Algebra Liniowa 2 — Lista nr 3
Rozwiazania

Zadanie 1. Oblicz wyznacznik nastepujacych macierzy:

4 3 1 1 5 213 00 20 000

12 010 11100 000 01

212001}, 13 400T¢],]01000

5 3 0 0 0 000 5 6 00400

10 000 0 00 5 3 000 50
Rozwigzanie.

Pierwsza z tych macierzy przypomina macierz gérnotréjkatna, tylko ze podzial
tej macierzy na trojkaty przebiega teraz wzdluz ‘niewlasciwej’ przekatnej (tzw.
przekatna poboczna). Bezposrednio nie mozemy wiec wykorzystac¢ Faktu 2.10 ze
Skryptu. Mozemy jednak skorzystaé¢ z tego samego argumentu: jedynym rozst-
wieniem wyrazow, ktore nie zawiera wyrazu 0 jest owa ‘niewlasciwa’ przekatna.
Jednak obecnie musimy jeszcze ustali¢ znak, z jakim iloczyn wyrazéw tego
rozstawienia wystepuje w wyznaczniku. W tym celu musimy ustali¢ liczbe za-
mian par kolumn, ktére przeprowadzaja to rozstawienie w przekatna gtdéwna.
Latwo zauwazy¢, ze potrzeba do tego dwdch takich przestawieri. Dlatego wartosé
szukanego wyznacznika to po prostu iloczyn wyrazéw z owej pobocznej przekat-
nej, tzn. 5-1-2-3-1=30.

Zauwazmy przy okazji, ze jezeli w wyjSciowej macierzy przestawimy pier-
wsza i ostatnig kolumne, a nastepnie druga i przedostatnia, to nie zmienimy
wyznacznika (Skrypt, Wniosek 2.7, str. 22), a przeprowadzimy zadana macierz
wlasnie w macierz gérnotréjkatna i teraz juz bedziemy mogli skorzystaé¢ ze
wspomnianego Faktu 2.10 (Skrypt, str. 23).

Jak tatwo zauwazy¢ druga macierz to z kolei macierz sktadajaca sie z klatek
(Skrypt, Fakt 2.11, str. 23), dlatego jej wyznacznik jest rowny iloczynowi wyz-
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Obydwa te wyznaczniki latwo oblicza sie z defnicji

2 1 3
det[ 1 1 1 |=2-1-441-1-1+43-1-3—
1 3 4
~3:.1-1-1-3-2-4-1-1=8+4+1+9-3-6-4=5

5 6
det( 5 3>—5~3—6-5—15—3O——15



Stad ostatecznie

det =5.(—15) = —75.
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Powinno by¢ jasne, ze ostatnia z powyzszych macierzy to ‘prawie’ macierz
diagonalna — jedyne niezerowe wyrazy tworza rozstawienie: zadne dwa nie stoja
w tym samym wierszu, ani w tej samej koumnie. Dlatego wartoscia ‘bez znaku’,
a wiec wartos$cia bezwzgledna szukanego wyznacznika jest wartosé¢ iloczynu 2 -
1-1-4-5 = 40. Dla ustalenia znaku tego rozstawienia musimy znalez¢ serie
zamian par kolumn, ktéra przeprowadzi dane rozstawienie w przekatna gtéwna.
Latwo widzie¢, ze serie taka tworza nastepujace trzy zamiany kolumn: drugiej i
ostatniej, nastepnie trzeciej i ostatniej, w koficu — czwartej i ostatniej. Ta seria
zamian generuje taki oto ciag macierzy

2 0 0 00 2 00 00
0 00 01 01 0 00O
01000} —=100001]—=
0 0 4 00 0 0 400
0 00 5 0 0 00 5 0
2 00 00 2 0 0 0O
01 0 00O 01 0 0 O
-]10010O0([—=]1001T00
0 0 0 0 4 0 00 40
000 5 0 0 00 05

Ze wzgledu na nieparzystg liczbe zamian par kolumn prowadzacych od pierwszej
do ostatniej macierzy w tym ciagu ich wyznaczniki maja przeciwne znaki i te
sama warto$¢ bezwzgledna. Poniewaz ostania macierz w powyzszym ciagu to
macierz diagonalna, wec jej wyznacznik wynosi 40 (Skrypt, Fakt 2.9, str. 23).
Dlatego wartos¢ wyznacznika pierwotnej macierzy to -40.

Zadanie 2. Powtarzajac wielokrotnie operacje dodania kolumny (wiersza)
do innej kolumny (wiersza) przeksztalé kazda z ponizszych macierzy do postaci
z duza lliczba zer, a nastepnie oblicz jej wyznacznik:

11110 1 2 3 4 5 12 1 1 2

111 01 2 3 4 5 6 01 111

1101 11],]3 456 7 |,]1 1111

101 1 1 4 5 6 7 8 211 2 2

01111 5 6 7 8 9 21 2 2 1
Rozwiazanie.



Zacznijmy od pierwszej z powyzszych macierzy, tzn. od macierzy
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Najpierw odejmujemy pierwszy wiersz od drugiego otrzymujac macierz

111 1 0
0 00 -1 1
110 1 1
101 1 1
01 1 1 1

Nastepnie odejmujemy ten sam pierwszy wiersz kolejno od wszystkich pozostaltych
wierszy, oprocz ostatniego. To da nam kolejno nastepujace dwie macierze:

11 1 1 0
00 0 —-11
0 0 -1 0 1
1 0 1 1 1
01 1 1 1
oraz
1 1 1 1 0
0 0 0 -1 1
0 0 -1 0 1
0 -1 0 0 1
0 1 1 1 1

Zauwazmy, ze w ostatniej z tych macierzy pierwsza kolumna sktada sie tylko
z jednej jedynki w pierwszym wierzu, a poza tym z samych zer. Wykorzystamy
te jedynke do wyzerowania calego pierwszego wiersza. Dlatego bedziemy teraz
odejmowac te kolumne kolejno od wszystkich pozostatych kolumn oprécz ostat-
niej, bo w ostatniej z nich w pierwszym wierszu juz stoi 0. W efekcie po trzech
takich odejmowaniach otrzymamy nastepujaca macierz

1 0 0 0 O
0 0 0 -1 1
o 0 -1 0 1
0 -1 0 1
0 1 1 1 1

Teraz dodamy przedostatni wiersz do ostatniego, co spowoduje, ze druga kolumna
bedzie miata tylko jeden niezerowy wyraz, mianowicie minus jedynke w przed-



ostatnim wierszu. Istotnie, otrzymana macierz ma nastepujaca postac

1 0 0 0 0
o 0 0 -11
o 0 -1 0 1
0O -1 0 0 1
0 0 1 1 2

Teraz za pomca drugiej kolumny ‘zerujemy’ caly przedostatni wiersz. Poniewaz
jedynym niezerowym wyrazem w tym wierszu poza potrzebng nam -1 jest 1 w
ostatniej kolumnie, dodajemy wiec druga kolumne do ostatniej otrzymujac

1 0 0 0 0
0 0 0 -1 1
o 0 -1 0 1
0 -1 0 0 O
0 0 1 1 2

Teraz dodajemy ostatni wiersz do trzeciego, aby w zasadzie ‘wyzerowaé’ trzecia
kolumne (zostanie w niej tylko 1 w ostatnim wierszu):
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Uzywamy teraz trzeciej kolumny do ‘wyzerowania’ ostatniego wiersza, odejmu-
jac trzecia od czwartej, a nastepnie od piatej, ostatniej. W efekcie uzyskamy
taka macierz
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W niej dodamy czwarta kolumne do piatej, co ‘wyzeruje’ te ostatnia. Istotnie
macierz przybieze postaé

oo oo
o O O

_ o O oo

S O =

O O = OO

W koricu dodamy drugi wiersz do trzeciego, otrzymujac w rezultacie macierz,



ktora w kazdym wierszu i w kazdej kolumnie ma tylko jeden niezerowy wyraz:

1 0 0 0 O
0 0 0 -1 0
0 0 0 0 4
0 -1 0 0 O
0 0 1 0 O

Teraz zamieniamy miejscami najpierw druga i czwarta kolumne, a nastepnie
trzecia i pigta, co prowadzi do nastepujacej macierzy diagonalnej

10 0 0 O
0 -1 0 0 O
0 0 4 0 O
0 0 0 -1 0
0 0 0 0 1

Poniewaz macierz te uzyskaliSmy z interesujacej nas macierzy w drodze dwoch
(parzystel liczby) przestawien par kolumn, wiec wyznaczniki obu macierzy sa
rowne. Wyznacznik koiicowej macierzy diagonalnej wynosi 4 i tyle wynsi wyz-
nacznik poczatkowej macierzy z tego zadania.

Rozpatrzymy teraz kolejna macierz, tj. macierz

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9

Odejmujac piersza kolumne kolejno od drugiej, trzeciej, czwartej i pigtej
otrzymujemy macierz

11 2 3 4
21 2 3 4
31 2 3 4
41 2 3 4
5 1 2 3 4

Teraz odejmujemy druga kolumne — pomnozong przez 2 od trzecej, pomnozong
przez 3 od czawartej i pomnozong przez 4 od piatej otrzymujac w efekcie

U W N =
— e e e
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OO O OO

Te macierz mozna jeszcze przeksztalci¢ i uzyskaé¢ 0 w jej lewym gbérnym rogu,
a nastepnie w calej drugiej kolumnie poza pierwszym jej wyrazem, ale juz teraz



widaé, ze wyznacznik tej macierzy wynosi 0 (kolumna zer; dwie kolumny jed-
nakowe) (Skrypt, Wniosek 2.8, str. 22).
Przeksztalcanie ostatniej macierzy z tego zadania, a wiec macierzy

1 2 1 1 2
01 1 11
111 11
211 2 2
21 2 21

zaczniemy od odjecia drugiego wiersza od kazdego z pozostalych otrzymujac
macierz

11 0 0 1
01 1 11
100 00
2 0011
2 01 10

Dalej uzywamy trzeciego wiersza do ‘wyzerowania’ pierwszej kolumny:

OO = OO
SO O ==
_—o0 o= O
—_= 0 = O
O = O ==

Teraz od drugiego wiersza odejmujemy pierwszy
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po czym od ostatniej kolumny odejmujemy druga

0100 0
00110
1000 0|,
000 11
00110

w koiicu od czwartej kolumny odejmujemy trzecia

01 00O
0 01 0O
10 0 0 0
0 0011
0 01 0O



Poniewaz w otrzymanej macierzy dwie kolumny sa jednakowe, wiec jej wyz-
nacznik réwna sie zero (Skrypt, Wniosek 2.8, str. 22).

Zadanie 3 Ustal, jak zmieni sie wyznacznik macierzy n x n, jesli:

a) kazdy wyraz macierzy zamienimy na przeciwny,

(
(b) kazdy wyraz macierzy pomnozymy przez niezerowa liczbe t € R

(c) pierwsza kolumne przestawimy na koniec macierzy,

)
)
)
(d) wiersze macierzy ustawimy w odwrotnym porzadku.

Rozwiazanie.
(a) kazdy wyraz macierzy zamieniamy na przeciwny
Postugujac sie definicjg wyznacznika jako sumy odpowiednich iloczynéw wyrazow
macierzy (rozstawien z wiasciwym znakiem, Skrypt, Definicja 2.5, str. 21)
wnioskujemy, ze zamiana wszystkich wyrazéw macierzy na liczby przeciwne
spowoduje tylko ewentualng zmiane znaku wszystkich iloczynéw powyzszej sumy.
Rzeczywiscie, obecnie (kazdy) pojedynczy sktadnik tej sumy bedzie miat postaé

(i) - (“@izgs) ++ (—0ing,) = (1) (£aiyjy * Qigjy ** Cijn)
Stad
det(—A) = +(=ai,;,) - (—air5) -+ (—ai,j,)
=3 (=1 (i, - Qg+ i)
= (“1)" Y Fgy iy i, = (—1)" det A

Tak wiec zamiana kazdego wyrazu macierzy na przeciwny powoduje zmiane wyz-
nacznika polegajaca na pomnozeniu go przez czynnik (—1)", a wiec ostatecznie
taki wyznacznik nie zmieni sie, gdy n jest parzyste, a zmieni znak na przeciwny,
gdy n jest nieparzyste.

(b) kazdy wyraz macierzy mnozymy przez niezerowa liczbe ¢ € R

Zgodnie z Wnioskiem 2.14.1) (Skrypt, str. 25), wyznacznik macierzy mnozy sie
przez t, jesli wybrang kolumne pomnozymy przez t. Macierz, w ktorej wszystkie
wyrazy pomnozono przez t mozna rozpatrywac¢ jako macierz, ktora otrzymano
mnozac przez t kolejno kazda z jej kolumn. Pojawienie sie czynnika ¢t w kole-
jnej kolumnie spowoduje pomnozenie przez to samo t wyznacznika. Dlatego
pomnozenie dwéch kolumn przez ¢ spowoduje zmiane wyznacznika o czynnik ¢2;
trzech — o czynnik #3. W koricu pomnozenie wszystkich kolumn (a wiec wszys-
tkich wyrazéw) przez wspolny czynnik ¢ spowoduje pomnozenie wyznacznika
przez czynnik t", gdzie n jest liczba kolumn macierzy.

(c) pierwsza kolumne przestawiamy na koniec macierzy
Gdy w danej macierzy przestawimy pierwsza kolumne na koniec, to otrzymamy
macierz, w ktorej pierwsza kolumng bedzie druga kolumna zadanej macierzy;



druga — trzecia; itd. Chcac zaobserwowaé, co dzieje si¢ z wyznacznikiem
musimy odwolaé sie do jakiego§ twierdzenia, ktore opisuje zachowanie sie wyz-
nacznika pod wplywem zmiany kolumn. Mamy jedno takie twierdzenie —
Skrypt, Wniosek 2.7, str. 22, ktore opisuje to zachowanie, ale tylko w przy-
padku prostych zmian — zamieniamy miejscami dwie kolumny, co spowoduje
zmiane znaku wyznacznika.

Dlatego musimy opisaé¢ przestawienie pierwszej kolumny za pomoca zamian
(przestawien) par kolumn. Teraz sprawa powinna by¢ juz prosta:

e zamieniamy pierwsza kolumne z druga. W ten sposéb druga kolumna
stanie sie pierwsza, a dotychczasowa pierwsza powedruje na miejsce drugiej,
o jeden ‘krok’ blizej konca

e zamieniamy obecna druga kolumne (a wiec pierwsza kolumne wyjsciowej
macierzy) z trzecia. W ten sposob pierwotnie trzecia kolumna stanie sie
druga, a pierwsza kolumna pierwotnej macierzy znajdzie sie na trzecim
miejscu

e zamieniamy obecnie przedostatnig kolumne (ktéra byta poczatkowo pier-
wsza) z kolumng ostatnia. W ten sposéb pierwsza kolumna zostata prze-
stawiona na koniec macierzy.

Wida¢ wiec, ze dokonujac n — 1 przestawieri par kolumn przeniesiemy pierwsza
z nich na koniec macierzy. Jedyne co sie stalo z wyznacznikiem, to ewentu-
alna zmiana znaku, gdyz kazda z tych zamian ja powodowalta. m — 1 takich
zamian powoduje zmiane znaku wyznacznika o czynnik (—1)"~! i w zaleznosci
od parzystosci n powoduje lub nie zmiane znaku pierwotnego wyznacznika.

(d) wiersze macierzy ustawiamy w odwrotnym porzadku
Zamieniamy miejscami pierwsza kolumne z ostatnia, co zmienia znak wyz-
nacznika.
Zamieniamy druga kolumne z przedostatnia — ponowna zmiana znaku, a wiec
wrociliSmy do pierwotnej wartosci wyznacznika.
Zamieniamy trzecig z trzecia od koiica — kolejna zmiana znaku.
Czwarta z czwarta od korica — powrotna zmiana znaku.

Gdy dotrzemy ‘w okolice srodkowej kolumny’ (szczegodly zaleza od parzystosci
liczby kolumn!), konczymy, bo wszystkie kolumny znajda sie juz na zadanych
miejscach. Latwo sie przekonaé, ze potrzebna liczba zamian wynosi [%], gdzie

2
[x] oznacza funkcje czesé catkowita.

Zadanie 4 Jaki jest wyznacznik macierzy, ktorej jedna z kolumn jest krot-
noscig innej kolumny?

Rozwiazanie.
Zgodnie z Wnioskiem 2.14.1) (Skrypt, str.25) wyznacznik macierzy mnozy sie



przez t, jesli jedna z jej kolumn pomnozymy przez t (patrz takze Skrypt, Fakt
2.13.2), str. 25). Jesli wiec w macierzy jedna z kolumn jest krotnoscia innej,
to jej wyznacznik jest ta samg krotnoscia wyznacznika macierzy, w ktérej dwie
kolumny sa jednakowe. A wyznacznik takiej macierzy (Skrypt, Wniosek 2.8,
str. 22) wynosi zero. Tak wiec wyznacznik macierzy rozwazanej w tym punkcie
réwniez wynosi zero.

Zadanie 5 Dane sa przeksztalcenia F' : Rz[z] — Ry[z], F(P(z)) = zP"(x)
oraz G : Ry[z] = R, G(P) = P(2).

(a) Napisz wzor przeksztalcenia G o F': R3[z] — R.

(b) Napisz macierz przeksztalcen F, G, G o F w bazach B = (1,x,2%, 2%),
C=0+mzz+2%2%),D=(1).

(c) Sprawdz (wymnazajac macierze), ze zachodzi m$,(G)mE(F) = m5 (GoF).

Rozwigzanie.

(a) Wzor przeksztalcenia G o F : Rg[z] — R.
Niech P(x) bedzie dowolnym wielomianem stopnia < 3, tzn. niech P(x) € Rs[z].
Wtedy zgodnie z definicja zlozenia funkcji i na mocy definicji F' oraz G mamy
(G o F)(P(x)) = G(F(P(x)) = G(xP"(x)) = 2- P"(2).

(b) Macierze przeksztalceri
Zgodnie z definicja macierzy przeksztalcenia (Skrypt, Definicja 1.23, str. 15)
macierz taka tworzy sie zapisujac w jej kolejnych kolumnach wspoétrzedne w bazie
przestrzeni docelowej obrazéw wektoréw bazy przestrzeni wyjsciowej. Dla przek-
sztalcenia F' przstrzenia wyjsciowa (a wiec dziedzina) jest zbior (przestrzen)
R3[| z bazg B, natomiast przestrzenia docelowa (przeciwdziedzing) — Ry[z] z
baza C. Obrazy wektoréw bazy B przez F', to odpowiednio

x
x
Fa*)=z-(2*)"=2-22) =2-2=20=01+2z) 4+ 2(z + 2?) + (—2)2?,
z- (%) =2 (32%) =2 6x = 62°.

Stad macierz przeksztalcenia F' w bazach B oraz C to

00 0 0
mE(F)=( 0 0 2 0
00 -2 6

Z kolei dla przeksztalcenia G jego wartosci na elementach bazy C to odpowiedno
Gl+z)=1+2=3,
Gz +2%) =2 +2% =6,
Gx?) =22=4



skad otrzymujemy macierz G w bazach C oraz D o postaci
mhH(G)=(3 6 4).

W konicu analogicznie znajdujemy zaréwno wartosci przeksztalcenia G o F
na elementach bazy B, jak i macierz tego przeksztalcenia w zadanych bazach

(BiD):

GoF(1)=2-(1")(2) =0,

GoF(z)=2-(2")(2) =0,
GoF(2*)=2-((2*)")(2) =2-2=4,
GoF(z®)=2-((z*")(2) =2 (62)(2) =2 12 = 24;

mBy(GoF)=(0 0 4 24).

(c) Wzér m% (GYmB(F) = mB (G o F).

7 poprzedniego punktu wiemy, jak wygladaja wystepujace w tym wzorze
macierze. Dlatego podstawiamy je do niego, akad natychmiast otrzymujemy
tatwym, bezposrednim rachunkiem zadang zaleznosé:

0 0
mH(G) - mg(F)=(3 6 4)-| 0 0
0 0

Zadanie 6 Ktore z ponizszych przeksztalcen sa liniowe wzgledem kazdej
wspolrzednej?

(a) F:R" x R" = R, gdzie F(v,w) =vow,

(b) F:R3x R3 — R3, gdzie F(v,w) =v X w,

(€) F: Mysn X Mosn — Myxn, gdzie F(A, B) = AB,

(d) F: Myxn X Mysn — Mpxn, gdzie F(A,B) = A+ B,

(e) F:C(R)x C(R) —» C(R), gdzie F(f,g9)=f-g.
Rozwigzanie.

(a) Przede wszystkim przypomnijmy definicje iloczynu skalarnego w R™ :

n—1
vow = E Vi - W;
=0

10



Na poczatek udowodnimy, ze iloczyn ten jest liniowy wzgledem pierwszej
wspolrzednej, tzn. ze jest addytywny i jednorodny (Skrypt, str. 12). W
tym celu wybierzmy dowolny wektor w € R™ i ustalmy go. Nastepnie
rozpatrzmy przeksztalcenie otrzymane w ten sposéb z F', nazwijmy je F,,.
Jest ono zdefiniowane nastepujaco:

F,:R" - R, F,(v) =vow.

Jesli przeksztalcenie to ma by¢ addytywne, to dla dowolnych u,v € R™
musi by¢ spelniona nastepujaca réwno¢ (*)

Fy(u+v) = Fy,(u) + Fy(v).

Wyznaczmy wiec wartos$é obu stron powyzszj réownosci korzystajac z definicji
F,,, samego F' oraz iloczynu sklaranego. Wtedy lewa strona tej réwnosci
pozwala sie wyznaczy¢ jako

Fyo(u+v)=Flu+v,w)=(u+v)ow.
Natomiast prawa strona jest rOwna
Fy(u) + Fy(v) = Flu,w) + F(v+w) =uow+vow.

Stad tatwo zauwazy¢, ze w tym przypadku addytywnoé przeksztatcenia F,
(patrz (*) wyzej) oznacza w istocie rozdzielno¢ dodawania (na pierwszej
wspotrzednej) wzgledem iloczynu skalarnego, tzn. réwnoé

(u+v)ow=uow-+vow,

ktora to wlasno$¢ jest tatwa do bezposredniego sprawdzenia z definicji
iloczynu skalarnego oraz wtasnoci dodawania i mnozenia liczb rzeczy-
wistych. Rzeczywicie, mamy

n—1
(u—l—v)ow:Z(ui—i—vi)-wi

=0

n—1

—0

n—1 n—1
= Z(uz cw;) + Z(Ul w;)
i=0 i=0

=uow-+vow

Dowdd jednorodnosci przeksztatcenia F, wyglada analogicznie. Sama jed-
norodnos¢ to
F,(tv) = tFy,(v),

11



co po zastosowaniu definicji Fy,, F' oraz iloczynu skalarnego tym razem
daje

F,(tv) = F(tv,w) = (tv) ow = i((tvi) w;) = z_:(t(vi “w;))
i=0 1=0
n—1
Zt'Z(Ui'wi) =t-(vow)=t-F(v,w)=1t-F,v)
i=0

W ten sposéb udowodnilimy, ze iloczyn sklarny, a wiec podane w zadaniu
przeksztalcenie F'(u,v), istotnie jest liniowe wzgledem pierwszej wspohrzed-
nej.

Poniewaz iloczyn skalarny jest przemienny, tzn. v ow = w o v, wiec
poniewaz przeksztalcenie F' jest liniowe wzgledem pierwszej wspoétrzednej,
jest réwniez liniowe wzgledem swojej drugiej wspotrzedne;j.

F:R3 x R? - R3, gdzie F(v,w) =v x w,

Z dotychczasowego wyktadu powinny by¢ znane nastepujace podstawowe

wlasnosci iloczynu wektorowego (jesli nie — to mozna je dos¢ tatwo (rachunek!)

wyprowadzié¢ bezposrednio z definicji tego iloczynu):
— tlv xw) = (tv) x w =v X (tw),
—(u+v)Xw=uXw+v X w,

—ux (v4+w)=uXv+uxuw.

Wtlasnosci te pozwalaja z kolei tatwo uzasadnié liniowosé iloczynu wek-
torowego wzgledem kazdego ze swoich dwéch argumentéw. Uzasadnienie
jest analogiczne do przedstawionego ponizej w punkcie (c), gdzie kontekst
macierzowy jest prostszy do ogarniecia, dlatego zostaje pominiete.

F: Myxn X Mpxn = Mpxn, gdzie F(A, B) = AB,

Poniewaz definicja mnozenia macierzy (metoda “wiersz razy kolumna”)
gwarantuje nam, ze mnozenie to jest rozdzielne wzgledem dodawania, tzn.
mamy

(A+ B)C = AC + BC, A(B+C) = AB+ AC,

wiec rozwazane przeksztalcenie jest addytywne wzgledem kazdej ze swoich
wspolrzednych, gdyz

F(A+ B,C) = (A+ B)C = AC + BC = F(A,C) + F(B,C)
oraz

F(A,B+C)=A(B+C)=AB+ AC = F(A, B) + F(A, C)

Ponadto mnozenie macierzy przez skalar ma te wtasno$¢, ze tA = At,
co pozwala uzasadni¢, ze A(tB) = (At)B = (tA)B = t(AB), skad juz
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tatwo wywnioskowaé jednorodnoé przeksztalcenia F' wzgledem kazdej ze
wspolrzednych:

F(tA,B) = (tA)B = t(AB) = tF (A, B);
F(A,tB) = A(tB) = (At)B = (tA)B = t(AB) = tF(A, B)

(d) F: Mysn X Muxn = My, gdzie F(A,B) = A+ B,

Latwo sie przekonaé, ze dodawanie wspolrzednych nigdy nie moze by¢ li-
niowe, bo (paradokslanie) nie jest addytywne! Istotnie addytywnosé¢ np.
wzgledem pierwszej wspolrzednej oznaczataby, ze dla dowolnych A, B, C
mamy F(A+ B,C) = F(A,C) + F(B,C). Tymczasem z samej definicji
przeksztatcenia F mamy F(A + B,C) = (A + B) + C, podczas gdy
F(A,C)+ F(B,C)=(A+C)+ (B+C)=(A+ B) +2C i jesli tylko C
nie jest zerem, to F(A+ B,C) # F(A,C) + F(B,C).

(e) Poniewaz dzialania dodawania i mnozenia rzeczywsitych funkeji ciaglych
jednej zmiennej rzeczywistej, a wiec funkcji z C(R), maja te same wlas-
nosci co odpowiednie dzialania liczb rzeczywistych, wiec tatwo widziec,
ze przeksztalcenie z tego punktu jest liniowe wzgledem swoich wspotrzed-
nych. Rzeczywidcie, np. addytywnosé i jednorodnos$é¢ wzgledem drugiej
wspolrzednej oznacza, iz zachodza nastepujace réznosci

F(f.g+h)=F(f,9) + F(f,h),  F(f.tg) =tF(f,9),

ktore po zastosowaniu definicji przeksztatcenia F' (F'(f,g) = fg) ttumacza
sie na nastepujace réwnosci

flg+h)=fg+fh,  f(tg) =t(fg).

Te dwie ostatnie réwnos$éi sa zas§ w oczywisty sposoéb prawdziwe, bo do-
dawanie liczb rzeczywsitych jest rozdzielne wzgledem mnozenia, a mnoze-
nie jest taczne i przemienne.

Liniowosé¢ wzgledem pierwszej wspolrzednej uzasadnia sie analogicznie,
cho¢ mozna do tego wykorzysta¢ réwniez fakt przemiennosci mnozenia,
tzn. fakt iz F(f,g) = F(g, f).

Zadanie 7* Pewna macierz kwadratowa ma nastepujgcag postaé¢ klatkowa:
(’61 g)7 gdzie A i B to macierze kwadratowe, C' to macierz prostokatna, a 0
to klatka zlozona z samych zer. Powolujac sie na bezposrednio na definicje

wyznacznika uzasadnij, ze det (4 §) = det A - det B.

Rozwiazanie.
Powinno by¢ jasne, ze rozstawienia calej tej macierzy, ktore nie zawieraja zer —
a tylko one wnosza niezerowe sktadniki do sumy definiujacej wyznacznik — maja,
te wlasnosé, ze ilekro¢ wyraz takiego rozstawienia pochodzi z kolumny macierzy
A, to musi réowniez pochodzi¢ z wiersza tej macierzy. A poniewaz macierz A
jest kwadratowa, wiec takie rozstawianie definiowane dla catej macierzy zawiera
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jako swoj ‘lewy gorny’ fragment rozstawienie pochodzace z macierzy A. Dalszy
ciag tego wiekszego rozstawienia nie moze juz zawiera¢ wyrazow ani z wierszy,
ani z kolumn macierzy A. Zatem 6w ‘dalszy ciag’ pochodzi tak z kolumn, jak iz
wierszy macierzy B, bo stanowig one dopetnienia zbioru kolumn i zbioru wierszy
macierzy A wlasnie. Dlatego 6w ‘dalszy cigg’ stanowi w istocie rozstawienie
wyrazoéw macierzy B.

Zauwazmy, ze jest to rozumowanie catkowicie identyczne z tym, przedstaw-
ionym w Skrypcie w dowodzie Faktu 2.11 na str. 24. Zatem, podobnie jak w
tamtym przypadku réwniez w przypadku rozwazanej tu macierzy jej rozstaw-
ienia nie zawierajace zer pochodza od potaczenia dowolnego rozstawinia macierzy
A z dowolnym rozstawieniem macierzy B, co ostatecznie prowadzi do zgdanego
wzoru, analogicznego do wzoru z Faktu 2.11.

Zadanie 8* Uzasadnij, ze istnieje dokladnie jeden wielomian stopnia < n,
ktorego wykres przechodzi przez punkty (0 ), (31),..., (37 ),0ilexg, x1,...,zp
sa parami rézne. Wskazowka: napisz odpowiedni uktad réwnan i postugujac
sie wzorami Cramera oraz wyznaznikiem Vandermonde’a uzasadnij, ze ma on
doktadnie jedno rozwiazanie.

Rozwiazanie.
Niech P(x) € R,[x] oznacza poszukiwany wielomian. Wtedy fakt, ze po-
Zq

jedynczy punkt (i) lezy na wykresie wielomianu P wyraza sie pojedyncza
rownoscia P(z;) = y;; natomiast fakt, Zze na wykresie tym leza wszystkie zadane

punkty (i), =0,1,...,n wyraza si¢ wtedy uktadem n + 1 réwnan postaci
P(z0) =yo
P(z1) =1
P(xn) = Yn

Korzystajac z tego, ze ogblna postaé wielomianu stopnia < n wyglada nastepu-
jaco P(x) = ap+ayx+asx®+- -+ a,_12" " +a,2" mozemy ten uktad zapisaé
w postaci

—1

ao + a1xo + aad + - + ap_12y "+ anTy = Yo
—1

ap + a1wy + azx? + -+ ap_12} T + apal =y

aog + a1, + agxi + -+ an,lxﬁ_l + anT) = yn

Dalej, wiemy, ze wielomiany sa jednoznacznie wyznaczone przez ciagi swoich
wspolczynnikéw. Dlatego istnienie dokladnie jednego wielomianu, na wykresie
ktorego leza wszystkie powyzsze punkty jest rownowazne istnieniu doktadnie
jedego ciagu wspoétczynnikow a;, ¢ = 0,1,2,...,n ktére stanowia rozwigzanie
powyzszego uktadu réwnan rozpatrywanego jako uktad, w ktérym to wtasnie te
wspotezynniki wielomianu sg niewiadomymi, a wielkosci x;7,4,7 = 0,1,...,n s3
wspotczynnikami réwnan tego ukladu. Z Twierdzenia Cramera (Skrypt, Fakt
2.17, str. 30) wiadomo, ze uklad ten ma dokladnie jedno rozwiazanie wtedy
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i tylko wtedy, gdy wyznacznik jego macierzy gltownej jest # 0. W powyzszym
przypadku macierza gléwna jest macierz

1 x xd ... xpTtoap
1 oz ox? 2t oap
A= 1 a9 23 ... aby! ap
1 =z, 22 ... 2t

Latwo zauwazy¢, ze det AT jest wyznacznikiem Vandermonde’a dla liczb g, 21,
..., Xn, wiec wyznacznik ten nie znika, gdyz z zalozenia liczby x;,i =0,1,...,n
sa parami rozne (patrz Skrypt, Fakt 2.16, str. 29). A poniewaz dla kazdej
macierzy mamy det A = det AT, wiec réwniez wyznacznik gléwny rozpatry-
wanego ukltadu jest # 0, a co za tym idzie ten uklad réwnan spelnia warunki
Tw. Cramera, tzn. ma doktadnie jedno rozwigzanie. To rozwigzanie jest jed-
noznacznie wyznaczonym ciagiem wspoétczynnikow szukanego wielomianu P(z),
a wiec udowodniliSmy w ten sposob, ze taki wielomian P zawsze istnieje i jest
on tylko jeden.

15



