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Abstract. We consider a generalisation of Calderón-Zygmund
kernels on a Euclidean space with nonisotropic dilations. The re-
sulting distributions, N-kernels, are highly singular. We look at
the behaviour of N-kernels under the Fourier transform and also
ask for conditions of convolvability of such kernels. Another in-
teresting feature of N-kernels is their invariance for the change of
variable y = x+P (x), where P is a homogeneous triangular polyno-
mial mapping. The tasks require the study of the multi-parameter
homogeneity of the kernels.

1. Introduction

Suppose that K is a Calderón-Zygmund kernel on RN . This means
that K is a tempered distribution which is C∞ away from the origin
and satisfies the size estimates

|DαK(x)| <∼ |x|−N−|α|, x 6= 0, α ∈NN ,

as well as the cancellation condition

sup
q(ϕ)≤1

sup
R>0

R−N
∣∣∣∣∫

RN

ϕ(Rx)K(x) dx

∣∣∣∣ <∞,
where q is a seminorm in the Schwartz space S(RN). An equivalent
condition in terms of the Fourier transform is

|DαK̂(ξ)| <∼ |ξ|−|α|, ξ 6= 0, α ∈NN ,

where the cancellation property remains hidden. Operators of convo-
lution with this kind of kernels arise in many problems of harmonic
analysis and differential equations, see, e.g. Stein [11]. Important as
they are they allow for interesting generalisations which go in various
directions. In this paper we consider the generalisation which on the
Fourier transform side takes the seemingly innocuous form

|DαK̂(ξ)| <∼
N∏
k=1

N?
k (ξ)−1−mk−αk , ξk 6= 0, α ∈NN ,
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where N?
k are suitable partial norms on subspaces of RN and

|mk| < ε, 1 ≤ k ≤ N,

for some ε > 0. This can be further extended to the context of a nilpo-
tent Lie group with nonisotropic dilations. The resulting distributions,
N-kernels, are highly singular and resist easy treatment.

In this paper, we look at the behaviour of N-kernels under the
Fourier tranform and also ask for conditions of convolvability of such
kernels. Another interesting feature of N-kernels is their invariance
for the change of variable y = x + P (x), where P is a homogeneous
triangular polynomial mapping. The tasks require the study of the
multi-parameter homogeneity of the kernels.

The most important is the case where mk = 0, for 1 ≤ k ≤ N ,
that is the case of flag kernels. The apt idea of a flag kernel is due
to Müller-Ricci-Stein [7], [8], Nagel-Ricci-Stein [9], and Nagel-Ricci-
Stein-Wainger [10] as a tool in the study of spectral multipliers on two-
step nilpotent groups and �b-complex operator on certain quadratic
submanifolds. The key property under scrutiny is the Lp-boundedness
of the operators of convolution with flag kernels. In [10] the problem
of the boundedness is considered on arbitrary nilpotent groups with
dilations (see also [6].) Closely related is the problem of convolution of
flag kernels as tempered distributions.

An alternative approach to the same problems is presented in [6],
where N-kernels of nonzero homogeneity prove instrumental in study-
ing the flag kernels, which seems to sufficiently motivate and justify
our interest in the extension of the concept.

2. Basic Setup

Let X be a real N -dimensional vector space with a fixed linear basis
{ek}Nk=1. Accordingly, each element x ∈ X has a representation as

x =
∑
k∈N

xkek = (x1, x2, . . . , xN) =
(
xk
)
k∈N ,

where N = {1, 2, . . . , N}. The space X is assumed to be homogeneous,
that is, endowed with a family of dilations {δt}t>0. The vectors in the
basis are supposed to be invariant under dilations:

δtek = tpkek, t > 0, k ∈ N ,

where 0 < p1 ≤ p2 ≤ · · · ≤ pN . The number Q =
∑N

k=1 pk is called the
homogeneous dimension of X. We have

dδtx = tQdx. t > 0.
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By α, β, · · · we shall denote multiindices in NN , where N stands for
the set of all nonnegative integers. Let

p(α) =
N∑
k=1

pkαk.

We shall adopt the following notation for partial derivatives:

Dk =
∂

∂xk
, Dα =

∏
k

Dαk
k .

We also let Tαf(x) = xαf(x).
The Schwartz space of smooth functions which vanish rapidly at

infinity along with all their derivatives will be denoted by S(X). The
seminorms

qm(f) = max
p(α)+p(β)≤m

sup
x∈X
|xαDβf(x)|, m ∈N ,

form a complete set of seminorms in S(X) giving it a structure of a
locally convex Fréchet space. The subspace C∞c (X) of functions with
compact support is dense in S(X). By Lp(X) we denote the usual
Lebesgue spaces. S(X) is a dense subspace of the Lebesgue spaces.

By S ′(X) we denote the space of tempered distributions, the dual to
S(X). It will be convenient to denote the action of a distribution on a
Schwartz function by

〈K,ϕ〉 =

∫
X

ϕ(x)K(x) dx

without thereby implying that K is a locally integrable function. If
a distribution K coincides with a locally integrable function F on an
open set U ⊂ X, we simply write K(x) = F (x), for x ∈ U .

Analogous notation will be applied to the objects on the dual space
X? with the dual basis {e?k}k∈N and dual dilations still denoted by
{δt}t>0.

We choose Lebesgue measures dx in X and dξ in X? in such a way
that Fourier transfoms take the form

f∧(ξ) = f̂(ξ) =

∫
X

f(x)e−i〈x,ξ〉dx, g∨(ξ) =

∫
X?

g(ξ)ei〈x,ξ〉dξ,

where f ∈ S(X), g ∈ S(X?) and

〈x, ξ〉 =
N∑
k=1

xkξk

is the duality of vector spaces.
For a function F on X and ε > 0, let

F ε(x) = F (δεx), Fε(x) = ε−QF (δε−1x), F̃ (x) = F (−x), x ∈ X.



SINGULAR KERNELS 4

Let A,B be positive quantities. We shall write A <∼ B to say that
there exists a constant c > 0 whose precise value is irrelevant such that
A ≤ cB.

3. N-kernels

We assume that the set N = {1, 2, . . . , N} is endowed with a partial
order ≺ such that k ≺ j implies k < j. A family N = {Nk}k∈N of
subsets of N is called a filtration if, for every k ∈ N and every j ∈ N ,

a) j ≺ k implies j ∈ Nk.

b) j ∈ Nk implies Nj ⊂ Nk.

A filtration N is closed if, for every k,

c) k ∈ Nk.

Any filtration N = {Nk}k∈N determines partial norms:

Nk(x) =
∑
j∈Nk

|xj|1/pj , k ∈ N .

If the sets Nk form a filtration in N , then the sets

N ?
k = {j ∈ N : k ∈ Nj}

form the dual filtration in N which is a filtration in the sense of the
above definition with respect to the dual order : k ≺? j if and only if
j ≺ k. We also have

N ??
k = Nk, k ∈ N .

Let

N?
k (ξ) =

∑
j∈N ?k

|ξj|1/pj

be the dual partial norms on the dual vector space X?. Denote by
Nmin (resp. Nmax) the set of the minimal (resp. maximal) elements
with respect to the order ≺.

For a given I ⊂ N , denote by HI the singular subspace of XI =
〈ek〉k∈I constisting of all xI = (xk)k∈I such that xk = 0 for some k ∈
Imin. Let H = HN . Similarly, denote by H?

I the singular subspace of
X?
I = 〈e?k〉k∈I constisting of all ξI = (ξk)k∈I such that ξk = 0 for some

k ∈ Imax. Let H? = H?
N .

For ϕ ∈ S(X) and R = (rk)k∈I ∈ (0,∞)I , let

ϕR(xI) = ϕ(∆RxI),

where ∆RxI =
(
δrkxk

)
k∈I

. If M = (m1,m2, . . . ,mN) ∈ RN , then we

set MI = (mk)k∈I .
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Given a distribution K ∈ S ′(X) and a function ϕ ∈ S(XI), we define
a distribution Kϕ on XJ , where J = N \ I, by letting

〈Kϕ, f〉 =

∫
XI

∫
XJ

ϕ(xI)f(xJ)K(xI , xJ) dxI dxJ , f ∈ S(XJ).

In other words,

〈Kϕ, f〉 = 〈K,ϕ⊗ f〉, f ∈ S(XJ).

Definition 3.1. Let N = {Nk}k∈N be a filtration, andM = (mk)k∈N ∈
RN a multiindex. We say that a tempered distribution K belongs to
FM(X,N) if there exists a Schwartz seminorm qm such that, for every
I ⊂ N , every Schwartz function ϕ ∈ S(XI), and every α ∈ NN , the
distribution Kϕ is smooth on XJ away from the singular space HJ and

(3.2) C(K,α, I) = sup
qm(ϕ)≤1

sup
R∈(0,∞)I

∏
k∈I

r−mkk C(K,α, I, ϕR) <∞,

where

C(K,α, I, ϕ) = sup
xJ∈XJ

∏
k∈N

Nk(xJ)pk+mk+pkαk |DαKϕ(xJ)|.

(To avoid ambiguity we assume that qm = q is the minimal seminorm
with the above property.)

For K ∈ FM(X,N), we define seminorms

‖K‖FM ,L = max
p(α)≤L

max
I⊂N

C(K,α, I), L ∈N .

A family K of elements of FM(X,N) is said to be bounded if, for every
L,

sup
K∈K
‖K‖FM ,L <∞.

Remark 3.3. Let us look closer at the extreme cases of (3.2), that is
when I = ∅ and I = N . The first one implies that K itself is smooth
away from H and

(3.4) |DαK(x)| ≤ Cα
∏
k∈N

Nk(x)−pk−mk−pkαk , x /∈ H, α ∈NN .

The other one gives the cancellation condition:

(3.5) |〈K,ϕR〉| ≤ Cq(ϕ)
N∏
k=1

rmkk ,

for every ϕ ∈ S(X) and every R = (r1, r2, . . . , rN) ∈ (0,∞)N . Note
that if the filtration is trivial with Nk = N for all k ∈ N , then (3.4)
and (3.5) are the only conditions defining FM(X,N).
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Proposition 3.6. Let N be a filtration, let mk < 0, for 1 ≤ k ≤ N ,
and let F ∈ C∞(X \ H) satisfy (3.4). Then, F is locally integrable,
and the distribution

〈K, f〉 =

∫
X

f(x)F (x)dx

belongs to FM(X,N).

Proof. Note first that the condition mk < 0 is equivalent to saying that
F is locally integrable. Let I ⊂ N and J = N \I. Then, for ϕ ∈ S(XI)
and α ∈NN ,

DαKϕR(xJ) =

∫
XI

ϕR(xI)D
α
xJ
F (xI , xJ) dxI

=
∏
k∈I

R−pkk

∫
XI

ϕ(xI)D
α
xJ
F (∆R−1xI , xJ) dxI ,

whence,

|DαKϕR(xJ)| <∼
∏
k∈I

R−pkk

∫
XI

|ϕ(xI)|
∏
k∈N

Nk

(
∆R−1xI , xJ

)−pk−mk−pkαk
dxI .

Now,

Nk(xI , xJ)−1 ≤ Nk(xI)
−1, Nk(xI , xJ)−1 ≤ Nk(xJ)−1,

and Nk(xI)
−1 ≤ |xk|−1/pk if k ∈ I. Therefore,

|DαKϕRI (xJ)| <∼ q(ϕ)
∏
k∈J

Nk(xJ)−pk−mk−pkαk ,

for xJ /∈ HJ , where

q(ϕ) =

∫
XI

|ϕ(xI)|
∏
k∈I

|xk|−1−mk/pk dxI

is a seminorm on S(XI) since mk < 0. It is clear that all constants
in the above estimates depend only on the constants Cα in (3.4). Our
proof is complete. �

Proposition 3.7. If K ∈ Fm(X,N), then, for every α, DαK ∈
Fm+pα(X,N) and TαK ∈ Fm−pα(X,N), where pα = (p1α1, p2α2, . . . , pNαN).

We leave it as an exercise for the reader.

Example 3.8. If K = ϕ is a Schwartz function, then K ∈ FM(X,N)
for every N and every M = (mk)k∈N such that −pk < mk < 0.

Example 3.9. Let 0 < r ≤ N and

k0 = 0 < k1 < · · · < kr−1 < kr = N.

Let N = {Nj}j∈N , where, for kl−1 < j ≤ kl, 1 ≤ l ≤ r,

Nj = {k ∈ N : k ≤ kl}.
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Then the class F 0(X,N) is exactly the class of flag kernels of Nagel-
Ricci-Stein-Wainger corresponding to the flag

{0} ⊂ 〈ej〉j∈N1 ⊂ · · · ⊂ 〈ej〉j∈Nl ⊂ · · · ⊂ 〈ej〉j∈Nkr .
This filtration is closed.

Example 3.10. On the other hand, the filtration

Nj = {k ∈ N : k < j}
is not closed.

4. Fourier transform

Proposition 4.1. Let N be a closed filtration in N . Let

M = (m1,m2, . . . ,mN) ∈ RN

and let K ∈ FM(X,N). Let ϕk ∈ C∞c (Xk) be equal to 1 in a neigh-
bourhood of zero and

(4.2) Φ(x) =
∏
k∈N

ϕk(xk), x ∈ X.

Then, for every ε > 0,∣∣∣∣∫
X

e−ixξΦ(δεx)K(x)dx

∣∣∣∣ <∼
∏
k∈N

(
ε+N?

k (ξ)
)mk , ξ ∈ X?.

Proof. Let us fix ξ ∈ X? \H?. Let Rk = N?
k (ξ). Let ηk ∈ C∞c (Xk) be

equal to 1, for |xk| ≤ R−pkk . Let

ηI(x) =
∏
k∈I

ηk(xk), ηcI(x) =
∏
k∈Ic

(
1− ηk(xk)

)
, x ∈ X,

where Ic = N \ I. Note that

1 =
∑
I⊂N

ηI(x)ηcI(x), x ∈ g.

Under the notation introduced above∫
X

e−ixξΦ(δεx)K(x) dx =
∑
I⊂N

∫
X

e−ixξηI(∆Rx)ηcI(∆Rx)Φ(δεx)K(x) dx.

We are going to estimate each term

SI(ξ) =

∫
X

e−ixξηI(∆Rx)ηcI(∆Rx)Φ(δεx)K(x) dx, I ⊂ N ,

separately. We begin with

SN (ξ) =

∫
X

e−ixξηN (∆Rx)Φ(δεx)K(x) dx(4.3)

=

∫
X

FR,ε(∆Rx)K(x) dx,
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where the two-parameter family of C∞c (X)-functions

FR,ε(x) = e−ix∆R−1ξηN (x)Φ(∆εR−1x), 0 < ε < min
k∈N

Rk,

is bounded in S(X). Therefore, by definition,

|SN (ξ)| <∼
∏
k∈N

Rmk
k .

As for S∅, we need an extra twist. Recall that ξ ∈ X? \H? is fixed.
For every k ∈ N , let λ(k) be the biggest index l ∈ N ?

k such that

|ξl|1/pl = max
j∈N ?k

|ξj|1/pj .

Then |ξl|1/pl ≈ N?
k (ξ). Of course, the mapping λ : N → N and the set

Λ = λ(N ) depend on ξ. Let a = (a1, a2, . . . , aN) be a multiindex such
that mk + pλ(k)ak > 0, for every k, and let

DA = Da1
λ(1)D

a2
λ(2) . . . D

aN
λ(N) = DA1

1 DA2
2 . . . DAN

N ,

so that Al =
∑

λ(k)=l ak if l ∈ Λ and Al = 0 if l /∈ Λ. If

WR,ε(x) = ηc∅(∆Rx)Φ(δεx) =
∏
k∈N

(
1− ηk(Rpk

k xk)
)
ϕk(ε

pkxk)

then

DA
(
WR,εK

)
(x) = 0,

if |xk| ≤ R−pkk , for some k ∈ N , and

(4.4) |DA
(
WR,εK

)
(x)| <∼

∏
k

|xk|−pk−mk−pkAk .

This follows from the fact that Rk ≈ |xk|−1 on the support of the
derivative of ηk and ε ≈ |xk|−1 on the support of the derivatives of ϕk.
The filtration is closed, so we also have Nk(x) ≥ |xk|1/pk .

Now, by integration by parts and application of (4.4),

|S∅(ξ)| =
∣∣∣∣∫
X

e−ixξWR,ε(x)K(x)dx

∣∣∣∣
≈

N∏
k=1

|ξλ(k)|−pkAk
∣∣∣∣∫
X

e−ixξDA
(
WR,εK

)
(x) dx

∣∣∣∣
<∼

N∏
k=1

R−pkAkk

∫
U1×U2×···×UN

∏
k

|xk|−pk−mk−pkAkdx,
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where Uk = [R−pkk ,∞), for k ∈ N . Consequently,∏
k∈N

RpkAk
k |S∅(ξ)| <∼

∫
U1×U2×...UN

∏
k∈N

|xk|−pk−mk−pλ(k)ak dx,

≤
∏
k∈N

∫
Uk

(
|xk|1/pk

)−pk−mk−pλ(k)ak
dx,

<∼
∏
k∈N

R
mk+pλ(k)ak
k =

∏
k∈N

Rmk+pkAk
k ,

and, finally,

|S∅(ξ)| <∼
∏
k∈N

Rmk
k .

It remains to consider those cases where I is a proper subset of N .
We have

SI(ξ) =

∫
X

(
e−ixIξIηI(∆RIxI)ΦI(δεxI)

)(
e−ixJξJηcI(∆RJxJ)ΦJ(δεxJ)

)
K(x) dx

=

∫
X

FRI ,ε(∆RIxI)GRJ ,ε(∆RJxJ)K(x) dx

=

∫
XI

FRI ,ε(∆RIxI)K
G
RI
RJ ,ε(xI) dxI ,

where J = Ic = N \ I,

FRI ,ε(xI) = e
−ixI∆

R−1
I
ξI
ηI(xI)ΦI(∆R−1

I εxI), 0 < ε < min
k∈I

Rk,

and

GRJ ,ε(xJ) = e
−ixJ∆

R−1
J
ξJ
ηcI(xJ)ΦJ(∆R−1

J εxJ), 0 < ε < min
k∈J

Rk.

The two-parameter familiy GRJ ,ε is bounded in S(XJ), so

KRI ,ε =
(∏
k∈I

R−mkk

)
K
G
RJ
RJ ,ε

is a family of kernels bounded in FM(XJ). The integral∫
XI

FRI ,ε(∆RIxI)KRJ ,ε(xI) dxI =
(∏
k∈I

R−mkk

)
SI(ξ)

is a lower-dimensional counterpart of the integral (4.3), so that(∏
k∈I

R−mkk

)
|SI(ξ)| <∼

∏
k∈J

Rmk
k ,

that is

|SI(ξ)| <∼
∏
k∈N

Rmk
k .

This completes the proof. �
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Corollary 4.5. Under the hypotheses of Proposition 4.1,

|Dα
(
K̂ ? Φ̂ε

)
(ξ)| <∼

∏
k∈N

(
ε+N?

k (ξ)
)mk−pkαk , ξ ∈ X?,

uniformly for ε > 0.

Proof. The function Φ̂ε ? K̂ is smooth and

|Dα
(
Φ̂ε ? K̂

)
(ξ)| = |Φ̂ε ? DαK̂(ξ)|, ξ ∈ X?, α ∈NN .

Since |DαK̂| =
∣∣(TαK)∧∣∣ and TαK ∈ FM−pα(X,N), our claim follows

by Proposition 4.1.
�

For M = (m1,m2, . . . ,mN) ∈ RN , let

M? = (−p1 −m1,−p2 −m2, . . . ,−pN −mN).

Theorem 4.6. Let N be a closed filtration in N . Let M ∈ RN . If

K ∈ FM(X,N), then K̂ ∈ FM?
(X?,N?).

Proof. Let us keep the notation of Proposition 4.1. We have Φ̂ε ? K̂ →
K̂ in the sense of distributions. The estimates of Corollary 4.5 show

that all derivatives Dα
(
Φ̂ε ? K̂

)
are locally bounded in X? \ H?, so

by the usual argument based on the Ascoli theorem we conclude that

the convergence is almost uniform in X? \H?, which implies that K̂ is
smooth away from H? and satisfies

|DαK̂(ξ)| <∼
∏
k∈N

N?
k (ξ)mk−pkαk , ξ ∈ X? \H?.

It remains to take care of the lower-dimensional conditions. Let I, J
and ϕ be as in Definition 3.1. Let

NJ = {E ∩ J : E ∈ N}.

This is a closed filtration in J . The distribution KϕR is a kernel in
FMJ (XJ ,NJ), so

K̂ϕR =
(∏
k∈I

R−pk
)(
K(ϕ∨)R

−1
)∧

is in C∞(X?
J \H?

J) and satisfies the necessary condition for the decay
of derivatives. The estimates are uniform in R ∈ (0,∞)I and ϕ ∈
S(XJ). �

5. approximation

We shall consider the following classes of distributions on X associ-
ated with a fixed closed filtration N. For M =

(
mk

)
k∈N ∈ RN and
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ε > 0, let Sε(M) be the totality of distributions A on X whose Fourier

transform Â is smooth and satisfies

(5.1) |DαÂ(ξ)| <∼
∏
k∈N

(
ε+N?

k (ξ)
)mk−pkαk , ξ ∈ X?,

cf. Corollary 4.5. The class is a Fréchet space if equipped with the
family of natural seminorms

‖A‖Sε(M),l = max
p(α)≤l

sup
ξ∈g?

∏
k∈N

(
ε+N?

k (ξ)
)−mk+pkαk |DαÂ(ξ)|, l ∈N .

A sequence Kν ∈ S1/ν(M) is said to be an M -approximating sequence
if Kν is convergent in S ′(g) and bounded, that is

sup
ν
‖Kν‖S1/ν ,l <∞,

for every l ∈N .

Proposition 5.2. Let N be a closed filtration and M ∈ RN an multi-
index with mk > −pk. Then, K ∈ FM(X,N) if and only if there exists
an M-aproximating sequence convergent in S ′(X) to K.

Proof. Let K ∈ FM(X,N). For ν ∈N , let

Kν(x) = Φ(δ1/νx)K(x), x ∈ X,

where Φ is as in Proposition 4.1. Then, by Corollary 4.5, the sequence
Kν ∈ S(1/ν) is bounded and convergent to K in S ′(X).

Now let K be a limit of an M -approximate sequence Kν . We have

(1/ν +Nk(ξ))
mk−pkαk ≤ (1 +Nk(ξ))

mk−pkαk ,

if mk − pkαk ≥ 0, and

(1/ν +Nk(ξ))
mk−pkαk ≤ Nk(ξ)

mk−pkαk ,

if mk − pkαk ≤ 0. Therefore, by the Ascoli theorem, DαK̂ν converges
uniformly, for every α, on every compact subset of X? \H?. Thus,

K̂(ξ) = lim
ν→∞

K̂ν(ξ)

satisfies the necessary estimates for the derivatives on X? \ H?. In
particular,

|K̂(ξ)| <∼
∏
k∈N

N?
k (ξ)mk ,

which shows that K̂ is locally integrable. Therefore, by Proposition

3.6, K̂ ∈ FM?
(X?,N?), so, by Theorem 4.6, K ∈ FM(X,N). �
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6. Change of variable

A mapping P : X → X is said to be a homogeneous triangular
polynomial mapping, if

P (x) =
(
P1(x), P2(x), . . . PN(x)

)
,

where Pk are polynomials of degree at least 2 such that

(6.1) Pk(x) = Pk(x1, x2, . . . , xk−1)

and

(6.2) P (δtx) = δtP (x), x ∈ X, t > 0.

Condition (6.2) means that, for every k, Pk is a homogeneous polyno-
mial of degree pk.

The mapping P determines an order in N . We write k ≺ j if DkPj 6=
0 and extend this relation to the smallest order containg it. By (6.1),
k ≺ j implies k < j.

Let the operator SP be defined as

SPf(x) = f(x+ P (x)), x ∈ X,

for f ∈ S(X) and

〈SPA, f〉 = 〈A,SP̃f〉, f ∈ S(X),

for A ∈ S ′(X), where P̃ (x + P (x)) = −P (x). In other words, y =

x+ P (x) is equivalent to x = y + P̃ (y).
Recall from [6] the operator

UPF (ξ) =

∫∫
X×X

e−i(〈x,ξ〉)e−i〈P (x,y),ξ〉F∨(x, y)) dx dy, ξ ∈ X?,

which we here consider as acting on S(X)× S(X):

UP (f, g)(ξ) =

∫∫
X×X

e−i(〈x,ξ〉)e−i〈P (x,y),ξ〉f∨(x)g∨(, y)) dx dy.

By Theorem 7.1 of [6], UP has an extension, still denoted by UP , to
a Fréchet continuous mapping S1(M)× S1(M ′)→ S1(M +M ′), where
M,M ′ ∈ RN . (This extension is unique in the sense that is irrelevant
here.) As a matter of fact, the Fréchet continuity has not been made
explicit in the statement of the theorem, but the final part of the proof
(see the last line of the page 1657) shows that the Fréchet continuity
claim holds true.

Let

P(x, y) =
(
P (x), P (y)

)
, x, y ∈ X.

If we apply the above to the homogeneous triangular polynomial map-
ping P , we get the operator UP acting on distributions on X? × X?
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whose restriction to S(X?)× S(X?) is

UP(f, g)(ξ, η)

=

∫∫
X×X

e−i(〈x,ξ〉)+〈y,η〉)e−i〈P (x),ξ〉+〈P (u),η〉)f∨(x, y)g∨(u, v)) dxdydudv.

Let
VP (A)(ξ) = UP(A,1)(ξ, 0), A ∈ S ′(X?), ξ ∈ X?.

Fix M ∈ RN . It follows that VP : S1(M)→ S1(M) is Fréchet contin-
uous. For A ∈ S ′(g) and ε > 0, let

Aε(x) = ε−Q−
∑N
k=1mkA(ε−1x).

Clearly,
VP (Aε) = VP (A)ε, A ∈ S ′(X?), ε > 0,

so VP : Sε(M) → Sε(M) is Fréchet continuous uniformly in ε. If
A = f ∈ S(X?), then

VPf(ξ) =

∫
X

e−i〈x,ξ〉e−i〈P (x),ξ〉f∨(x) dx,

so by the change of variable z = x+ P (x),

SP = F ◦VP ◦ F−1,

where F denotes the Fourier transform.

Theorem 6.3. Let N = {Nk}k∈N be a filtration, and M = (mk) a
multiindex. If K ∈ FM(X,N), the so does SPK.

Proof. Let K ∈ FM(X,N). Let Kν be an M -approximating sequence
for K. Then,

Lν = SPKν =
(
VP (K∧ν )

)∨
is another M -approximating sequence convergent to SPK. Hence, by
Proposition 5.2, SPK ∈ FM(X,N). �

7. convolution

We keep the setup of Section 2. Furthermore, we endow X (since now
denoted by g) with a Lie algebra commutator (x, y) 7→ [x, y] such that
the dilations δt become automorphisms. The commutator determines
a Campbell-Hausdorff multiplication (see Corwin-Greenleaf [2])

(7.1) xy = x+ y + P (x, y),

where

P (x, y) =
1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[y, [y, x]] + . . .

is a homogeneous triangular polynomial mapping. This makes g into
a nilpotent Lie group with the same underlying manifold X.
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If A ∈ Sε(M) for some M ∈ RN and ε > 0, then for every compact
neighbourhood U of 0 in g, A = A0 + F , where A0 is supported in
U and F ∈ S(g). Thus, for every two members of the classes Sε(M),
convolution makes sense. Let A ∈ S1(M), B ∈ S1(M ′). Then, by
Proposition 8.1 of [6],

(A ? B)∧ = UP (A∧, B∧).

Consequently, the mappings

(7.2) Sε(M)× Sε(M ′) 3 (A,B) 7→ A ? B ∈ Sε(M +M ′), ε > 0,

are continuous.
Let p > 1. We say that a multiindex M = (mk)k∈N is p-admissible

if, for every k ∈ N ,

pk(1/p− 1) < mk < pk/p.

Proposition 7.3. Let N be a closed filtration. Let M =
(
mk

)
k∈N be p-

admissible for some p > 1. For ν ∈N , let Kν be an M-approximating
sequence convergent to K in the sense of distributions. Then, for every
ϕ ∈ S(g) and every ν, ϕ ? Kν ∈ Lp(g) and ϕ ? Kν → ϕ ? K in Lp(g).
Thus ϕ ? K ∈ Lp(g).

Proof. Let ϕ ∈ S(g). We know that ϕ ∈ FT (g,N) for every T with
−pk < tk < 0 (see Example 3.8). Also ϕ ∈ S1/ν(T ) uniformly in ν. By
symbolic calculus (7.2), Fν = Kν ? ϕ ∈ S1/ν(M + T ). It is not hard
to see that Fν is an (M + T )-approximating sequence for F = K ? ϕ.
Hence, by Proposition 5.2, F ∈ FM+T (g), which implies

|F (x)| <∼
∏
k∈N

|xk|−pk−mk−tk , x ∈ X \H,

for any −pk < tk < 0. If T is chosen so that mk + tk < pk/p if |xk| ≤ 1
and mk + tk > pk(1/p− 1) if |xk| > 1, the right-hand side is in Lp(g),
so K ? ϕ ∈ Lp(g). We can do so since M is p-admissible.

The same argument implies uniformly to each Fν . The sequence is
convergent to F almost everywhere, hence, by the Lebesgue dominated
convergence theorem, it is convergent in Lp(g). �

The following definition is due to Chevalley. Tempered distributions
K,L are convolvable if

(K̃ ? ϕ)(L ? ψ̃) ∈ L1(g),

for all ϕ, ψ ∈ S(g). Then, by Chevalley [1], Section 8, there exists a
unique tempered distribution K ? L such that

〈K ? L, ϕ ? ψ〉 =

∫
g

K̃ ? ϕ(x)L ? ψ̃(x) dx,

for all ϕ, ψ ∈ S(g). Recall that functions of the form ϕ ? ψ span the
whole of S(g). (In fact, by Dixmier-Malliavin [3], every function in
S(g) is of this form, but we need not this difficult result.)
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Remark 7.4. If Kj ∈ S1(Mj), j = 1, 2, then it is not hard to see that
they are convolvable in the sense of Chevalley and the Chevalley con-
volution coincides with the usual convolution K1 ?K2 of distributions.

Theorem 7.5. Let N be a closed filtration. Let 1/p + 1/q ≤ 1,
1 < p, q < ∞. Let K ∈ FM1(g,N), L ∈ FM2(g,N), where M1 is
p-admissible and M2 is q-admissible. Then the distributions K and L
are convolvable and K ? L ∈ FM1+M2(g,N).

Proof. We may assume that 1/p+ 1/q = 1. By Proposition 7.3, K and
L are convolvable. Let Kν and Lν be the approximate sequences con-
verging to K and L, respectively (Proposition 5.2). Then, by symbolic
calculus, the sequence

(7.6) Uν = Kν ? Lν ∈ S(1/ν,M1 +M2)

is bounded. By (3.5), the distributions Uν are equicontinuous in S ′(g).
Once we show that Uν is convergent to K ? L in S ′(g), we shall be
able to conclude that Uν is an (M1 + M2)-approximate sequence and
K ? L ∈ FM1+M2(g,N).

Let f, g ∈ S(g). By (7.6),

〈Uν , f ? g〉 =

∫
g

K̃ν ? f(x)Lν ? g̃(x) dx,

where, by Proposition 7.3, K̃ν ?f → K̃ ?f in Lp(g) and Lν ? g̃ → Lν ? g̃
in Lq(g). Therefore,

〈K ? L, f ? g〉 = lim
ν→∞

∫
g

K̃ν ? f(x)Lν ? g̃(x) dx = lim
ν
〈Uν , f ? g〉,

which shows that, in fact, Uν → K ? L in S ′(g). �

Corollary 7.7. Let N be a closed filtration. Let Kj ∈ FMj(g,N),
1 ≤ j ≤ 3, where Mj is rj-admisible and r−1

1 + r−1
2 + r−1

3 ≤ 2. Then,

K1 ? (K2 ? K3) = (K1 ? K2) ? K3.

Proof. By Theorem 7.5, all convolutions are legitimate. Let Kj,ν ∈
S1/ν(Mj) be a Mj-approximating sequence for Kj. Then,

K1,ν ? (K2,ν ? K3,ν) = (K1,ν ? K2,ν) ? K3,ν ,

for every ν. Now, the sequenceK2,ν?K3,ν is an (M2+M3)-approximating
sequence for K2 ? K3 and the sequence K1,ν ? K2,ν an (M1 + M2)-
approximating sequence for K1 ? K2 By passing to the limit with
ν →∞, we get our assertion. �
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