiczenia
1.(a), (c), (i) gdy O jest ±rodkiem obrotu/jednokªadno±ci/symetrii, (b), (d)�(g) gdy punkt
O le»y na osi, (h) gdy wektor translacji jest zerowy (tzn. translacja jest identyczno±ci¡).

2.(a) ( 0 0
0 0 ), (b) ( 1 0

0 1 ).

3.(a)
(

0 −1
1 0

)
, (b)

(
0 1
−1 0

)
, (c)

(
1
2

√
3

2

−
√

3
2

1
2

)
, (d)

(−1 0
0 −1

)
, (e)

( √
3

2 −1
2

1
2

√
3

2

)
.

4.

F (( xy )) =
(
x+1
y+2

)
(a) F (( xy )) = ( x

−y ), m(F ) =
(

1 0
0 −1

)
(b)

F (( xy )) =
(−x
y

)
, m(F ) =

(−1 0
0 1

)
(c) F (( xy )) =

(−x
−y
)
, m(F ) =

(−1 0
0 −1

)
(d)

F (( xy )) =
(−2x
−2y

)
, m(F ) =

(−2 0
0 −2

)
(e) F (( xy )) =

(
1
2
x

1
2
y

)
, m(F ) =

( 1
2 0

0
1
2

)
(f)

F (( xy )) = ( x
2y ), m(F ) = ( 1 0

0 2 )(g) F (( xy )) =
(

2x
y

)
= ( 2 0

0 1 ) ( xy )(h)

F (( xy )) =
(
x+y
y

)
= ( 1 1

0 1 ) ( xy )(i) F (( xy )) = ( x
x+y ) = ( 1 0

1 1 ) ( xy )(j)

5.

1
5

(
1 −2
−2 4

)
(a) 1

5

(−3 −4
−4 3

)
(b) 1

5

(−7 −6
−6 2

)
(c)

1
10

(
6 −2
−2 9

)
(d)

(−1 −1
2 2

)
(e)

√
5

5

(
2+
√

5 1
−4 −2+

√
5

)
(f)

6.(a)
( 1

5

−2
5

)
,
(
−2

5
4
5

)
,
(
−1

5
2
5

)
, (b)

(
−3

5

−4
5

)
,
(
−4

5
3
5

)
,
(
−7

5

−1
5

)
, (c)

(
−7

5

−6
5

)
,
(
−6

5
2
5

)
,
(
−13

5

−4
5

)
,

(d)
( 3

5

−1
5

)
,
(
−1

5
9
10

)
,
( 2

5
7
10

)
, (e)

(−1
2

)
,
(−1

2

)
,
(−2

4

)
, (f)

(
1+

2
√

5
5

−4
√

5
5

)
,

( √
5

5

1−2
√

5
5

)
,

(
1+

3
√

5
5

1−6
√

5
5

)
.

7.Wektor prostopadªy do prostej ` (tzn. wektor normalny prostej).

8.Wskazówka: Zauwa», »e dla dowolnego punktu X, jego obraz X ′ jest taki sam dla obu
przeksztaªce«.

Rozdziaª 2.1 � Zadania

1.(a)
(

0 −1
1 0

)
X+ ( 2

0 ), (b)
(

0 1
−1 0

)
X+ ( 0

2 ), (c)

(
1
2

√
3

2

−
√

3
2

1
2

)
X+

(
1
2−
√

3
2

1
2 +

√
3

2

)
, (d)

(−1 0
0 −1

)
X+

( 2
2 ), (e)

( √
3

2 −1
2

1
2

√
3

2

)
X +

(
3
2−
√

3
2

1
2−
√

3
2

)
.

2.
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F (X) = ( 1 0
0 1 )X + ( 5

3 )(a) F (X) =
(

1 0
0 −1

)
X + ( 0

4 )(b)

F (X) =
(−1 0

0 1

)
X + ( 6

0 )(c) F (X) =
(−1 0

0 −1

)
X + ( 8

2 )(d)

F (X) =
(−2 0

0 −2

)
X + ( 6

3 )(e) F (X) =

(
1
2

0

0 1
2

)
X +

(
1
1
2

)
(f)

F (X) = ( 1 0
0 2 )X +

(
0
−2

)
(g) F (X) = ( 2 0

0 1 )X +
(−3

0

)
(h)

F (X) = ( 1 1
0 1 )X +

(−2
0

)
(i) F (X) = ( 1 0

1 1 )X +
(

0
−3

)
(j)

3.

F (X) =

(
1
10

3
10

3
10

9
10

)
X +

(
− 3

5
1
5

)
(a) F (X) =

(
− 4

5
3
5

3
5

4
5

)
X +

(
− 6

5
2
5

)
(b)

F (X) =

(
37
10
− 9

10

− 9
10

13
10

)
X +

(
9
5

− 3
5

)
(c) F (X) =

(
− 1

5
2
5

2
5

13
15

)
X +

(
− 4

5
4
15

)
(d)

4.F (X) =
(

9 −6
12 −8

)
X + ( 2

3 )

5.F (X) =

(
17
5

16
5

− 9
5
− 7

5

)
X +

(
− 4

5
3
5

)
6.

( 6
5 )(a) ( 1

2 )(b) ( 5
2 )(c) ( 7

0 )(d)
(

4
−1

)
(e)(

3
2
3
2

)
(f) ( 1

2 )(g)
(−1

2

)
(h) ( 1

2 )(i) ( 1
0 )(j)

7.

(
−3

2
1
2

)
oraz

(−4
−2

)
8.Wskazówka: Zauwa», »e dla dowolnego punktu X, jego obraz X ′ jest taki sam dla obu
przeksztaªce«.

9.F (X) =
(−y+1
−x−3

)
=
(

0 −1
−1 0

)
X +

(
1
−3

)
Rozdziaª 2.2 � �wiczenia
1.2A+B =

(
3 4
−2 3

)
, 3C −B +A =

(
9 −7
2 6

)
, A− C =

(−2 3
−2 0

)
, A+B + C = ( 5 1

0 0 ).

2.

3.
(
a b
c d

)
( 1 0

0 1 ) =
(
a b
c d

)
, ( 1 0

0 1 )
(
a b
c d

)
=
(
a b
c d

)
, ( 1 0

0 1 ) ( xy ) = ( xy ).

4.( a 0
0 a ) ( xy ) = ( axay )

5.F (u+ v) = ( 8
1 ), F (u− v) =

(−2
−3

)
, F (2u+ 3v) = ( 21

4 )

6.F (u) = ( 3
2 ), F (v) =

(−1
1

)
7.( 2 4

3 1 )

8. (−1
0

)
,
(

0
−1

)
,
(−1 0

0 −1

)
,(a) ( 1

0 ),
(

0
−1

)
,
(

1 0
0 −1

)
,(b)

(−1
0

)
, ( 0

1 ),
(−1 0

0 1

)
,(c)(

0
−1

)
, ( 1

0 ),
(

0 1
−1 0

)
,(d) ( 2

0 ), ( 0
2 ), ( 2 0

0 2 ),(e) ( 1
0 ),
(

0
1
2

)
,
(

1 0
0 1

2

)
,(f)
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9.Jedno: F (X) =
(

2 0
−1 2

)
X.

10.Jedno: F (X) = ( 1 2
0 1 )X + ( 1

1 ).

11.�wiczenie 4:

brak(a) o± Ox(b) o± Oy(c) punkt O(d) punkt O(e)

punkt O(f) o± Ox(g) o± Oy(h) o± Ox(i) os Oy(j)
�wiczenie 5: (a)�(d) i (f) prosta 2x+ y = 0, (e) prosta x+ 3y = 0.

Rozdziaª 2.2 � Zadania
1.(a) pierwszy wiersz mno»y si¦ przez a, drugi wiersz mno»y si¦ przez b,

(b) pierwsza kolumna mno»y si¦ przez a, druga kolumna mno»y si¦ przez b.

2.Ka»dy wyraz macierzy jest mno»ony przez a.

3.

do pierwszego wiersza dodawany jest drugi wiersz,(a)

do drugiej kolumny dodawana jest pierwsza kolumna,(b)

do drugiego wiersza dodawany jest pierwszy wiersz,(c)

do pierwszej kolumny dodawana jest druga kolumna.(d)

4.Wskazówka: Wykorzystaj addytywno±¢ oraz jednorodno±¢ przeksztaªce« liniowych.

5.F (u) =
(−3
−1

)
, F (v) = ( 2

4 ), F (4u+ 3v) =
(−6

8

)
.

6. (
0
−1

)
,
(−1

0

)
,
(

0 −1
−1 0

)
,(a)

( 1
2
1
2

)
,
( 1

2
1
2

)
,
( 1

2
1
2

1
2

1
2

)
,(b)

( 0
0 ), ( 1

1 ), ( 0 1
0 1 ),(c)

( √
3

2
1
2

)
,

(
1
2

−
√

3
2

)
,

( √
3

2
1
2

1
2 −

√
3

2

)
.(d)

7.F (( 3
5 )) = ( 3

4 ), F (( 2
8 )) = ( 4

6 ), F (
(−4
−2

)
) =

(−2
−2

)
, F (

(−1
3

)
) = ( 1

2 ).

8.F (X) =
(−1 2

2 −2

)
X

9.Jedno: F (X) =
(−4 5

0 −1

)
X + ( 3

2 )

10.Zadanie 2:

brak(a) prosta y = 2(b) prosta x = 3(c) punkt ( 4
1 )(d)

punkt ( 2
1 )(e) punkt ( 2

1 )(f) prosta y = 2(g) prosta x = 3(h)

prosta y = 2(i) prosta x = 3(j)
Zadanie 3: (a)�(d) prosta `

11.(a) prosta o równaniu x = −1, (b) ( 1
1 ), (c) prosta o równaniu y = 2x.

12.

obrót, jednokªadno±¢, symetria ±rodkowa, przeksztaªcenie staªe,(a)

odbicie, powinowactwo prostok¡tne, rzut prostok¡tny, rzut uko±ny, powinowactwo ±cinaj¡ce,(b)

identyczno±¢.(c)
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13.
(−2

3

)
14.(a) ( 1

3 ) (punkt staªy), (b) −90◦.

15.−2x+ 4y + 5 = 0 (o± odbicia to zbiór punktów staªych)

16.Wskazówka: Przeprowad¹ rachunek jak w Przykªadzie 9 w Rozdziale 2.1 dla punkty
P = ( xy ) i k¡ta θ.

Rozdziaª 2.3 � �wiczenia
1.

(Tv ◦ Tv)(( xy )) =
(
x+8
y+4

)
,(a)

(Sx ◦ SO)(( xy )) = (SO ◦ Sx)(( xy )) =
(−x
y

)
,(b)

(Tv ◦ Sx)(( xy )) =
(
x+4
−y+2

)
oraz (Sx ◦ Tv)(( xy )) =

(
x+4
−y−2

)
,(c)

(SO ◦ Tv)(( xy )) =
(−x−4
−x−2

)
oraz (Tv ◦ SO)(( xy )) =

(−x+4
−x+2

)
,(d)

(SO ◦ SA)(( xy )) =
(
x−2
y−2

)
oraz (SA ◦ SO)(( xy )) =

(
x+2
y+2

)
.(e)

2.(a) R180◦ , (b) R0◦ = Id, (c) R−30◦ .

3.Suma (skierowanych) k¡tów skªadanych obrotów.

4.m(F ◦G) =
(

2 0
2 −4

)
, m(G ◦ F ) =

(−4 −2
0 2

)
, m(G ◦H) =

(
3 0
−3 2

)
, m(H ◦G) =

(
5 −6
1 0

)
.

5.(a) G(X) = ( 2 3
1 0 )X, v = ( 1

1 ),
(b) G(X) =

(
1 −1
1 −1

)
X, v =

(
2
−1

)
,

(c) G(X) = ( 1 4
2 0 )X, v = ( 2

1 ).

6.(a) T( 1
1 ) ◦R90◦ ◦ T−( 1

1 ), (b) T( 3
1 ) ◦ SO ◦ T−( 3

1 ).

Rozdziaª 2.3 � Zadania
1.

2.(F ◦G)(X) = ( 1 1
2 5 )X + ( 1

2 ),
(G ◦ F )(X) = ( 3 1

6 3 )X + ( 3
4 ),

(F ◦H)(X) =
(−3 4
−2 11

)
X + ( 0

2 ),
(H ◦ F )(X) = ( 5 4

10 3 )X + ( 8
6 ).

3.(a) G(X) = ( 2 3
1 0 )X, u =

(
1

−1
3

)
,

(b) niemo»liwe,

(c) G(X) = ( 1 4
2 0 )X, u =

( 1
2
3
8

)
.

4.D1(X) =
(
k 0
0 k

)
X, D2(X) =

(
l 0
0 l

)
X +

(
1−l
0

)
, (D1 ◦D2)(X) =

(
kl 0
0 kl

)
+
(
k−kl

0

)
. Zªo»enie

b¦dzie translacj¡, je±li kl = 1.

5.SA ◦ SB = T
2
−→
BA

oraz SB ◦ SA = T
2
−→
AB

6.Sy(X) =
(−1 0

0 1

)
X, S`(X) =

(
0 −1
−1 0

)
X, (Sy ◦ S`)(X) =

(
0 1
−1 0

)
X (obrót o −90◦),

(S` ◦ Sy)(X) =
(

0 −1
1 0

)
X (obrót o 90◦).
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7.Odbicie wzgl¦dem dowolnej prostej, symetria ±rodkowa o dowolnym ±rodku, identyczno±¢.

8.(a) G = R−θ, (b) G = S`, (c) G = T−v.

9.(a) T( 2
1 ) ◦ F ◦ T

(−2
−1

), gdzie F to jednokªadno±¢ o ±rodku O i skali 2,

(b) T(−1
0

) ◦ F ◦ T( 1
0 ), gdzie F to odbicie wzgl¦dem prostej o równaniu x+ y = 0,

(c) T(−1
0

) ◦ F ◦ T( 1
0 ), gdzie F to rzut (prostok¡tny) na prost¡ o równaniu x+ y = 0,

(d) T(−1
0

) ◦ F ◦ T( 1
0 ), gdzie F to powinowactwo prostok¡tne o osi x+ y = 0 i skali 3.

10.RAθ i RB−θ dla dowolnych A i B oraz θ.

11.Wektor prostopadªy do obu prostych, o dªugo±ci równej podwojonej odlegªo±ci mi¦dzy
prostymi i zwrocie od l do k (dla zªo»enia Sk ◦ Sl) lub od k do l (dla zªo»enia Sl ◦ Sk).

12.Podwojony k¡t mi¦dzy prostymi, skierowany od l do k (dla zªo»enia Sk ◦ Sl) lub od k
do l (dla zªo»enia Sl ◦ Sk).

Rozdziaª 2.4 � �wiczenia

1.

(
3
5

4
5

− 4
5

3
5

)
,
(
− 3

5
4
5

4
5

3
5

)
,
(

0 −1
1 0

)
.

2.Zachowuj¡ orientacj¦:
(

3
5

4
5

− 4
5

3
5

)
i
(

0 −1
1 0

)
. Zmienia orientacj¦:

(
− 3

5
4
5

4
5

3
5

)
.

3.

obrót wokóª 0, odbicie wzgl¦dem prostej przechodz¡cej przez 0, identyczno±¢,(a)

obrót wokóª punktu innego ni» 0, odbicie wzgl¦dem prostej nie przechodz¡cej przez 0,
translacja o niezerowy wektor,

(b)

jednokªadno±¢ o ±rodku 0 i skali ró»nej od ±1, powinowactwo prostok¡tne o osi przecho-
dz¡cej przez 0 i skali ró»nej od ±1, powinowactwo ±cinaj¡ce o osi przechodz¡cej przez
0, rzut (prostok¡tny lub uko±ny) na prost¡ przechodz¡c¡ przez 0,

(c)

obrót wokóª punktu innego ni» 0, odbicie wzgl¦dem prostej nie przechodz¡cej przez 0,
translacja o niezerowy wektor, jednokªadno±¢ o ±rodku innym ni» 0, powinowactwo pro-
stok¡tne o osi nie przechodz¡cej przez 0, powinowactwo ±cinaj¡ce o osi nie przechodz¡cej
przez 0, rzut (prostok¡tny lub uko±ny) na prost¡ nie przechodz¡c¡ przez 0,

(d)

jednokªadno±¢ o skali ró»nej od ±1, powinowactwo prostok¡tne o skali ró»nej od ±1,
powinowactwo ±cinaj¡ce, rzut (prostok¡tny lub uko±ny).

(e)

4.Zachowuje orientacj¦.

Rozdziaª 2.4 � Zadania

1.( 1 0
0 1 ),

(
1 0
0 −1

)
,
( 3

5
4
5

4
5 −

3
5

)
,
( 3

5 −
4
5

4
5

3
5

)
,
( 3

5
4
5

−4
5

3
5

)
,
( 3

5 −4
5

−4
5 −

3
5

)
,

( √
2

2 −
√

2
2√

2
2

√
2

2

)
,

( √
2

2

√
2

2√
2

2 −
√

2
2

)
,

( √
2

2

√
2

2

−
√

2
2

√
2

2

)
,( √

2
2 −

√
2

2

−
√

2
2 −

√
2

2

)
.

2.(a) obrót o −45◦,
(b) odbicie wzgl¦dem prostej x+ (1−

√
2)y = 0,

(c) odbicie wzgl¦dem prostej x− 2y = 0,
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(d) odbicie wzgl¦dem prostej x = y,
(e) obrót o 90◦.

3.

jednokªadno±¢ o skali ró»nej od ±1,(a)

dowolne przeksztaªcenie o macierzy A, która nie jest macierz¡ izometrii, ale detA = ±1,(b)

przeksztaªcenie o macierzy
(±1 0
a 1

)
.(c)

4.
(

0 −1
1 0

)
oraz

(
− 4

5
− 3

5

− 3
5

4
5

)
5.(a) zmienia pole i orientacj¦, (b) zachowuje pole, zmienia orientacj¦, (c) zachowuje pole i
orientacj¦.

6.

równolegªobok rozpi¦ty przez wektory ( 3
1 ) i

(
2
−1

)
,(a)

równolegªobok rozpi¦ty przez wektory ( 2
0 ) i

(
0
− 1

2

)
,(b)

równolegªobok rozpi¦ty przez wektory
(

3
5

− 4
5

)
i
(

4
5
3
5

)
.(c)

Pole równolegªoboku jest zawsze równe warto±ci bezwzgl¦dnej wyznacznika macierzy.

7.Wskazówka: Ustal, czy to zªo»enie zachowuje orientacj¦, czy j¡ zmienia.

8.Zªo»enie przeksztaªcenia zachowuj¡cego orientacj¦ z przeksztaªceniem zmieniaj¡cym orien-
tacj¦ zmienia orientacj¦.

9.Zachowuje, je±li skala jest dodatnia, a zmienia, je±li skala jest ujemna.

10.Wskazówka: Zastosuj twierdzenie o klasy�kacji izometrii liniowych pªaszczyzny.
Dla izometrii nieliniowych te fakty nie s¡ prawdziwe.

11.

12.T = T−v

Rozdziaª 2.5 � �wiczenia
1.

( 2
√

13
13

−3
√
13

13
)(a) ( 1 1

2 )(b) ( 2 3 )(c)

( 4
1 )(d) (2)(e)

2.

−7
√

13
13(a) 5

2(b) 11(c)

( 16
4 )(d) 8(e)

3.

prosta 2x−3y−2
√

13 =
0

(a) prosta 2x+ y − 4 = 0(b) prosta 2x+ 3y− 2 = 0(c)

2(d) 1(e)

4.
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rzut na prost¡ i dowolny punkt nie le»¡cy na tej prostej, przeksztaªcenie zerowe i punkt
ró»ny od 0,

(a)

dowolne przeksztaªcenie odwracalne i dowolny punkt,(b)

rzut na prost¡ i dowolny punkt na tej prostej,(c)

przeksztaªcenie zerowe i punkt 0.(d)

5.

( 3
1 )(a)

(
1
−1

)
(b) ( 3

3 )(c) ( 2
6 )(d)

6.

prosta x = 1 oraz zbiór pusty(a)

punkt ( 1
2 ) oraz punkt ( 2

1 )(b)

punkt ( 0
1 ) oraz punkt

(
1
−1

)
(c)

zbiór pusty oraz prosta x+ y − 1 = 0(d)

7.

ró»nowarto±ciowe i �na�(a) ró»nowarto±ciowe i �na�(b)

nie jest ani ró»nowarto±ciowe, ani �na�(c) nie jest ani ró»nowarto±ciowe, ani �na�(d)

Rozdziaª 2.5 � Zadania
1. (

a√
a2+b2

b√
a2+b2

)
(a) ( 1

2
a1

1
2
a2 )(b) ( v1 v2 )(c)

( pq )(d) (a)(e)

2.

a+b√
a2+b2

(a) 1
2(a1 + a2)(b) v1 + v2(c)(

2p
2q

)
(d) 2a(e)

3.

prosta ax+ by = 0(a) prosta X = t ( a1a2 )(b)

prosta X = t
(−v2
v1

)
(c) �(d)

0, je±li a 6= 0 lub R2, je±li a = 0(e)

4.Punkt 0, je±li ( pq ) 6= ( 0
0 ) oraz caªa dziedzina R, je±li ( pq ) = ( 0

0 ).

5.

( 3
1 )(a)

(
1
−1

)
(b) ( 3

3 )(c) ( 2
6 )(d)

6.

prosta x− y = 0 oraz prosta x− y − 2 = 0(a)

punkt ( 1
1 ) oraz punkt ( 0

2 )(b)

prosta 2x+ 2y − 1 = 0 oraz zbiór pusty(c)

punkt
(

1
3

− 1
6

)
oraz punkt

(
0
1
2

)
(d)

Copyright c© Tomasz Elsner, 2019



282 ODPOWIEDZI

7.

jest ró»nowarto±ciowe i �na�(a) nie jest ani ró»nowarto±ciowe, ani �na�(b)

nie jest ani ró»nowarto±ciowe, ani �na�(c) nie jest ró»nowarto±ciowe, jest �na�(d)

jest ró»nowarto±ciowe, nie jest �na�(e)

8.

9.

Rozdziaª 2.6 � �wiczenia

1.

(
1
4

1
8

1
4
− 3

8

)
,
(

5 −2
3 −1

)
,
(

2 −1
−1 1

)
,
(

7
5 −4

5
−4

5
3
5

)
.

2.( 1 0
2 3 ), ( 3 2 ), ( 3

1 ), ( 1 2
2 3 ).

3.
(
a b
b c

)
4.

(
2 1

2

3 1
2

)
,
(−4 3

2 −1

)
,
(
−2 3

2

1 − 1
2

)
, ( 2 1

6 2 ), ( 2 2
3 2 ).

5.

( xy ) = ( 1
2 )(a) ( xy ) =

(
3
−1

)
(b) ( xy ) =

(
9
11

− 17
11

)
(c)

6.

R−π/3, m(Rπ/3) =

(
1
2
−
√

3
2√

3
2

1
2

)
, m(R−π/3) =

(
1
2

√
3

2

−
√
3

2
1
2

)
(a)

D2, m(D 1
2
) =

(
1
2

0

0 1
2

)
, m(D2) = ( 2 0

0 2 )(b)

D− 1
2
, m(D−2) =

(−2 0
0 −2

)
, m(D− 1

2
) =

(
− 1

2
0

0 − 1
2

)
(c)

Sx=y, m(Sx=y) = ( 0 1
1 0 )(d)

7.

F−1(X) =
(

0 1
1 −1

)
X(a) G−1(X) =

(
2
17

5
17

3
17
− 1

17

)
X(b) H−1(X) =

(
0 1
− 1

2
1

)
X(c)

8.

( √
2

2 −
√

2
2√

2
2

√
2

2

)
,

(
−
√

2
2

√
2

2√
2

2

√
2

2

)
,
(

3
5

4
5

4
5
− 3

5

)
, ( 0 1

1 0 ),
(

0 1
−1 0

)
.

Rozdziaª 2.6 � Zadania

1.A = 1
7

(−2 2
11 −4

)
, B = 1

3

−14 5
9 −3
−23 8

, C = 1
7

(
7 7
−5 4

)

2.A =

(
− 5

2
3

− 9
4

3

)
3.
(

8
−1

)
, ( 13

4 ),
(

8 13
−1 4

)
.
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4.F (X) =
(

5 −3
5 −1

)
X

5.F−1(X) =
(−3 2

2 −1

)
X +

(
1
−1

)
6.

translacja o wektor −v,(a) nie istnieje,(b)

odbicie wzgl¦dem prostej `,(c) symetria ±rodkowa o ±rodku S,(d)

obrót o k¡t −θ wokóª punktu S,(e) jednokªadno±¢ o ±rodku S i skali 1
k ,(f)

powinowactwo prostok¡tne o osi ` i skali
1
k ,

(g) powinowactwo ±cinaj¡ce o osi ` i wek-
torze −v,

(h)

nie istnieje,(i) przeksztaªcenie identyczno±ciowe,(j)

nie istnieje.(k)

7.Wskazówka: Ustal znak wyznacznika macierzy przeksztaªcenia F−1.

8.Zmniejsza 2 razy.

9.( x y ) ( 2 2
2 1 ) ( xy ), ( x y )

(
−1 7

2
7
2

0

)
( xy ), ( x y )

(
3 −4
−4 1

)
( xy ), ( x y )

(
a b

2
b
2
c

)
( xy ).

10.

11.Wskazówka: U»yj wzoru na transpozycj¦ iloczynu macierzy.

12.Tak.

13.Nie.

Rozdziaª 3.1 � �wiczenia
1.
(

1
−1

)
, ( 1

0 ).

2.

x2 − 2,
√

2 i −
√

2,
( x

(
√

2−1)x

)
i
( x

(−
√

2−1)x

)
,(a)

x2 − 2x, 0 i 2, ( x
−x ) i ( xx ),(b)

x2 − 4x+ 3, 1 i 3, ( x
−x ) i ( xx ),(c)

x2 − 4x+ 4, 2, ( xx ),(d)

x2 − 6x+ 9, 3, ( x0 ),(e)

x2 − 5x− 14, −2 i 7, ( x
−4x ) i

(
2y
y

)
.(f)

3.(x− a)(x− b), a i b, ( x0 ) i
(

0
y

)
.

4.5 i ka»dy wektor oraz 1 i ka»dy wektor.

5.p > −1

6.

obie dodatnie,(a) jedna dodatnia, druga ujemna,(b)

jedna dodatnia, druga ujemna,(c) jedna dodatnia, druga ujemna,(d)
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Rozdziaª 3.1 � Zadania
1.0 i ka»dy wektor oraz −1 i ka»dy wektor.

2.1 i k oraz prosta ` i prosta prostopadªa do `.

3.+1 lub −1.

4.Wskazówka: Jak¡ wªasno±¢ maj¡ wektory wªasne dla warto±ci wªasnej 0?

5.(x− a)(x− b), a i b, ( x0 ) i
(

c
b−ay
y

)
gdy a 6= b

W przypadku a = b jest jedna warto±¢ wªasna a = b, dla której wektory wªasne to ( x0 )
(gdy c 6= 0) lub R2 (gdy c = 0).

6.2 warto±ci wªasne dla p ∈ (−1, 1), 1 warto±¢ wªasna dla p ∈ {−1, 1}, 0 warto±ci wªasnych
dla p ∈ (−∞,−1) ∪ (1,∞).

7.trA = 4, detA = 5

8.

9.0

10.0 lub 1

11.0 lub 1

12.

13.Wskazówka: Oblicz warto±¢ (F ◦ F )(v).

14.Wskazówka: Oblicz warto±¢ F ◦ F dla dowolnego niezerowego wektora wªasnego prze-
ksztaªcenia F .

15.

16.

Rozdziaª 3.2 � �wiczenia
1. (

1 1
1 −1

)
=
(

1−
√

2 1+
√

2
1 1

)(
−
√

2 0
0
√

2

)(
1−
√

2 1+
√

2
1 1

)−1
(a)

( 1 1
1 1 ) =

(−1 1
1 1

)
( 0 0

0 2 )
(−1 1

1 1

)−1(b)

( 2 1
1 2 ) =

(−1 1
1 1

)
( 1 0

0 3 )
(−1 1

1 1

)−1(c) (
3 −1
1 1

)
nie diagonalizuje si¦(d)

( 3 1
0 3 ) nie diagonalizuje si¦(e) (
6 2
4 −1

)
=
(−1 2

4 1

) (−2 0
0 7

) (−1 2
4 1

)−1(f)

2.( 32 0
0 32 ) oraz ( 1 0

0 1 ).

3.Dowolna macierz symetryczna.

4.
(
a b
c d

)
( 2 0

0 1 )
(
a b
c d

)−1 dla dowolnej macierzy
(
a b
c d

)
o niezerowym wyznaczniku.

5.Dla b = 0.
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Rozdziaª 3.2 � Zadania

1.1
2

(
3100+1 3100−1
3100−1 3100+1

)
oraz

(
8
9
·7n+ 1

9
(−2)n 2

9
·7n− 2

9
(−2)n

4
9
·7n− 4

9
(−2)n 1

9
·7n+ 8

9
(−2)n

)
2.
(

4 −2
1 1

)
3.Nie s¡ diagonalizowalne

(
a b
0 a

)
dla dowolnego a i dowolnego b 6= 0. S¡ diagonalizowalne

( a 0
0 a ) dla dowolnego a.

4.

warto±¢ wªasna 1 dla wektorów wªasnych
(

5t
−2t

)
oraz warto±¢ wªasna −1 dla wektorów

wªasnych ( 2t
5t ); macierz 1

29

(
21 −20
−20 −21

)(a)

warto±¢ wªasna 1 dla wektorów wªasnych ( 2t
7t ) oraz warto±¢ wªasna 0 dla wektorów

wªasnych
(

7t
−2t

)
; macierz 1

53 ( 4 14
14 49 )

(b)

5.Warto±¢ wªasna 1 dla wektorów wªasnych
(

3t
−2t

)
oraz warto±¢ wªasna 0 dla wektorów

wªasnych ( tt ). Macierz rzutu
(

3 1
−2 1

)
( 1 0

0 0 )
(

3 1
−2 1

)−1
= 1

5

(
3 −3
−2 2

)
.

6.Wskazówka: Oblicz F (tv).

7.Wskazówka: Oblicz F (u+ v).

8.Wskazówka: Skorzystaj ze wzoru na wyznacznik iloczynu macierzy.

9.Wskazówka: Skorzystaj z de�nicji macierzy odwrotnej oraz wzoru na transpozycj¦ ilo-
czynu macierzy.

10.an = 3 · 2n + (−1)n, bn = 2n + 3n, cn = 2n − 1.

Rozdziaª 4.1 � �wiczenia
1.

2.[e′1]nowy = ( 1
0 ), [e′2]nowy = ( 0

1 ), [2e′1 + 3e′2]nowy = ( 2
3 ).

3.[
(

3
−1

)
]nowy = ( 1

1 ), [( 4
2 )]nowy = ( 2

0 ), [
(

2
−4

)
]nowy = ( 0

2 ).

4.[v]stary = ( 1
8 ), [w]stary =

(−3
11

)
.

5.Ukªady w ¢wiczeniach 1, 3, 4 s¡ prostok¡tne, a ukªad w ¢wiczeniu 2 nie jest prostok¡tny.

6.[v]nowy =
(
−x
1
2
y

)
.

7.5x′ + 3y′ = 0

8.2x+ y = 0

9.
(

2 0
0 −3

)
Rozdziaª 4.1 � Zadania
1.[v]stary = ( 7

9 ), [w]stary = ( 13
1 ).

2.[v]nowy =

(
5
2
9
2

)
, [w]nowy = ( 2

5 ).
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3.[e1]nowy =

(
1
2
1
2

)
, [e2]nowy =

(
− 1

2
1
2

)
, [e′1]stary =

(
1
−1

)
, [e′2]stary = ( 1

1 ).

4.e′1 =
(
− 3

2
−1

)
, e′2 =

(
7
2
2

)
.

5.e′1 =

(
3
5
1
5

)
, e′2 =

(
− 1

5
3
5

)
(ale nie jest to jedyne rozwi¡zanie).

6.[v]nowy =

(
3
11
x− 1

11
y

2
11
x+ 3

11
y

)

7.[v]nowy =
(
x+y
3x+y

)
8.

5x′ + 8y′ = 0(a) −3x′ − y′ + 1 = 0(b)
(
x′

y′

)
= t

(
4
−1

)
+ ( 1

0 )(c)

9.

7x+ 3y = 0(a) y + 1 = 0(b) 5x+ 2y − 1 = 0(c)

10.Wersory nowego ukªadu to wektory wªasne F .

11.mnowy(F ) = 1
5

(
19 −7
3 16

)
12.mstary(F ) = 1

4 ( 7 7
5 5 )

Rozdziaª 4.2 � �wiczenia
1.

hiperbola(a) elipsa(b) hiperbola(c)

2.

elipsa(a) hiperbola(b) hiperbola(c)

3.

hiperbola(a) hiperbola(b) zbiór pusty(c)

4.Nie.

5.

dwie dodatnie(a) dwie dodatnie(b)

jedna dodatnia, druga ujemna(c) dwie dodatnie(d)

6.

( x y )
(

2 −2
−2 5

)
( xy )(a) ( x y )

(
1 0
0 −7

)
( xy )(b) ( x y )

(
5 − 7

2

− 7
2

0

)
( xy )(c)

Rozdziaª 4.2 � Zadania
1.

hiperbola(a) zbiór pusty(b) elipsa(c)
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2.
√

2 i
√

6
3(a)

√
5+
√

5
10 i

√
5−
√

5
10(b)

√
8+2
√

13
3 i

√
8−2
√

13
3(c)

3.

hiperbola o równaniu 13(x′)2 − 13(y′)2 = 1 w ukªadzie wspóªrz¦dnych o wersorach

e′1 =

(
2
√
13

13
3
√
13

13

)
, e′2 =

(
− 3
√
13

13
2
√
13

13

)
.

(a)

elipsa o równaniu 1
2(x′)2 + 3

2(y′)2 = 1 w ukªadzie wspóªrz¦dnych o wersorach e′1 =(
−
√
2

2√
2

2

)
, e′2 =

( √
2

2√
2

2

)
.

(b)

hiperbola o równaniu 10(x′)2 − 5(y′)2 = 1 w ukªadzie wspóªrz¦dnych o wersorach e′1 =( √
5

5
2
√

5
5

)
, e′2 =

(
2
√

5
5

−
√
5

5

)
.

(c)

4.Tak. Jej zbiór wektorów wªasnych to R2.

5.Je±ªi A = 0 i C 6= 0 lub A 6= 0 i C = 0 to dwie proste równolegªe. Je±li A = C = 0 to
zbiór pusty.

6.

prosta x+ y = 0(a) dwie proste równolegªe
x+ y = 1 i x+ y = −1

(b) dwie proste przecinaj¡ce
si¦ x+y = 0 i x−y = 0

(c)

7.6x2 − xy − 2y2 = 0

8.Przeksztaªcenie F (X) =
(
a 0
0 b

)
. Pole elipsy to πab.

9.18(x′)2 + 32(y′)2 + 48x′y′ − 20x′ + 15y′ = 0

Rozdziaª 5.1 � �wiczenia
1.

8− i(a) 4
13 + 7

13 i(b) 4
5 −

7
5 i(c) 2

5 −
1
5 i(d)

3
13 + 2

13 i(e) 3 + 4i(f)

2.

Rez = 17, Imz = −7(a) Rez = 1
10 , Imz = − 7

10(b) Rez = −21, Imz = 20(c)

3.

|2i| = 2, arg(2i) = π
2 , 2i = 2(cos π2 + i sin π

2 )(a)

| − 1 + i| =
√

2, arg(−1 + i) = 3π
4 , −1 + i =

√
2(cos 3π

4 + i sin 3π
4 )(b)

|4− 4i| = 4
√

2, arg(4− 4i) = −π
4 , 4− 4i = 4

√
2(cos(−π

4 ) + i sin(−π
4 ))(c)

|
√

3 + i| = 2, arg(
√

3 + i) = π
6 ,
√

3 + i = 2(cos π6 + i sin π
6 )(d)

| −
√

3 + i| = 2, arg(−
√

3 + i) = 5π
6 , −

√
3 + i = 2(cos 5π

6 + i sin 5π
6 )(e)

4.

5.
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−32i(a) 128 + 128
√

3i(b) 64
√

2− 64
√

2i(c) −
√

3
4 −

1
4 i(d)

6.

7.
√

2 + i
√

2, −
√

2− i
√

2(a)
√

3 + i, −
√

3 + i, −2i(b)
√

2 + i
√

2, −
√

2 + i
√

2, −
√

2− i
√

2,
√

2− i
√

2(c)

8.cos(α+ β) = cosα cosβ − sinα sinβ, sin(α+ β) = sinα cosβ + cosα sinβ.

9.cos(α− β) = cosα cosβ + sinα sinβ, sin(α− β) = sinα cosβ − cosα sinβ.

Rozdziaª 5.1 � Zadania
1.

2.

220(a) 512 + 512
√

3i(b) −249−249
√

3i(c)

3.

3
√

2(
√

3
2 + 1

2 i),
3
√

2(−
√

3
2 + 1

2 i), −
3
√

2i(a)
1
3√2

(1 + i), 1
2 3√2

((−1−
√

3) + (
√

3− 1)i), 1
2 3√2

((−1−
√

3) + (1−
√

3)i)(b)

−
√

2 +
√

2i,
√

2−
√

2i(c)

4.

i, −i(a)

1, −1
2 +

√
3

2 i, −
1
2 −

√
3

2 i(b)

1, i, −1, −i(c)

1, 1
2 +

√
3

2 i, −
1
2 +

√
3

2 i, −1, −1
2 −

√
3

2 i,
1
2 −

√
3

2 i(d)

5.

obrót o π
2 wokóª O(a) symetria ±rodkowa o ±rodku O(b)

translacja o wektor ( 1
1 )(c)

6.

7.cos(2α) = cos2 α− sin2 α, sin(2α) = 2 sinα cosα.

8.cos(3α) = cos3 α− 3 cosα sin2 α = 4 cos3 α− 3 cosα
sin(3α) = − sin3 α+ 3 sinα cos2 α = −4 sin3 α+ 3 sinα

9.Wskazówka: Przyjmij w = (cos 2π
n + i sin 2π

n ).

10.0

11.Wskazówka: Zastosuj dwa poprzednie zadania.
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Rozdziaª 5.2 � �wiczenia
1.

z = 1(a) z = −1− i(b)

2.

z1 = i, z2 = −i(a) z1 = 3
4 + i

√
7

4 , z2 = 3
4 − i

√
7

4(b)

z1 = −2 + 2i, z2 = −2− 2i(c) z1 =
√

3
2 −

1
2 i, z2 = −

√
3

2 −
1
2 i(d)

3.

λ1 = 2 + i, λ2 = 2− i, v1 =
(−i

1

)
, v2 = ( i1 ).(a)

λ1 = 4 + 3i, λ2 = 4− 3i, v1 =
(

1+3i
2

)
, v2 =

(
1−3i

2

)
.(b)

4.

(z − 3)(z + i− 1)(z − i− 1)(a) 2(z − 1
2)(z − 2− 3i)(z − 2 + 3i)(b)

(z + 1)(z + 3− i)(z + 3 + i)(c)

Rozdziaª 5.2 � Zadania
1.

z = 2
3 −

1
3 i, w = 2

3(a) z = 11
2 −

3
2 i, w = −3

2 + 3
2 i(b)

2. (−1 0
0 −1

)
(a)

(−128 128
−384 128

)
(b)

3.

(z − 2− 3i)(z − 2 + 3i)(z + 1− 2i)(z + 1 + 2i)(a)

(z − 1− i)(z − 1 + i)(z + 1− i)(z + 1 + i)(b)

4.Wskazówka: Podstaw z1 = a + bi oraz z2 = c + di i wylicz lew¡ i praw¡ stron¦ ka»dej
równo±ci.

5.Dowolna macierz
(
a b
c d

)
, dla której a+ d = 6 oraz ad− bc = 13.

6.λ1 = cos θ + i sin θ, λ2 = cos θ − i sin θ; |λ1| = |λ2| = 1; argλ1 = θ, argλ2 = −θ.

7.Re[(1 + 2i)(1− i)n] = 2n/2(cos nπ4 + 2 sin nπ
4 )

Rozdziaª 6.1 � �wiczenia

1.

(− 1
3

8
3
3

)

2.�rodek
(−1

2
0

)
, promie«

√
14.

3. (
1
−1
1

)
i
(−2

2
−2

)
,(a)

dowolne trzy spo±ród wektorów
(

1
2
1

)
,
(

1
1
1

)
,
(

1
−1
1

)
,
(

1
0
1

)
,
(−2

2
−2

)
(b)
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4.2
(

1
1
1

)
+ 3

(
2
1
−1

)
− 4

(
1
3
0

)
5.np.

(
x
y
z

)
=
(

0
0
1

)
+ s

(
3
2
0

)
+ t
(

0
1
3

)
6.x− 2y − 3z + 2 = 0

7.
(
x
y
z

)
=
(

3
−4
7

)
+ t
(

2
3
5

)
8.x+ 1 = y−1

3 = z+2
−2

9.
(
x
y
z

)
=
(

2
1
8

)
+ t
(

1
2
5

)
oraz x− 2 = y−1

2 = z−8
5

Rozdziaª 6.1 � Zadania

1.P =

( 1
3
x0+ 2

3
x1

1
3
y0+ 2

3
y1

1
3
z0+ 2

3
z1

)

2.Wskazówka: Zastosuj (kilkukrotnie) wzór na ±rodek odcinka.

3.(x− 2)2 + (y − 3)2 + (z − 4)2 = 14

4.Dowolna liczba rzeczywista z przedziaªu [4, 10].

5.x+ 3y + z − 5 = 0 oraz np.
(
x
y
z

)
=
(

1
1
1

)
+ t
(

1
−1
2

)
+ s

(
0
−1
3

)
6.
(
x
y
z

)
=
(

1
2
0

)
+ t
(

1
1
3

)
oraz x− 1 = y − 2 = z

3

7.
(
x
y
z

)
=
(

1
1
1

)
+ t
(

2
−1
1

)
oraz x−1

2 = 1− y = z − 1

8.np.
(
x
y
z

)
=
(

3
2
1

)
+ t
(

2
−1
−1

)
oraz x−3

2 = 2− y = 1− z

9. (
1
1
0

)
(a)

(
2
1
−1

)
(b)

(
1
1
1

)
(c)

(
0
1
2

)
(d)

10.
(

4
3
4

)
Rozdziaª 6.2 � �wiczenia
1.arccos 2

√
42

42

2.5

3.5
7

(
3
2
1

)
4.5
√

14
7

5.5
√

11

6.1
2

√
141
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7. (
1
−1
−1

)
(a) 5(b) 11(c)

8.x− y + 2z − 6 = 0

9.4x− 7y + 5z − 9 = 0

Rozdziaª 6.2 � Zadania
1.u◦(u+v+w) = 9, (u+v+w)◦(u+v+w) = 16, |u+v+w| = 4, ∠(u, u+v+w) = arccos 3

4 .

2.60◦. Wskazówka: Umie±¢ sze±cian w dogodnym ukªadzie wspóªrz¦dnych.

3.

( 1
6

− 2
3

1
6

)
oraz

( 3
2
3
2
0

)

4.Pole
√

6
2 , wysoko±¢ 2

√
6

3 .

5.2x− 3y + 4z − 5 = 0

6.

arccos
√

105
42 ,(a) arccos 8

√
77

77 .(b)

7.arcsin 2
√

2
3

8.Maj¡ sens: u× (v × w) oraz u ◦ (v × w). Nie maj¡ sensu: (u ◦ v)× w oraz (u ◦ v) ◦ w.

9.

0(a) 0(b) 2v × u(c) |u|2 − |v|2(d)

10.2x+ y − z − 2 = 0

Rozdziaª 6.3 � �wiczenia
1.

2.

3.

4.abc

5.Nie.

6.

Rozdziaª 6.3 � Zadania
1.

2.

nie zmieni si¦,(a) nie zmieni si¦,(b)

przemno»y si¦ przez t3,(c) zmieni znak.(d)

3.
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4.abc

5.2
(

1
0
1

)
− 3

(
1
1
1

)
+ 4

(
2
1
0

)
6.

7.p 6= ±3
2

8. 3−2p
9−4p2

·
(

1
2
p+1

)
− 3p+1

9−4p2
·
( p
p−2

1

)
+ p2+p−1

9−4p2
·
(

3
−1
2

)
9.Wskazówka: Skorzystaj z addytywno±ci i jednorodno±ci wzgl¦dem ka»dej kolumny.

10.Wskazówka: Skorzystaj z poprzedniego zadania oraz z faktu, »e transpozycja macierzy
nie zmienia wyznacznika.

Rozdziaª 7.1 � �wiczenia
1.

2.

3.

4.

5.

6.

7.

8.

Rozdziaª 7.1 � Zadania
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

3.
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