
Algebra Liniowa 2 � Lista nr 3

Rozwi¡zania

Zadanie 1. Oblicz wyznacznik nast¦puj¡cych macierzy:
4 3 1 1 5
1 2 0 1 0
2 1 2 0 0
5 3 0 0 0
1 0 0 0 0

 ,


2 1 3 0 0
1 1 1 0 0
1 3 4 0 0
0 0 0 5 6
0 0 0 5 3

 ,


2 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 4 0 0
0 0 0 5 0

 .

Rozwi¡zanie.

Pierwsza z tych macierzy przypomina macierz górnotrójk¡tn¡, tylko »e podziaª
tej macierzy na trójk¡ty przebiega teraz wzdªu» `niewªa±ciwej' przek¡tnej (tzw.
przek¡tna poboczna). Bezpo±rednio nie mo»emy wi¦c wykorzysta¢ Faktu 2.10 ze
Skryptu. Mo»emy jednak skorzysta¢ z tego samego argumentu: jedynym rozst-
wieniem wyrazów, które nie zawiera wyrazu 0 jest owa `niewªa±ciwa' przek¡tna.
Jednak obecnie musimy jeszcze ustali¢ znak, z jakim iloczyn wyrazów tego
rozstawienia wyst¦puje w wyznaczniku. W tym celu musimy ustali¢ liczb¦ za-
mian par kolumn, które przeprowadzaj¡ to rozstawienie w przek¡tn¡ gªówn¡.
�atwo zauwa»y¢, »e potrzeba do tego dwóch takich przestawie«. Dlatego warto±¢
szukanego wyznacznika to po prostu iloczyn wyrazów z owej pobocznej przek¡t-
nej, tzn. 5 · 1 · 2 · 3 · 1 = 30.

Zauwa»my przy okazji, »e je»eli w wyj±ciowej macierzy przestawimy pier-
wsz¡ i ostatni¡ kolumn¦, a nast¦pnie drug¡ i przedostatni¡, to nie zmienimy
wyznacznika (Skrypt, Wniosek 2.7, str. 22), a przeprowadzimy zadan¡ macierz
wªa±nie w macierz górnotrójk¡tn¡ i teraz ju» b¦dziemy mogli skorzysta¢ ze
wspomnianego Faktu 2.10 (Skrypt, str. 23).

Jak ªatwo zauwa»y¢ druga macierz to z kolei macierz skªadaj¡ca si¦ z klatek
(Skrypt, Fakt 2.11, str. 23), dlatego jej wyznacznik jest równy iloczynowi wyz-
naczników macierzy  2 1 3

1 1 1
1 3 4

 ,

(
5 6
5 3

)
,

Obydwa te wyznaczniki ªatwo oblicza si¦ z defnicji

det

 2 1 3
1 1 1
1 3 4

 = 2 · 1 · 4 + 1 · 1 · 1 + 3 · 1 · 3−

− 3 · 1 · 1− 1 · 3 · 2− 4 · 1 · 1 = 8 + 1 + 9− 3− 6− 4 = 5

det

(
5 6
5 3

)
= 5 · 3− 6 · 5 = 15− 30 = −15
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St¡d ostatecznie

det


2 1 3 0 0
1 1 1 0 0
1 3 4 0 0
0 0 0 5 6
0 0 0 5 3

 = 5 · (−15) = −75.

Powinno by¢ jasne, »e ostatnia z powy»szych macierzy to `prawie' macierz
diagonalna � jedyne niezerowe wyrazy tworz¡ rozstawienie: »adne dwa nie stoj¡
w tym samym wierszu, ani w tej samej koumnie. Dlatego warto±ci¡ `bez znaku',
a wi¦c warto±ci¡ bezwzgl¦dn¡ szukanego wyznacznika jest warto±¢ iloczynu 2 ·
1 · 1 · 4 · 5 = 40. Dla ustalenia znaku tego rozstawienia musimy znale¹¢ seri¦
zamian par kolumn, która przeprowadzi dane rozstawienie w przek¡tn¡ gªówn¡.
�atwo widzie¢, »e serie tak¡ tworz¡ nast¦puj¡ce trzy zamiany kolumn: drugiej i
ostatniej, nast¦pnie trzeciej i ostatniej, w ko«cu � czwartej i ostatniej. Ta seria
zamian generuje taki oto ci¡g macierzy

2 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 4 0 0
0 0 0 5 0

→


2 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 4 0 0
0 0 0 5 0

→

→


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 4
0 0 0 5 0

→


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 4 0
0 0 0 0 5


Ze wzgl¦du na nieparzyst¡ liczb¦ zamian par kolumn prowadz¡cych od pierwszej
do ostatniej macierzy w tym ci¡gu ich wyznaczniki maj¡ przeciwne znaki i t¦
sam¡ warto±¢ bezwzgl¦dn¡. Poniewa» ostania macierz w powy»szym ci¡gu to
macierz diagonalna, w¦c jej wyznacznik wynosi 40 (Skrypt, Fakt 2.9, str. 23).
Dlatego warto±¢ wyznacznika pierwotnej macierzy to -40.

Zadanie 2. Powtarzaj¡c wielokrotnie operacj¦ dodania kolumny (wiersza)
do innej kolumny (wiersza) przeksztaª¢ ka»d¡ z poni»szych macierzy do postaci
z du»¡ lliczb¡ zer, a nast¦pnie oblicz jej wyznacznik:


1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

 ,


1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

 ,


1 2 1 1 2
0 1 1 1 1
1 1 1 1 1
2 1 1 2 2
2 1 2 2 1

 .

Rozwi¡zanie.
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Zacznijmy od pierwszej z powy»szych macierzy, tzn. od macierzy
1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

 .

Najpierw odejmujemy pierwszy wiersz od drugiego otrzymuj¡c macierz
1 1 1 1 0
0 0 0 −1 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

 .

Nast¦pnie odejmujemy ten sam pierwszy wiersz kolejno od wszystkich pozostaªych
wierszy, oprócz ostatniego. To da nam kolejno nast¦puj¡ce dwie macierze:

1 1 1 1 0
0 0 0 −1 1
0 0 −1 0 1
1 0 1 1 1
0 1 1 1 1

 .

oraz 
1 1 1 1 0
0 0 0 −1 1
0 0 −1 0 1
0 −1 0 0 1
0 1 1 1 1

 .

Zauwa»my, »e w ostatniej z tych macierzy pierwsza kolumna skªada si¦ tylko
z jednej jedynki w pierwszym wierzu, a poza tym z samych zer. Wykorzystamy
t¦ jedynk¦ do wyzerowania caªego pierwszego wiersza. Dlatego b¦dziemy teraz
odejmowa¢ t¦ kolumn¦ kolejno od wszystkich pozostaªych kolumn oprócz ostat-
niej, bo w ostatniej z nich w pierwszym wierszu ju» stoi 0. W efekcie po trzech
takich odejmowaniach otrzymamy nast¦puj¡c¡ macierz

1 0 0 0 0
0 0 0 −1 1
0 0 −1 0 1
0 −1 0 0 1
0 1 1 1 1

 .

Teraz dodamy przedostatni wiersz do ostatniego, co spowoduje, »e druga kolumna
b¦dzie miaªa tylko jeden niezerowy wyraz, mianowicie minus jedynk¦ w przed-
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ostatnim wierszu. Istotnie, otrzymana macierz ma nast¦puj¡c¡ posta¢
1 0 0 0 0
0 0 0 −1 1
0 0 −1 0 1
0 −1 0 0 1
0 0 1 1 2

 .

Teraz za pomc¡ drugiej kolumny `zerujemy' caªy przedostatni wiersz. Poniewa»
jedynym niezerowym wyrazem w tym wierszu poza potrzebn¡ nam -1 jest 1 w
ostatniej kolumnie, dodajemy wi¦c drug¡ kolumn¦ do ostatniej otrzymuj¡c

1 0 0 0 0
0 0 0 −1 1
0 0 −1 0 1
0 −1 0 0 0
0 0 1 1 2

 .

Teraz dodajemy ostatni wiersz do trzeciego, aby w zasadzie `wyzerowa¢' trzeci¡
kolumn¦ (zostanie w niej tylko 1 w ostatnim wierszu):

1 0 0 0 0
0 0 0 −1 1
0 0 0 1 3
0 −1 0 0 0
0 0 1 1 2

 .

U»ywamy teraz trzeciej kolumny do `wyzerowania' ostatniego wiersza, odejmu-
j¡c trzeci¡ od czwartej, a nast¦pnie od pi¡tej, ostatniej. W efekcie uzyskamy
tak¡ macierz 

1 0 0 0 0
0 0 0 −1 1
0 0 0 1 3
0 −1 0 0 0
0 0 1 0 0

 .

W niej dodamy czwart¡ kolumn¦ do pi¡tej, co `wyzeruje' t¦ ostatni¡. Istotnie
macierz przybie»e posta¢ 

1 0 0 0 0
0 0 0 −1 0
0 0 0 1 4
0 −1 0 0 0
0 0 1 0 0

 .

W ko«cu dodamy drugi wiersz do trzeciego, otrzymuj¡c w rezultacie macierz,
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która w ka»dym wierszu i w ka»dej kolumnie ma tylko jeden niezerowy wyraz:
1 0 0 0 0
0 0 0 −1 0
0 0 0 0 4
0 −1 0 0 0
0 0 1 0 0

 .

Teraz zamieniamy miejscami najpierw drug¡ i czwart¡ kolumn¦, a nast¦pnie
trzeci¡ i pi¡t¡, co prowadzi do nast¦puj¡cej macierzy diagonalnej

1 0 0 0 0
0 −1 0 0 0
0 0 4 0 0
0 0 0 −1 0
0 0 0 0 1

 .

Poniewa» macierz t¦ uzyskali±my z interesuj¡cej nas macierzy w drodze dwóch
(parzystel liczby) przestawie« par kolumn, wi¦c wyznaczniki obu macierzy s¡
równe. Wyznacznik ko«cowej macierzy diagonalnej wynosi 4 i tyle wynsi wyz-
nacznik pocz¡tkowej macierzy z tego zadania.

Rozpatrzymy teraz kolejn¡ macierz, tj. macierz
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

 .

Odejmuj¡c piersz¡ kolumn¦ kolejno od drugiej, trzeciej, czwartej i pi¡tej
otrzymujemy macierz 

1 1 2 3 4
2 1 2 3 4
3 1 2 3 4
4 1 2 3 4
5 1 2 3 4

 .

Teraz odejmujemy drug¡ kolumn¦ � pomno»on¡ przez 2 od trzecej, pomno»on¡
przez 3 od czawartej i pomno»on¡ przez 4 od pi¡tej otrzymuj¡c w efekcie

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 0 0 0
5 1 0 0 0

 .

T¦ macierz mo»na jeszcze przeksztaªci¢ i uzyska¢ 0 w jej lewym górnym rogu,
a nast¦pnie w caªej drugiej kolumnie poza pierwszym jej wyrazem, ale ju» teraz
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wida¢, »e wyznacznik tej macierzy wynosi 0 (kolumna zer; dwie kolumny jed-
nakowe) (Skrypt, Wniosek 2.8, str. 22).

Przeksztaªcanie ostatniej macierzy z tego zadania, a wi¦c macierzy
1 2 1 1 2
0 1 1 1 1
1 1 1 1 1
2 1 1 2 2
2 1 2 2 1

 .

zaczniemy od odj¦cia drugiego wiersza od ka»dego z pozostaªych otrzymuj¡c
macierz 

1 1 0 0 1
0 1 1 1 1
1 0 0 0 0
2 0 0 1 1
2 0 1 1 0

 .

Dalej u»ywamy trzeciego wiersza do `wyzerowania' pierwszej kolumny:
0 1 0 0 1
0 1 1 1 1
1 0 0 0 0
0 0 0 1 1
0 0 1 1 0

 .

Teraz od drugiego wiersza odejmujemy pierwszy
0 1 0 0 1
0 0 1 1 0
1 0 0 0 0
0 0 0 1 1
0 0 1 1 0

 ,

po czym od ostatniej kolumny odejmujemy drug¡
0 1 0 0 0
0 0 1 1 0
1 0 0 0 0
0 0 0 1 1
0 0 1 1 0

 ,

w ko«cu od czwartej kolumny odejmujemy trzeci¡
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 0

 .
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Poniewa» w otrzymanej macierzy dwie kolumny s¡ jednakowe, wi¦c jej wyz-
nacznik równa si¦ zero (Skrypt, Wniosek 2.8, str. 22).

Zadanie 3 Ustal, jak zmieni si¦ wyznacznik macierzy n× n, je±li:

(a) ka»dy wyraz macierzy zamienimy na przeciwny,

(b) ka»dy wyraz macierzy pomno»ymy przez niezerow¡ liczb¦ t ∈ R

(c) pierwsz¡ kolumn¦ przestawimy na koniec macierzy,

(d) wiersze macierzy ustawimy w odwrotnym porz¡dku.

Rozwi¡zanie.

(a) ka»dy wyraz macierzy zamieniamy na przeciwny
Posªuguj¡c si¦ de�nicj¡ wyznacznika jako sumy odpowiednich iloczynów wyrazów
macierzy (rozstawie« z wªa±ciwym znakiem, Skrypt, De�nicja 2.5, str. 21)
wnioskujemy, »e zamiana wszystkich wyrazów macierzy na liczby przeciwne
spowoduje tylko ewentualn¡ zmian¦ znaku wszystkich iloczynów powy»szej sumy.
Rzeczywi±cie, obecnie (ka»dy) pojedynczy skªadnik tej sumy b¦dzie miaª posta¢

±(−ai1j1) · (−ai2j2) · · · (−ainjn) = (−1)n · (±ai1j1 · ai2j2 · · · ainjn)

St¡d

det(−A) =
∑
±(−ai1j1) · (−ai2j2) · · · (−ainjn)

=
∑

(−1)n · (±ai1j1 · ai2j2 · · · ainjn)

= (−1)n ·
∑
±ai1j1 · ai2j2 · · · ainjn = (−1)n detA

Tak wi¦c zamiana ka»dego wyrazu macierzy na przeciwny powoduje zmian¦ wyz-
nacznika polegaj¡c¡ na pomno»eniu go przez czynnik (−1)n, a wi¦c ostatecznie
taki wyznacznik nie zmieni si¦, gdy n jest parzyste, a zmieni znak na przeciwny,
gdy n jest nieparzyste.

(b) ka»dy wyraz macierzy mno»ymy przez niezerow¡ liczb¦ t ∈ R
Zgodnie z Wnioskiem 2.14.1) (Skrypt, str. 25), wyznacznik macierzy mno»y si¦
przez t, je±li wybran¡ kolumn¦ pomno»ymy przez t. Macierz, w której wszystkie
wyrazy pomno»ono przez t mo»na rozpatrywa¢ jako macierz, któr¡ otrzymano
mno»¡c przez t kolejno ka»d¡ z jej kolumn. Pojawienie si¦ czynnika t w kole-
jnej kolumnie spowoduje pomno»enie przez to samo t wyznacznika. Dlatego
pomno»enie dwóch kolumn przez t spowoduje zmian¦ wyznacznika o czynnik t2;
trzech � o czynnik t3. W ko«cu pomno»enie wszystkich kolumn (a wi¦c wszys-
tkich wyrazów) przez wspólny czynnik t spowoduje pomno»enie wyznacznika
przez czynnik tn, gdzie n jest liczb¡ kolumn macierzy.

(c) pierwsz¡ kolumn¦ przestawiamy na koniec macierzy
Gdy w danej macierzy przestawimy pierwsz¡ kolumn¦ na koniec, to otrzymamy
macierz, w której pierwsz¡ kolumn¡ b¦dzie druga kolumna zadanej macierzy;
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drug¡ � trzecia; itd. Chc¡c zaobserwowa¢, co dzieje si¦ z wyznacznikiem
musimy odwoªa¢ si¦ do jakiego± twierdzenia, które opisuje zachowanie si¦ wyz-
nacznika pod wpªywem zmiany kolumn. Mamy jedno takie twierdzenie �
Skrypt, Wniosek 2.7, str. 22, które opisuje to zachowanie, ale tylko w przy-
padku prostych zmian � zamieniamy miejscami dwie kolumny, co spowoduje
zmian¦ znaku wyznacznika.

Dlatego musimy opisa¢ przestawienie pierwszej kolumny za pomoc¡ zamian
(przestawie«) par kolumn. Teraz sprawa powinna by¢ ju» prosta:

• zamieniamy pierwsz¡ kolumn¦ z drug¡. W ten sposób druga kolumna
stanie si¦ pierwsz¡, a dotychczasowa pierwsza pow¦druje na miejsce drugiej,
o jeden `krok' bli»ej ko«ca

• zamieniamy obecn¡ drug¡ kolumn¦ (a wi¦c pierwsz¡ kolumn¦ wyj±ciowej
macierzy) z trzeci¡. W ten sposób pierwotnie trzecia kolumna stanie si¦
drug¡, a pierwsza kolumna pierwotnej macierzy znajdzie si¦ na trzecim
miejscu

• . . .

• zamieniamy obecnie przedostatni¡ kolumn¦ (która byªa pocz¡tkowo pier-
wsz¡) z kolumn¡ ostatni¡. W ten sposób pierwsza kolumna zostaªa prze-
stawiona na koniec macierzy.

Wida¢ wi¦c, »e dokonuj¡c n− 1 przestawie« par kolumn przeniesiemy pierwsz¡
z nich na koniec macierzy. Jedyne co si¦ staªo z wyznacznikiem, to ewentu-
alna zmiana znaku, gdy» ka»da z tych zamian j¡ powodowaªa. n − 1 takich
zamian powoduje zmian¦ znaku wyznacznika o czynnik (−1)n−1 i w zale»no±ci
od parzysto±ci n powoduje lub nie zmian¦ znaku pierwotnego wyznacznika.

(d) wiersze macierzy ustawiamy w odwrotnym porz¡dku
Zamieniamy miejscami pierwsz¡ kolumn¦ z ostatni¡, co zmienia znak wyz-
nacznika.
Zamieniamy drug¡ kolumn¦ z przedostatni¡ � ponowna zmiana znaku, a wi¦c
wrócili±my do pierwotnej warto±ci wyznacznika.
Zamieniamy trzeci¡ z trzeci¡ od ko«ca � kolejna zmiana znaku.
Czwart¡ z czwart¡ od ko«ca � powrotna zmiana znaku.
. . .
Gdy dotrzemy `w okolice ±rodkowej kolumny' (szczegóªy zale»¡ od parzysto±ci
liczby kolumn!), ko«czymy, bo wszystkie kolumny znajd¡ si¦ ju» na »¡danych
miejscach. �atwo si¦ przekona¢, »e potrzebna liczba zamian wynosi [n2 ], gdzie
[x] oznacza funkcj¦ cz¦±¢ caªkowita.

Zadanie 4 Jaki jest wyznacznik macierzy, której jedna z kolumn jest krot-
no±ci¡ innej kolumny?

Rozwi¡zanie.

Zgodnie z Wnioskiem 2.14.1) (Skrypt, str.25) wyznacznik macierzy mno»y si¦
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przez t, je±li jedn¡ z jej kolumn pomno»ymy przez t (patrz tak»e Skrypt, Fakt
2.13.2), str. 25). Je±li wi¦c w macierzy jedna z kolumn jest krotno±ci¡ innej,
to jej wyznacznik jest t¡ sam¡ krotno±ci¡ wyznacznika macierzy, w której dwie
kolumny s¡ jednakowe. A wyznacznik takiej macierzy (Skrypt, Wniosek 2.8,
str. 22) wynosi zero. Tak wi¦c wyznacznik macierzy rozwa»anej w tym punkcie
równie» wynosi zero.

Zadanie 5 Dane s¡ przeksztaªcenia F : R3[x] → R2[x], F (P (x)) = xP ′′(x)
oraz G : R2[x]→ R, G(P ) = P (2).

(a) Napisz wzór przeksztaªcenia G ◦ F : R3[x]→ R.

(b) Napisz macierz przeksztaªce« F , G, G ◦ F w bazach B = (1, x, x2, x3),
C = (1 + x, x+ x2, x2), D = (1).

(c) Sprawd¹ (wymna»aj¡c macierze), »e zachodzimCD(G)mBC (F ) = mBD(G◦F ).

Rozwi¡zanie.

(a) Wzór przeksztaªcenia G ◦ F : R3[x]→ R.
Niech P (x) b¦dzie dowolnym wielomianem stopnia≤ 3, tzn. niech P (x) ∈ R3[x].
Wtedy zgodnie z de�nicj¡ zªo»enia funkcji i na mocy de�nicji F oraz G mamy
(G ◦ F )(P (x)) = G(F (P (x)) = G(xP ′′(x)) = 2 · P ′′(2).

(b) Macierze przeksztaªce«
Zgodnie z de�nicj¡ macierzy przeksztaªcenia (Skrypt, De�nicja 1.23, str. 15)
macierz tak¡ tworzy si¦ zapisuj¡c w jej kolejnych kolumnach wspóªrz¦dne w bazie
przestrzeni docelowej obrazów wektorów bazy przestrzeni wyj±ciowej. Dla przek-
sztaªcenia F przstrzeni¡ wyj±ciow¡ (a wi¦c dziedzin¡) jest zbiór (przestrze«)
R3[x] z baz¡ B, natomiast przestrzeni¡ docelow¡ (przeciwdziedzin¡) � R2[x] z
baz¡ C. Obrazy wektorów bazy B przez F , to odpowiednio

F (1) = x · 1′′ = 0,

F (x) = x · x′′ = x · 1′ = x · 0 = 0,

F (x2) = x · (x2)′′ = x · (2x)′ = x · 2 = 2x = 0(1 + x) + 2(x+ x2) + (−2)x2,

F (x3) = x · (x3)′′ = x · (3x2)′ = x · 6x = 6x2.

St¡d macierz przeksztaªcenia F w bazach B oraz C to

mBC (F ) =

 0 0 0 0
0 0 2 0
0 0 −2 6

 .

Z kolei dla przeksztaªceniaG jego warto±ci na elementach bazy C to odpowiedno

G(1 + x) = 1 + 2 = 3,

G(x+ x2) = 2 + 22 = 6,

G(x2) = 22 = 4

9



sk¡d otrzymujemy macierz G w bazach C oraz D o postaci

mCD(G) =
(
3 6 4

)
.

W ko«cu analogicznie znajdujemy zarówno warto±ci przeksztaªcenia G ◦ F
na elementach bazy B, jak i macierz tego przeksztaªcenia w zadanych bazach
(B i D):

G ◦ F (1) = 2 · (1′′)(2) = 0,

G ◦ F (x) = 2 · (x′′)(2) = 0,

G ◦ F (x2) = 2 · ((x2)′′)(2) = 2 · 2 = 4,

G ◦ F (x3) = 2 · ((x3)′′)(2) = 2 · (6x)(2) = 2 · 12 = 24;

mBD(G ◦ F ) =
(
0 0 4 24

)
.

(c) Wzór mCD(G)mBC (F ) = mBD(G ◦ F ).
Z poprzedniego punktu wiemy, jak wygl¡daj¡ wyst¦puj¡ce w tym wzorze

macierze. Dlatego podstawiamy je do niego, ak¡d natychmiast otrzymujemy
ªatwym, bezpo±rednim rachunkiem »¡dan¡ zale»no±¢:

mCD(G) ·mBC (F ) =
(
3 6 4

)
·

 0 0 0 0
0 0 2 0
0 0 −2 6

 =

=
(
0 0 4 24

)
= mBD(G ◦ F ).

Zadanie 6 Które z poni»szych przeksztaªce« s¡ liniowe wzgl¦dem ka»dej
wspóªrz¦dnej?

(a) F : Rn × Rn → R, gdzie F (v, w) = v ◦ w,

(b) F : R3 × R3 → R3, gdzie F (v, w) = v × w,

(c) F : Mn×n ×Mn×n →Mn×n, gdzie F (A,B) = AB,

(d) F : Mn×n ×Mn×n →Mn×n, gdzie F (A,B) = A+B,

(e) F : C(R)× C(R)→ C(R), gdzie F (f, g) = f · g.

Rozwi¡zanie.

(a) Przede wszystkim przypomnijmy de�nicj¦ iloczynu skalarnego w Rn :

v ◦ w =

n−1∑
i=0

vi · wi
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Na pocz¡tek udowodnimy, »e iloczyn ten jest liniowy wzgl¦dem pierwszej
wspóªrz¦dnej, tzn. »e jest addytywny i jednorodny (Skrypt, str. 12). W
tym celu wybierzmy dowolny wektor w ∈ Rn i ustalmy go. Nast¦pnie
rozpatrzmy przeksztaªcenie otrzymane w ten sposób z F , nazwijmy je Fw.
Jest ono zde�niowane nast¦puj¡co:

Fw : Rn → R, Fw(v) = v ◦ w.

Je±li przeksztaªcenie to ma by¢ addytywne, to dla dowolnych u, v ∈ Rn

musi by¢ speªniona nast¦puj¡ca równo¢ (*)

Fw(u+ v) = Fw(u) + Fw(v).

Wyznaczmy wi¦c warto±¢ obu stron powy»szj równo±ci korzystaj¡c z de�nicji
Fw, samego F oraz iloczynu sklaranego. Wtedy lewa strona tej równo±ci
pozwala si¦ wyznaczy¢ jako

Fw(u+ v) = F (u+ v, w) = (u+ v) ◦ w.

Natomiast prawa strona jest równa

Fw(u) + Fw(v) = F (u,w) + F (v + w) = u ◦ w + v ◦ w.

St¡d ªatwo zauwa»y¢, »e w tym przypadku addytywno¢ przeksztaªcenia Fw

(patrz (*) wy»ej) oznacza w istocie rozdzielno¢ dodawania (na pierwszej
wspóªrz¦dnej) wzgl¦dem iloczynu skalarnego, tzn. równo¢

(u+ v) ◦ w = u ◦ w + v ◦ w,

która to wªasno±¢ jest ªatwa do bezpo±redniego sprawdzenia z de�nicji
iloczynu skalarnego oraz wªasnoci dodawania i mno»enia liczb rzeczy-
wistych. Rzeczywicie, mamy

(u+ v) ◦ w =
n−1∑
i=0

(ui + vi) · wi

=

n−1∑
i=0

(ui · wi + vi · wi)

=

n−1∑
i=0

(ui · wi) +

n−1∑
i=0

(vi · wi)

= u ◦ w + v ◦ w

Dowód jednorodno±ci przeksztaªcenia Fw wygl¡da analogicznie. Sama jed-
norodno±¢ to

Fw(tv) = tFw(v),
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co po zastosowaniu de�nicji Fw, F oraz iloczynu skalarnego tym razem
daje

Fw(tv) = F (tv, w) = (tv) ◦ w =

n−1∑
i=0

((tvi) · wi) =

n−1∑
i=0

(t(vi · wi))

= t ·
n−1∑
i=0

(vi · wi) = t · (v ◦ w) = t · F (v, w) = t · Fw(v)

W ten sposób udowodnilimy, »e iloczyn sklarny, a wi¦c podane w zadaniu
przeksztaªcenie F (u, v), istotnie jest liniowe wzgl¦dem pierwszej wspóªrz¦d-
nej.

Poniewa» iloczyn skalarny jest przemienny, tzn. v ◦ w = w ◦ v, wi¦c
poniewa» przeksztaªcenie F jest liniowe wzgl¦dem pierwszej wspóªrz¦dnej,
jest równie» liniowe wzgl¦dem swojej drugiej wspóªrz¦dnej.

(b) F : R3 × R3 → R3, gdzie F (v, w) = v × w,

Z dotychczasowego wykªadu powinny by¢ znane nast¦puj¡ce podstawowe
wªasno±ci iloczynu wektorowego (je±li nie � to mo»na je do±¢ ªatwo (rachunek!)
wyprowadzi¢ bezpo±rednio z de�nicji tego iloczynu):

� t(v × w) = (tv)× w = v × (tw),

� (u+ v)× w = u× w + v × w,

� u× (v + w) = u× v + u× w.

Wªasno±ci te pozwalaj¡ z kolei ªatwo uzasadni¢ liniowo±¢ iloczynu wek-
torowego wzgl¦dem ka»dego ze swoich dwóch argumentów. Uzasadnienie
jest analogiczne do przedstawionego poni»ej w punkcie (c), gdzie kontekst
macierzowy jest prostszy do ogarni¦cia, dlatego zostaje pomini¦te.

(c) F : Mn×n ×Mn×n →Mn×n, gdzie F (A,B) = AB,

Poniewa» de�nicja mno»enia macierzy (metod¡ �wiersz razy kolumna�)
gwarantuje nam, »e mno»enie to jest rozdzielne wzgl¦dem dodawania, tzn.
mamy

(A+B)C = AC +BC, A(B + C) = AB +AC,

wi¦c rozwa»ane przeksztaªcenie jest addytywne wzgl¦dem ka»dej ze swoich
wspóªrz¦dnych, gdy»

F (A+B,C) = (A+B)C = AC +BC = F (A,C) + F (B,C)

oraz

F (A,B + C) = A(B + C) = AB +AC = F (A,B) + F (A,C)

Ponadto mno»enie macierzy przez skalar ma t¦ wªasno±¢, »e tA = At,
co pozwala uzasadni¢, »e A(tB) = (At)B = (tA)B = t(AB), sk¡d ju»
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ªatwo wywnioskowa¢ jednorodno¢ przeksztaªcenia F wzgl¦dem ka»dej ze
wspóªrz¦dnych:

F (tA,B) = (tA)B = t(AB) = tF (A,B);

F (A, tB) = A(tB) = (At)B = (tA)B = t(AB) = tF (A,B)

(d) F : Mn×n ×Mn×n →Mn×n, gdzie F (A,B) = A+B,

�atwo si¦ przekona¢, »e dodawanie wspóªrz¦dnych nigdy nie mo»e by¢ li-
niowe, bo (paradokslanie) nie jest addytywne! Istotnie addytywno±¢ np.
wzgl¦dem pierwszej wspóªrz¦dnej oznaczaªaby, »e dla dowolnych A,B,C
mamy F (A + B,C) = F (A,C) + F (B,C). Tymczasem z samej de�nicji
przeksztaªcenia F mamy F (A + B,C) = (A + B) + C, podczas gdy
F (A,C) + F (B,C) = (A+ C) + (B + C) = (A+ B) + 2C i je±li tylko C
nie jest zerem, to F (A+B,C) 6= F (A,C) + F (B,C).

(e) Poniewa» dziaªania dodawania i mno»enia rzeczywsitych funkcji ci¡gªych
jednej zmiennej rzeczywistej, a wi¦c funkcji z C(R), maj¡ te same wªas-
no±ci co odpowiednie dziaªania liczb rzeczywistych, wi¦c ªatwo widzie¢,
»e przeksztaªcenie z tego punktu jest liniowe wzgl¦dem swoich wspóªrz¦d-
nych. Rzeczywi±cie, np. addytywno±¢ i jednorodno±¢ wzgl¦dem drugiej
wspóªrz¦dnej oznacza, i» zachodz¡ nast¦puj¡ce rózno±ci

F (f, g + h) = F (f, g) + F (f, h), F (f, tg) = tF (f, g),

które po zastosowaniu de�nicji przeksztaªcenia F (F (f, g) = fg) tªumacz¡
si¦ na nast¦puj¡ce równo±ci

f(g + h) = fg + fh, f(tg) = t(fg).

Te dwie ostatnie równo±¢i s¡ za± w oczywisty sposób prawdziwe, bo do-
dawanie liczb rzeczywsitych jest rozdzielne wzgl¦dem mno»enia, a mno»e-
nie jest ª¡czne i przemienne.

Liniowo±¢ wzgl¦dem pierwszej wspóªrz¦dnej uzasadnia si¦ analogicznie,
cho¢ mo»na do tego wykorzysta¢ równie» fakt przemienno±ci mno»enia,
tzn. fakt i» F (f, g) = F (g, f).

Zadanie 7* Pewna macierz kwadratowa ma nast¦puj¡c¡ posta¢ klatkow¡:
(A C
0 B ) , gdzie A i B to macierze kwadratowe, C to macierz prostok¡tna, a 0

to klatka zªo»ona z samych zer. Powoªuj¡c si¦ na bezpo±rednio na de�nicj¦
wyznacznika uzasadnij, »e det (A C

0 B ) = detA · detB.

Rozwi¡zanie.

Powinno by¢ jasne, »e rozstawienia caªej tej macierzy, które nie zawieraj¡ zer �
a tylko one wnosz¡ niezerowe skªadniki do sumy de�niuj¡cej wyznacznik � maj¡
t¦ wªasno±¢, »e ilekro¢ wyraz takiego rozstawienia pochodzi z kolumny macierzy
A, to musi równie» pochodzi¢ z wiersza tej macierzy. A poniewa» macierz A
jest kwadratowa, wi¦c takie rozstawianie de�niowane dla caªej macierzy zawiera
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jako swój `lewy górny' fragment rozstawienie pochodz¡ce z macierzy A. Dalszy
ci¡g tego wi¦kszego rozstawienia nie mo»e ju» zawiera¢ wyrazów ani z wierszy,
ani z kolumn macierzy A. Zatem ów `dalszy ci¡g' pochodzi tak z kolumn, jak i z
wierszy macierzy B, bo stanowi¡ one dopeªnienia zbioru kolumn i zbioru wierszy
macierzy A wªa±nie. Dlatego ów `dalszy ci¡g' stanowi w istocie rozstawienie
wyrazów macierzy B.

Zauwa»my, »e jest to rozumowanie caªkowicie identyczne z tym, przedstaw-
ionym w Skrypcie w dowodzie Faktu 2.11 na str. 24. Zatem, podobnie jak w
tamtym przypadku równie» w przypadku rozwa»anej tu macierzy jej rozstaw-
ienia nie zawieraj¡ce zer pochodz¡ od poª¡czenia dowolnego rozstawinia macierzy
A z dowolnym rozstawieniem macierzy B, co ostatecznie prowadzi do »¡danego
wzoru, analogicznego do wzoru z Faktu 2.11.

Zadanie 8* Uzasadnij, »e istnieje dokªadnie jeden wielomian stopnia ≤ n,
którego wykres przechodzi przez punkty ( x0

y0 ) , (
x1
y1 ) , . . . , (

xn
yn ) , o ile x0, x1, . . . , xn

s¡ parami ró»ne. Wskazówka: napisz odpowiedni ukªad równa« i posªuguj¡c
si¦ wzorami Cramera oraz wyznaznikiem Vandermonde'a uzasadnij, »e ma on
dokªadnie jedno rozwi¡zanie.

Rozwi¡zanie.

Niech P (x) ∈ Rn[x] oznacza poszukiwany wielomian. Wtedy fakt, »e po-
jedynczy punkt ( xi

yi ) le»y na wykresie wielomianu P wyra»a si¦ pojedyncz¡
równo±ci¡ P (xi) = yi; natomiast fakt, »e na wykresie tym le»¡ wszystkie zadane
punkty ( xi

yi ) , i = 0, 1, . . . , n wyra»a si¦ wtedy ukªadem n+ 1 równa« postaci
P (x0) = y0
P (x1) = y1

. . .
P (xn) = yn

Korzystaj¡c z tego, »e ogólna posta¢ wielomianu stopnia≤ n wygl¡da nast¦pu-
j¡co P (x) = a0+a1x+a2x

2+ · · ·+an−1x
n−1+anx

n mo»emy ten ukªad zapisa¢
w postaci 

a0 + a1x0 + a2x
2
0 + · · ·+ an−1x

n−1
0 + anx

n
0 = y0

a0 + a1x1 + a2x
2
1 + · · ·+ an−1x

n−1
1 + anx

n
1 = y1

. . .
a0 + a1xn + a2x

2
n + · · ·+ an−1x

n−1
n + anx

n
n = yn

Dalej, wiemy, »e wielomiany s¡ jednoznacznie wyznaczone przez ci¡gi swoich
wspóªczynników. Dlatego istnienie dokªadnie jednego wielomianu, na wykresie
którego le»¡ wszystkie powy»sze punkty jest równowa»ne istnieniu dokªadnie
jedego ci¡gu wspóªczynników ai, i = 0, 1, 2, . . . , n które stanowi¡ rozwi¡zanie
powy»szego ukªadu równa« rozpatrywanego jako ukªad, w którym to wªa±nie te
wspóªczynniki wielomianu s¡ niewiadomymi, a wielko±ci xi

j , i, j = 0, 1, . . . , n s¡
wspóªczynnikami równa« tego ukªadu. Z Twierdzenia Cramera (Skrypt, Fakt
2.17, str. 30) wiadomo, »e ukªad ten ma dokªadnie jedno rozwi¡zanie wtedy
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i tylko wtedy, gdy wyznacznik jego macierzy gªównej jest 6= 0. W powy»szym
przypadku macierz¡ gªówn¡ jest macierz

A =


1 x0 x2

0 . . . xn−1
0 xn

0

1 x1 x2
1 . . . xn−1

1 xn
1

1 x2 x2
2 . . . xn−1

2 xn
2

. . . . . . . . . . . . . . . . . .
1 xn x2

n . . . xn−1
n xn

n

 .

�atwo zauwa»y¢, »e detAT jest wyznacznikiem Vandermonde'a dla liczb x0, x1,
. . . , xn, wi¦c wyznacznik ten nie znika, gdy» z zaªo»enia liczby xi, i = 0, 1, . . . , n
s¡ parami ró»ne (patrz Skrypt, Fakt 2.16, str. 29). A poniewa» dla ka»dej
macierzy mamy detA = detAT , wi¦c równie» wyznacznik gªówny rozpatry-
wanego ukªadu jest 6= 0, a co za tym idzie ten ukªad równa« speªnia warunki
Tw. Cramera, tzn. ma dokªadnie jedno rozwi¡zanie. To rozwi¡zanie jest jed-
noznacznie wyznaczonym ci¡giem wspóªczynników szukanego wielomianu P (x),
a wi¦c udowodnili±my w ten sposób, »e taki wielomian P zawsze istnieje i jest
on tylko jeden.
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