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THE ALGEBRA OF CALDERÓN-ZYGMUND KERNELS
ON A HOMOGENEOUS GROUP

IS INVERSE-CLOSED

PAWE L G LOWACKI (UNIVERSITY OF WROC LAW)

Abstract. On a homogeneous group G we consider the algebra of convolution operators
with Calderón-Zygmund kernels and show that this subalgebra is inverse-closed in the
algebra of all bounded linear operators on the Hilbert space L2(G).

The main tool is a symbolic calculus where the convolution of distributions on the
group is translated via the Abelian Fourier transform into a ”twisted product” of symbols
on the dual to the Lie algebra g of G.
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1. Statement of the result

The term Calderón-Zygmund kernel on a homogeneous group G can be understood in
many different ways depending on context and purpose (see, e.g. Stein [22] and Ricci
[21]). In this paper the following definition has been adopted. A distribution K ∈ S ′(G)
is said to be a Calderón-Zygmund kernel if it is smooth away from the origin and satisfies
the following conditions:

Size condition: For every multiindex α,

(1.1) |DαK(x)| ≤ Cα|x|−Q−|α|, x 6= 0,

where Q stands for the homogeneous dimension of G.
Cancellation condition: There exists a continuous seminorm norm ‖ · ‖ in the Schwartz

space S(G) such that for every ϕ ∈ S(G) and every R > 0

(1.2)

∣∣∣∣∫ ϕ(Rx)K(x) dx

∣∣∣∣ ≤ ‖ϕ‖.
2000 Mathematics Subject Classification. 42B20, 42B15 (primary), 43A22, 43A15 (secondary).
Key words and phrases. singular integrals, Calderón-Zygmund kernels, homogeneous groups, inverse-

closed algebras.
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A characterization is given in Proposition 5.9 below.
It is well-known that such a Calderón-Zygmund kernel K gives rise to a bounded

convolution operator

Op(K)f(x) = f ? K̃(x) =

∫
f(xy)K(y) dy, f ∈ S(G),

on Lp(G), 1 < p < ∞ (see, e.g. Ricci [21]). To be more precise, it is the closure of
Op(K) which does depend on p that is bounded on Lp, but we take the liberty here of
disregarding this distinction.

The Calderón-Zygmund operators form a subalgebra of the algebra B(L2(G)) of all
bounded operators on L2(G) (see, e.g. Coré-Geller [7] and also Theorem 5.16 below). In
this paper the question is raised whether the subalgebra is inverse-closed. In other words,
if K is such a kernel and Op(K) is invertible as a bounded operator on L2(G), is Op(K)−1

also an operator with a Calderón-Zygmund kernel?
The problem as to whether a given subalgebra A ⊂ B(L2(G)) of singular integral

operators is inverse-closed has been dealt with on several occasions by various authors
starting with Calderón-Zygmund [1] and [2] where the Abelian algebra A = Aq consists
of homogeneous singular operators on the Euclidean space which are locally in Lq away
from the origin, for a given q > 1. Christ and Geller [6] proved the inversion theorem for
the algebra A of homogeneous singular integral operators with kernels smooth away from
the origin on a graded homogeneous group. Subsequently, the result has been extended
to arbitrary homogeneous groups in [13]. Another theorem of this kind is that of Christ
[3] who took up the study of the Calderón-Zygmund algebras Aq in the non-Abelian
context of a homogeneous group. For similar problems see also Christ [4]. From a more
general point of view, the problem resembles that of regularity of solutions of PDE and
in fact Christ’s results have already found an application in the study of the ∂̄b equation
on CR manifolds (Christ [5]) as well as in that of Schrödinger operators (Dziubański-
G lowacki [10]). Therefore, we believe that the following result may be of interest.

Theorem 1.3. Let K be a Calderón-Zygmund kernel on a homogeneous group G. If the
operator Op(K) has a bounded inverse on L2(G), then there exists a Calderón-Zygmund
kernel L on G such that Op(K)−1 = Op(L).

The topology of the algebra of Calderón-Zygmund kernels is determined by a family of
seminorms rather than a single norm, which seems to be a serious obstacle. The main tool
employed is a symbolic calculus as created in Melin [20] and developed in Manchon [19]
and G lowacki [12] where the convolution ? is translated via the Abelian Fourier transform
into a product # of symbols on the dual to the Lie algebra g of G. Since the exponential
map is a diffeomorphism of g onto G, we can define

a#b =
(

(a∨ ◦ exp−1) ? (b∨ ◦ exp−1) ◦ exp
)∧
, a, b ∈ S(g?),

where ∧ and ∨ denote the Fourier transforms on g and g?, and study #, and therefore also
?, in terms of the properties of symbols. In the case of the Heisenberg group we obtain
a calculus very closely related to the pseudodifferential one. In the simplest case of an
Abelian group, the Fourier transform translates convolution into the ordinary product and
no estimates on the derivatives are required. The basic class S0(G) of the Melin calculus
consists of Calderón-Zygmund kernels which have no singularity at infinity and therefore
their symbols are smooth everywhere. The symbols of general Calderón-Zygmund kernels
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are not differentiable at the origin so they stay outside the calculus. However, if K is
such a kernel, then its partial Fourier transform Kλ, λ 6= 0, with respect to the central
variable can be interpreted as an element of the class S0(G0) on a quotient group G0,
which makes the necessary link. In principle, once we prove the inversion theorem for
Calderón-Zygmund kernels with smooth symbols on the quotient group G0, we can do
the same for kernels on G.

Another feature of our approach is the use of “Calderón-Zygmund kernels” of order
m 6= 0, which allows for greater flexibility. A distribution R on G is a kernel of class
Fm(G) if it is smooth away from the origin and its Fourier transform satisfies the estimates

|DαR̂(ξ)| ≤ Cα|ξ|m−d(α

so that, by Proposition 5.9 below, the Calderón-Zygmund kernels are precisely the kernels
of class F0(G). By Coré-Geller [7],

Fm1(G) ? Fm2(G) ⊂ Fm1+m2(G),

provided m1,m2,m1 +m2 > −Q. A model kernel of this type is a homogeneous distribu-
tion smooth away from the origin which is also a generalised laplacian. Such kernels are
generating functionals of Poisson-like semigroups of measures and, as it seems, are natural
replacements for the Laplace operator, or rather its fractional power. On homogeneous
groups laplacians are not homogeneous and sublaplacians may not exist.

Theorem 1.3 belongs naturally in the context of our previous work (see [14]) and, ideally,
should have made a part of it. Unfortunately, at the time of writing the paper technical
difficulties prevented us from incorporating it and accommodating the relevant parts of
the paper so as to put the whole thing nicely in one piece. The paper is heavily dependent
on the Melin calculus for which we refer the reader to [12], Melin [20], and Manchon [19].

One more remark is in order. There is some overlap here with [14]. This is due to
the fact that the proof a key lemma in [14], namely Lemma 3.6, is defective. To save
the paper we give new proofs of Corollaries 3.7 and 3.8 that follow from the lemma. The
claims of the corollaries are contained in our main theorem (Theorem 6.2) and its corollary
(Corollary 6.11). Lemma 3.6 of [14] is replaced by Lemmas 4.1 and 4.2 below.

2. Notation and preliminaries

A homogeneous group G will be identified via the exponential map with its Lie algebra
g. We change our notation from Section 1 and henceforth write g rather than G for the
nilpotent group in question. Of course, g still has the Lie algebra structure, in particular
it is a vector space. We shall denote by g? its dual. Lebesgue measure on the vector space
g is a Haar measure on the group g. Whenever we refer to convolution of functions on g,
we always think of

f ? g(x) =

∫
f(xy−1)g(y) dy,

where (x, y)→ xy is the Campell-Hausdorff multiplication

xy =x+ y +
1

2
[x, y] +

1

12
[x, [x, y]]− 1

12
[y, [x, y]]− 1

24
[y, [x, [x, y]]]

+ finite number of commutators in five or more terms

= x+ y + r(x, y),
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where r is a polynomial mapping (see, e.g. Corwin-Greenleaf [8], section 1.2). Note that
0 is the identity and x−1 = −x, for x ∈ g. We also let

f̃(x) = f(x−1), f ?(x) = f(x−1), ft(x) = t−Qf(δt−1x),

for t > 0. We shall employ the Abelian Fourier transform

f̂(ξ) =

∫
g

f(x)e−i〈x,ξ〉 dx, f ∈ L1(g), ξ ∈ g?,

where (x, ξ) → 〈x, ξ〉 is a duality of vector spaces and L1(g) denotes the usual Lebesgue
space of integrable functions. We refer to it simply as the Fourier transform. The
representation-theoretic group Fourier transform is never used.

Let {δt}t>0, be a family of group dilations on g and let

gj = {x ∈ g : δtx = tpjx}, 1 ≤ j ≤ d,

where 1 = p1 < p2 < · · · < pd. Then

(2.1) g = g1 ⊕ g2 ⊕ · · · ⊕ gd.

The number Q =
∑d

k=1Qk, where Qk = pk dim gk, is called the homogeneous dimension
of g. We have dδtx = tQdx.

We also pick an auxilliary Euclidean norm ‖ · ‖ such that the decomposition (2.1) is
orthogonal and fix an orthonormal basis {ekj}nk

j=1 in gk, where nk = dim gk. Thus the
variable x ∈ g splits into x = (x1, x2, . . . , xd), where

xk = (xk1, xk2, . . . , xknk
) ∈ gk.

A similar notation will be applied to the variable ξ ∈ g? and to multiindices α. In
particular,

(2.2) d(α) =
d∑

k=1

pk|αk|, |α| =
d∑

k=1

|αk|, |αk| =
nk∑
j=1

|αkj|,

for α = (αk)
d
k=1 = (αkj) ∈ Ndim g, where N stands for the set of nonnegative integers.

Let also
TkjF (x) = ixkjF (x), DkjF (x) = F ′(x)ekj,

and
TαF (x) = (ix)αF (x), DαF (x) = Dα11

11 D
α12
12 . . . D

αdnd−1

dnd−1
D
αdnd
dnd

F (x).

Denote by Ykj the right-invariant vector field such that

Ykjf(0) = Dkjf(0), f ∈ C∞(g),

and let
Y α = Y α11

11 Y α12
12 . . . Y

αdnd−1

dnd−1
Y
αdnd
dnd

.

A homogeneous norm on g is a nonnegative function x 7→ |x| such that a) |x| = 0
implies x = 0, b) |x−1| = |x|, c) |δtx| = t|x|, for t > 0. There always exists a homogeneous
norm on g which is d) smooth away from the origin. In fact, we may take advantage of
the implicit function theorem by letting

‖δ|x|−1x‖ = 1, x ∈ g \ {0}, x 6= 0,

and |x| = 0. By Folland-Stein [11], page 8, | · | is a homogeneous norm. We define a
homogeneous norm on g? by duality.
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We assume once for all that d ≥ 2. Let z = gd be the central subalgebra corresponding
to the largest eigenvalue of the dilations. Then,

(2.3) g = g0 × z, g? = g?0 × z?,

where

g0 = g1 ⊕ g2 ⊕ · · · ⊕ gd−1

may be identified with the quotient Lie algebra g/z. The homogeneous dimension of g0 is

Q0 =
∑d−1

k=1Qk. Thus the variable x in g splits as x = (y, u) in accordance with the given
decomposition. In a similar way we also split the variable ξ = (η, λ) in g?. Then,

(x, u)(y, v) = (x ◦ y, u+ v + rd(x, y)),(2.4)

where x ◦ y denotes the multiplication in g0 = g/gd, and

(2.5) r(x, y) = r0(x, y) + rd(x, y) ∈ g0 ⊕ gd.

Note that g 3 (x, u) 7→ x ∈ g0 is the quotient homomorphism.
The Schwartz space of smooth functions which vanish rapidly at infinity along with all

their derivatives will be denoted by S(g). The seminorms

‖f‖(N) = max
d(α)+d(β)≤N

sup
x∈g
|xαDβf(x)|, N ∈N ,

form a complete set of seminorms in S(g) giving it a structure of a locally convex Fréchet
space. S(g) is a dense subspace of both L1(g) and L2(g), the space of all square-integrable
functions on g.

Let K be a tempered distribution, that is a continuous linear functional on S(g). The
action of K on a Schwartz function f will be denoted by

〈K, f〉 =

∫
g

f(x)K(x) dx

even when K is not locally integrable. We also let

〈K̃, f〉 = 〈K, f̃〉, 〈K?, f〉 = 〈K, f ?〉.

We define

(2.6) f#g =
(
f∨ ? g∨

)∧
for f, g ∈ S(g?). By f 7→ f∨ we denote the inverse Fourier transform.

By (1.22) of Folland-Stein [11], the group law is expressed by

(xy−1)kj = xkj − ykj + Pkj(x, y),

where the polynomial Pkj is homogeneous of degree pk and depends on the variables xj, yj,
for j < k. Then, it is directly checked that

Tkj(f ? g) = Tkjf ? g + f ? Tkjg +
∑

d(α)+d(β)=pk
0<d(α)<pk

cαβTα(f ? Tβg),(2.7)

for some cαβ ∈ R. In particular,

(2.8) T1j(f ? g) = T1jf ? g + f ? T1jg.
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Lemma 2.9. For every f, g ∈ S(g) and every γ 6= 0,

Tγ(f ? g) = Tγf ? g + f ? Tγg +
∑

d(α)+d(β)=d(γ)
0<d(α)<d(γ)

cαβTαf ? Tβg

=
∑

d(α)+d(β)=d(γ)
d(α)≤(γ)

cαβTαf ? Tβg.(2.10)

Equivalently, by applying the Fourier transform,

Dγ(f#g) = Dγf#g + f#Dγg +
∑

d(α)+d(β)=d(γ)
0<d(α)<d(γ)

cαβD
αf#Dβg

=
∑

d(α)+d(β)=d(γ)
d(α)≤d(γ)

cαβD
αf#Dβg(2.11)

for f, g ∈ S(g?).

Proof. The proof proceeds by induction on the lengh of γ. By (2.8), the claim is true for
d(γ) = 1. We pick a γ 6= 0 and assume that (2.10) holds for all d(δ) < d(γ). We let
Tγ = TkjTδ so that d(γ) = d(δ) + pk. By induction hypothesis and (2.7),

Tγ(f ? g) = Tkj

(
Tδf ? g + f ? Tδg +

∑
d(α)+d(β)=d(δ)
0<d(α)<d(δ)

cαβTαf ? Tβg
)

= Tγf ? g + f ? Tγg +Rγ(f, g),

where

Rγ(f, g) = Tδf ? Tkjg + Tkjf ? Tδg

+
∑

d(α)+d(β)=d(δ)
0<d(α)<d(δ)

cαβ
∑

d(θ)+d(ζ)=pk
0<d(θ)<pk

dθζTθ(Tαf ? TζTβg).

To complete the proof one only needs to note that d(θ) < d(γ) and apply the induction
hypothesis to the expressions Tθ(Tαf ? TζTβg). �

Denote by ∆ the semigroup of nonnegative numbers generated by the exponents of
homogeneity {pk}dk=1. For m ≥ 0, let

[m] = max{n ∈N : n ≤ m}, m̃ = min{p ∈ ∆ : p > m}.

We shall make use of the following weak version of the Taylor inequality of Folland-Stein
[11] (Theorem 1.37).

Proposition 2.12. Let m ≥ 0. For every f ∈ C∞(g) and every x in a fixed bounded set,∣∣∣f(x)−
∑

d(α)≤m

Dαf(0)

α!
xα
∣∣∣ ≤ (C ∑

|α|≤[m]+1
d(α)>m

‖Dαf‖∞
)
|x|m̃,

where ‖f‖∞ = supx∈g |f(x)|.
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3. Symbolic calculus

Let T be a tempered distribution. By Op(T ) we shall denote the linear convolution
operator

S(g) 3 f 7→ f ? T ∈ C∞(g).

T is called an L2-convolver if Op(T ) extends to a bounded endomorphism of L2(g). The
norm of Op(T ) acting on L2(g) will be denoted by ‖Op(T )‖ and referred to simply as the
operator norm of Op(T ). If T, S are convolvers, then there exists a convolver R such that

Op(T )Op(S) = Op(R).

We write R = T ? S. We say that a convolver T is invertible, if there exists another
convolver S such that

Op(T )Op(S) = Op(S)Op(T ) = I,

where I stands for the identity operator on L2(g), which is of course equivalent to saying
that the operator Op(T ) is invertible on L2(g). If T is a convolver, then Op(T )? = Op(T ?).

Let m ∈ R. By Sm(g) we denote the class of A ∈ S ′(g) whose Fourier transforms Â
are smooth functions on g? such that

|DαÂ(ξ)| ≤ Cα(1 + |ξ|)m−|α|, ξ ∈ g?, all α.

Sm(g) is a Fréchet space with the family of seminorms

(3.1) ‖A‖N = max
d(α)≤N

sup
ξ∈g?
|(1 + |ξ|)−m+|α|DαÂ(ξ)|.

It is not hard to see that an A ∈ Sm(g) is smooth away from the origin and satisfies

(3.2) |DαA(x)| ≤ Cα,N |x|−N , |x| ≥ 1,

for every α and every N > 0. Thus, A can be represented as a sum of a compactly
supported distribution and a Schwartz function.

Let U ⊂ z? be open. Let SU(g) denote the space of all f ∈ S(g) such that the z?-support

of f̂ is contained in U . In other words, f ∈ SU(g), if there exists a closed set E ⊂ U such

that f̂(η, λ) = 0, for (η, λ) /∈ g?0 × E.

Lemma 3.3. Let U be open. The class SU(g) is invariant under left and right group
translations.

Proof. Note first that f ∈ SU(g) if and only if, for every λ0 /∈ U , there exists a neighbour-

hood V of λ0 such that f̂ϕ = 0, for all ϕ ∈ C∞c (V ). Thus, our claim follows from the
following identities

(µ̂ ? f)ϕ = (µ̂#f̂)ϕ = µ̂#f̂ϕ,

and
(f̂ ? µ)ϕ = (f̂#µ̂)ϕ = f̂ϕ#µ̂,

for every bounded measure µ on g. The identities are due to the fact that ϕ considered
as a function on g? independent of the variable η is the Fourier transform of a central
measure. �

The convergence in the Fréchet topology will be referred to as the strong convergence
in Sm(g). Apart from that we shall also consider a weak convergence. We say that a
bounded sequence {An} of elements of Sm(g) is weakly convergent if, for every α, the

sequence {DαÂn} is uniformly convergent on compact subsets of g?.
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Proposition 3.4. The convolution mapping

S(g)× S(g) 3 (f, g) 7→ f ? g ∈ S(g)

extends uniquely to a mapping

Sm1(g)× Sm2(g) 3 (A,B) 7→ A ? B ∈ Sm1+m2(g)

which is continuous when all three spaces are endowed simultaneously with either strong
or weak topology.

Proof. This is Corollary 5.2 of [12] specialized to the metric

gξ(ζ)2 = (1 + |ξ|)−2
d∑

k=1

‖ζk‖2, ξ, ζ ∈ g?.

�

Let m ∈ R. By Sm0 (g) we denote the class of A ∈ S ′(g) whose Fourier transforms Â
are smooth functions on g? such that

|Dα
ηD

β
λÂ(ξ)| ≤ Cαβ(1 + |η|+ |λ|)m−|α|, ξ ∈ g?, all α.

Sm0 (g) is a Fréchet space with the family of seminorms

(3.5) ‖A‖N = max
d(α)+d(β)≤N

sup
(η,λ)∈g?

|(1 + |η|+ |λ|)−m+|α|Dα
ηD

β
λÂ(ξ)|.

The notions of weak and strong convergence in Sm0 (g) are analogous to those in Sm(g).

Proposition 3.6. The convolution mapping

S(g)× S(g) 3 (f, g) 7→ f ? g ∈ S(g)

extends uniquely to a mapping

Sm1
0 (g)× Sm2

0 (g) 3 (A,B) 7→ A ? B ∈ Sm1+m2
0 (g)

which is continuous when all three spaces are endowed simultaneously with either strong
or weak topology.

Proof. This is Corollary 5.2 of [12] specialized to the metric

g(η,λ)(ζ, µ)2 = (1 + |η|+ |λ|)−2
d−1∑
k=1

‖ζk‖2 + ‖µ‖2, (η, λ), (ζ, µ) ∈ g?.

�

The Fourier transform of a distribution A ∈ S ′(g) will be called the symbol of A. The
twisted product

a#b =
(
a∨ ? b∨

)∧
as defined in (2.6) makes sense whenever the convolution on the right-hand side makes
sense. This happens when, e.g. a, b are Fourier transforms of convolvers or when they are
symbols of elements of some classes Sm(g). Whenever convenient we will work with the

spaces of symbols Ŝm(g?) and Ŝm0 (g?) which are natural equivalents of the corresponding
spaces Sm(g) and Sm0 (g).



CALDERÓN-ZYGMUND KERNELS 9

Proposition 3.7. There exists an integer N such that, for every A ∈ S0(g) and every
f ∈ S(g),

‖Op(A)f‖ ≤ ‖A‖N‖f‖,
where ‖f‖2 =

∫
g
|f(x)|2 dx. Thus, every element of S0(g) is a convolver.

Proof. This is a consequence of Theorem 7.4 of [12]. Alternatively it can be seen as a
corollary to the Ricci theorem invoked below in (6.1), see Ricci [21]. �

We shall need a slight generalization of the calculus. First, let us recall that, for
f, g ∈ S(g?),

f#g(η, λ) = (f∨ ? g∨)∧(η, λ)

=

∫∫
g0×g0

f(·, λ)∨(x)g(·, λ)∨(y)H(x, y, η, λ)e−i〈x+y,η〉 dx dy,

where

H(x, y, η, λ) = e−i〈r0(x,y),η〉e−i〈rd(x,y),λ〉.

(Here r0 and rd are as in (2.5).) For each θ ∈ (0, 1), we define a new bilinear mapping

f#θg(η, λ) =

∫∫
g0×g0

f(·, λ)∨(x)g(·, λ)∨(y)Hθ(x, y, η, λ)e−i〈x+y,η〉 dx dy,

where

Hθ(x, y, η, λ) = e−i〈r0(x,y),η〉e−iθ〈rd(x,y),λ〉.

Let

f ?θ g =
(
f̂#θ ĝ

)∨
, f, g ∈ S(g), θ ∈ (0, 1).

Proposition 3.8. Let m1,m2 ∈ R. The mappings

S(g)× S(g 3 (f, g) 7→ f ?θ g ∈ S(g), 0 < θ < 1,

extend uniquely to mappings

Sm1(g)× Sm2(g) 3 (A,B) 7→ A ?θ B ∈ Sm1+m2(g)

which are equicontinuous when all three spaces are endowed simultaneously with either
strong or weak topology. The same holds true if the spaces Sm(g) are replaced with the
spaces Sm0 (g).

Proof. Observe that Hθ corresponds to another group multiplication on g generated by
the commutator

[x, y]θ = [x, y]′ + θ[x, y]′′, x, y ∈ g,

where z′ denotes the orthogonal projection of z ∈ g onto g0, and z′′ the orthogonal pro-
jection onto z. Thus, Theorem 5.1 of [12], where all the estimates stay trivially unchanged
independently of 0 < θ ≤ 1, applies. �

For a smooth function a on g? and λ ∈ z?, let

aλ(η) = a(η, λ), η ∈ g?0.

The following proposition shows that the twisted product on g? can be viewed as a
perturbation of the twisted product on g?0. This is our version of Proposition II.2.3 (c) of
Manchon [19]. Recall that nd = dim z = dim z?.
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Proposition 3.9. Let a ∈ Ŝm1
0 (g?) and b ∈ Ŝm2

0 (g?). Then, for every λ ∈ z?,

(a#b)(η, λ) = aλ#0b
λ(η) +

nd∑
j=1

λjhj(η, λ), η ∈ g?0,

where hj ∈ Ŝm1+m2−pd
0 (g?), and the mappings

Ŝm1
0 (g?)× Ŝm2

0 (g?) 3 (a, b) 7→ hj ∈ Ŝm1+m2−pd
0 (g?)

are continuous if all the spaces are endowed simultaneously with either weak or strong

topology. The same holds true if the spaces Ŝm0 (g) are replaced with the spaces Ŝm(g).

Proof. By the Taylor formula,

e−i〈rd(x,y),λ〉 = 1−
dim z?∑
j=1

iλjrdj(x, y)

∫ 1

0

e−iθ〈rd(x,y),λ〉 dθ,

where rdj(x, y) = 〈r(x, y), edj〉, whence, for f, g ∈ S(g),

f#g(η, λ) =

∫∫
g×g

f(·, λ)∨(x)g(·, λ)∨(y)e−i〈r0(x,y),η〉e−i〈x+y,η〉dxdy

−
nd∑
j=1

λj

∫ 1

0

Φθ
j(η, λ) dθ = fλ#0gλ(η)−

nd∑
j=1

λj

∫ 1

0

Φθ
j(η, λ) dθ

= fλ#0gλ(η)−
dim z?∑
j=1

λjhj(η, λ),

where Φθ
j(η, λ) is equal to∫∫

g0×g0
{rdj(x, y)f(·, λ)∨(x)g(·, λ)∨(y)}Hθ(x, y, η, λ)e−i〈x+y,η〉dxdy.

Now, rdj is a homogeneous polynomial of degree pd so that

Φθ
j(η, λ) =

∑
k

ck

∫∫
g0×g0

(fj,k)
∨
λ(x)(gj,k)

∨
λ(y)Hθ(x, y, η, λ)e−i〈x+y,η〉dxdy

=
∑
k

ckfj,k#
θ gj,k(η, λ),

where

fj,k ∈ Ŝm1−s1
0 (g?), gj,k ∈ Ŝm2−s2

0 (g?), s1 + s2 = pd,

and the constants ck are dependent only on the group multiplication. Thus, by Proposition
3.8,

hj(η, λ) =
∑
k

ck

∫ 1

0

fj,k#
θ gj,k(η, λ) dθ, (η, λ) ∈ g?0 × z?,

is an element of Ŝm1+m2−pd
0 (g?). The continuous dependence of hj on f, g follows from

Proposition 3.8. The proof is completed by routine approximations. �
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4. Symbolic calculus (lemmas)

Let us denote the twisted product on g?0 by #0.

Lemma 4.1. Let a ∈ Ŝ0(g?). Suppose that a0 is invertible in S0(g?0). Let ϕ ∈ C∞c (z?)
and ϕ(λ) = 1, for |λ| < 1.Then, there exists p ∈ S0

0(g?) and q ∈ S−pd0 (g?) such that

p#a = ϕ2 − q.

Proof. Let b0 ∈ Ŝ0(g?0) be such that a0#0b0 = 1. Denote by ρ a smooth function on g?

such that ρ(η) ≥ 1, for every η ∈ g?0, and

ρ(η) = 1 + |η|, |η| ≥ 2.

Let

s(η, λ) = ϕ

(
λ

ρ(η)

)
.

Then s ∈ Ŝ0(g?), and

p(η, λ) = ϕ2(η)s(η, λ)b0(η)

is an element of Ŝ0
0(g?). By Proposition 3.9,

p#a(η, λ) = ϕ2sb0#a(η, λ) = ϕ(λ)2sλb0#0a
λ(η) + h(η, λ),

where

h(η, λ) =
∑
j

λjhj(η, λ)

is an element of Ŝ−pd0 (g?). Let us take care of the first term of the sum on the right-hand
side. We have

ϕ2sλb0#0a
λ = ϕ2b0#0a

λ + ϕ2(1− s)b0#0a
λ

= ϕ2 + ϕb0#0ϕ(aλ − a0) + ϕ2(1− s)b0#0a
λ

= ϕ2 + ϕb0#0cλ + dλ#a
λ,

where

cλ = ϕ(aλ − a0), dλ = ϕ2(1− s)b0.
We are going to show that cλ and dλ are elements of Ŝ−pd0 (g?0). In fact, by the meanvalue

theorem,

cλ(η) = ϕ(λ)(a(η, λ)− a(η, 0)) = ϕ(λ)
∑
j

λj

∫ 1

0

Dλja(η, tλ) dt,

so that

|Dα
η cλ(η)| ≤ Cα|λ|pd

∫ 1

0

(1 + |η|+ t
1
pd |λ|)−pd−d(α)dt ≤ C ′α|λ|pd(1 + |η|)−pd−d(α),

where λ stays in a bounded set. Similarly,

dλ(η) = ϕ2(λ)(1− s(η, λ)) = −ϕ2(λ)
∑
j

λj

∫ 1

0

Dλs(η, tλ) dt,

and the same argument applies.
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Consequently, ϕb0#0cλ ∈ Ŝ−pd0 (g?0) and dλ#0a
λ ∈ Ŝ−pd0 (g?0). Since both functions

(η, λ) 7→ cλ(η) and (η, λ) 7→ dλ(η) are smooth and λ stays in a bounded set,

q1(η, λ) = ϕb0#0cλ + dλ#0a
λ

is an element of Ŝ−pd0 (g?), so that, finally,

p#a = ϕ2 − q,

where q = −q1 − h ∈ Ŝ−pd0 (g?).
�

Our next lemma goes one step further.

Lemma 4.2. Let p, a ∈ Ŝ0
0(g?), q ∈ Ŝ−m0 (g?). Let ψ ∈ C∞(z?) have bounded derivatives.

If

p#a = ψ − q,
then, for every positive integer N , there exists pN ∈ Ŝ0

0(g?) such that

pN#a = ψ2N − qN .

where qN ∈ Ŝ−2
Nm

0 (g?).

Proof. We let p0 = p and

pN+1 = (ψ + q2
N

)#pN , qN = q2
N

, N ≥ 0,

where the power is understood in the sense of the twisted product. The proof follows by
an easy induction. �

Lemma 4.3. Let a, b ∈ Ŝ0
0(g?). Assume that

a#b(η, λ) = 1, η ∈ g?0, λ ∈ U,

where U ⊂ z? is open. Let V ⊂ V ⊂ U be another open set. If a satisfies

(4.4) |Dαa(ξ)| ≤ Cα(1 + |ξ|)−d(α)

on g?0 × U , then so does b on g?0 × V . Each of the constants Cα in the case of b depends
on finitely many of those in the case of a.

Proof. By Lemma 2.9,

Dγb = b#Dγ(a#b)−
∑

d(α)+d(β)=d(γ)
d(β)<d(γ)

cαβb#D
αa#Dβb, all γ,

where b#Dγ(a#b) = 0 on g?0 × U . Let ϕ, χ, ψ ∈ C∞c (U) be such that ϕψ = χψ = ψ and
ψ is equal to 1 on a neighbourhood of V . We have

ψDγb = −
∑

d(α)+d(β)=d(γ)
d(β)<d(γ)

cαβψb#χD
αa#ϕDβb,

which, by symbolic calculus, shows that if ϕDβb ∈ Ŝ−d(β)0 (g?), for all d(β) < d(γ), then

ψDγb ∈ Ŝ
−d(γ)
0 . By induction, we see that b satisfies (4.4) on g? × V . The required

dependence of constants follows from the proof. �
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Let U ⊂ Rk be open. A family Au ∈ Sm(g), where u ∈ U , is said to depend smoothly
on the parameter u, if the the function

g? × U 3 (ξ, u) 7→ Âu(ξ) ∈ C

is smooth.

Lemma 4.5. Let {Au}u∈U be a family elements of Sm(g) depending smoothly on u ∈ U .
If Au are invertible and the family {A−1u }u∈U is bounded in S−m(g), then A−1u also depends
smoothly on u.

Proof. Let un → u. The sequence An = Aun is weakly convergent to A = Au, and the
sequence A−1n is bounded in S−m(g). As such A−1n has weakly convergent subsequences.
To prove that the family A−1u depends continuously on u, it is enough to show that every
such subsequence is convergent to A−1.

Suppose then that A−1nk
→ B weakly in Sm(g). Then, by Proposition 3.4,

I = A−1nk
Ank

= Ank
A−1nk
→ BA = AB,

which implies B = A−1.

Let a(·, u) = Âu. Let b(·, u) = a(·, u)−1. We are going to show that, for every α, the
mapping

u 7→ Dα
ub(·, u) ∈ Ŝ−m(g?)

is weakly continuous, which implies our assertion.
If α = 0, then the assertion follows by the first part of the proof. Assume that α 6= 0

and the assertion holds for all α′ such that d(α′) < d(α). Let v ∈ Rk. Then,

lim
t→0

b(·, u+ tv)− b(·, u)

t
= lim

t→0
b(·, u)#

a(·, u)− a(·, u+ tv)

t
#b(·, u+ tv),

where
a(·, u)− a(·, u+ tv)

t
→ −∇va(·, u)

weakly in Ŝ0(g?), so

Dujb(·, u) = b(·, u)#Duja(·, u)#b(·, u), 1 ≤ j ≤ p.

By induction, it follows that

Dα
ub(·, u) =

∑
β+γ+δ=α, d(γ)>0

Dβ
ub(·, u)#Dγ

ua(·, u)#Dδ
ub(·, u), all α,

which, by hypothesis and Proposition 3.4, implies that Dα
ub(·, u) ∈ S−m(g?) with a weakly

continuous dependence on u. �

Recall that the class SU(g), where U ⊂ z? is open, has been defined in Section 3.

Lemma 4.6. Let U ⊂ z? be open. Let A ∈ S0
0(g). Then Op(A) maps continuously SU(g)

into SU(g). If B ∈ S ′(g) is a convolver such that

Op(A)Op(B)f = Op(B)Op(A)f = f, f ∈ SU(g),

then also Op(B) maps continuously SU(g) into SU(g). To be more precise, for every N ,
there exists a constant CN and an integer MN such that

(4.7) ‖Op(B)f‖(N) ≤ CN‖f‖(MN ), f ∈ SU(g),
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where each of the constants CN depends only on a seminorm of A in S0
0(g) and the operator

norm of Op(B).

Proof. That Op(A) maps SU(g) continuously into SU(g) follows from (3.2) and the fact
that z = gd is central. Thus, we turn to Op(B). Being a convolution operator bounded
on L2(g), it commutes with right-invariant derivatives Y γ. Therefore, by the Sobolev
inequality, it is sufficient to show that for every γ, there exists a constant Cγ depending
on a finite number of seminorms ‖A‖N and such that

‖TγOp(B)f‖L2(g) ≤ Cγ max
d(α)≤d(γ)

‖Tαf‖L2(g), f ∈ SU(g).

Let
〈Aα, f〉 = 〈A, xαf〉.

Then Aα ∈ S−d(α)(g) and, by Lemma 2.9,

[Tγ,Op(A)] = Op(Aγ) +
∑

d(α)+d(β)=d(γ)
0<d(α)<d(γ)

cαβOp(Aα)Tβ

so
TγOp(B) = Op(B)Tγ −Op(B)[Tγ,Op(A)]Op(B)

= Op(B)Tγ −Op(B)Op(Aγ)Op(B)

−
∑

d(α)+d(β)=d(γ)
0<d(α)<d(γ)

cαβ Op(B)Op(Aα)TβOp(B).
(4.8)

Since Aα ∈ S−d(α)(g) ⊂ S0(g), by Proposition 3.7, the operators Op(Aα) are bounded.
The proof is completed by induction. The required dependence of seminorms and the
constants CN follows from the proof. �

5. Kernels in Fm(g)

Let m ∈ R. A tempered distribution K belongs to Fm(g), if it is smooth away from
the origin, satisfies the size condition

(5.1) |DαK(x)| ≤ Cα|x|−Q−m−|α|,
and, for every ϕ ∈ S(g), the cancellation condition

(5.2) |〈K,ϕ ◦ δR〉| ≤ CRm, R > 0,

where the constant C does not depend on R > 0.

Remark 5.3. Let K ∈ Fm(g). Let

〈Kt, f〉 = 〈K, f ◦ δt〉, t > 0.

Then, for every t > 0, t−mK ∈ Fm(g) with the same constants.

Remark 5.4. If K ∈ Fm(g), then, for every α,

DαK ∈ Fm+d(α)(g), xαK ∈ Fm−d(α)(g).

Proposition 5.5. If K ∈ Fm(g) and m > 0, then

|〈K,ϕ ◦ δR〉| ≤ CN(ϕ)Rm, ϕ ∈ S(Rn), R > 0,

where N(ϕ) = max|α|≤[m]+1 ‖Dαϕ‖∞.
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Proof. Let η ∈ C∞c (g) be equal to 1 in a neighbourhood of the origin, and keep it fixed.
We have∫

ϕ(Rx)K(x) dx =

∫
ϕ(x)KR(x) dx =

∫ (
ϕ(x)−

∑
d(α)≤m

Dαϕ(0)

α!
xα
)
η(x)KR(x) dx

+
∑

d(α)≤m

Dαϕ(0)

α!

∫
η(x)xαKR(x) dx+

∫
ϕ(x)(1− η(x))KR(x) dx

= I1(R) + I2(R) + I3(R),

where, by Proposition 2.12,

|I1(R)| ≤ C1N(ϕ)Rm

∫
|x|≤c
|x|−n+m̃−m dx ≤ C2N(ϕ)Rm,

|I2(R)| ≤ C1

∑
d(α)≤m

|Dαϕ(0)|
α!

Rm ≤ C2N(ϕ)Rm.

Finally,

I3 ≤ C1R
m

∫
|ϕ(x)|(1− η(x))|x|−n−m dx ≤ C2‖ϕ‖∞Rm ≤ C3N(ϕ)Rm.

�

In a similar way we prove

Proposition 5.6. Let K ∈ F0(g). If K has compact support, then

|〈K,ϕ ◦ δR〉| ≤ CN1(ϕ), R > 0, ϕ ∈ S(Rn),

where N1(ϕ) = max|α|≤1 ‖Dαϕ‖∞. If K is supported away from the origin, then

|〈K,ϕ ◦ δR〉| ≤ CN2(ϕ), R > 0, ϕ ∈ S(Rn),

where N2(ϕ) = ‖ | · |ϕ‖∞.

Remark 5.7. It is not hard to see that if m < 0, then the size condition implies the
cancellation one. In fact,∣∣∣∣∫ ϕ(Rx)K(x) dx

∣∣∣∣ ≤ CN(ϕ)Rm, R > 0, ϕ ∈ S(Rn),

where

N(ϕ) =

∫
|x|−n+|m||ϕ(x)| dx.

In the vector space Fm(g) we introduce seminorms

|K|α = sup
x 6=0
|x||α|−n−m|DαK(x)|

and
|K|c = sup

R>0
R−m sup

N(ϕ)≤1
|〈K,ϕ ◦ δR〉|,

where in the case m = 0 we let N(ϕ) = N1(ϕ) +N2(ϕ).

Corollary 5.8. If m = 0, then K ∈ Fm(g) if and only if K is a Calderón-Zygmund
kernel.
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Proposition 5.9. Let m > −Q. Then the distribution K ∈ S ′(g) belongs to Fm(g) if

and only if its Fourier transform K̂ is a locally integrable function on g? which is smooth
on g? \ {0}, and satifies the estimates

(5.10) |DαK̂(ξ)| ≤ Cα|ξ|m−|α|, ξ 6= 0.

The set of seminorms

|K|α = sup
0 6=ξ∈g?

|ξ||α|−m|DαK̂(ξ)|

is equivalent to the one defined above.

Proof. By Remark 5.3, the family R−mKR is bounded in Fm(g). Thus, to show that K̂

satisfies (5.10), it is enough to show that, for any α, the distribution DαK̂ is a continuous
function on the annulus 1/2 ≤ |ξ| ≤ 2.

If m > 0, then, for every ϕ ∈ S(Rn), we have K ? ϕ ∈ L1(Rn), hence ϕ̂K̂ ∈ C(g?),

which implies that K̂ is continuous on the annulus. Now, if K ∈ Fm(g), where m ∈ R,
then, for every α, there exists a finite collection B of β such that DβxαK ∈ Fm1(g), where
m1 > 0, and

(5.11)
∑
β∈B

ξβ ≥ c > 0, 1/2 ≤ |ξ| ≤ 2.

Therefore, for every β ∈ B, ξβDαK̂ is a continuous function on the annulus. By (5.11),

the same holds for DαK̂. Note that we have not used the condition m > −Q so far.

Now, suppose that (5.10) holds true. By Remark 5.7 and hypothesis m > −Q, K̂ ∈
F−m−Q(g?), so, by the first part of the proof, K is smooth away from the origin and
satisfies the size condition for Fm(g). Furthermore,

|〈K,ϕ ◦ δR〉| = |
∫
g?
K̂(ξ)ϕ̂R(ξ) dξ|

≤
∫
g?
|K̂(δRξ)ϕ(ξ)| dξ ≤ C1R

m

∫
g?
|ξ|m|ϕ(ξ)| dξ = C2R

m,

which shows thatK satisfies also the cancellation condition. The equivalence of seminorms
follows from the proof. �

Corollary 5.12. Let m > −Q. If K ∈ Fm(g) and K̂ ∈ C∞(g?), then K ∈ Sm(g).

Remark 5.13. Denote by F (m) the class of all smooth functions f on g such that

|Dαf(x)| ≤ Cα(1 + |x|)−Q−m−|α|.
Any Q ∈ Fm(g) can be represented as

Q = Q0 + q,

where Q0 ∈ Sm(g) and has compact support, and q ∈ F (m).

Remark 5.14. We say that a pair (m1,m2) is admissible if

m1,m2 > −Q, m1 +m2 > −Q.
If the pair (m1,m2) is admissible, then the convolution K1 ? K2 is well defined for K1 ∈
Fm1(g), K2 ∈ Fm2(g). In fact,

K1 ? K2 = ((K1)0 + k1) ? ((K2)0 + k2),
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where (K1)0, (K2)0 have compact support and k1 ∈ F (m1), k2 ∈ F (m2). Thus, the only
problem is to justify k1 ? k2. This can be done by observing that there exist 1 < p, q <∞
such that 1/p + 1/q = 1 and k1 ∈ Lp(g), k2 ∈ Lq(g), which implies that k1 ? k2 is a
continuous function vanishing at infinity.

Proposition 5.15. Let K be a distribution such that K̂ is locally integrable on g?, smooth
away from λ = 0, and satisfies, for all α, β,

|Dα
ηD

β
λK̂(η, λ)| ≤ Cαβ(|η|+ |λ|)m−|α|−|β|, η ∈ g?0, λ ∈ z? \ {0}.

Then, K ∈ Fm(g).

Proof. This follows by Sobolev’s lemma. �

The following is Theorem B of Coré-Geller [7].

Theorem 5.16. Let (m1,m2) ∈ R2 be admissible. Let K1 ∈ Fm1(g), K2 ∈ Fm2(g).
Then, K = K1?K2 ∈ Fm1+m2(g) and each of the seminorms of K depends on a seminorm
of K1 and a seminorm of K2.

An important subclass of Fm(g) is the class of all T ∈ S ′(g) which are smooth away
from the origin and homogeneous of degree −m−Q. The last property means that

〈T, f ◦ δR〉 = Rm〈T, f〉, f ∈ S ′(g), R > 0.

A model homogeneous kernel of class Fm(g), where 0 < m < 1, is

〈P, f〉 =

∫
g

(
f(x)− f(0)

) dx

|x|Q+m
, f ∈ S(g).

(As a matter of fact, one could consider analogous kernels for 0 < m < 2, but we do not
need this.) The distribution P is a generalised laplacian (see Duflo [9], Section 2), that
is, satisfies the maximum principle

〈P, f〉 ≤ 0

if f ∈ C∞c is real and attains its maximal value at 0. Therefore, P is a generating
functional of a continuous semigroup of subprobability measures µt (Hunt [17]). The
measures µt have densities ht, because the Lévy measure of P

ν(dx) =
dx

|x|Q+m

is absolutely continuous with respect to Haar measure and unbounded on g \ {0} (see
Janssen [18]). In other words,

µt ? µs = µt+s, t, s > 0,

and
lim
t→0
〈µt, f〉 = f(0), f ∈ S(g),

as well as
d

dt

∣∣∣
t=0
〈µt, f〉 = 〈P, f〉, f ∈ S(g).

(See Duflo [9], Proposition 4 or Hunt [17]) The operator P f = f ? P is nonpositive and
essentially selfadjoint with S(g) for its core domain. P is also an infinitesimal generator
of a strongly continuous semigroup of contractions

Tt = f ? µt, t > 0,
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on the Hilbert space L2(g) (see Duflo [9], Example 4, p 247).
By Theorem 2.3 of [15], the densities ht are smooth functions, and

|Dαht(x)| ≤ Cα
t

(t1/m + |x|)Q+m
.

(Actually, [15] considers only the case m = 1. The case 0 < m < 1 is proved in the same
way by just changing exponents in the right places.) It follows that the fundamental
solution for P

R(x) =

∫ ∞
0

ht(x) dt

is integrable and smooth. R is also homogeneous of degree −Q+m; therefore belongs to
F−m(g).

We associate with P another kernel V ∈ Sm(g) in the following way: We let η ∈ C∞c (g)
be nonnegative, less than 1, and equal to 1 for |x| ≤ 1. Then,

(5.17) 〈V, f〉 = 〈P, ηf〉, f ∈ S(g),

is a compactly supported distribution in Sm(g). If f ∈ C∞c (g) is real and f(x) ≤ f(0),
then

〈V, f〉 =

∫
g

η(x)f(x)− f(0)

|x|Q+m
dx ≤ −f(0)

∫
g

1− η(x)

|x|Q+m
dx ≤ −Cf(0),

where C > 0, which shows that not only V , but also V + Cδ0 is a generalized laplacian.
By δ0 we denote the Dirac measure at 0. It follows that

(5.18) ‖f‖ ≤ C‖Op(V )f‖, f ∈ S(g).

Denote by vt the densities of the semigroup generated by V . Then, ut = eCt/2vt are the
densities of that generated by V +Cδ0. Since ‖ut‖L1 ≤ 1, the fundamental solution for V

W (x) =

∫ ∞
0

vt(x) dt =

∫ ∞
0

e−Ctut(x) dt

is an integrable function.

Proposition 5.19. Ŵ ∈ C∞(g?).

Proof. It is sufficient to show that TαW ∈ L1(g), for every α. This is true for α = 0.
Assume that it is true for d(β) < k, and let d(α) = k. Since W ? V = δ0, we have
Tα(W ? V ) = 0. Therefore, by (2.11),

TαW = −
∑

d(β)+d(γ)=k
d(β)<k

cβγTβW ? TγV ? W,

where, by induction hypothesis, TβW ∈ L1(g), for all d(β) < k. Recall that 0 < m < 1,
so TγV ∈ L1(g), for all γ 6= 0. This completes the proof.

�

Let λ ∈ z?. We have the following Plancherel formula

(5.20) ‖f‖2 =

∫
z?
‖fλ‖2 dλ, f ∈ S(g),

where

fλ(x) =

∫
z

f(x, u)e−i〈u,λ〉 du, f ∈ S(g), x ∈ g0.
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Here and below, by ‖ · ‖ we denote the L2-norm on g or g0.
Recall that ◦ denotes the group multiplication in g0 (see (2.4)). Denote by ?0 the

convolution on g0 so that

f ?0 g̃(x) =

∫
g0

f(x ◦ y)g(y) dy, f, g ∈ S(g0).

Let K ∈ Fm(g), where m ≥ 0. For every λ ∈ z?, we define a new distribution Kλ on g0
by

K̂λ(η) = K̂(η, λ), η 6= 0.

Lemma 5.21. For every λ 6= 0, Kλ ∈ Sm(g0), and K0 ∈ Fm(g0). Each seminorm of K0

in Fm(g0) depends on a seminorm of K in Fm(g). We have

(f ? K̃)λ(x) =

∫
g0

e−i〈(x,0)(z,0),λ̃〉f(x ◦ z)Kλ(z) dz,

where 〈(x, u), λ̃〉 = 〈u, λ〉. In particular, for λ = 0,

(f ? K̃)0 = f 0 ?0 K̃0 = Op(K0)f 0, f ∈ S(g).

Finally, for every f ∈ S(g), the mapping

z? 3 λ 7→ (f ? K̃)λ ∈ L2(g)

is continuous.

Proof. This is an exercise in Fourier transform. Note that the case m > 0 is simpler. �

Corollary 5.22. Let K ∈ F0(g). If Op(K) is invertible on L2(g), then Op(K0) is
invertible on L2(g0), and ‖Op(K0)−1‖ ≤ ‖Op(K)−1‖.

Proof. Let C = ‖Op(K)‖. By hypothesis,

‖f‖ ≤ C‖Op(K)f‖, ‖f‖ ≤ C‖Op(K?)‖,

for f ∈ S(g). Therefore, by Plancherel’s formula,∫
z?
‖fλ‖2 dλ ≤ C

∫
z?
‖(f ? K)λ‖2 dλ.

Since both integrands are continuous and f is arbitrary, we get ‖f 0‖ ≤ C‖Op(K0)f 0‖.
Similarly, ‖f 0‖ ≤ C‖Op(K0)?f 0‖. Every element of S(g0) is of the form f 0, where
f ∈ S(g), so the above implies that Op(K0) is invertible and ‖Op(K0)−1‖ does not
exceed C. �

Corollary 5.23. There exists a constant C such that

‖f‖ ≤ C‖Op(V 0)f‖, f ∈ S(g0).

Proof. This follows from (5.18) and Corollary 5.22. �
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6. Proof of the main theorem

Let us recall that if K ∈ F0, then the operator Op(K) is bounded on L2(g) with

(6.1) ‖Op(K)‖ ≤ C max
|α|≤m

sup
ξ∈g?\{0}

|ξ|d(α)|K̂(ξ)|,

for some m ∈N . This follows from Ricci [21].

Theorem 6.2. Let K ∈ F0(g). If the bounded operator Op(K) is invertible on L2(g),
then there exists L ∈ F0(g) such that

L ? K = K ? L = δ0,

and each seminorm of L in F0(g) depends on a seminorm of K in F0(g) and the operator
norm ‖Op(L)‖. If K ∈ S0(g), then L ∈ S0(g), and each seminorm of L in S0(g) depends
on a seminorm of K in S0(g) and the operator norm ‖Op(L)‖.

Proof. We proceed by induction on the step d. If d = 1, the goup g is Abelian and our
hypothesis implies

|K̂(ξ)| ≥ c > 0, ξ ∈ g? \ {0},
and it is easily checked that L defined by L̂ = 1/K̂ satisfies the required properties.

Let d > 0 and assume that our claim holds for homogeneous groups of step strictly less
than d. Let g be a homogeneous group of step d. Then g0 is a homogeneous group of step
d − 1. Let K ∈ F0(g) satisfy the hypothesis of the theorem. Then, by Lemma 5.21 and
Corollary 5.22, K0 ∈ F0(g0) and Op(K0) is invertible. Let R = K?V , where V ∈ S1/2(g)
has been defined by (5.17). By Theorem 5.16, R ∈ F1/2(g). Then,

Op(Rλ)−Op(R0) = Op(Mλ),

where M̂λ(η) = R̂(η, λ)− R̂(η, 0). Since R ∈ F1/2(g), and

Dα
η M̂λ(η) =

∫ 1

0

DλD
α
η R̂(η, tλ) dt,

we see that

|Dα
η M̂λ(η)| ≤ Cα|λ|pd

∫ 1

0

(|η|+ t
1
pd |λ|)1/2−pd−d(α) dt,

≤ Cα|λ|1/2|η|−d(α)
∫ 1

0

t
1

2pd
−1
dt = C ′α|λ|1/2|η|−d(α),

which shows that Mλ is a Calderón-Zygmund kernel and, by (6.1), ‖Op(Mλ)‖ ≤ C|λ|1/2.
By Corollary 5.23, the subspace of functions of the form g = Op(V 0)f , where f ∈ S(g0),
is dense in L2(g0), and

‖Op(Kλ)g −Op(K0)g‖ = ‖Op(Mλ)f‖ ≤ C|λ|1/2‖f‖ ≤ C1|λ|1/2‖g‖,
which implies ‖Op(Kλ) − Op(K0)‖ ≤ C1|λ|1/2. Hence Op(Kλ) is also invertible if |λ|
is small enough, say |λ| < 4ε. Now, by Corollary refproj, Kλ ∈ S0(g), so by induction
hypothesis, for every |λ| < 4ε, there exists Sλ ∈ S0(g0) such that

Kλ ?0 Sλ = Sλ ?0 K
λ = δ0.

Let
U = {λ ∈ z? : ε/4 < |λ| < 4ε}, W = {λ ∈ z? : ε/3 < |λ| < 3ε}.
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Let ϕ ∈ C∞c (U) be equal to 1 on W . Let a(η, λ) = K̂(η, λ), s(η, λ) = Ŝλ(η), p(η, λ) =
ϕ(λ)2s(η, λ). The family {Kλ}λ∈U is smooth in λ, hence, by Lemma 4.5, so is the family

{Sλ}λ∈U . Therefore, p ∈ Ŝ0
0(g?), and

p#0a(η, λ) = ϕ(λ)2, η ∈ g?0, λ ∈ z?.

Consequently, by Proposition 3.9,

p#a(η, λ) = ϕ(λ)2 − q(η, λ), η ∈ g?0, λ ∈ z?,

where q ∈ Ŝ−pd0 (g?). By Lemma 4.2, for every positive integer N , there exists pN ∈ Ŝ0
0(g?)

and qN ∈ Ŝ−2
Npd

0 (g?) such that

(6.3) pN#a(η, λ) = ϕ(λ)2
N+1 − qN(η, λ).

Let ψ ∈ C∞c (z? \ {0}) be equal to 1 on U . Let K̂1 = K̂ψ. Then K1 ∈ Ŝ0
0(g?), and

Op(K) = Op(K1) on SU(g) which is invariant under Op(K1). Let b = L̂. By Lemma 4.6,
the linear mapping

(6.4) Op(L) : SU(g)→ SU(g)

is continuous so, for every N1 ∈N , there exists N2 ∈N such that, for N ≥ N2,

|Dα
ηD

β
λ

(
qN#b

)
(η, λ)| ≤ Cαβ(1 + |η|+ |λ|)−N1 . d(α), d(β) ≤ N1,

Since ϕ(λ) = 1, for λ ∈ W , (6.3) implies

(6.5) b(η, λ) = pN(η, λ) + qN#b(η, λ), (η, λ) ∈ g?0 ×W,
where N can be taken arbitrarily large. Since N1 can also be taken as large as we please

and pN ∈ Ŝ0
0(g?), it follows that b coincides with a smooth function on g? ×W , and

(6.6) |Dα
ηD

β
λb(η, λ)| ≤ Cαβ(1 + |η|+ |λ|)−d(α), (η, λ) ∈ g?0 ×W.

For every ψ ∈ C∞c (W ) equal to 1 on a neighbourhood of V , where

V = {λ ∈ z? : ε/2 < |λ| < 2ε},

bψ ∈ Ŝ0
0(g?), which, by Lemma 4.3, yields an improvement in estimates (6.6), albeit on a

smaller set:

(6.7) |Dα
ηD

β
λb(η, λ)| ≤ Cαβ(1 + |η|+ |λ|)−d(α)−d(β), (η, λ) ∈ g?0 × V.

We claim that each of the constants Cαβ depends on a Calderón-Zygmund seminorm
of K and the operator norm of Op(L). In fact, by induction hypothesis, if λ stays in
a compact set, each of the S0(g0)-seminorms of K−1λ depends on a Calderón-Zygmund
seminorm of K and the operator norm of Op(L) uniformly in λ. Consequently, the

Ŝ0
0(g)-seminorms of p and, by Propositions 3.9 and 3.4, the seminorms of qN have similar

dependence. Finally, our claim is completed by Lemma 4.3 which takes care of the
seminorms of b.

The Calderón-Zygmund seminorms do not change if we replace K with

〈Kn, f〉 = 〈K, f ◦ δ2n〉, n ∈ Z.

Furthermore, for every n ∈ Z,

Op(Ln) Op(Kn) = Op(Kn) Op(Ln) = I,
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and the operator norms of Op(Ln) are all equal to that of Op(L). Therefore, bn = L̂n
are smooth functions on g?0 × V , and satisfy (6.7) uniformly, which easily translates into

L̂ ∈ C∞({(η, λ) ∈ g? : λ 6= 0}) and the estimates

(6.8) |Dα
ηD

β
λL̂(η, λ)| ≤ Cαβ(1 + |η|+ |λ|)−d(α)−d(β), 2n−1ε < |λ| < 2n+1ε,

for every α, β, with the same constants Cαβ as in (6.7). By Proposition 5.15, L is a
Calderón-Zygmund kernel, which is our assertion. The dependence of the constants has
already been discussed.

To complete the proof we need to consider also K ∈ S0(g) in which case we have to
prove that L ∈ S0(g). We already know that L ∈ F0(g), so it will suffice to show that

(6.9) |Dα
ηD

β
λL̂(η, λ)| ≤ Cαβ(1 + |η|+ |λ|)−d(α)−d(β), |λ| < 1.

Recall that a = K̂. Let ϕ ∈ C∞c (z?) be equal to 1, for |λ| < 1. By Lemma 4.1, there

exists p ∈ Ŝ0
0(g?) and q ∈ Ŝ−pd0 (g?) such that

p#a = ϕ2 − q.
Now, the argument leading to the estimate (6.7) can be repeated to yield (6.9) and the
expected dependence of seminorms. �

Remark 6.10. The seminorms in S0(g) are not invariant under dilations. Accordingly, in
the last part of the proof such invariance is neither required nor used.

Corollary 6.11. For every m ∈ R, there exist kernels V ∈ Sm(g) and W ∈ S−m(g) such
that

V ? W = W ? V = δ0.

Proof. It is enough to consider the case 0 < m < 1. Let P,R = P−1 and V,W = V −1 be
as defined in Section 5. Then,

P = V + k,

where k ∈ F (m). Thus,
R ? V = δ0 −R ? k,

where R ? k ∈ F0(g), and
W ? P = δ0 +W ? k,

where W ?k ∈ L1(g). Since R ∈ F(−m), we see that K = R?V ∈ F0(g) and Op(K) has
an inverse on L2(g), namely Op(W ? P ). By Theorem 6.2, W ? P ∈ F0(g), so

W = (W ? P ) ? R ∈ F−m(g).

However, we know that Ŵ ∈ C∞(g?) (Proposition 5.19), which, by Corollary 5.12, is
enough to conclude that W ∈ S−m(g). �
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