VERY SINGULAR INTEGRAL KERNELS
ON EUCLIDEAN SPACES

PAWEL GLOWACKI

ABSTRACT. We consider a generalisation of Calderén-Zygmund
kernels on a Euclidean space with nonisotropic dilations. The re-
sulting distributions, 91-kernels, are highly singular. We look at
the behaviour of 9t-kernels under the Fourier transform and also
ask for conditions of convolvability of such kernels. Another in-
teresting feature of 9l-kernels is their invariance for the change of
variable y = x+ P(x), where P is a homogeneous triangular polyno-
mial mapping. The tasks require the study of the multi-parameter
homogeneity of the kernels.

1. INTRODUCTION

Suppose that K is a Calderén-Zygmund kernel on RY. This means
that K is a tempered distribution which is C* away from the origin
and satisfies the size estimates

DK ()| & [ e #£0, ae NP,

as well as the cancellation condition

sup sup R~V / o(Rx)K (z)dz| < oo,
RN

q(p)<1 R>0

where ¢ is a seminorm in the Schwartz space S(R™). An equivalent
condition in terms of the Fourier transform is

DK (6)] £ [¢] 71, €40, ae NV,

where the cancellation property remains hidden. Operators of convo-
lution with this kind of kernels arise in many problems of harmonic
analysis and differential equations, see, e.g. Stein [I1I]. Important as
they are they allow for interesting generalisations which go in various
directions. In this paper we consider the generalisation which on the
Fourier transform side takes the seemingly innocuous form

N
DK (&) < [[Ne©) ™, & #0, ae NV,
k=1
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SINGULAR KERNELS 2
where N} are suitable partial norms on subspaces of RY and
]mk|<5, 1<kE<N,

for some € > 0. This can be further extended to the context of a nilpo-
tent Lie group with nonisotropic dilations. The resulting distributions,
N-kernels, are highly singular and resist easy treatment.

In this paper, we look at the behaviour of 9-kernels under the
Fourier tranform and also ask for conditions of convolvability of such
kernels. Another interesting feature of 91-kernels is their invariance
for the change of variable y = = + P(x), where P is a homogeneous
triangular polynomial mapping. The tasks require the study of the
multi-parameter homogeneity of the kernels.

The most important is the case where m, = 0, for 1 < k < N,
that is the case of flag kernels. The apt idea of a flag kernel is due
to Miiller-Ricci-Stein [7], [§], Nagel-Ricci-Stein [9], and Nagel-Ricci-
Stein-Wainger [10] as a tool in the study of spectral multipliers on two-
step nilpotent groups and [J,-complex operator on certain quadratic
submanifolds. The key property under scrutiny is the LP-boundedness
of the operators of convolution with flag kernels. In [10] the problem
of the boundedness is considered on arbitrary nilpotent groups with
dilations (see also [6].) Closely related is the problem of convolution of
flag kernels as tempered distributions.

An alternative approach to the same problems is presented in [6],
where 91-kernels of nonzero homogeneity prove instrumental in study-
ing the flag kernels, which seems to sufficiently motivate and justify
our interest in the extension of the concept.

2. BAsic SETUP
Let X be a real N-dimensional vector space with a fixed linear basis
{er 1. Accordingly, each element 2 € X has a representation as
Tr = Z Tper = (1,72, ..., TN) = (xk)ke/\p
keN

where N = {1,2,..., N}. The space X is assumed to be homogeneous,
that is, endowed with a family of dilations {d;};~o. The vectors in the
basis are supposed to be invariant under dilations:

orer, = tPrey, t>0,/€€N,

where 0 < p; < ps < --- < py. The number @) = Zivzl i is called the
homogeneous dimension of X. We have

dé,x = t9dz. t > 0.
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By a, 3, - - - we shall denote multiindices in NV, where IN stands for
the set of all nonnegative integers. Let

N
pla) = Z DrQk-
k=1

We shall adopt the following notation for partial derivatives:

0
-2 pr=T[p

We also let T, f(z) = 2® f(x).

The Schwartz space of smooth functions which vanish rapidly at
infinity along with all their derivatives will be denoted by S(X). The
seminorms

Dy

Gn(f) = max sup|z*D’f(z)|, meN,
p()+p(B)<m zeXx

form a complete set of seminorms in S(X) giving it a structure of a
locally convex Fréchet space. The subspace C2°(X) of functions with
compact support is dense in S(X). By LP(X) we denote the usual
Lebesgue spaces. S(X) is a dense subspace of the Lebesgue spaces.

By &’(X) we denote the space of tempered distributions, the dual to
S(X). It will be convenient to denote the action of a distribution on a
Schwartz function by

(K, o) = /X () K (z) dz

without thereby implying that K is a locally integrable function. If
a distribution K coincides with a locally integrable function F' on an
open set U C X, we simply write K(z) = F(z), for z € U.

Analogous notation will be applied to the objects on the dual space
X* with the dual basis {e}}ren and dual dilations still denoted by
{0} im0,

We choose Lebesgue measures dx in X and d§ in X* in such a way
that Fourier transfoms take the form

AeY — F(&) — —i{w.€) ¢ Vig) — i) g
PO =Tl = [ e odn oo = [ g0
where f € S(X), g € S(X*) and
N
k=1

is the duality of vector spaces.
For a function F' on X and ¢ > 0, let

Fé(z) = F(0.x),  F.(z)=¢e 9F(6.—z), F(z)=F(-z), az¢€X.
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Let A, B be positive quantities. We shall write A < B to say that
there exists a constant ¢ > 0 whose precise value is irrelevant such that
A< cB.

3. M-KERNELS

We assume that the set N' = {1,2,..., N} is endowed with a partial
order < such that k£ < j implies & < j. A family 9 = {Nj}ren of
subsets of N is called a filtration if, for every k € N and every j € N,

a) j < k implies j € N.

b) j € Ny implies N; C N.

A filtration I is closed if, for every k,

C) ke Nk

Any filtration 91 = {Nj }ren determines partial norms:

Ne(z) =Y |z;/V7,  keN.
JENK

If the sets NV, form a filtration in N, then the sets
P EN heN)

form the dual filtration in N which is a filtration in the sense of the
above definition with respect to the dual order: k <* j if and only if
Jj < k. We also have

N& =Ny, keEN.
Let

Ni(€) =) l&I
JENY
be the dual partial norms on the dual vector space X*. Denote by
Nuin (resp. Noax) the set of the minimal (resp. maximal) elements
with respect to the order <.

For a given I C N, denote by H; the singular subspace of X; =
(er)rer constisting of all ;7 = (zg)res such that x; = 0 for some k €
Inin. Let H = Hyr. Similarly, denote by H} the singular subspace of
X7 = (€})rer constisting of all £ = (& )rer such that & = 0 for some
k € Inax. Let H* = Hj..

For ¢ € S(X) and R = (r},)xer € (0,00), let

o (x1) = p(Agar),

where Agr; = ((5rkxk> CIf M = (my,my,...,my) € RY, then we
k

set M[ = (mk>k€].
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Given a distribution K € S’'(X) and a function ¢ € S(X), we define
a distribution K% on X, where J = N\ I, by letting

(K%, f) :/ / o(zr) f(xs)K(zr,25) drydoy, fes(Xy).
X; JX;
In other words,

<K¢7f>:<K7(10®f>a fES(XJ)

Definition 3.1. Let 91 = {N }ren be a filtration, and M = (my)gen €
R a multiindex. We say that a tempered distribution K belongs to
FM (X M) if there exists a Schwartz seminorm g, such that, for every
I C N, every Schwartz function ¢ € S(X;), and every a € N, the
distribution K¥ is smooth on X ; away from the singular space H; and

(3.2) C(K,a,I)= sup sup r. "™ C(K,a, 1, ") < oo,
am (9)<1 Re(0,00)7 1. 01

where

C(K, o, 1,0) = sup [] Nu(a,)Pemeves DUK? ().
TIEXT peN

(To avoid ambiguity we assume that ¢, = ¢ is the minimal seminorm
with the above property.)
For K € FM(X,9), we define seminorms

| K ||z, = max max C(K, o, 1), LeN.

p(a)<L ICN

A family K of elements of FM (X, N) is said to be bounded if, for every
L

?

sup || K| zv 1 < 00.
KeK

Remark 3.3. Let us look closer at the extreme cases of (3.2)), that is
when I = @ and I = N. The first one implies that K itself is smooth
away from H and

(34) |D*K(x)] < Co [ Nalw) ™ —memes, 2w ¢ H ae NV,
keN

The other one gives the cancellation condition:

(3.5) (K, ™) < Cale) [T i,

for every ¢ € S(X) and every R = (rq,79,...,75) € (0,00)". Note
that if the filtration is trivial with Ny = N for all k € N, then (3.4)
and (3.5)) are the only conditions defining F* (X, 91).
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Proposition 3.6. Let N be a filtration, let my < 0, for 1 < k < N,
and let F € C*(X \ H) satisfy (3.4). Then, F is locally integrable,
and the distribution

#.5)= | ta)F)ds
belongs to FM(X,M).

Proof. Note first that the condition m; < 0 is equivalent to saying that
F islocally integrable. Let I € N and J = N\ I. Then, for ¢ € S(X/)
and a € NV,

DOCKSOR<I'J) = / @R(wj)DgJF<l'],IJ) d!L‘[
X7

:HR,ZP’“/ (1) Dy, F(Ag-12q,25) doy,

kel X
whence,
— Pk Mk —PrQk
|DO¢K<,0R($J)| < HRkpk/ |S0(II)| H Nk<AR71£L‘],l‘J> Xr.
kel X1 keN
Now,

Ni(wp,25)~" < Ni(zp) ™, Ni(wr,2s)™" < Ni(zg) ™,
and Ny(z7)7! < |og|7Y/P% if k € I. Therefore,

DK ()| £ qlp) [ ] Nuag)Pemmemesen,
keJ

for z; ¢ H;, where

a(p) = / ()] T foel ™/ i
X1

kel

is a seminorm on S(X;) since my < 0. It is clear that all constants
in the above estimates depend only on the constants C,, in (3.4]). Our
proof is complete. O

Proposition 3.7. If K € F™(X,M), then, for every a, D*K €
Frire(X M) and T, K € FP(X, M), where pa = (p1o, p2aia, .. ., PNAN ).

We leave it as an exercise for the reader.

Example 3.8. If K = ¢ is a Schwartz function, then K € FY(X,9)
for every M and every M = (my)ren such that —py < my < 0.

Example 3.9. Let 0 <r < N and
ko=0< bk <---<k_1<k,=N.
Let M = {N;}jen, where, for oy < j <k, 1 <1<,
N, ={keN:k<k}
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Then the class F°(X,M) is exactly the class of flag kernels of Nagel-
Ricci-Stein-Wainger corresponding to the flag

{0} C (ej)jens C -+ C{ej)jen; C -+ C{€))jens, -
This filtration is closed.

Example 3.10. On the other hand, the filtration
N;={keN:k<j}

is not closed.

4. FOURIER TRANSFORM

Proposition 4.1. Let M be a closed filtration in N'. Let
M = (ml,mQ,...,mN) € RY

and let K € FM(X,M). Let o, € C(Xy) be equal to 1 in a neigh-
bourhood of zero and

(4.2) O(z) = H (), xr e X.
keN
Then, for every e > 0,

/Xe_mgq)(dgx)K(x)dx < I e+ N©)™, £e X

keN

Proof. Let us fix £ € X*\ H*. Let Ry, = N} (). Let n, € C(X}) be
equal to 1, for |z| < R, "*. Let

mi@) =[Im@). @ =] (1-me),  wex,

kel kelc

where I° = N\ I. Note that
L= nlmi(z), =zecg

IcN

Under the notation introduced above

/ e "D (0.0) K (x) do = Z e (Ar)nG(Arz)®(0.2) K () dr.
X IcnN /X

We are going to estimate each term

Si(&) = /Xe‘”gm(ARx)nﬁ(ARx)CI)(&x)K(x) dz, ICN,

separately. We begin with

(43) Sv(O) = [ ¢ nn(Ara) (6.0) K () d

_ /X Fr(Apa) K (2) dr,
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where the two-parameter family of C2°(X)-functions
Fro(z) = e ™18 (2)D(Ag-12), 0<e< gélﬁ Ry,
is bounded in S(X). Therefore, by definition,
[Sv@l < I &
keN

As for Sy, we need an extra twist. Recall that £ € X*\ H* is fixed.
For every k € N, let A(k) be the biggest index [ € N} such that

1/pr |1/p;
& gﬁ% ‘5]’ .

Then |&|'/Pr & N} (€). Of course, the mapping A : NV — N and the set
A = A(N) depend on . Let a = (ay, asg, . ..,ay) be a multiindex such
that my, + pawyar > 0, for every k, and let

A a a a A A A
DA = DY D32, . Dyt = DDy Dy,

so that Ay =3 ) 4axifl€ Aand A4 =0if I ¢ A If
Wie(w) = n5(Ane)@(@x) = T (1= ne( B an) ) on(=a)
keN
then
DA (Wg.K)(z) =0,

if |zx] < R.P*, for some k € N, and

(44) |DA(WR£K)(:L‘)| N lek‘|_pk_mk_pkAk'
k

This follows from the fact that R, ~ |zx|™' on the support of the
derivative of 7, and € & |x;|~! on the support of the derivatives of ;.
The filtration is closed, so we also have Ni(x) > |x|'/Px.

Now, by integration by parts and application of ,

’Sz(f” =

/X e Wge(2)K (z)dx

N
~ H S
k1

A —pe—mp—pr A
< HRk:pk k/ Hlxk| Ple—M ks — Dk rd,
k=1 ol

xUzx--xUpn k

/ e DA (Wg.K)(z)dz
X

> |
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where Uy = [R,"*, 00), for k € N. Consequently,

[[arisaors [ Lo,
Uy

keN XUz X..UN pen

Pk—ME—Dx(k) Ok
< H/ |xk|1/pk dz,
keN

mi+p ag A
< H Rk AR H R]anerk k’
keN keN

15a(6)1 = T B

keN

It remains to consider those cases where I is a proper subset of N.
We have

516) = [ (e mi(Anan) @i () ) (705 ) 6i) ) K ) d

and, finally,

_ / Fryo(An,a1)Cr, (A K () do
X

G
= FRI,s(ARI'TI)K RJ’E(JI[) dl’[,
X7

where J = 1¢ =N\ 1,

—iwrAp—1€7

Fr,(z1)=e¢ 7 UI($1)®I(AR;15xI)7 0<e< Il?el}l Ry,
and
—l:I)JA 15] .
Gr,-(xy)=e g (@)@ (Agag), 0<e< min Ry.

The two-parameter familiy Gg, - is bounded in S(X ), so
KRI,a = (HR mk) RJE
kel

is a family of kernels bounded in F (X ;). The integral

/XI FRIE(AR[xI)KRJE .CL’[ dZL‘[ <HR mk)S[

kel
is a lower-dimensional counterpart of the integral (4.3), so that
(TT ™ )siol = T re
kel keJ
that is

111 < T =i

keN
This completes the proof. Il
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Corollary 4.5. Under the hypotheses of Proposition [{.1]
IDY(K* )€ & ] e+ Np©)™ ™™, cex,
keN
uniformly for e > 0.

Proof. The function </ISE x K is smooth and
D%+ K)(€)| = |®.« D°K()], £€X*, aeNY.

Since |D°K| = ‘(TQK)A} and T, K € FM=P(X M), our claim follows
by Proposition [4.1]
U
For M = (my,ms,...,my) € RY, let
M* = (—=p1 — my, —p2 —ma, ..., —PN — MN).

Theorem 4.6. Let M be a closed filtration in N'. Let M € RY. If
K € FM(X, M), then K € FM" (X*, M),

Proof. Let us keep the notation of Proposition . We have 21\38 x K —
K in the sense of distributions. The estimates of Corollary show
that all derivatives D“ (&\)5 * [A() are locally bounded in X*\ H*, so
by the usual argument based on the Ascoli theorem we conclude that
the convergence is almost uniform in X*\ H*, which implies that K is
smooth away from H* and satisfies

DK@ £ J] Nigymmes, e X\ H".
keN

It remains to take care of the lower-dimensional conditions. Let I, J
and ¢ be as in Definition [3.1] Let

N, ={ENJ:EecN}

This is a closed filtration in J. The distribution K¥" is a kernel in

fMJ(XJ,‘ﬁJ), SO
~ ZINA
Kot — (Hprk> (K(WV)R )
kel

is in C*°(X% \ H%) and satisfies the necessary condition for the decay

of derivatives. The estimates are uniform in R € (0,00)! and ¢ €
S(X,). O

5. APPROXIMATION

We shall consider the following classes of distributions on X associ-

ated with a fixed closed filtration 9t. For M = (mk) pens € RY and
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e > 0, let Sc(M) be the totality of distributions A on X whose Fourier
transform A is smooth and satisfies

(5.1) DA = T (e +Np©)™ ™™, cexr,

keN

cf. Corollary The class is a Fréchet space if equipped with the
family of natural seminorms

nAmM4r-mw&mIIe+A@ ) T DAE)],  le N.

A sequence K, € Sy/,(M) is said to be an M-approzimating sequence
if K, is convergent in S'(g) and bounded, that is

Sup ||KV||Sl/V7l < OO’
v

for every | € N.

Proposition 5.2. Let N be a closed filtration and M € RN an multi-
index with my, > —py. Then, K € FM(X, M) if and only if there exists
an M -aproximating sequence convergent in S'(X) to K.

Proof. Let K € FM(X,M). For v € N, let
Ko(r) = B0 (x),  z€X,

where @ is as in Proposition [£.1] Then, by Corollary [4.5] the sequence
K, € S(1/v) is bounded and convergent to K in &'(X).
Now let K be a limit of an M-approximate sequence K,. We have

(1/v + Ni(€))™ 7P < (14 Ni(€))™ P,
if my, — prag > 0, and

(1/v 4 Ni(&§)) ™ 7PE% < Ny (§) ™R PR,

if my, — prag < 0. Therefore, by the Ascoli theorem, DO‘IA(Z, converges
uniformly, for every «, on every compact subset of X*\ H*. Thus,

K(¢€) = lim K,(€)

V—00

satisfies the necessary estimates for the derivatives on X* \ H*. In

particular,
K@< I Ve,
keN

which shows that K is locally integrable. Therefore, by Proposition
B.6| K € FM"(X* 91, so, by Theorem [.6] K € FM(X,M). 0
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6. CHANGE OF VARIABLE

A mapping P : X — X is said to be a homogeneous triangular
polynomial mapping, if

P(zx) = (Pl(x), Py(z),... PN(x)),

where P, are polynomials of degree at least 2 such that

(61) Pk<.§6) :Pk(l’l,IQ,...,Skal)
and

Condition ([6.2) means that, for every k, Py is a homogeneous polyno-
mial of degree p.

The mapping P determines an order in N'. We write k < j if Dy P; #
0 and extend this relation to the smallest order containg it. By ,
k < j implies k < j.

Let the operator Sp be defined as

Spf(x) = f(z+ P(z)), weX,
for f € S(X) and
(SpA, f) =(A,Spf),  feSX),
for A € 8(X), where P(z + P(z)) = —P(z). In other words, y =

x + P(z) is equivalent to z = y + P(y).
Recall from [6] the operator

UpF(Q) = [[ Dt d P o) dedy, € X"
X

which we here consider as acting on S(X) x S(X):

Up(f.9)(6) = / /X DD P 2)g ) dady.

By Theorem 7.1 of [6], Up has an extension, still denoted by Up, to
a Fréchet continuous mapping S;(M) x S1(M') — S1(M + M'), where
M, M’ € R". (This extension is unique in the sense that is irrelevant
here.) As a matter of fact, the Fréchet continuity has not been made
explicit in the statement of the theorem, but the final part of the proof
(see the last line of the page 1657) shows that the Fréchet continuity
claim holds true.
Let

P(z.y) = (P(x).Py), zyeX.

If we apply the above to the homogeneous triangular polynomial map-
ping P, we get the operator Up acting on distributions on X* x X*
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whose restriction to S(X*) x S(X*) is
U’P(f, g)<£7 77)
_ / / e~ i) ) =P+ P ) V(3 1N 0¥ (. 0)) dadydud.
XxX
Let

Vp(A)(§) = Up(4,1)(£,0), AeS(X7), (X

Fix M € R". It follows that Vp : S;(M) — Si(M) is Fréchet contin-
uous. For A € §'(g) and € > 0, let

A (x) = 5_Q_Z'1€V:1m’“A(5_lx).
Clearly,
Vp(A) = Vp(A)., AeS(XY), >0,
so Vp : S.(M) — S.(M) is Fréchet continuous uniformly in e. If
A= feS(X*), then

VPf(é'):/X —i(x,£) —z (P(z),& f\/( )

so by the change of variable z = x + P(x),
Sp=FoVpoF
where F denotes the Fourier transform.

Theorem 6.3. Let M = {Ny}ren be a filtration, and M = (my) a
multiinder. If K € FM(X, M), the so does SpK.

Proof. Let K € FM(X,M). Let K, be an M-approximating sequence
for K. Then,

Vv
L, = SpK, = (VP(K§)>
is another M-approximating sequence convergent to SpK. Hence, by

Proposition [5.2) SpK € FM(X,N). O

7. CONVOLUTION

We keep the setup of Section 2. Furthermore, we endow X (since now
denoted by g) with a Lie algebra commutator (x,y) — [z, y] such that
the dilations d; become automorphisms. The commutator determines
a Campbell-Hausdorff multiplication (see Corwin-Greenleaf [2])

(7.1) ry=z+y+ P(z,y),
where
P(s,9) = 3l 0]+ 25l ool + 5l al) +

is a homogeneous triangular polynomial mapping. This makes g into
a nilpotent Lie group with the same underlying manifold X.



SINGULAR KERNELS 14

If A€ S.(M) for some M € RY and ¢ > 0, then for every compact
neighbourhood U of 0 in g, A = Ay + F, where Ay is supported in
U and F € S(g). Thus, for every two members of the classes S.(M),
convolution makes sense. Let A € S;(M), B € S;(M'). Then, by
Proposition 8.1 of [6],

(Ax B)" =Up(A", B").
Consequently, the mappings
(7.2) S-(M)x S.(M')> (A, B)— AxB e S.(M+ M), e >0,

are continuous.
Let p > 1. We say that a multiindex M = (mg)ren is p-admissible
if, for every k € NV,

pe(1/p—1) < my < pi/p.

Proposition 7.3. Let N be a closed filtration. Let M = (mk)keN be p-
admissible for some p > 1. Forv € N, let K, be an M -approximating
sequence convergent to K in the sense of distributions. Then, for every
v € S(g) and every v, o x K, € LP(g) and ¢ x K, — ¢ x K in L(g).
Thus ¢ x K € L*(g).

Proof. Let ¢ € S(g). We know that ¢ € F¥(g,M) for every T with
—pr <t < 0 (see Example B.8). Also ¢ € S1,,(T) uniformly in v. By
symbolic calculus , F, =K, x¢ € S1,(M+T). It is not hard
to see that F), is an (M + T')-approximating sequence for F' = K x ¢.
Hence, by Proposition F € FM+T(g), which implies

F@) < [l wex\H,
keN

for any —py, < tx < 0. If T is chosen so that my, + t, < py/p if |zg| < 1
and my + tx > pr(1/p — 1) if |xx| > 1, the right-hand side is in L(g),

so K x¢ € LP(g). We can do so since M is p-admissible.
The same argument implies uniformly to each F,. The sequence is
convergent to F' almost everywhere, hence, by the Lebesgue dominated
convergence theorem, it is convergent in L”(g). O

The following definition is due to Chevalley. Tempered distributions
K, L are convolvable if

(K x¢)(Lx) € L'(g),
for all ¢,1 € S(g). Then, by Chevalley [I], Section 8, there exists a
unique tempered distribution K x L such that

(K x L, o %) :/[?*gp(x)L*@Z(a:)dx,

for all ¢,1 € S(g). Recall that functions of the form ¢ * 1) span the
whole of S(g). (In fact, by Dixmier-Malliavin [3], every function in
S(g) is of this form, but we need not this difficult result.)
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Remark 7.4. If K; € S1(M;), j = 1,2, then it is not hard to see that
they are convolvable in the sense of Chevalley and the Chevalley con-
volution coincides with the usual convolution K7 x K, of distributions.

Theorem 7.5. Let N be a closed filtration. Let 1/p + 1/q < 1,
1 < pqg< oo Let Ke FM(gN), L € FM™(g,M), where M, is
p-admissible and My is q-admissible. Then the distributions K and L
are convolvable and K x L € FMi+M2(g 91).

Proof. We may assume that 1/p+1/q = 1. By Proposition , K and
L are convolvable. Let K, and L, be the approximate sequences con-
verging to K and L, respectively (Proposition . Then, by symbolic
calculus, the sequence

(7.6) U, =K, L, € S(1/v, My + M)

is bounded. By ({3.5)), the distributions U, are equicontinuous in S'(g).
Once we show that U, is convergent to K x L in S'(g), we shall be

able to conclude that U, is an (M; + Ms)-approximate sequence and
K % L € FMitMz(g 91).

Let f,g € S(g)- By (7.6),

(U,, f*g)= /l?;*f(x) L, *q(x)dz,

where, by Proposition l?:,*f — I?*f in LP(g) and L, *xg — L, *g
in L9(g). Therefore,

(KL, fxg) = lim /f{j*f(g;) L, * §(z) dz = lim(U,, f * g),
V—r00 g v
which shows that, in fact, U, — K % L in S'(g). O
Corollary 7.7. Let M be a closed filtration. Let K; € FMi(g,M),
1 < j <3, where M;j is rj-admisible and 7"{1 + 7”51 + 7“3’1 < 2. Then,
K1 * (K2 * Kg) = (Kl * KQ) * Kg.
Proof. By Theorem all convolutions are legitimate. Let K;, €
S1/v(M;) be a Mj-approximating sequence for K;. Then,
Kl,u * (K2,V * K3,V) - (Kl,u * KZ,I/) * K3,1/7

for every v. Now, the sequence Ky, K3, is an (My+Ms)-approximating
sequence for Ky » K3 and the sequence K, x Ky, an (M; + Ms)-
approximating sequence for K; x Ky By passing to the limit with
v — 00, we get our assertion. O

REFERENCES

[1] C. Chevalley, Theory of distributions, Columbia University, 1950/51,

[2] L. Corwin, F.P. Greenleaf, Representations of nilpotent Lie groups and theirap-
plications. Basic theorey and examples, Cambridge University Press, Cam-
bridge 1990,



SINGULAR KERNELS 16

[3] J. Dixmier, P. Malliavin Factorisations de fonctions et de wvecteurs
indéfinitment différentiables, Bull Sci. Math., 102 (1978), 305-330,

[4] P. Glowacki, Composition and L*-boundedness of flag kernels, Colloq. Math.,
118 (2010), 581-585, Correction, Colloq. Math., 120 (2010), 331,

[5] P. Glowacki LP-boundedness of flag kernels on homogeneous groups via sym-
bolic calculus, J. Lie Theory, 23 (2013), 953-977;

[6] P. Glowacki LP-multipliers sensitive to the group structure on nilpotent Lie
groups, J. Fourier Analysis and Appl. 25 (2019),1632-1672;

[7] D. Miiller, F. Ricci, and E.M. Stein, Marcinkiewicz multipliers and two-
parameter structures on Heisenberg groups I, Invent. Math. 119, (1995), 199-
233;

[8] D. Miiller, F. Ricci, and E.M. Stein, Marcinkiewicz multipliers and two-
parameter structures on Heisenberg (-type) groups II, Math. Z. 221, (1996),
267-291;

[9] A. Nagel, F. Ricci, and E.M. Stein, Singular integrals with flag kernels and
analysis on quadratic CR manifolds, J. Func. Analysis, 181, (2001), 29-18;

[10] A. Nagel, F. Ricci, E.M. Stein, S. Wainger, Singular integrals with flag kernels
on homogeneous groups I, Revista Mat. Iberoam. 28 (2012), 631-722;

[11] E.M. Stein, Harmonic Analysis, Princeton University Press, Princeton NJ,
1993;

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WROCLAW, PL. GRUNWALDZKI 2/4, 50-386
WROCEAW, POLAND
Email address: glowacki@math.uni.wroc.pl



	1. Introduction
	2. Basic Setup
	3. N-kernels
	4. Fourier transform
	5. approximation
	6. Change of variable
	7. convolution
	References

