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Rozdział 0

Wiadomości wstępne

Young man, in mathematics you don’t un-
derstand things. You just get used to them.
John von Neumann

0.1 O czym i dla kogo jest ten tekst?

Niniejszy skrypt zawiera podstawowy wykład z teorii miary i całki i obejmuje mate-
riał, który w Instytucie Matematycznym UWr jest wykładany w trakcie semestralnego
wykładu, noszącego tradycyjną (acz nieco mylącą) nazwę Funkcje rzeczywiste. Skrypt
winien być dostępny dla każdego studenta II roku matematyki bądź informatyki — do
zrozumienia większości zagadnień wystarcza dobra znajomość rachunku różniczkowe-
go i całkowego funkcji jednej zmiennej oraz teorii mnogości w zakresie podstawowym.
W miejscach, gdzie potrzebna jest głębsza znajomość zagadnień teoriomnogościowych,
czytelnik zostanie każdorazowo ostrzeżony. Skrypt pisany jest z myślą o studentach,
którzy nie słuchali jeszcze wykładu z topologii — niezbędne elementy topologii prze-
strzeni metrycznych będą wprowadzane w miarę potrzeb.

Jest wiele książek w języku angielskim i kilka po polsku, traktujących o podstawach
teorii miary i całki; poniżej wymieniam jedynie te, do których zaglądałem w trakcie
pisania skryptu:

[1] P. Billingsley, Prawdopodobieństwo i miara, PWN, Warszawa (1987).

[2] P. Halmos, Measure theory, Springer, New York (1974).

[3] D.H. Fremlin, Measure theory vol. 1: The Irreducible minimum, Torres Fremlin,
Colchester (2000).

[4] D.H. Fremlin, Measure theory vol. 2: Broad foundations, Torres Fremlin, Colche-
ster (2000).

[5] S. Łojasiewicz, Wstęp do teorii funkcji rzeczywistych, PWN, Warszawa (1976).

Prezentowane w skrypcie podejście do wprowadzenia miary i całki jest jak najbar-
dziej standardowe i unika eksperymentów formalnych. Dlatego wiele koncepcji zostało
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wprost zaczerpniętych z klasycznej książki Halmosa, a wiele dowodów korzysta z ele-
ganckiego podejścia, zaprezentowanego przez podręcznik Billingsley’a. Mam jednak
nadzieję, że poniższy wykład, dzięki stosownemu wyborowi zagadnień i sposobowi
prezentacji będzie przydatny i, do pewnego stopnia, oryginalny. W moim przeświad-
czeniu skrypt zawiera zagadnienia, które winien dobrze opanować każdy dobry student
matematyki, niezależnie od tego, jaka będzie droga jego specjalizacji na wyższych la-
tach studiów.

Każdy rozdział kończy lista zadań oraz lista problemów. Zadania mają stanowić
integralną część wykładu, komentować twierdzenia, dostarczać przykładów, zachęcać
do przeprowadzania samodzielnych rozumowań. Problemy to zagadnienia, które albo
(czasami tylko chwilowym) stopniem trudności, albo też tematyką wykraczają poza
poziom podstawowy wykładu; w każdym razie problemy można pominąć przy pierw-
szej lekturze. Niektóre problemy wymagają znajomości indukcji pozaskończonej; w in-
nych przypadkach rozróżnienie pomiędzy problemem a zadaniem jest czysto umowne.
Wiele zadań należy do klasyki przedmiotu i można je znaleźć w cytowanych podręcz-
nikach. Inne powstały w wyniku moich własnych doświadczeń z uczeniem studentów
matematyki we Wrocławiu bądź zostały zaczerpnięte z internetu, w szczególności z fo-
rum dyskusyjnego Ask an Analyst, które było prowadzone na portalu Topology
Atlas1

0.2 Trochę teorii mnogości

Będziemy najczęściej prowadzić rozważania, dotyczące podzbiorów jakieś ustalonej
przestrzeni X; rodzinę wszystkich podzbiorów zbioru X nazywamy zbiorem potęgo-
wym i oznaczamy zazwyczaj przez P(X). Oprócz zwykłych operacji A ∪ B, A ∩ B,
A \B, określonych dla A,B ⊆ X, możemy mówić o dopełnieniu Ac = X \A zbioru A.
Przypomnijmy, że operacja różnicy symetrycznej zbiorów jest określona jako

A4B = (A \B) ∪ (B \ A) = (A ∪B) \ (A ∩B).

Podstawowymi będą dla nas operacje mnogościowe wykonywane na ciągach zbio-
rów. Jeśli dla każdej liczby naturalnej n ∈ N wybraliśmy pewien podzbiór An prze-
strzeni X to (An)n nazwiemy ciągiem podzbiorów X i dla takiego ciągu definiujemy
przekrój

⋂∞
n=1An i sumę

⋃∞
n=1 An przez warunki

x ∈
∞⋂
n=1

An wtedy i tylko wtedy gdy x ∈ An dla każdego n ∈ N;

x ∈
∞⋃
n=1

An wtedy i tylko wtedy gdy istnieje n ∈ N takie że x ∈ An.

1patrz http://at.yorku.ca/topology/ — ten link już nie działa
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Przykład 0.2.1 Rozważając podzbiory postaci (a, b) = {x ∈ R : a < x < b} możemy
napisać

∞⋂
n=1

(0, 1/n) = ∅,
∞⋂
n=1

(−1/n, 1/n) = {0},
∞⋃
n=1

(1/n, n) = (0,∞),

co jest oczywiste, nieprawdaż?2 ♦

Oczywiście umiejętność formalnego zapisania tego typu definicji za pomocą kwan-
tyfikatorów (oraz ich zrozumienia) jest jak najbardziej pożądana, ale warto zwrócić
uwagę na to, że ścisłość i precyzja matematyczna nie kłóci się z użyciem języka po-
tocznego.

Lemat 0.2.2 Dla dowolnego ciągu zbiorów An w ustalonej przestrzeni X zachodzą
prawa de Morgana

(i)
( ∞⋂
n=1

An

)c
=
∞⋃
n=1

Acn, (ii)
( ∞⋃
n=1

An

)c
=
∞⋂
n=1

Acn.

Dowód. Aby udowodnić wzór (i) zauważmy, że x ∈ (
⋂∞
n=1 An)c wtedy i tylko wtedy

gdy x nie należy do zbioru
⋂∞
n=1An, co jest równoważne temu, że x /∈ Ak dla pewnego

k, a to jest tożsame ze stwierdzeniem, że x ∈ ⋃∞n=1A
c
n.

Wzór (ii) można wyprowadzić z (i) i oczywistej zależności (Ac)c = A:

∞⋂
n=1

Acn =
[( ∞⋂

n=1

Acn

)c]c
=
[ ∞⋃
n=1

(Acn)c
]c

=
( ∞⋃
n=1

An

)c
.

♦

Podamy teraz pewne definicje i oznaczenia, które będą bardzo przydatne w dal-
szym ciągu. Niech (An)n będzie ciągiem zbiorów w ustalonej przestrzeni X. Taki ciąg
nazywamy rosnącym jeśli An ⊆ An+1 dla każdego n; analogicznie ciąg jest malejący
gdy An ⊇ An+1 dla wszystkich n. Będziemy pisać

An ↑ A aby zaznaczyć, że ciąg (An)n jest rosnący i A =
∞⋃
n=1

An,

An ↓ A aby zaznaczyć, że ciąg (An)n jest malejący i A =
∞⋂
n=1

An.

Tego typu zbieżność zbiorów może być uogólniona w sposób następujący.

2oczywistość jest kategorią psychologiczną; w praktyce matematycznej umawiamy się, że każdy
fakt oczywisty ma swój dowód i będzie okazany na żądanie oponenta bądź egzaminatora
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Definicja 0.2.3 Dla ciągu zbiorów (An)n zbiory

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
k=n

Ak, lim inf
n→∞

An =
∞⋃
n=1

∞⋂
k=n

Ak,

nazywamy, odpowiednio, granicą górną i granicą dolną ciągu (An)n.
Mówimy, że ciąg (An)n jest zbieżny do zbioru A, pisząc A = limnAn, gdy

A = lim sup
n→∞

An = lim inf
n→∞

An.

Innym ważnym pojęciem jest przeliczalność zbiorów. Przypomnijmy, że dwa zbio-
ry X i Y są równoliczne jeżeli istnieje bijekcja f : X → Y (czyli funkcja wzajemnie
jednoznaczna), odwzorowująca X na Y . Zbiór X nazywamy przeliczalnym jeżeli X
jest skończony lub też X jest równoliczny ze zbiorem liczb naturalnych N. Inaczej
mówiąc zbiór jest przeliczalny jeżeli jest równoliczny z pewnym podzbiorem N. Naj-
bardziej intuicyjnym wyrażeniem przeliczalności będzie następująca uwaga: niepusty
zbiór przeliczalny X można zapisać w postaci X = {xn : n ∈ N} (wyliczyć wszystkie
jego elementy; tutaj nie zakładamy, że xn są parami różne). Przypomnijmy sobie na-
stępujące własności zbiorów przeliczalnych (dowód poniżej jest ledwie naszkicowany).

Twierdzenie 0.2.4
(i) Zbiór N× N jest przeliczalny.

(ii) Jeśli zbiory X i Y są przeliczalne to zbiory X ∪Y i X ×Y też są przeliczalne.

(iii) Jeśli zbiory X1, X2, . . . są przeliczalne to zbiór X =
⋃∞
n=1 Xn jest przeliczalny3.

(iv) Zbiór liczb wymiernych Q jest przeliczalny.

(v) Zbiór {(p, q) : p < q, p, q ∈ Q} (wszystkich przedziałów na prostej o końcach
wymiernych) jest przeliczalny.

(vi) Ani zbiór liczb rzeczywistych R, ani też żaden jego niepusty przedział (a, b) ⊆ R
nie jest przeliczalny.

Dowód. Dowód (i) wynika stąd, że ciąg

〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈2, 2〉, 〈3, 1〉, . . .

w którym wyliczamy wszystkie pary o sumie 2, następnie wszystkie pary o sumie 3
itd., zawiera wszystkie elementy zbioru N× N.

W części (ii) dowód przeliczalności X ∪ Y zostawiamy czytelnikowi, natomiast
przeliczalność X × Y wynika łatwo z (i).

W (iii) na mocy założenia możemy napisać Xn = {xnk : k ∈ N} dla każdego n. W
ten sposób otrzymamy zbiór X = {xnk : n, k ∈ N} ponumerowany za pomocą N × N,
a to na mocy (i) uzasadnia jego przeliczalność.

3dla wielbicieli teorii ZF: ten fakt wymaga pewnika wyboru
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Przeliczalność Q wynika łatwo z (i) i pierwszej części (ii). Z wielu różnych spo-
sobów wykazania nieprzeliczalności R wspomnimy następujący: niech xn będzie do-
wolnym ciągiem liczb rzeczywistych; wykażemy, że R 6= {xn : n ∈ N}. Wybierzmy
dowolne liczby a1 < b1, takie że przedział [a1, b1] nie zawiera liczby x1. Zauważmy,
że istnieją liczby a2, b2 takie że a1 < a2 < b2 < b1 i x2 /∈ [a2, b2]. Postępując analo-
gicznie zdefiniujemy zstępujący ciąg niezdegenerowanych przedziałów [an, bn] tak że
x1, x2, . . . , xn /∈ [an, bn]. Rzecz w tym, że istnieje liczba y ∈ ⋂∞n=1[an, bn] — na mocy
aksjomatu Dedekinda można przyjąć y = supn an. Ostatecznie y 6= xn dla każdego n i
to kończy dowód. Łatwo ten argument zmodyfikować, aby pokazać że żaden niepusty
przedział (a, b) na prostej nie jest przeliczalny. ♦

Tradycyjnie moc zbioru R oznaczana jest przez c i nosi nazwę continuum. W teorii
mnogości dowodzi się, że rodzina P (N) wszystkich podzbiorów N jest równoliczna z
R, czyli że P (N) też jest mocy c.

0.3 Odrobina topologii

W tym miejscu wprowadzimy podstawowe pojęcia topologiczne na prostej rzeczywi-
stej. Przypomnijmy, że o zbiorze R, oprócz zwykłych aksjomatów opisujących własno-
ści działań + i · oraz własności porządku, zakładamy następujący aksjomat Dedekinda:
Każdy niepusty i ograniczony z góry zbiór A ⊆ R ma najmniejsze ograniczenie górne
(które oznaczamy supA).

Definicja 0.3.1 Zbiór U ⊆ R jest otwarty jeżeli dla każdego x ∈ U istnieje liczba δ,
taka że (x− δ, x+ δ) ⊆ U .

Zbiór F ⊆ R nazywamy domkniętym jeśli zbiór R \ F jest otwarty, to znaczy jeśli
dla każdego x /∈ F istnieje δ > 0, taka że (x− δ, x+ δ) ∩ F = ∅.

Przykład 0.3.2 Jest rzeczą oczywistą, ale godną odnotowania, że zbiory ∅ i R są
otwarte, a więc są także domknięte. Dowolny przedział postaci (a, b) jest otwartym
podzbiorem prostej; istotnie, jeśli x ∈ (a, b) to wystarczy przyjąć δ = min{x−a, b−x}.
Z podobnych powodów otwartymi są półproste postaci (a,∞), (−∞, b).

Przedział postaci [a, b] jest domkniętym zbiorem w sensie powyższej definicji, dla-
tego że R \ [a, b] = (−∞, a) ∪ (b,∞) jest zbiorem otwartym. Tym samym terminy
‘otwarty’ i ‘domknięty’ rozszerzają potoczne określenia stosowane dla przedziałów.

Przedział postaci [a, b) dla a < b nie jest ani otwarty, jako że nie spełnia definicji
otwartości dla x = a, ani też domknięty. ♦

Nietrudno wywnioskować z definicji, że zbiór jest otwarty wtedy i tylko wtedy gdy
jest sumą pewnej rodziny przedziałów. W istocie mamy następujące

Twierdzenie 0.3.3 Każdy niepusty zbiór otwarty U ⊆ R jest postaci

U =
∞⋃
n=1

(an, bn)
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dla pewnych liczb wymiernych an, bn.

Dowód. Dla każdego x ∈ U istnieje δ > 0, taka że (x − δ, x + δ) ⊆ U . Korzystając z
gęstości zbioru Q możemy znaleźć ax, bx ∈ Q, takie że x− δ < ax < x < bx < x+ δ, a
wtedy x ∈ (ax, bx) ⊆ U . W ten sposób zdefiniowaliśmy rodzinę przedziałów {(ax, bx) :
x ∈ U} o końcach wymiernych. Rodzina ta jest przeliczalna na mocy Twierdzenia
0.2.4(v); jeśli (pn, qn) jest numeracją wszystkich elementów tej rodziny to otrzymamy
U =

⋃∞
n=1(pn, qn), ponieważ dla dowolnego x ∈ U mamy x ∈ (ax, bx) = (pn, qn) dla

pewnego n. ♦

Nieco inną metodą można wykazać następującą wersję Twierdzenia 0.3.3: każdy
otwarty podzbiór R jest przeliczalną sumą przedziałów parami rozłącznych, patrz Za-
danie 0.4.11.

Na koniec wspomnimy jeszcze o specjalnej własności odcinków domkniętych, która
w topologii jest nazywana zwartością.

Twierdzenie 0.3.4 Jeżeli [a, b] ⊆ ⋃∞
n=1(an, bn) to istnieje n ∈ N, takie że [a, b] ⊆⋃n

i=1(ai, bi).

Dowód. Niech S będzie zbiorem tych liczb s ∈ [a, b], dla których odcinek [a, s] pokrywa
się skończoną ilością przedziałów (an, bn). Wtedy S 6= ∅ ponieważ a ∈ S. Zbiór S jako
niepusty i ograniczony z góry podzbiór prostej ma kres górny, niech t = supS. Wtedy
t ∈ [a, b] więc t ∈ (ai, bi) dla pewnego i. Ponieważ ai < t więc istnieje s ∈ S, taki że ai <
s < t. Oznacza to, że odcinek [a, s] pokrywa się skończoną ilością przedziałów (an, bn),
a zatem również odcinek [a, t] ma taką samą własność – wystarczy do poprzedniego
pokrycia skończonego dołączyć (ai, bi). W ten sposób sprawdziliśmy, że t ∈ S. Gdyby
t < b to biorąc s takie że t < s < bi otrzymalibyśmy s ∈ S z powodu jak wyżej, a
to jest sprzeczne z definicją kresu górnego. Tym samym t = b i to właśnie należało
wykazać. ♦

Wniosek 0.3.5 Niech F będzie domkniętym i ograniczonym podzbiorem prostej. Je-
żeli F ⊆ ⋃∞n=1(an, bn) to istnieje n ∈ N, takie że F ⊆ ⋃ni=1(ai, bi).

Dowód. Mamy F ⊆ [a, b] dla pewnych a, b, jako że F jest zbiorem ograniczonym.
Ponadto R \ F jest zbiorem otwartym więc R \ F =

⋃
n(pn, qn) dla pewnych (pn, qn),

patrz Twierdzenie 0.3.3. Teraz wystarczy zastosować Twierdzenie 0.3.4 do pokrycia
odcinka [a, b] odcinkami (an, bn) i (pn, qn). ♦

Mówiąc w języku topologii każdy domknięty i ograniczony podzbiór R jest zwarty.
Zwartość można wysłowić też w języku ciągów – patrz Problem 0.5.D.
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0.4 Zadania

0.4.1 Obliczyć

(i)
⋂∞
n=1(0, 1/n);

⋂∞
n=1(−1/n, 1/n);

⋃∞
n=1[1/n, n);

(ii)
⋂∞
n=1(n, n+ 3);

⋃∞
n=1(n, n+ 3);

(iii)
⋂∞
n=1(n, 2n);

⋃∞
n=1(n− n2, 1/n).

0.4.2 Dla ciągów zbiorówAn z poprzedniego zadania obliczyć lim supnAn i lim infnAn.

0.4.3 Zapisać przedział domknięty postaci [a, b] ⊆ R jako przekrój ciągu przedziałów
otwartych. Podobnie zapisać przedział otwarty (a, b) jako sumę przedziałów domknię-
tych.

0.4.4 Wykazać, że w powyższym zadaniu nie można zamienić miejscami określeń
‘otwarty’ i ‘domknięty’.

0.4.5 Zapisać trójkąt T = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < x} jako sumę prosto-
kątów. Zauważyć, że wystarczy wysumować przeliczalnie wiele prostokątów, aby taki
trójkąt uzyskać.

0.4.6 Zauważyć, że x ∈ lim supnAn wtedy i tylko wtedy gdy x ∈ An dla nieskończenie
wielu n; podobnie x ∈ lim infnAn ⇐⇒ x ∈ An dla prawie wszystkich n.

0.4.7 Uzasadnić następujące zależności

(i)
⋂∞
n=1An ⊆ lim infnAn ⊆ lim supnAn ⊆

⋃∞
n=1An;

(ii) (lim infnAn)c = lim supnA
c
n, (lim supnAn)c = lim infnAcn;

(iii) lim infn(An ∩Bn) = lim infnAn ∩ lim infnBn;
(iv) lim infn(An ∪Bn) ⊇ lim infnAn ∪ lim infnBn i równość na ogół nie zachodzi.

Zapisać zależności dla granicy górnej lim sup, analogiczne do (iii)–(iv).

0.4.8 Sprawdzić, że dla danego ciągu zbiorów An, przyjmując B1 = A1, Bn = An \⋃
j<nAj dla n > 1, otrzymujemy

⋃∞
n=1An =

⋃∞
n=1Bn, przy czym zbiory Bn są parami

rozłączne.

0.4.9 Udowodnić, że limnAn = A ⇐⇒ limn(An4 A) = ∅.
0.4.10 Wykazać, że każda rodzina parami rozłącznych przedziałów na prostej jest
przeliczalna.

0.4.11 Niech U ⊆ R będzie zbiorem otwartym. Dla x, y ∈ U definiujemy x ∼ y
jeśli istnieje przedział (a, b), taki że x, y ∈ (a, b) ⊆ U . Sprawdzić, że ∼ jest relacją
równoważności, a jej klasy abstrakcji są przedziałami otwartymi. Wywnioskować stąd
i z zadania poprzedniego, że każdy otwarty podzbiór prostej jest sumą ciągu parami
rozłącznych przedziałów.

0.4.12 Sprawdzić, że przekrój skończonej ilości zbiorów otwartych jest otwarty.
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0.5 Problemy

0.5.A Udowodnić następujący “warunek Cauchy’ego”: ciąg zbiorów An jest zbieżny
wtedy i tylko wtedy gdy dla dowolnych ciągów liczb naturalnych (ni)i, (ki)i rozbież-
nych do nieskończoności mamy

⋂∞
i=1(Ani 4 Aki) = ∅.

0.5.B Udowodnić, że dowolny ciąg zbiorów An ∈ P (N) ma podciąg zbieżny.

0.5.C Podać przykład ciągu An ∈ P (R), który nie ma podciągu zbieżnego. Uwaga:
może być trudne; lepiej zastąpić R innym zbiorem tej samej mocy.

0.5.D Udowodnić, że jeśli F jest domkniętym i ograniczonym podzbiorem R to dla
każdego ciągu xn ∈ F istnieje podciąg tego ciągu zbieżny do pewnego x ∈ F .

Wskazówka: Aby x ∈ F był granicą pewnego podciągu xn potrzeba i wystarcza by
dla każdego δ > 0 w (x− δ, x + δ) znajdowało się nieskończenie wiele wyrazów ciągu
xn. Przyjąć, że żaden x ∈ F nie ma tej własności i zastosować Twierdzenie 0.3.5.



Rozdział 1

Rodziny zbiorów i miary

παντων χρηµατων µητρων αντθρωπωσ

Człowiek jest miarą wszechrzeczy (istniejących,
że istnieją i nieistniejących, że nie istnieją).
Protagoras z Abdery

W rozdziale tym wprowadzimy podstawowe pojęcia teorii miary, a następnie udo-
wodnimy twierdzenie, pozwalające konstruować miary z funkcji zbioru określonych na
pierścieniach. Konstrukcja ta będzie zilustrowana wprowadzeniem miary Lebesgue’a
na prostej rzeczywistej.

1.1 Rodziny zbiorów

W tym podrozdziale, jak i w wielu następnych, będziemy rozważać rodziny podzbiorów
ustalonej niepustej przestrzeni X; przypomnijmy, że P (X) oznacza rodzinę wszystkich
podzbiorów X.

Definicja 1.1.1 Mówimy, że rodzina R ⊆ P (X) jest pierścieniem zbiorów jeżeli
(i) ∅ ∈ R;

(ii) jeżeli A,B ∈ R to A ∪B, A \B ∈ R.
Rodzina R jest ciałem zbiorów jeżeli R jest pierścieniem zbiorów oraz X ∈ R.

Powyższa terminologia nawiązuje nieco do pojęć algebraicznych (pierścienie i ciała
w algebrze to struktury, w których wykonalne są pewne działania), ta analogia jest
nieco powierzchowna (ale patrz Zadanie 1.9.1). Ponieważ nie będzie to prowadzić do
nieporozumień, w dalszym ciągu będziemy po prostu mówić, że dana rodzina R jest
pierścieniem lub ciałem.

Zauważmy, że w pierścieniuR możemy wykonywać operacje różnicy symetrycznej i
przekroju; istotnie, jeżeli A,B ∈ R to A4B ∈ R, co wynika bezpośrednio z aksjomatu
(ii) w Definicji 1.1.1; ponadto A ∩ B = A \ (A \ B) ∈ R. Zauważmy też, że na to,
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aby rodzina R była ciałem potrzeba i wystarcza żeby ∅ ∈ R oraz A ∪ B,Ac ∈ R dla
dowolnych A,B ∈ R. Dostateczność tych warunków wynika z tożsamości X = ∅c oraz

A \B = A ∩Bc = (Ac ∪B)c.

Jeżeli dana rodzina zbiorów R jest zamknięta na sumy dwóch swoich elementów to
prosta indukcja pokaże, że

⋃n
i=1 Ai ∈ R dla dowolnego n i Ai ∈ R. Możemy więc

powiedzieć, że ciało zbiorów to rodzina zamknięta na wszystkie skończone operacje
mnogościowe.

Definicja 1.1.2 Mówimy, że rodzina R ⊆ P (X) jest σ–pierścieniem zbiorów jeżeli R
jest pierścieniem zamkniętym na przeliczalne sumy, to znaczy spełniającym warunek⋃∞
n=1 An ∈ R dla dowolnego ciągu An ∈ R.

Jeżeli R jest σ–pierścieniem i X ∈ R to R nazywamy σ–ciałem.

Zauważmy, że w σ–ciele R wykonywalne są wszystkie przeliczalne operacje mno-
gościowe, na przykład jeżeli An ∈ R to

⋂∞
n=1An ∈ R na mocy Lematu 0.2.2, oraz

lim sup
n

An, lim inf
n

An ∈ R,

jako że rodzina R jest zamknięta na przeliczalne sumy i przekroje.

Przykład 1.1.3 RodzinaR = {∅} jest oczywiście pierścieniem, a rodzinaA = {∅, X}
jest najmniejszym ciałem podzbiorów X. Zauważmy, że zbiór potęgowy P (X) jest σ–
ciałem.

Jeśli oznaczymy przez R rodzinę wszystkich skończonych podzbiorów nieskończo-
nej przestrzeni X to R jest pierścieniem, ale nie jest ciałem. Zauważmy też, że taka
rodzina nie jest σ–pierścieniem bo, skoro X jest nieskończonym zbiorem to w X można
wyróżnić ciąg xn parami różnych jego elementów. Przyjmując A = {xn : n ∈ N} oraz
An = {xn} mamy An ∈ R ale A /∈ R.

Analogicznie w nieprzeliczalnej przestrzeni X rodzina C wszystkich podzbiorów
przeliczalnych stanowi naturalny przykład σ–pierścienia, który nie jest σ–ciałem. ♦

Podamy teraz mniej banalny i ważny przykład pierścienia podzbiorów R.

Lemat 1.1.4 Rodzina R tych zbiorów A ⊆ R, które można, dla pewnych n ∈ N,
ai, bi ∈ R, zapisać w postaci

(∗) A =
n⋃
i=1

[ai, bi),

jest pierścieniem podzbiorów prostej rzeczywistej. Każdy A ∈ R ma takie przedstawie-
nie (*), w którym odcinki [ai, bi) są parami rozłączne.
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Dowód. Mamy ∅ = [0, 0) ∈ R; z samej postaci formuły (*) wynika, że rodzina R
jest zamknięta na skończone sumy. Zauważmy, że zbiór [a, b) \ [c, d) jest albo pusty,
albo odcinkiem postaci [x, y), albo też, w przypadku gdy a < c < d < b, jest zbiorem
[a, c) ∪ [d, b) ∈ R. Korzystając z tej uwagi łatwo jest przez indukcję sprawdzić, że
[a, b) \ A ∈ R dla zbioru A jak w (*). Stąd z kolei wynika, że R jest zamknięta na
odejmowanie zbiorów.

Sprawdzenie końcowego stwierdzenia pozostawiamy czytelnikowi (patrz też Zada-
nie 1.9.6). ♦

Na ogół trudno jest opisywać w konkretny sposób rodziny które są zamknięte na
przeliczalne operacje — zamiast tego wygodniej jest mówić o generowaniu danego
σ–pierścienia lub σ–ciała przez jakąś wyróżnioną rodzinę zbiorów. Zauważmy, że dla
dowolnej rodziny F ⊆ P (X) istnieje najmniejszy pierścień R0 zawierający F ; R0 jest
po prostu przekrojem wszystkich możliwych pierścieni R ⊇ F (por. Zadanie 1.9.3).
Ta uwaga odnosi się też do ciał i σ–ciał.

Definicja 1.1.5 Dla dowolnej rodziny F ⊆ P (X) przyjmiemy oznaczenia
r(F) — pierścień generowany przez rodzinę F (Ring);

s(F) — σ–pierścień generowany przez rodzinę F (Sigma ring);

a(F) — ciało generowane przez rodzinę F (Algebra);

σ(F) — σ–ciało generowane przez rodzinę F (σ–algebra).

W nawiasach podano wyjaśnienie wybranych liter — w terminologii angielskiej
często ciało = field nazywa się też algebrą = algebra. Oznaczenia te będą stosowane
tylko w bieżącym rozdziale. Wyjątkiem jest oznaczenie σ(·), które warto zapamiętać
bo jego rola jest dużo poważniejsza.

Zauważmy, że pierścień przedziałów R z Lematu 1.1.4 jest generowany przez ro-
dzinę F = {[a, b) : a < b}, natomiast σ-pierścień zbiorów przeliczalnych z Przykładu
1.1 jest generowany przez rodzinę wszystkich singletonów {x} dla x ∈ X (inne przy-
kłady generowania znajdują się w zadaniach). Generowanie pierścieni czy ciał moż-
na porównać do sytuacji, gdy w danej przestrzeni liniowej mówimy o podprzestrzeni
generowanej przez wybrany układ wektorów lub w ustalonej grupie — o podgrupie
generowanej przez pewien jej podzbiór.

Definicja 1.1.6 Najmniejsze σ–ciało zawierające rodzinę U wszystkich otwartych pod-
zbiorów R oznaczamy Bor(R) = σ(U) i nazywamy σ-ciałem zbiorów borelowskich.

Powyższa definicja uogólnia się w oczywisty sposób na inne przestrzenie euklideso-
we oraz przestrzenie metryczne. W przypadku prostej rzeczywistej warto odnotować
bardziej “konkretne” rodziny generatorów zbiorów borelowskich — patrz lemat poni-
żej oraz Zadanie 1.9.13.

Lemat 1.1.7 Niech F będzie rodziną przedziałów postaci [p, q) gdzie p, q ∈ Q. Wtedy
σ(F) = Bor(R).
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Dowód. Ponieważ [p, q) =
⋂∞
n=1(p − 1/n, q) więc [p, q), jako przekrój przeliczalnie

wielu zbiorów otwartych, jest elementem Bor(R). Stąd F ⊆ Bor(R) i tym samym
σ(F) ⊆ Bor(R).

Z drugiej strony dla dowolnych a < b możemy napisać (a, b) =
⋃∞
n=1[pn, qn) ∈ σ(F),

gdzie pn, qn są odpowiednio dobranymi ciągami liczb wymiernych. Stąd i z Twierdzenia
0.3.3 wynika, że dowolny zbiór otwarty U jest elementem σ(F), a zatem Bor(R) ⊆
σ(F). ♦

O zbiorze borelowskim B ∈ Bor(R) można myśleć jako o takim zbiorze, który
można zapisać za pomocą przedziałów oraz przeliczalnych operacji mnogościowych.
Mówiąc poglądowo każdy zbiór, który “można zapisać wzorem” jest borelowski i w
znacznej części rozważań matematycznych występują tylko zbiory borelowskie. W isto-
cie wskazanie zbioru spoza Bor(R), a raczej udowodnienie, że istnieją nieborelowskie
podzbiory prostej, wymaga pewnego wysiłku — patrz Problem 1.10.C.

1.2 Addytywne funkcje zbioru

Dla ustalonej rodziny R funkcję f : R → R nazywamy funkcją zbioru (aby wyraź-
nie zaznaczyć, że argumenty tej funkcji mają inną naturę niż zmienne rzeczywiste).
Tradycyjnie funkcje zbioru oznaczane są literami alfabetu greckiego. Naturanym jest
zakładać, że funkcja zbioru może także przyjmować wartość∞, czyli rozważać funkcje
zbioru

R → R∗+ = R+ ∪ {∞} = [0,∞];

o symbolu nieskończoności zakładamy na razie tylko tyle, że x <∞ i x+∞ =∞ dla
x ∈ R.

Definicja 1.2.1 Niech R ⊆ P (X) będzie pierścieniem zbiorów. Funkcję µ : R →
[0,∞] nazywamy addytywną funkcją zbioru (albo miarą skończenie addytywną) jeżeli

(i) µ(∅) = 0;

(ii) jeśli A,B ∈ R i A ∩B = ∅ to µ(A ∪B) = µ(A) + µ(B).

Zauważmy, że jeśli istnieje A ∈ R, dla którego µ(A) <∞ to

µ(A) = µ(A ∪ ∅) = µ(A) + µ(∅), więc µ(∅) = 0.

Innymi słowy warunek (i) w definicji jest potrzebny tylko po to, aby wykluczyć przy-
padek funkcji stale równej ∞. Warunek skończonej addytywności (ii) ma następujące
konsekwencje.

Lemat 1.2.2 Niech µ będzie addytywną funkcją na pierścieniu R i niech A,B,Ai ∈
R.

(a) Jeżeli A ⊆ B to µ(A) ¬ µ(B).
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(b) Jeżeli A ⊆ B i µ(A) <∞ to µ(B \ A) = µ(B)− µ(A).

(c) Jeżeli zbiory A1, . . . , An są parami rozłączne to µ(
⋃n
i=1 Ai) =

∑n
i=1 µ(Ai).

Dowód. Ponieważ B = A∪ (B \A) dla zbiorów A ⊆ B, więc µ(B) = µ(A) +µ(B \A).
Stąd wynika (a), jako że µ(B \ A) ­ 0 oraz (b).

Część (c) dowodzi się przez łatwą indukcję. ♦

Definicja 1.2.3 Jeśli µ jest addytywną funkcją na pierścieniu R to mówimy że µ
jest przeliczalnie addytywną funkcją zbioru, jeżeli dla dowolnych R ∈ R i parami
rozłącznych An ∈ R, takich że R =

⋃∞
n=1An zachodzi wzór

µ

( ∞⋃
n=1

An

)
=
∞∑
n=1

µ(An).

W powyższej definicji musimy założyć, że nieskończona suma zbiorów jest elemen-
temR, jako że rodzinaR jest z założenia jedynie pierścieniem. Odnotujmy, że warunek
przeliczalnej addytywności z tej definicji może oznaczać zarówno że szereg

∑∞
n=1 µ(An)

jest zbieżny do wartości po lewej stronie, jak i że szereg jest rozbieżny i miara zbioru⋃∞
n=1 An jest nieskończona.

Definicja przeliczalnej addytywności jest dostosowana do potrzeb Twierdzenia 1.4.4
poniżej. Naszym docelowym obiektem badań będzie miara, czyli przeliczalnie addy-
tywna funkcja zbioru określona na σ–ciele.

Lemat 1.2.4 Jeśli µ jest przeliczalnie addytywną funkcją na pierścieniu R to dla
R ∈ R i dowolnego ciągu An ∈ R, takich że R =

⋃∞
n=1An, zachodzi nierówność

µ

( ∞⋃
n=1

An

)
¬
∞∑
n=1

µ(An).

Dowód. Przyjmijmy B1 = A1 oraz

Bn = An \
⋃
i<n

Ai

dla n > 1. Wtedy zbiory Bn są parami rozłączne, Bn ⊆ An oraz
⋃
nBn =

⋃
nAn = R

więc na mocy Lematu 1.2.2(a)

µ(R) =
∑
n

µ(Bn) ¬
∑
n

µ(An).

♦
Zauważmy, że dla funkcji addytywnej µ na R i zbioru R ∈ R, który jest sumą

parami rozłącznego ciągu zbiorów An ∈ R, dla każdego n zachodzi nierówność

µ(R) ­ µ(
n⋃
i=1

Ai) =
n∑
i=1

µ(Ai),
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co implikuje µ(R) ­ ∑∞
n=1 µ(An). Mówiąc obrazowo: funkcja addytywna jest przeli-

czalnie nadaddytywna. Jak zobaczymy na przykładach przeliczalna addytywność jest
warunkiem istotnie mocniejszym. Najpierw jednak przekonamy się, że przeliczalną
addytywność można wyrazić na różne sposoby.

Twierdzenie 1.2.5 Addytywna funkcji zbioru µ na pierścieniu R jest przeliczanie
addytywna wtedy i tylko wtedy gdy jest ciągła z dołu, to znaczy dla każdego A ∈ R i
ciągu An ∈ R, takiego że An ↑ A, zachodzi wzór limn µ(An) = µ(A).

Dowód. Warunek ciągłości z dołu jest konieczny: Dla rosnącego ciągu zbiorów An ↑ A
połóżmy B1 = A1 oraz Bn = An \ An−1 gdy n > 1. Wtedy A =

⋃
nBn, przy czym

zbiory Bn są parami rozłączne, a zatem

µ(A) = µ

( ∞⋃
n=1

Bn

)
=
∞∑
n=1

µ(Bn) = lim
N

N∑
n=1

µ(Bn) = lim
n
µ(An).

Rozważmy teraz parami rozłączne zbiory An i A =
⋃
nAn ∈ R. Niech Sn =

⋃n
i=1Ai.

Wtedy Sn ↑ A i warunek ciągłości pociąga za sobą

µ(A) = lim
N
µ(SN) = lim

N
(µ(A1) + . . . µ(AN)) =

∑
n

µ(An),

a więc przeliczalną addytywność. ♦

Twierdzenie 1.2.6 Dla addytywnej funkcji zbioru µ na pierścieniu R, przyjmującej
tylko wartości skończone następujące warunki są równoważne (gdzie zawsze An, A ∈
R)

(i) µ jest przeliczalnie addytywna;

(ii) µ jest ciągła z góry, to znaczy limn µ(An) = µ(A) jeżeli An ↓ A;

(iii) µ jest ciągła z góry na zbiorze ∅, czyli limn µ(An) = 0 jeżeli An ↓ ∅.

Dowód. (i) ⇒ (ii) Tutaj przyjmujemy Bn = A1 \ An; wtedy Bn ↑ A1 \ A więc, na
mocy Twierdzenia 1.2.5,

lim
n

(A1 \ An) = lim
n
µ(Bn) = µ(A1 \ A) = µ(A1)− µ(A),

co implikuje limn µ(An) = µ(A) po odjęciu µ(A1) stronami.
Imlikacja (ii)⇒ (iii) jest oczywista po wstawieniu A = ∅.
(iii) ⇒ (i) Rozważmy parami rozłączne zbiory An i A =

⋃
nAn. Niech Sn =⋃n

i=1 Ai. Wtedy Sn ↑ A i

µ(A) = µ(A1) + . . . µ(An) + µ(A \ Sn).

Ponieważ limn µ(A \ Sn) = 0, powyższe pociąga zbieżność szeregu do µ(A). ♦
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Przykład 1.2.7 Niech A będzie ciałem generowanym przez wszystkie skończone pod-
zbiory X, gdzie X jest nieskończony. Wtedy A ∈ A wtedy i tylko wtedy gdy

(†) A jest skończony lub X \ A jest skończony.

Istotnie, każdy zbiór o własności (†) należy do A, jako że taki zbiór łatwo zapisać za
pomocą singletonów i operacji sumy i dopełnienia. Z drugiej strony rodzina zbiorów o
własności (†) jest zamknięta na sumy skończone i dopełnienia, a więc rodzina ta jest
ciałem.

Zdefiniujmy funkcję µ na A, gdzie µ(A) = 0 gdy A jest skończony i µ(A) = 1 w
przeciwnym przypadku. Wtedy µ jest skończenie addytywna naA. Istotnie jeśli A,B ∈
A są rozłączne to µ(A∪B) = µ(A) + µ(B), ponieważ albo oba zbiory sa skończone (i
po obu stronach wzoru jest 0), albo dokładnie jeden zbiór jest nieskończony i mamy
równość 1=1; (zauważmy, że jeśli obydwa zbiory A,B ∈ A są nieskończone to A∩B 6=
∅). Jeśli X jest nieskończonym zbiorem przeliczalnym to możemy napisać X =

⋃
n{xn}

dla pewnego ciągu xn i dlatego µ nie jest przeliczalnie addytywna w tym przypadku.
Niech teraz Σ będzie σ–ciałem generowanym przez wszystkie przeliczalne podzbio-

ry X, gdzie sam X jest nieprzeliczalny. Możemy analogicznie sprawdzić, że A ∈ Σ
wtedy i tylko wtedy gdy albo zbiór A, albo jego dopełnienie X \ A jest przeliczalne.
Kładąc µ(A) = 0 gdy A jest przeliczalny i µ(A) = 1 w przeciwnym przypadku, okre-
ślamy miarę na Σ. Istotnie, jeśli An ∈ Σ są parami rozłączne i wszystkie zbiory An sa
przeliczalne to także zbiór A =

⋃
mAn jest przeliczalny i dlatego

0 = µ(A) =
∑
n

µ(An) = 0.

Jeśli Ak jest nieprzeliczalny dla pewnego k to zbiory An ⊆ X \ Ak dla n 6= k są
przeliczalne i po obu stronach wzoru powyżej mamy 1.

Na σ–ciele P (X) można zdefiniować miarę w następujący prosty sposób: ustalmy
x0 ∈ X i przyjmijmy µ(A) = 0 gdy x0 /∈ A i µ(A) = 1 dla x0 ∈ A. Sprawdzenie
przeliczalnej addytywności nie powinno przedstawiać trudności (por. Zadanie 1.9.19).
Miarę taką nazywamy deltą Diraca i oznaczamy µ = δx0 . ♦

1.3 Miara Lebesgue’a I

Przykład 1.2 podaje proste, wręcz banalne, przykłady miar. W tej części zdefiniujemy
naturalną funkcję zbioru λ na pierścieniu R, generowanym przez przedziały postaci
[a, b), por. Przykład 1.1.4. Funkcja λ ma za zadanie mierzyć “długość” zbiorów na
prostej rzeczywistej i dlatego przyjmujemy λ([a, b)) = b − a dla a < b. Dla zbioru
R ∈ R postaci

(∗) R =
n⋃
i=1

[ai, bi), gdzie ai < bi, [ai, bi) ∩ [aj, bj) = ∅ dla i 6= j, definujemy
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(∗∗) λ(R) =
n∑
i=1

(bi − ai).

W dalszym ciągu sprawdzimy, że λ jest dobrze określoną, przeliczalnie addytywną
funkcją zbioru na pierścieniu R. Poniżej przyjmiemy dla uproszczenia konwencję, że
dla każdego rozważanego przedziału [a, b) milcząco zakładamy, że [a, b) 6= ∅, czyli że
a < b.

Lemat 1.3.1 Jeżeli [an, bn) jest skończonym lub nieskończonym ciągiem parami roz-
łącznych przedziałów zawartych w [a, b) to∑

n

(bn − an) ¬ b− a.

Dowód. Dowód dla ciągu skończonego [a1, b1), . . . , [an, bn) można przeprowadzić przez
indukcję: przyjmijmy, że bn = max(b1, . . . , bn). Wtedy bi ¬ an dla i < n więc [ai, bi) ⊆
[a, an) dla i < n i dlatego, na mocy założenia indukcyjnego,

∑
i<n(bi − ai) ¬ an − a.

Teraz∑
i¬n

(bi − ai) ¬ (an − a) + (bn − an) = bn − a ¬ b− a.

W przypadku nieskończonego ciągu [an, bn) mamy
∑
n¬N(bn−an) ¬ (b−a) dla każdego

N więc, przechodząc z N do nieskończoności, otrzymujemy
∑
n(bn − an) ¬ (b− a). ♦

Lemat 1.3.2 Jeżeli [an, bn) jest skończonym lub nieskończonym ciągiem przedziałów
i [a, b) ⊆ ⋃n[an, bn) to

b− a ¬
∑
n

(bn − an).

Dowód. (1) Przypadek skończony dowodzimy znowu przez indukcję: niech [a, b) ⊆⋃
i¬n[ai, bi). Możemy bez zmniejszenia ogólności założyć, że b ∈ [an, bn); wtedy [a, an) ⊆⋃
i<n[ai, bi) więc an − a ¬

∑
i<n(bi − ai) z założenia indukcyjnego, i

b− a ¬ bn − an + an − a ¬
∑
i¬n

(bi − ai).

(2) Zauważmy, że przypadek nieskończony nie redukuje się do skończonego w oczy-
wisty sposób i dlatego w rozumowaniu wykorzystamy Twierdzenie 0.3.4. Ustalmy
ε > 0; skoro [a, b) ⊆ ⋃n[an, bn) to

[a, b− ε] ⊆
⋃
n

(an − ε2−n, bn),

więc na mocy 0.3.4 dla pewnego N zachodzi [a, b − ε] ⊆ ⋃
n¬N(an − ε2−n, bn) co na

mocy (1) daje

b− a− ε ¬
∑
n¬N

(bn − an + 2−nε) ¬
∑
n

(bn − an) + ε.

W ten sposób, z uwagi na dowolność ε > 0, otrzymujemy żądaną nierówność. ♦



G. Plebanek, MIARA I CAŁKA Rozdział 1: Rodziny zbiorów i miary 17

Lemat 1.3.3 Definicja λ jest poprawna.

Dowód. Zauważmy najpierw, że z Lematów 1.3.1 i 1.3.2 wynika, że jeśli [a, b) jest
rozłączną sumą przedziałów [a1, b1), . . . , [an, bn) to b− a =

∑
i¬n(bi − ai).

Każdy R ∈ R ma przynajmniej jedno przedstawienie w postaci sumy parami
rozłącznych przedziałów jak w (*), patrz Lemat 1.1.4. Niech

R =
⋃
i¬n

[ai, bi) =
⋃
j¬k

[ci, dj)

bedą dwiema takimi reprezentacjami. Dla i ¬ n, j ¬ k oznaczmy przez Pi,j = [ai, bi)∩
[cj, dj); wtedy Pi,j jest pusty lub jest przedziałem postaci [x, y).

Dla ustalonego i ¬ n mamy

[ai, bi) =
⋃
j¬k

[ai, bi) ∩ [cj, dj),

co daje bi − ai =
∑
j¬k λ(Pi,j) na mocy uwagi powyżej. Ostatecznie∑

i¬n
(bi − ai) =

∑
i,j

λ(Pi,j) =
∑
j¬k

(di − ci),

gdzie druga równość wynika z analogicznego rozumowania. ♦

Twierdzenie 1.3.4 Funkcja λ zdefinowana wzorem (**) jest przeliczalnie addytywną
funkcją zbioru λ na pierścieniu przedziałów R.

Dowód. Addytywność λ wynika łatwo z samej definicji w (**) (i jej poprawności).
Jeżeli [a, b) jest sumą parami rozłącznych zbiorów Rn ∈ R to, przedstawiając każdy
Rn w postaci rozłącznej sumy

Rn =
⋃
i¬kn

[ani , b
n
i ),

otrzymujemy

b− a =
∑

n,i¬kn
(bni − ani ) =

∑
n

∑
i¬kn

(bni − ani ) =
∑
n

λ(Rn).

Przypadej ogólny, gdy R ∈ R jest sumą zbiorów Rn ∈ R otrzymamy przez prostą
indukcję po ilości przedziałów występujących w przedstawieniu R. ♦
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1.4 Miary zewnętrzne: twierdzenie o konstrukcji
miary

W poprzedniej części pokazaliśmy, że miarę można zdefiniować efektywnym wzorem na
rodzinie zbiorów zbudowanych w sposób elementarny. Aby taką funkcję λ rozszerzyć do
miary na σ-ciele Bor(R) potrzebna jest jednak pewna ogólna procedura, która pozwoli
nam pokonać trudności ze śledzeniem, jak z danego układu zbiorów generowane jest
σ-ciało.

W dalszym ciągu ustalmy dowolny pierścień R pozbiorów przestrzeni X i addy-
tywną funkcję µ na tym pierścieniu.

Definicja 1.4.1 Dla dowolnego E ⊆ X definujemy

µ∗(E) = inf{
∑
n

µ(Rn) : Rn ∈ R, E ⊆
⋃
n

Rn}.

Tak określoną funkcję µ∗ : P (X) → [0,∞] nazywamy miarą zewnętrzną pochodzącą
od µ.

W ogólnym przypadku, gdy X nie pokrywa się ciągiem elementów R, zbiór wy-
stępujący po prawej stronie wzoru może być pusty — przypomnijmy, że inf ∅ =∞.

Lemat 1.4.2 Funkcja zbioru µ∗ zdefiniowana w 1.4.1 ma następujące własności:
(a) µ∗(∅) = 0.

(b) Jeżeli E1 ⊆ E2 ⊆ X to µ∗(E1) ¬ µ∗(E2).

(c) Dla dowolnych En ⊆ X µ∗(
⋃
nEn) ¬ ∑n µ

∗(En).

Dowód. (a) wynika z faktu, że µ(∅) = 0, natomiast (b) z uwagi, że inf A ­ inf B
dla A ⊆ B ⊆ R. Nierówność w (c) jest oczywista gdy µ∗(En) = ∞ dla pewnego n.
Załóżmy wobec tego, że µ∗(En) < ∞ dla wszystkich n. Wtedy dla ustalonego ε > 0
istnieją Rn

k ∈ R, takie że

En ⊆
⋃
k

Rn
k oraz

∑
k

µ(Rn
k) ¬ µ∗(En) + ε/2n.

Wtedy⋃
n

En ⊆
⋃
n,k

Rn
k ,

µ∗
(⋃
n

En

)
¬
∑
n,k

(µ∗(En) + ε/2n) =
∑
n

µ∗(En) + ε,

co dowodzi tezy. ♦
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Warunek 1.4.2(b) nazywany jest monotonicznością a warunek 1.4.2(c) to przeli-
czalna podaddytywność. Czasami dowolną funkcję P (X)→ [0,∞], niekoniecznie zde-
finiowaną wzorem 1.4.1, która jest monotoniczna i przeliczalnie podaddytywna (oraz
znika na ∅) nazywa się miarą zewnętrzną; ta ogólność nie będzie nam potrzebna. Idea
miary zewnętrznej polega na mierzeniu dowolnych zbiorów “ od zewnątrz”, przez po-
krywanie ich ciągami zbiorów z miarą już określoną.

Miara zewnętrzna zadana przez 1.4.1 nie jest na ogół przeliczalnie addytywna na
rodzinie wszystkich podzbiorów X, patrz Zadania 24 i 25. Jak się jednak okaże, µ∗ jes
przeliczalnie addytywna na σ(R). W dalszym ciągu będziemy zakładać, że wyjściowa
funkcja zbioru µ jest σ-skończona w następującym sensie.

Definicja 1.4.3 Funkcja µ jest σ-skończona na pierścieniu R podzbiorów X jeżeli
istnieją zbiory Xn ∈ R, takie że X =

⋃
nXn i µ(Xn) <∞ dla każdego n.

Następujące kluczowe twierdzenie można nazwać Twierdzeniem o konstrukcji mia-
ry.

Twierdzenie 1.4.4 Załóżmy, że µ jest przeliczalnie addytywną i σ-skończoną funkcją
na pierścieniu R. Niech σ̂(R) będzie rodziną wszystkich podzbiorów X postaci A ∪B,
gdzie A ∈ σ(R) i µ∗(B) = 0.

(a) Rodzina σ̂(R) jest σ-ciałem.

(b) Miara zewnętrzna µ∗ dana wzorem 1.4.1 jest przeliczalnie addytywna na σ̂(R).

(c) Zachodzi wzór µ(R) = µ∗(R) dla R ∈ R i tym samym µ∗ jest rozszerzeniem µ na
σ-ciało σ̂(R).

(d) Dla każdego A ∈ σ̂(R) i ε > 0 istnieje B postaci B =
⋃
nRn, Rn ∈ R, taki że

µ∗(B \ A) < ε.

(e) Dla każdego A ∈ σ̂(R) istnieją B1, B2 ∈ σ(R), takie że B1 ⊆ A ⊆ B2 i µ∗(B2 \
B1) = 0.

(f) Dla każdego A ∈ σ̂(R), jeżeli µ∗(A) < ∞ to dla każdego ε > 0 istnieje R ∈ R,
taki że µ∗(A4R) < ε.

Dowód Twierdzenia podany jest w następnym podrozdziale.

Wniosek 1.4.5 Dowolna przeliczalnie addytywna i σ-skończona funkcja zbioru okre-
ślona na pierścieniu R rozszerza się do przeliczalnie addytywnej funkcji na σ(R).

Dowód. Ponieważ R ⊆ σ̂(R) z poprzedniego twierdzenia więc, jako że σ̂(R) jest
σ-ciałem, zachodzi σ(R) ⊆ σ̂(R) i można przyjąć µ(B) = µ∗(B) dla B ∈ σ(R). ♦



G. Plebanek, MIARA I CAŁKA Rozdział 1: Rodziny zbiorów i miary 20

1.5 Dowód twierdzenia o konstrukcji miary

Podstawowy pomysl wykorzystywany w dowodzie pochodzi od Caratheodory’ego i
opiera się na tym, że zamiast rodziny σ̂(R) rozważamy następującą rodzinę zbiorów
mierzalnych.

Definicja 1.5.1 Mówimy, że zbiór A ⊆ X jest mierzalny względem miary zewnętrznej
µ∗ jeżeli

µ∗(Z) = µ∗(Z ∩ A) + µ∗(Z ∩ Ac),

dla dowolnego zbioru Z ⊆ X. Oznaczmy przez M(µ∗) rodzinę wszystkich mierzalnych
podzbiorów X.

Zauważmy, że w warunku definiującym mierzalność tylko nierówność “­” jest istot-
na — nierówność przeciwna wynika z zależności Z = (Z ∩A)∪ (Z ∩Ac) i (przeliczal-
nej) podaddytywności miary zewnętrznej. Zauważmy też, że każdy zbiór A spełniający
warunek µ∗(A) = 0 jest mierzalny. Dowód Twierdzenia 1.4.4 zostanie podzielony na
szereg lematów.

Lemat 1.5.2 Rodzina M(µ∗) jest ciałem zbiorów.

Dowód. Mamy ∅ ∈ M(µ∗) ponieważ wzór w 1.5.1 jest spełniony dla A = ∅. Jeśli
A ∈ M(µ∗) to Ac ∈ M(µ∗) bo warunek 1.5.1 jest taki sam dla zbioru A, jak i dla
jego dopełnienia Ac. Rozważmy A,B ∈ M(µ∗) i dowolny Z ⊆ X. Wtedy, testując
mierzalność zbioru A zbiorem Z, a nastepnie mierzalność zbioru B zbiorem Z ∩ A,
otrzymamy

µ∗(Z) = µ∗(Z ∩A) +µ∗(Z ∩Ac) = µ∗(Z ∩A∩B) +µ∗(Z ∩A∩Bc) +µ∗(Z ∩Ac) ­

­ µ∗(Z ∩ A ∩B) + µ∗(Z ∩ (A ∩B)c),

gdzie w drugiej linii korzystamy z tego że

(Z ∩ A ∩Bc) ∪ (Z ∩ Ac) ⊇ Z ∩ (Ac ∪Bc) = Z ∩ (A ∩B)c,

oraz podaddytywności µ∗. W ten sposób dowiedliśmy A ∩ B ∈ M(µ∗), jako że prze-
ciwna nierówność jest zawsze prawdziwa. Tym samym M(µ∗) jest rodziną zamkniętą
na dopełnienia i przekroje, a więc jest ciałem. ♦

Lemat 1.5.3 Dla dowolnych parami rozłącznych zbiorów A1, . . . , An ∈ M(µ∗) i do-
wolnego Z ⊆ X zachodzi wzór

µ∗(Z ∩
⋃
i¬n

Ai) =
∑
i¬n

µ∗(Z ∩ Ai);

w szczególności µ∗ jest addytywną funkcją na M(µ∗).
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Dowód. Dla dwóch rozłącznych zbiorów A1, A2 otrzymujemy tezę, testując mierzalność
zbioru A1 zbiorem Z ′ = Z ∩ (A1 ∪ A2) bo Z ′ ∩ A1 = Z ∩ A1 i Z ′ ∩ Ac1 = Z ∩ A2;
rozszerzenie wzoru na n składników wymaga jedynie prostej indukcji. Addytywność
µ∗ otrzymujemy podstawiając Z = X. ♦

Lemat 1.5.4 Rodzina M(µ∗) jest σ-ciałem zwierającym R, a µ∗ jest przeliczalnie
addytywna na M(µ∗). Zachodzi wzór µ(R) = µ∗(R) dla R ∈ R.

Dowód. Sprawdzimy, że M(µ∗) jest σ-ciałem. Ponieważ M(µ∗) jest ciałem (Lemat
1.5.2) więc wystarczy sprawdzić, że M(µ∗) jest rodziną zamkniętą na rozłączne prze-
liczalne sumy. Niech An ∈ M(µ∗) będzie ciągiem parami rozłącznych zbiorów i A =⋃
nAn. Wtedy dla dowolnego Z i n mamy na mocy 1.5.3

µ∗(Z) = µ∗(Z ∩
⋃
i¬n

Ai) + µ∗

Z ∩
⋃
i¬n

Ai

c ­∑
i¬n

µ∗(Z ∩ Ai) + µ∗(Z ∩ Ac).

Stąd, wykorzystując przeliczalną podaddytywność µ∗,

µ∗(Z) ­
∑
n

µ∗(Z ∩ An) + µ∗(Z ∩ Ac) ­ µ∗(Z ∩ A) + µ∗(Z ∩ Ac).

To dowodzi, że A ∈ M(µ∗). Miara zewnętrzna µ∗ jest przeliczalnie addytywna na
M(µ∗) jako funkcja jednocześnie przeliczalnie podaddytywna i addytywna (por. Lemat
1.5.3 i 1.4.2).

Niech R ∈ R. Aby pokazać, że R ∈M(µ∗) rozważmy dowolny Z. Jeżeli µ∗(Z) =∞
to automatycznie µ∗(Z) ­ µ∗(Z∩R)+µ∗(Z∩Rc). Jeżeli µ∗(Z) <∞ to dla dowolnego
ε > 0 istnieje ciąg parami rozłącznych zbiorów Rn ∈ R taki że Z ⊆ ⋃

nRn i µ∗(Z) ¬∑
n µ(Rn) + ε. Wtedy

µ∗(Z ∩R) +µ∗(Z ∩Rc) ¬
∑
n

µ(Rn∩R) +
∑
n

µ(Rn∩Rc) =
∑
n

µ(Rn) ¬ µ∗(Z) + ε,

co dowodzi nierówności µ∗(Z ∩R) + µ∗(Z ∩Rc) ¬ µ∗(Z), a więc R ∈M(µ∗).
Dla R ∈ R mamy µ∗(R) ¬ µ(R) z definicji µ∗. Jeśli R ⊆ ⋃nRn dla pewnego ciągu

parami rozłącznych zbiorów Rn ∈ R to

µ(R) = µ(R ∩
⋃
n

Rn) =
∑
n

µ(R ∩Rn) ¬ µ∗(R),

gdzie stosujemy przeliczalną addytywność µ na R. ♦

Lemat 1.5.5 Dla każdego A ∈M(µ∗) istnieją B1, B2 ∈ σ(R), takie że B1 ⊆ A ⊆ B2

i µ∗(B2 \B1) = 0. W szczególności σ̂(R) = M(µ∗).
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Dowód. Rozważmy najpierw przypadek gdy X ∈ R i µ(X) < ∞; ustalmy zbiór
mierzalny A. Wtedy dla każdego p ∈ N istnieją Rp

n ∈ R, takie że

A ⊆
⋃
n

Rp
n, µ∗(A) + 1/p >

∑
n

µ(Rp
n).

Niech

B2 =
⋂
p

⋃
n

Rp
n.

Wtedy B2 ∈ σ(R), A ⊆ B2 oraz dla każdego p

µ∗(B2) ¬
∑
n

µ(Rp
n) < µ∗(A) + 1/p,

a stąd µ∗(A) = µ∗(B2). Analogicznie znajdziemy C ∈ σ(R) taki że X \ A ⊆ C
i µ∗(X \ A) = µ∗(C); teraz możemy przyjąć B1 = X \ C. Ponieważ zbiór A jest
mierzalny więc µ(X) = µ∗(A) + µ∗(X \ A), co daje

µ∗(B2) = µ∗(A) = µ(X)− µ∗(X \ A) = µ(X)− µ∗(C) = µ∗(B1).

Ostatecznie µ∗(B2 \B1) = 0, jako że µ∗ jest addytywna na M(µ∗) ⊇ σ(R).
W ogólnym przypadku mamy X =

⋃
kXk i dla zbioru mierzalnego A mamy A =⋃

k Ak, gdzie Ak = A ∩ Xk. Możemy teraz dla każdego k z osobna zastosowować
powyższe rozumowanie do zbioru Ak (i pierścienia Rk = {R ∈ R : R ⊆ Xk}, por.
Twierdzenie 1.6.3). Otrzymamy w ten sposób ciągi zbiorów Bk

1 ⊆ Ak ⊆ Bk
2 ⊆ Xk,

gdzie µ∗(Bk
2 \Bk

1 ) = 0. Wystarczy teraz zauważyć, że zbiory B1 =
⋃
k B

k
1 i B2 =

⋃k Bk
2

mają żądane własności. ♦

Lemat 1.5.6 Jeśli A ∈ M(µ∗) spełnia warunek µ∗(A) < ∞ to dla każdego ε > 0
istnieje R ∈ R taki że µ∗(A4R) < ε.

Dowód. Skoro µ∗(A) <∞ więc istnieją Rn ∈ R, takie że

A ⊆ B =
⋃
n

Rn i
∑
n

µ(Rn) < µ∗(A) + ε/2.

oznaczmy Sn =
⋃
i¬nRi dla każdego n. Wtedy Sn ↑ B i dlatego limµ(Sn) = µ(B).

Możemy więc wskazać n takie że µ(Sn) > µ(B)− ε/2. Dla R =
⋃
i¬nRi ∈ R mamy

µ(A4R) = µ(A \R) + µ(R \ A) ¬ µ(B \R) + µ(B \ A) < ε/2 + ε/2 = ε.

♦
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1.6 Przestrzenie miarowe

Terminem miara będziemy określać przeliczalnie addytywną funkcję zbioru określoną
na σ-ciele.

Definicja 1.6.1 Przestrzenią miarową nazywamy trójkę (X,Σ, µ), gdzie Σ ⊆ P (X)
jest σ-ciałem, a µ : Σ→ [0,∞] jest miarą.

Zauważmy, że dla danej przestrzeni miarowej (X,Σ, µ), jeżeli Σ′ ⊆ Σ jest mniej-
szym σ-ciałem, to (X,Σ′, µ′) gdzie µ′ = µ|Σ′ jest, formalnie rzecz biorąc, inną prze-
strzenią miarową. Często jednak dla wygody obcięcia µ do podrodzin Σ oznaczamy
tą samą literą.

Definicja 1.6.2 Przestrzeń miarową (X,Σ, µ) nazywamy skończoną jeżeli µ(X) <∞
oraz probabilistyczną w przypadku, gdy µ(X) = 1. Przestrzeń taka jest σ-skończona,
jeżeli istnieją zbiory Xk ∈ Σ, takie że X =

⋃
kXk i µ(Xk) <∞ dla każdego k.

W przestrzeniach miarowych można dokonywać operacji brania podprzestrzeni, co
opisujemy w poniższym twierdzeniu, którego dowód jest zupełnie oczywisty.

Twierdzenie 1.6.3 Dla przestrzeni miarowej (X,Σ, µ) i zbioru Y ∈ Σ oznaczmy

ΣY = {A ∈ Σ : A ⊆ Y }.

Wtedy (Y,ΣY , µY ), gdzie µY (A) = µ(A) dla A ∈ ΣY jest przestrzenią miarową.

Jak widzieliśmy w poprzednich rozdziałach, σ-ciało σ̂(R) = M(µ∗) powstaje z
σ(R) przez “dorzucenie zbiorów miary zero” – proces ten, zwany uzupełnianiem miary
można sformalizować, jak następuje.

Definicja 1.6.4 Mówimy, że przestrzeń miarowa (X,Σ, µ) jest zupełna jeżeli dla każ-
dego A ∈ Σ, µ(A) = 0 wszystkie podzbiory A należą do Σ. W takim przypadku mówimy
też, że Σ jest σ-ciałem zupełnym względem µ

Lemat 1.6.5 Przestrzeń miarowa (X,M(µ∗), µ), gdzie µ oznacza obcięcie µ∗ do M(µ∗),
jest zupełna.

Dowód. Zauważmy, że jeśli µ∗(A) = 0 to dla dowolnego Z mamy µ∗(Z ∩ A) = 0
i dlatego µ∗(Z) = µ∗(Z ∩ A) + µ∗(Z ∩ Ac). Stąd natychmiast wynika, że wszystkie
podzbiory zbioru miary zewnętrznej zero są mierzalne. ♦

Twierdzenie podane poniżej można formalnie wywnioskować z konstrukcji miary
przedstawionej w poprzednim podrozdziale, ale znacznie prostsza jest bezpośrednia
droga, patrz Zadanie 1.9.27.

Twierdzenie 1.6.6 Dla każdej przestrzeni miarowej (X,Σ, µ) istnieje przestrzeń mia-
rowa zupełna (X, Σ̂, µ̂), gdzie Σ̂ ⊇ Σ i µ̂ jest rozszerzeniem miary µ na Σ̂.
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1.7 Jednoznaczność rozszerzenia miary

Jeżeli R jest pierścieniem zbiorów przeliczalnych w nieprzeliczalnym zbiorze X to
funkcję µ tożsamościowo równą zeru na R można przedłużyć na σ(R) na wiele spo-
sobów. Okazuje się jednak , że w typowej sytuacji rozszerzenie do miary jest jedyne.
Dowód tego faktu opiera się na następującym pomyśle.

Definicja 1.7.1 Rodzinę M⊆ P (X) nazywamy klasą monotoniczną jeśli dla dowol-
nego ciągu An ∈M

(i) jeżeli An ↑ A to A ∈M;

(ii) jeżeli An ↓ A to A ∈M.

Oczywiście każdy σ-pierścień jest automatycznie klasą monotoniczną; zauważmy,
że pierścień będący klasą monotoniczną jest σ-pierścieniem, patrz Zadanie 1.9.12. Po-
niższe, wcale nieoczywiste, twierdzenie bywa tradycyjnie nazywane lematem o klasie
monotonicznej.

Twierdzenie 1.7.2 Jeżeli klasa monotonicznaM zawiera pierścień R to zawiera też
σ-pierścień s(R) generowany przez R.

Dowód. Oznaczmy S = s(R); zauważmy, że wystarczy jeśli sprawdzimy, że jeżeli M
jest najmniejszą klasą monotoniczną zawierającą R to M = S. Zauważmy przy tym,
że M⊆ S, jako że każdy σ-pierścień jest klasą monotoniczną.

Dla dowolnego A ⊆ X rozważymy rodzinę k(A), gdzie

k(A) = {B : A \B,B \ A,A ∪B ∈M}.

Zauważmy, że B ∈ k(A) wtedy i tylko wtedy gdy A ∈ k(B), z uwagi na symetrię
warunków. Odnotujmy też, że rodzina k(A) jest klasą monotoniczną dla dowolnego A;
na przykład jeśli Bn ∈ k(A) i Bn ↑ B to

A \Bn ↓ A \B, Bn \ A ↑ B \ A, Bn ∪ A ↑ B ∪ A,

co dowodzi że B ∈ k(A).
Dla R ∈ R z definicji pierścienia wynika natychmiast, że R ⊆ k(R). Tym samym,

jako że k(R) jest klasą monotoniczną, M ⊆ k(R) dla R ∈ R. Inaczej mówiąc, jeśli
M ∈ M i R ∈ R to M ∈ k(R), a więc także R ∈ k(M). Stąd otrzymujemy R ⊆
k(M) dla M ∈ M, a zatem M ⊆ k(M) dla M ∈ M. To ostatnie stwierdzenie
oznacza po prostu że M jest pierścieniem. Klasa monotoniczna będąca pierścieniem
jest automatycznie σ-pierścieniem, co ostatecznie dowodzi, że M = S. ♦

Twierdzenie 1.7.3 Niech µ będzie przeliczalnie addytywną funkcją zbioru na pier-
ścieniu R ⊆ P (X). Załóżmy, że X =

⋃
k Sk dla pewnych Sk ∈ R, takich że µ(Sk) <∞.

Wtedy µ ma jednoznaczne przedłużenie do miary na σ(R).
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Dowód. Istnienie rozszerzenia zostało wykazane — patrz Wniosek 1.4.5. Załóżmy, że
µ1, µ2 są miarami na σ(R), takimi, że µ1(R) = µ2(R) = µ(R) dla R ∈ R. Będziemy
rozumować podobnie jak w dowodzie Twierdzenia 1.5.5, rozważając wpierw przypadek
miary skończonej.

Załóżmy, że X ∈ R i µ(X) < ∞; rozważmy rodzinę M tych A ∈ σ(R), dla
których µ1(A) = µ2(A). WtedyM jest klasą monotoniczną, co wynika natychmiast z
Twierdzenia 1.2.5. Wobec tego M ⊇ R i M = σ(R) na mocy Twierdzenia 1.7.2, co
oznacza, że µ1 = µ2.

W przypadku ogólnym możemy założyć, że zbiory Sk są parami rozłączne. Z pierw-
szej części dowodu, zastosowanej do każdego zbioru Sk z osobna, wynika, że jeśli
A ∈ σ(R) i A ⊆ Sk dla pewnego k to µ1(A) = µ2(A). Ostatecznie dla dowolnego
A ∈ σ(R) otrzymujemy

µ1(A) =
∑
k

µ1(A ∩ Sk) =
∑
k

µ2(A ∩ Sk) = µ2(A),

na mocy przeliczalnej addytywności µ1 i µ2. ♦

1.8 Miara Lebesgue’a II

W podrozdziale 1.3 zdefiniowaliśmy funkcję zbioru λ na pierścieniu R podzbiorów
prostej, generowanym przez przedziały postaci [a, b). Ponieważ λ jest przeliczalnie
addytywną funkcją zbioru naR więc z Twierdzenia 1.5.5 wynika, że λ∗ jest miarą na σ-
ciele zbiorów mierzalnych M(λ∗). Ponadto Twierdzenie 1.7.3 orzeka w tym przypadku,
że λ ma dokładnie jedno przedłużenie do miary na σ-ciele Bor(R) = σ(R) (por.
Lemat 1.1.7). Oczywiście oba te twierdzenia mają tu zastosowanie bo R =

⋃
k[−k, k)

i λ([−k, k)) = 2k <∞.
Oznaczmy przez L σ-ciało zbiorów mierzalnych M(λ∗). W dalszym ciągu dla pro-

stoty będziemy tą samą literą λ oznaczać miarę Lebesgue’a, niezależnie od tego, czy
rozważamy ją naR, Bor(R) czy też L. Jak się za chwilę okaże, dość zawiła konstrukcja
rozszerzenia miary z pierścienia R na L jest konieczna do wykazania istnienia miary
Lebesgue’a, natomiast jej własności można zrozumieć na podstawie dość prostych ob-
serwacji poniżej. W przyszłości zobaczymy, że o λ wystarczy wiedzieć tyle, że jest to
jedyna miara na Bor(R), która rozszerza naturalną definicję długości odcinków.

Zauważmy, że λ∗ można określić wzorem

λ∗(E) = inf{
∑
n

(bn − an) : E ⊆
⋃
n

[an, bn), an < bn}.

Wygodniej będzie jednak w tej chwili zauważyć, że

λ∗(E) = inf{
∑
n

(bn − an) : E ⊆
⋃
n

(an, bn), an < bn},

por. Zadanie 1.9.31. Z tej uwagi oraz z Twierdzenia 1.4.4 wynikają natychmiast na-
stępujące fakty.
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Twierdzenie 1.8.1 (a) Każdy zbiór przeliczalny jest miary Lebesgue’a zero.

(b) Dla każdego zbioru mierzalnego A ∈ L i ε > 0 istnieje zbiór otwarty V i zbiór
domknięty F , takie że F ⊆ A ⊆ V i λ(V \ F ) < ε.

(c) Dla każdego zbioru mierzalnego A ∈ L istnieją zbiory borelowskie B1, B2, takie
że B1 ⊆ A ⊆ B2 i λ(B2 \B1) = 0.

Stosując Twierdzenie 1.5.6(f) otrzymujemy inny ważny fakt.

Twierdzenie 1.8.2 Jeżeli A ∈ L i λ(A) < ∞ to dla każdego ε > 0 istnieje zbiór J
będący skończoną sumą odcinków i taki że λ(A4 J) < ε.

Odnotujmy jeszcze następujący wniosek.

Wniosek 1.8.3 Jeżeli A ∈ L i λ(A) < ∞ to dla każdego ε > 0 istnieje zbiór zwarty
(czyli domknięty i ograniczony) K ⊆ A, taki że λ(A \K) < ε.

Dowód. Dla An = A ∩ (−n, n) mamy An ↑ A i dlatego λ(An) zbiega do λ(A).
Wybierzmy n takie że λ(An) > λ(A)−ε/2; z Twierdzenia 1.8.1 istnieje zbiór domknięty
K ⊆ An o własności λ(An \K) < ε/2. Wtedy K jest zbiorem zwartym i λ(A \K) ¬
λ(A \ An) + λ(An \K) < ε. ♦

Jak się okazuje dowolny zbiór mierzalny można na rózne sposoby aproksymować z
punktu widzenia miary stosunkowo prostymi pozbiorami prostej.

Przykład 1.8.4 Niech C ⊆ [0, 1] będzie “trójkowym” zbiorem Cantora; przypomnij-
my, że zbiór C powstaje w ten sposób, że odcinek jednostkowy dzielimy na 3 części
punktami 1/3 i 2/3 i usuwamy z niego środkowy odcinek otwarty (1/3, 2/3). Nastepnie
w drugim kroku stosujemy analogiczną operację w odcinkach [0, 1/3] i [2/3, 1], usuwa-
jąc odpowiednio odcinki (1/9, 2/9) i (7/9, 8/9). Itd. . . Nietrudno policzyć, że łączna
długość usuwanych odcinków wynosi 1; tym samym λ(C) = 1− 1 = 0. Zauważmy, że
C jest zbiorem domkniętym i nie zawiera żadnego niepustego przedziału.

Inaczej mówiąc, zbiór C składa się ze wszystkich liczb x ∈ [0, 1], które można
zapisać w systemie trójkowym za pomocą cyfr 0 i 2. W ten sposób można uzasadnić, że
C jest zbiorem nieprzeliczalnym, równolicznym ze zbiorem R. Istnieją też wersje takiej
konstrukcji, prowadzące do zbioru “typu Cantora” miary dodatniej, patrz Zadanie
1.9.32 ♦

Wykorzystując własności zbioru Cantora wspomniane powyżej oraz Problem 1.10.C
można wynioskować, że L 6= Bor(R). Istotnie, każdy zbiór A ⊆ C jest mierzalny, jako
że λ(C) = 0. W teorii mnogości dowodzi się, że rodzina P (C) jest mocy 2c > c, a moc
Bor(R) wynosi jedynie c. Dlatego też C zawiera nieborelowskie zbiory mierzalne.

W tym miejcu warto wspomnieć o własnościach miary Lebesgue’a związanych ze
strukturą grupy addytywnej (R,+). Dla B ⊆ R i x ∈ R piszemy x+B na oznaczenie
translacji zbioru B, czyli {x+ b : b ∈ B}.
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Twierdzenie 1.8.5 Dla dowolnego B ∈ Bor(R) i x ∈ R mamy x + B ∈ Bor(R) i
λ(x+B) = λ(B).

Dowód. Jeśli oznaczymy przez A rodzinę tych B ∈ Bor(R), dla których wszyst-
kie translacje są borelowskie to A zawiera wszystkie odcinki otwarte (a, b), jako że
x + (a, b) = (a + x, b + x). Wystarczy teraz zauważyć, że rodzina A jest σ-ciałem,
aby otrzymać A = Bor(R). Dla ustalonego x rozważmy miarę µ na Bor(R), daną
przez wzór µ(A) = λ(x + A) (sprawdzenie, że µ jest istotnie przeliczalnie addytywna
pozostawiamy czytelnikowi). Dla a < b mamy

µ([a, b)) = λ([x+ b, x+ b)) = b− a = λ([a, b));

wynika stąd że µ(R) = λ(R) dlaR z pierścienia przedziałów i tym samym µ(B) = λ(B)
dla B ∈ Bor(R) z jednoznaczności rozszerzenia miary Lebesgue’a. ♦

Nietrudno rozszerzyć niezmienniczość opisaną w Twierdzeniu 1.8.5 na σ-ciało zbio-
rów mierzalnych L. Prowadzi to do klasycznej konstrukcji Vitalego, która pokazuje,
że można za pomocą pewnika wyboru udowodnić istnienie podzbioru prostej rzeczy-
wistej, który nie jest mierzalny, por. Problem 1.10.G.
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1.9 Zadania

1.9.1 NiechR będzie pierścieniem zbiorów. Zauważyć, że jeśli A,B ∈ R to A4B ∈ R
i A∩B ∈ R. Sprawdzić, że (R,4,∩) jest także pierścieniem w sensie algebraicznym.

1.9.2 Niech F będzie taką rodziną podzbiorów X, że X ∈ F oraz A \ B ∈ F dla
A,B ∈ F . Sprawdzić, że F jest ciałem.

1.9.3 Zauważyć, że przekrój dowolnej ilości pierścieni, ciał. . . jest pierścieniem, ciałem
itp.

1.9.4 Zauważyć, że jeśli F ⊆ G ⊆ P (X) to α(F) ⊆ α(G), gdzie α oznacza jeden z
symboli generowania r, s, a, σ.

1.9.5 Niech G będzie rodziną wszystkich skończonych podzbiorów X. Opisać r(G),
s(G), a(G) i σ(G).

1.9.6 Niech R będzie pierścieniem na prostej rzeczywistej, generowanym przez prze-
działy postaci [a, b). Sprawdzić, że A ∈ R wtedy i tylko wtedy gdy A jest rozłączną
skończoną sumą takich przedziałów.

1.9.7 Niech A ⊆ P (X) będzie ciałem zbiorów i niech Z ⊆ X. Wykazać, że

a(A ∪ {Z}) = {(A ∩ Z) ∪ (B ∩ Zc) : A,B ∈ A}.

1.9.8 Niech A bedzie skończonym ciałem zbiorów. Udowodnić, że |A| = 2n dla pewnej
liczby naturalnej n.

1.9.9 Niech F będzie przeliczalną rodziną zbiorów. Udowodnić, że ciało a(F) jest
przeliczalne.

1.9.10 Udowodnić, że jeśli A jest nieskończonym σ–ciałem to A ma przynajmniej c
elementów.Wskazówka:Wykazać, że w każdym nieskończonym σ-ciele istnieje ciąg
niepustych parami rozłącznych zbiorów; skorzystać z tego, że c jest mocą P (N).

1.9.11 Zauważyć, że jeżeli C jest taką rodziną podzbiorów X że X =
⋃∞
n=1Cn dla

pewnych Cn ∈ C to s(C) = σ(C).
1.9.12 Zauważyć, że rodzina, która jest jednocześnie pierścieniem i klasą monotonicz-
ną jest σ-pierścieniem.

1.9.13 Sprawdzić, że jeśli A jest ciałem zbiorów i rodzina A jest zamknięta na roz-
łączne przeliczalne sumy to A jest σ–ciałem.

1.9.14 Wykazać, że rodzina podzbiorów R postaci

(F1 ∩ V1) ∪ . . . ∪ (Fk ∩ Vk),

gdzie Fi są domknięte, Vi są otwarte, k ∈ N, jest ciałem.

1.9.15 Sprawdzić, że σ–ciało Bor(R) jest generowane przez każdą z rodzin
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(i) odcinki otwarte o końcach wymiernych;
(ii) odcinki domknięte;

(iii) półproste postaci (−∞, a];
(iv) półproste postaci (a,∞);
(v) odcinki domknięte o końcach wymiernych.

1.9.16 Niech µ będzie skończoną addytywną funkcją zbioru, określoną na pierścieniu
R. Sprawdzić, że (dla dowolnych A,B,C ∈ R)

(i) |µ(A)− µ(B)| ¬ µ(A4B);
(ii) µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B);

(iii) µ(A∪B∪C) = µ(A)+µ(B)+µ(C)−µ(A∩B)−µ(A∩C)−µ(B∩C)+µ(A∩B∩C).

Jak będzie wyglądał analogiczny wzór dla 4, 5. . . zbiorów?

1.9.17 Sprawdzić, że dla funkcji µ z poprzedniego zadania, warunek A ∼ B ⇐⇒
µ(A4B) = 0 określa relację równoważności na R.

1.9.18 Niech X będzie zbiorem skończonym. Sprawdzić, że wzór µ(A) = |A|
|X| określa

miarę probabilistyczną na P (X).

1.9.19 Niech (xn) ⊆ X będzie ustalonym ciągiem i niech (cn) będzie ciągiem liczb
nieujemnych. Wykazać, że wzór

µ(A) =
∑

n:xn∈A
cn

określa miarę na P (X) (w razie trudności rozważyć ciąg skończony x1, . . . , xn). Kiedy
taka miara jest skończona?

1.9.20 Zauważyć, że P (N) jest σ–ciałem generowanym przez singletony. Wykazać, że
każda miara na P (N) jest postaci opisanej w poprzednim zadaniu.

1.9.21 Niech µ będzie miarą na σ–cieleA i niech An ∈ A. Zakładając, że µ(An∩Ak) =
0 dla n 6= k, wykazać że

µ(
∞⋃
n=1

An) =
∞∑
n=1

µ(An).

1.9.22 Niepustą rodzinę J ⊆ P (X) nazywamy σ–ideałem jeśli A ⊆ B i B ∈ J
implikuje A ∈ J oraz

⋃∞
n=1An ∈ J jeśli An ∈ J dla n = 1, 2, . . .. Podaj znane Ci

przykłady σ–ideałów na R i R2.

1.9.23 Niech J będzie σ–ideałem na X. Opisać A = σ(J ) (rozważyć przypadki X ∈
J , X /∈ J ). Zdefiniować na A zerojedynkową miarę µ, analogicznie jak w przykładzie
z rozdziału 1.2.

1.9.24 Niech J ⊆ P (X) będzie σ–ideałem nie zawierającym X. Na a(J ) definiujemy
addytywną, zerojedynkową funkcję zbioru µ (por. zadanie poprzednie). Określić miarę
zewnętrzną za pomocą µ i scharakteryzować rodzinę zbiorów mierzalnych.
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1.9.25 Niech {A1, A2, . . .} będzie partycją przestrzeni X na zbiory niepuste.

(i) Opisać ciało A generowane przez zbiory An, n ∈ N.
(ii) Na A określamy addytywną funkcję µ, tak aby µ(An) = 2−n i µ(X) = 1. Jak moż-

na opisać σ–ciało zbiorów mierzalnych względem miary zewnętrznej pochodzącej
od µ? (patrz Definicja 1.5.1)

1.9.26 Niech X = [0, 1) × [0, 1] i niech R będzie ciałem w X generowanym przez
cylindry postaci [a, b)×[0, 1]. NaR rozważamy funkcję zbioru, taką że µ([a, b)×[0, 1]) =
b − a dla 0 ¬ a < b ¬ 1. Jak wyglądają (z grubsza. . . ) zbiory µ∗–mierzalne? (patrz
Definicja 1.5.1). Zauważyć, że w X można wskazać wiele parami rozłącznych zbiorów
E niemierzanych, takich że µ∗(E) = 1.

1.9.27 Uzupełnić szczegóły dowodu Twierdzenia 1.6.6 w następujący sposób: Dla
przestrzeni miarowej (X,Σ, µ) zdefiniujmy Σ̂ jako rodzinę zbiorów postaci A 4 N ,
gdzie A ∈ Σ, N ⊆ B dla pewnego B ∈ Σ miary zero. Wtedy Σ̂ jest σ-ciałem, a wzór
µ̂(A4N) = µ(A) definiuje poprawnie przedłużenie miary µ z Σ na Σ̂.

1.9.28 Niech R będzie pierścieniem podzbiorów Q generowanym przez zbiory postaci
Q ∩ [a, b) (a, b ∈ R). Sprawdzić, że na R można określić addytywną funkcję ν, tak że
ν(Q ∩ [a, b)) = b − a dla a < b. Udowodnić, że ν nie jest przeliczalnie addytywna na
R i obliczyć ν∗(Q).

1.9.29 Zauważyć, że we wzorze na λ∗ można zastąpić odcinki postaci [a, b) przez
odcinki postaci (a, b) (lub [a, b]).

1.9.30 Sprawdzić, że

(i) λ(A) = 0 dla każdego zbioru skończonego A;
(ii) λ[a, b] = λ(a, b) = b− a dla a < b;

(iii) λ(U) > 0 dla każdego zbioru otwartego U 6= ∅;
(iv) λ(A) = 0 dla każdego zbioru przeliczalnego A.

1.9.31 Podać przykład zbioru mierzalnego A, takiego że

(i) λ(A) = 1 i A jest nieograniczonym zbiorem otwartym;
(ii) λ(int(A)) = 1, λ(A) = 2, λ(A) = 3;

(iii) λ(A) = 0 i A ⊆ [0, 1] jest zbiorem nieprzeliczalnym.

Uwaga: int(A) oznacza wnętrze zbioru, czyli największy zbiór otwarty zawarty w A.

1.9.32 Skonstruować, dla ustalonego ε > 0, zbiór domknięty F ⊆ [0, 1] o wnętrzu
pustym, dla którego λ(F ) > 1− ε.
I sposób: Zmodyfikować konstrukcję zbioru Cantora.

II sposób: Niech (qn)n będzie ciągiem liczb wymiernych z [0, 1]. Rozważyć zbiór
otwarty V =

⋃∞
n=1(qn − ε2−n, qn + ε2−n) przy odpowiednim doborze ε > 0.

1.9.33 Zauważyć, że dla każdego zbioru M ∈ L, jeśli λ(M) <∞ to dla każdego ε > 0
istnieje ograniczony zbiór mierzalny M0 ⊆M , taki że λ(M \M0) < ε.



G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 31

1.9.34 Wykazać, że istnieje zbiór domknięty F ⊆ [0, 1] miary dodatniej złożony z
liczb niewymiernych.

1.9.35 Dla B ⊆ R i x 6= 0, niech xB oznacza zbiór {xb : b ∈ B} (czyli jednokładność
zbioru B).

Sprawdzić, że takie przeskalowanie zbioru otwartego jest otwarte i że rodzina tych
B ∈ Bor(R) dla których xB ∈ Bor(R) dla każdego x 6= 0 jest σ-ciałem. Wyciągnąć
stąd wniosek, że dla każdego B ∈ Bor(R) i x mamy xB ∈ Bor(R) (tzn. że σ–ciało
Bor(R) jest niezmiennicze na jednokładność).

1.9.36 Wykazać, że λ(xB) = xλ(B) dla każdego zbioru borelowskiego B i x > 0.
Rozszerzyć ten rezultat na zbiory mierzalne.

1.9.37 Udowodnić, że dla dowolnego zbioru mierzalnego M miary skończonej i ε > 0
istnieje zbiór postaci I =

⋃
i¬n(ai, bi), taki że λ(M 4 I) < ε, przy czym ai, bi ∈ Q.

1.9.38 Niech (X,Σ, µ) będzie przestrzenią miarową. Zbiór T ∈ Σ jest atomem miary
µ jeśli µ(T ) > 0 i dla każdego A ∈ Σ jeśli A ⊆ T to µ(A) = 0 lub µ(A) = µ(T ).
Mówimy, że miara µ jest bezatomowa jeśli nie ma atomów.

Sprawdzić, że miara Lebesgue’a jest bezatomowa. Zauważyć, że inne miary rozważane
do tej pory miały atomy.

1.9.39 Udowodnić, że skończona miara bezatomowa µ na Σ ma następującą własność
Darboux: dla każdego A ∈ Σ i 0 ¬ r ¬ µ(A) istnieje B ∈ Σ, taki że B ⊆ A i µ(B) = r.

Wskazówka: Niech µ(X) = 1; sprawdzić, że dla każdego ε > 0 i A ∈ Σ jeśli
µ(A) > 0 to istnieje B ∈ Σ, że B ⊆ A i 0 < µ(B) < ε. Następnie sprawdzić, że X jest
rozłączną sumą zbiorów An o własności 0 < µ(An) < ε. To rozumowanie pokaże, że
zbiór wartości µ jest gęsty w [0, 1]; potem już blisko do celu.

1.9.40 Niech (X,Σ, µ) będzie skończoną przestrzenią miarową. Wykazać, że jeżeli
An ∈ Σ i dla każdego n zachodzi nierówność µ(An) ­ δ > 0, to istnieje x ∈ X, taki że
x ∈ An dla nieskończenie wielu n.

1.9.41 Udowodnić, że jeśli (An) jest ciągiem zbiorów z σ–ciała, na którym określona
jest skończona miara µ, to jeśli (An) jest zbieżny do A to µ(A) = limn µ(An). Czy
skończoność miary jest istotna?

1.10 Problemy

1.10.A Udowodnić, że suma dowolnej (nawet nieprzeliczalnej) rodziny przedziałów
na prostej, postaci [a, b], a < b, jest zbiorem borelowskim.

1.10.B Udowodnić, że dla dowolnego zbioru X, |X| ¬ c wtedy i tylko wtedy gdy ist-
nieje w P (X) przeliczalna rodzina zbiorów F , taka że σ(F) zawiera wszystkie punkty.
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1.10.C Niech F ⊆ P (X) będzie rodziną mocy ¬ c. Udowodnić, że |σ(F)| ¬ c. Wy-
wnioskować stąd, że |Bor(R)| = c i że istnieją nieborelowskie zbiory na prostej.

Uwaga: tutaj potrzebna jest indukcja pozaskończona.

1.10.D Udowodnić, że funkcja zbioru λ zdefiniowana na pierścieniu generowanym
przez odcinki postaci [a, b) (przez warunek λ([a, b)) = b − a dla a < b) jest ciągła z
góry na zbiorze ∅ (a więc jest przeliczalnie addytywna).Wskazówka: Zbiory postaci⋃n
i=1[ci, di] są zwarte i (w pewnym sensie) przybliżają zbiory z R od środka.

1.10.E Niech (X,Σ, µ) będzie przestrzenią probabilistyczną i niech A1, . . . , A2009 ∈ Σ
będą zbiorami o własności µ(Ai) ­ 1/2. Wykazać, że istnieje x ∈ X, taki że x ∈ Ai
dla przynajmniej 1005 wartości i.

1.10.F Przeprowadzić następującą konstrukcję zbioru Vitali’ego: Dla x, y ∈ [0, 1),
niech x ∼ y ⇐⇒ x − y ∈ Q. Sprawdzić, że ∼ jest relacją równoważności. Niech
Z będzie zbiorem, który z każdej klasy abstrakcji tej relacji wybiera dokładnie jeden
element. Sprawdzić, że

⋃
q∈Q(Z ⊕ q) = [0, 1), gdzie ⊕ oznacza dodawanie mod 1.

Wywnioskować stąd i z niezmienniczości miary Lebesgue’a na przesunięcia, że powyż-
szy zbiór Z nie jest mierzalny w sensie Lebesgue’a.

1.10.G Skonstruować zbiór borelowski B ⊆ R, taki że λ(B ∩ I) > 0 i λ(Bc ∩ I) > 0
dla każdego niepustego odcinka otwartego I.

1.10.H Udowodnić twierdzenie Steinhausa: Jeśli A ⊆ R jest mierzalny i λ(A) > 0
to zbiór A − A (różnica kompleksowa) zawiera odcinek postaci (−δ, δ) dla pewnego
δ > 0.

Wskazówka: Można założyć, że λ(A) <∞; pokazać najpierw że istnieje taki niepu-
sty odcinek I, że λ(A ∩ I) ­ 3

4λ(I).

1.10.I Niech A ⊆ R będzie takim zbiorem mierzalnym, że λ(A4 (x + A)) = 0 dla
każdej liczby wymiernej x. Udowodnić, że λ(A) = 0 lub λ(R \ A) = 0.

Wskazówka: Twierdzenie Steinhausa.

1.10.J (Wymaga indukcji pozaskończonej.) Skonstruować zbiór Bernsteina Z ⊆ [0, 1],
czyli taki zbiór, że

Z ∩ P 6= ∅, Z \ P 6= ∅,

dla dowolnego zbioru domkniętego nieprzeliczalnego P ⊆ [0, 1]. Zauważyć, że Z nie
jest mierzalny w sensie Lebesgue’a, a nawet λ∗(Z) = λ∗([0, 1] \ Z) = 1.

Wskazówka: Wszystkie zbiory P domknięte nieprzeliczalne można ustawić w ciąg
Pα, α < c. Zdefiniować Z jako {zα : α < c}, gdzie ciąg zα i pomocniczy ciąg yα sa
takie, że

zα, yα ∈ Pα \ {zβ, yβ : β < α}.

Aby przeprowadzić konstrukcję trzeba wiedzieć lub sprawdzić, że każdy zbiór Pα ma
moc c.



Rozdział 2

Funkcje mierzalne

Licz to, co policzalne, mierz to, co mierzalne,
a to, co niemierzalne, uczyń mierzalnym.
Galileusz

2.1 Podstawowe wiadomości

Przypomnijmy, że dla dowolnej funkcji f : X → Y i dowolnych zbiorów A ⊆ X oraz
B ⊆ Y , zbiory f [A] i f−1[B], zdefiniowane jako

f [A] = {f(x) ∈ Y : x ∈ A}, f−1[B] = {x ∈ X : f(x) ∈ B},

nazywamy, odpowiednio, obrazem zbioru A przez funkcję f oraz przeciwobrazem zbioru
B przez funkcję f . Operacja przeciwobrazu zachowuje wszystkie działania mnogościo-
we, na przykład

f−1

[⋂
n

Bn

]
=
⋂
n

f−1[Bn],

dla dowolnego ciągu zbiorów Bn ⊆ Y ; por. Zadanie 2.5.1. W przypadku, gdy B =
{b} piszemy raczej f−1[b] niż f−1[{b}], czego nie należy mylić z obliczaniem wartości
(potencjalnie istniejącej) funkcji odwrotnej.

Przypomnijmy, że ciągłość funkcji f : R → R można wyrazić za pomocą prze-
ciwobrazów zbiorów przez tę funkcję — zbiór f−1[V ] jest otwarty dla każdego zbioru
otwartego V ⊆ R. Istotnie, jeśli x0 ∈ f−1[V ] to y0 = f(x0) ∈ V , a skoro V jest otwarty
to dla pewnego ε > 0 mamy (y0−ε, y0 +ε) ⊆ V . Dobierając teraz δ > 0 jak w warunku
Cauchy’ego ciągłości funkcji f w x0, otrzymamy natychmiast (x0−δ, x0 +δ) ⊆ f−1[V ].
Nietrudno jest wykazać, że w istocie funkcja f jest ciągła wtedy i tylko wtedy gdy
przeciwobrazy zbiorów otwartych przez tę funkcję są otwarte; ten ostatni warunek z
kolei jest równoważny faktowi, że zbiór f−1[F ] jest domknięty dla każdego domknię-
tego zbioru F ⊆ R — wynika to tożsamości R \ f−1[F ] = f−1[R \ F ].

Rozważmy ustaloną przestrzeń miarową (X,Σ, µ) (chwilowo sama miara nie będzie
odgrywała żadnej roli). Okazuje się, że odpowiednio “dobre względem Σ” własności
funkcji f : X → R definiuje się następująco.
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Definicja 2.1.1 Mówimy, że funkcja f : X → R jest Σ–mierzalna, albo po prostu
mierzalna jeśli jest jasne jakie σ-ciało mamy na myśli, gdy f−1[B] ∈ Σ dla każdego
zbioru B ∈ Bor(R).

Poniższy fakt pozwoli wysłowić mierzalność funkcji w prostszy sposób.

Lemat 2.1.2 Niech G ⊆ Bor(R) będzie dowolną rodziną zbiorów, taką że σ(G) =
Bor(R), Wtedy dla mierzalności funkcji f : X → R potrzeba i wystarcza, aby f−1[G] ∈
Σ dla każdego G ∈ G.

Dowód. Rozważmy rodzinę A złożoną z tych B ∈ Bor(R), dla których f−1[B] ∈ Σ.
Wtedy A jest σ-ciałem zbiorów: jeśli An ∈ A i A =

⋃
nAn to wtedy f−1[An] ∈ Σ dla

każdego n i

f−1[A] =
⋃
n

f−1[An] ∈ Σ.

Jeśli A ∈ A to także Ac ∈ A, ponieważ

f−1[Ac] = (f−1[A])c ∈ Σ.

Jako że A jest σ-ciałem, z inkluzji G ⊆ A wynika Bor(R) = σ(G) ⊆ A, czyli A =
Bor(R), co dowodzi dostateczności warunku — jego konieczność jest oczywista. ♦

Wniosek 2.1.3 Każdy z poniższych warunków pociąga mierzalność funkcji f : X →
R:

(i) {x : f(x) < t} ∈ Σ dla każdego t ∈ R;

(ii) {x : f(x) ¬ t} ∈ Σ dla każdego t ∈ R;

(iii) {x : f(x) > t} ∈ Σ dla każdego t ∈ R;

(iv) {x : f(x) ­ t} ∈ Σ dla każdego t ∈ R.

Dowód. Sprawdzimy dla przykładu dostateczność warunku (i). Niech G będzie rodziną
półprostych (−∞, t) dla t ∈ R. Wtedy f−1[G] ∈ Σ dla G ∈ G więc f jest mierzalna,
jako że G generuje Bor(R), patrz Zadanie 1.9.15 ♦

Wniosek 2.1.4 Jeśli funkcja f : R → R jest ciągła to jest mierzalna względem
Bor(R).

Przykład 2.1.5 Funkcję f : R → R, która jest Bor(R)-mierzalna nazywamy po
prostu funkcją borelowską. Zauważmy, że dla X = [0, 1] lub innego borelowskiego
podzbioru prostej możemy rozważyć rodzinę {B ∈ Bor(R) : B ⊆ X}, która jest σ-
ciałem podzbiorów X. Takie σ-ciało będzie oznaczane Bor(X) — przypomnijmy, że
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w topologii za zbiory otwarte w X uważa się zbiory postaci U ∩X, gdzie U ⊆ R jest
otwarty. ♦

Przykład 2.1.6 Dla dowolnego A z σ-ciała Σ podzbiorów dowolnej przestrzeni X
funkcję χA : X → R, gdzie χA(x) = 1 dla x ∈ A i χA(x) = 0 dla x /∈ A nazywamy
funkcją charakterystyczną zbioru A. Taka funkcja jest mierzalna, jako że χ−1

A [U ] jest
elementem rodziny {∅, A,Ac, X} ⊆ Σ.

Dla dowolnego B ∈ Bor(R) funkcja χB jest więc borelowska. Zauważmy, że χQ
nie jest ciągła w żadnym punkcie prostej, co pokazuje, że mierzalność jest własnością
znacznie ogólniejszą. ♦

W dalszym ciągu pokażemy, że wiele naturalnych operacji przeprowadzanych na
funkcjach mierzalnych prowadzi do funkcji mierzalnych.

Lemat 2.1.7 Jeżeli funkcja f : X → R jest Σ-mierzalna, a funkcja g : R → R jest
ciągła to funkcja g ◦ f : X → R jest Σ-mierzalna.

Dowód. Dla dowolnego zbioru otwartego U ⊆ R, zbiór g−1[U ] jest otwarty na mocy
ciągłości g; stąd (g ◦ f)−1[U ] = f−1[g−1[U ]] ∈ Σ. ♦

Wniosek 2.1.8 Jeżeli funkcja f : X → R jest Σ-mierzalna to funkcje c · f , f 2, |f |
też są Σ-mierzalne.

Lemat 2.1.9 Jeżeli funkcje f, g : X → R są Σ-mierzalne to funkcja f + g jest Σ-
mierzalna.

Dowód. Wystarczy wykazać, że dla h = f + g i t ∈ R mamy h−1[(−∞, t)] ∈ Σ. Ale

{x ∈ X : f(x) + g(x) < t} =
⋃

p+q<t,p,q∈Q
{x : f(x) < p} ∩ {x : g(x) < q}.

co nietrudno sprawdzić, korzystając z gęstości zbioru Q w R. Zauważmy, że suma mno-
nogościowa w powyższym wzorze jest przeliczalna, patrz Twierdzenie 0.2.4, i dlatego
należy do Σ. ♦

Wniosek 2.1.10 Jeżeli funkcje f, g : X → R są Σ-mierzalne to także mierzalne są
funkcje f · g,max(f, g),min(f, g).

Dowód. Dowód wynika bezpośrednio z rozważań powyżej oraz tożsamości

f · g =
(f + g)2 − f 2 − g2

2
;

max(f, g) =
|f − g|+ f + g

2
; min(f, g) =

−|f − g|+ f + g

2
.
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♦

Dodajmy że mierzalność iloczynu f · g można sprawdzić zapisując zbiór postaci

{x : f(x)g(x) < t}

analogicznie jak w dowodzie Lematu 2.1.9.
Czasami wygodnie jest rozważać funkcje postaci f : X → R ∪ {−∞,∞}. Natu-

ralnie jest wtedy przyjąć, że Σ-mierzalność funkcji f oznacza dodatkowo, że zbiory
f−1(−∞) i f−1(∞) należą do Σ. Przy takiej umowie możemy dla dowolnego ciągu
funkcji mierzalnych fn : X → R zdefiniować, na przykład supn fn, bez konieczności
zakładania, że zbiór {fn(x) : n ∈ N} jest ograniczony dla każdego x ∈ X. Podobnie,
rozważamy funkcję f = lim supn fn, zadaną oczywiście przez f(x) = lim supn fn(x).
Występujące tu pojęcie granicy górnej ciągu liczbowego, a także własności granic
górnych i dolnych przypomniane są w 2.7.

Lemat 2.1.11 Jeżeli funkcje fn : X → R są Σ-mierzalne to mierzalne są również
funkcje

lim inf
n

fn, lim sup
n

fn, inf
n
fn, sup

n
fn.

Dowód. Pokażemy dla przykładu, że funkcja f = lim supn fn jest mierzalna – wynika
to bezpośrednio z tożsamości

{x : f(x) =∞} =
⋂
k

⋂
m

⋃
n­m
{x : fn(x) > k},

{x : f(x) ¬ t} =
⋂
k

⋃
m

⋂
n­m
{x : fn(x) < t+ 1/k},

i analogicznej formuły dla −∞. Drugi ze wzorów powyżej wynika z faktu, że na to aby
f(x) ¬ t potrzeba i wystarcza, aby dla dowolnej małej liczby postaci ε = 1/k, prawie
wszystkie wyrazy ciągu fn(x) spełniały fn(x) < t+ 1/k. ♦

Wniosek 2.1.12 Granica punktowa zbieżnego ciągu funkcji mierzalnych jest mierzal-
na.

Intuicyjnie rzecz biorąc, każda przeliczalna operacja wykonywana na funkcjach
mierzalnych prowadzi do funkcji mierzalnych i na przykład każda funkcja R → R
zapisana “wzorem”, w którym występują przeliczalne kwantyfikatory jest borelowska.

Przykład 2.1.13 Niech fn : X → R będzie ciągiem funkcji Σ-mierzalnych; spraw-
dzimy, że zbiór

A = {x : lim sup
n

fn(x) > lim inf
n

fn(x)} ∈ Σ.



G. Plebanek, MIARA I CAŁKA Rozdział 2: Funkcje mierzalne 37

W tym celu należy zapisać formalnie warunek definiujący x ∈ A za pomocą przeliczal-
nych kwantyfikatorów. Zauważmy, że x ∈ A wtedy i tylko wtedy gdy istnieją liczby
wymierne p, q, takie że

lim sup
n

fn(x) > p > q > lim inf
n

fn(x).

Warunek lim supn fn(x) > p oznacza że dla pewnej liczby postaci 1/m nierówność
fn(x) > p + 1/m zachodzi dla nieskończenie wielu n; analogiczna uwaga dotyczy
warunku q > lim inf fn(x). Tym samym x ∈ A wtedy i tylko wtedy gdy

(∃p, q ∈ Q, p > q)(∃m)(∀k)(∃n1, n2 ­ k)fn1(x) > p+ 1/m, fn2(x) < q − 1/m,

co pozwala napisać

A =
⋃
p>q

⋃
m

⋂
k

⋃
n1,n2>k

{x : fn1(x) > p+ 1/m} ∩ {x : fn2(x) < q − 1/m} ∈ Σ,

(tutaj p, q ∈ Q, a wszyskie pozostałe zmienne są naturalne). Powyższy przykład ilu-
struje formalną drogę sprawdzania mierzalności. Oczywiście w tym przykładzie trochę
prościej jest sprawdzić, że X \A ∈ Σ: zauważmy, że x /∈ A oznacza, że ciąg fn(x) jest
zbieżny, co pozwala zapisać

X \ A =
⋂
m

⋃
k

⋂
n1,n2>k

{x : |fn1(x)− fn2(x)| < 1/m},

ponieważ zbieżność ciągu liczbowego jest równoważna warunkowi Cauchy’ego. ♦

Na koniec tej części odnotujemy następujący prosty, ale często wykorzystywany
fakt.

Lemat 2.1.14 Każda Σ-mierzalną funkcję f : X → R można zapisać w postaci f =
f+ − f−, różnicy funkcji mierzalnych i nieujemnych.

Dowód. Istotnie, niech f+ = max(f, 0), f− = −min(f, 0); wtedy oczywiście f =
f+ − f−, a funkcje f+, f− są mierzalne na mocy Wniosku 2.1.10. ♦

2.2 Funkcje proste

Dla ustalonego σ-ciała Σ na X możemy zdefiniować dość bogatą rodzinę funkcji mie-
rzalnych X → R.

Definicja 2.2.1 Funkcję f : X → R nazywamy funkcją prostą jeśli zbiór wartości
f [X] jest skończony.
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Funkcja charakterystyczna χA dowolnego zbioru A ⊆ X jest prosta. W istocie
wszystkie funkcje proste są skończonymi kombinacjami liniowymi funkcji charaktery-
stycznych.

Lemat 2.2.2 Funkcja f : X → R jest prosta wtedy i tylko wtedy gdy

f =
∑
i¬n

aiχAi

dla pewnych liczb ai ∈ R i zbiorów Ai ⊆ X. Funkcja prosta jest Σ-mierzalna wtedy i
tylko wtedy gdy f jest kombinacją liniową funkcji charakterystycznych zbiorów z Σ.

Dowód. Jeżeli f [X] = {a1, . . . , an} to biorąc Ai = f−1[ai] mamy f =
∑
i¬n aiχAi . Na

odwrót, dla funkcji postaci f =
∑
i¬n aiχAi jej zbiór wartości zawiera się w skończonym

zbiorze złożonym z 0 i wszystkich liczb bedących sumami pewnych elementów zbioru
{a1, . . . , an}. Drugie stwierdzenie wynika natychmiast z tych uwag. ♦

Z punktu widzenia opisanego poniżej rodzina funkcji prostych mierzalnych jest
dość bogata.

Twierdzenie 2.2.3 Niech f : X → R będzie funkcją nieujemną, mierzalną względem
pewnego σ-ciała Σ podzbiorów X. Wtedy istnieje ciąg mierzalnych funkcji prostych
sn : X → R, taki że

0 ¬ s1(x) ¬ s2(x) ¬ . . . , i lim
n
sn(x) = f(x),

dla każdego x ∈ X. Jeśli ponadto funkcja f jest ograniczona to ciąg sn można dobrać
tak, aby był jednostajnie zbieżny do f .

Dowód. Ustalmy n i dla każdego 1 ¬ k ¬ n2n niech

An,k = {x :
k − 1

2n
¬ f(x) <

k

2n
};

wtedy An,k ∈ Σ, jako że funkcja f jest mierzalna. Niech sn będzie zdefiniowana tak,
że

sn(x) =
k − 1

2n
, dla x ∈ An,k,

oraz sn(x) = n gdy f(x) > n. Niewątpliwie funkcje proste sn zdefiniowane w ten
sposób są mierzalne i nieujemne. Jeżeli x ∈ An,k dla pewnego k to sn(x) = (k− 1)/2n,
natomiast

sn+1(x) = (k − 1)/2n lub sn+1(x) = (2k − 1)/2n+1,

czyli sn(x) ¬ sn+1(x).
Dla ustalonego x i n > f(x) mamy f(x) ­ sn(x) ­ f(x) − 1/2n, co pokazuje, że

limn sn(x) = f(x). Jeśli f jest ograniczona to 0 ¬ f(x) − sn ¬ 1/2n jednostajnie po
x ∈ X, o ile tylko n ogranicza f [X] z góry. ♦



G. Plebanek, MIARA I CAŁKA Rozdział 2: Funkcje mierzalne 39

2.3 Prawie wszędzie

Dla ustalonej przestrzeni miarowej (X,Σ, µ) i funkcji mierzalnych f, g : X → R mówi-
my, że f = g µ-prawie wszędzie jeżeli µ({x : f(x) 6= g(x)}) = 0. W wielu rozważaniach
zmiana wartości danej funkcji na zbiorze miary zero nie zmienia jej istotnych własności
i dlatego funkcje równe prawie wszędzie można będzie, do pewnego stopnia, utożsa-
miać. Ale warto pamiętać, że to zależy od punktu widzenia: χQ = 0 λ-prawie wszędzie,
ale χQ nie jest ciągła w żadnym punkcie prostej.

Ogólniej możemy o dowolnej (ale “mierzalnej”) własności ϕ punktów x ∈ X po-
wiedzieć, że ϕ(x) zachodzi prawie wszędzie jeżeli µ({x : ¬ϕ(x)}) = 0. Taki charakter
ma poniższa definicja.

Definicja 2.3.1 Ciąg funkcji mierzalnych fn : X → R jest zbieżny µ-prawie wszędzie
(albo po prostu prawie wszędzie) do funkcji f jeżeli limn fn(x) = f(x) dla wszystkich
x spoza pewnego zbioru miary zero.

Przykład 2.3.2 Niech X = [0, 1]; rozważmy funkcje fn(x) = xn. Wtedy fn → 0
λ-prawie wszędzie oraz fn → 1 µ-prawie wszędzie, gdzie µ = δ1 jest deltą Diraca. ♦

Przypomnijmy, że dla funkcji określonych na prostej rzeczywistej lub jej podzbio-
rach naturalne jest rozważać ich mierzalność względem σ-ciała Bor(R), ale także
względem σ-ciała L zbiorów mierzalnych względem miary Lebesgue’a. Funkcje L-
mierzalne bywają też nazywane λ-mierzalnymi; funkcje Bor(R)-mierzalne nazywa się
po prostu funkcjami borelowskimi. Poniższe twierdzenie jest w pewnym sensie faktem
analogicznym do Twierdzenia 1.8.1.

Twierdzenie 2.3.3 Dla każdej funkcji λ-mierzalnej f istnieje funkcja borelowska g,
taka że f = g λ-prawie wszędzie.

Dowód. Niech I1, I2, . . . będzie ciągiem zawierającym wszystkie odcinki postaci (p, q),
p, q ∈ Q (por. Twierdzenie 0.2.4). Dla każdego n zbiór f−1[In] jest mierzalny, a więc
na mocy Twierdzenia 1.8.1 mamy An ⊆ f−1[In] ⊆ Bn i λ(Bn \ An) = 0 dla pewnych
zbiorów borelowskich An, Bn. Tym samym f−1[In] = An ∪ Zn, gdzie Zn jest miary
zero. Niech Z =

⋃
n Zn; wtedy λ(Z) = 0 i istnieje zbiór borelowski C, taki że Z ⊆ C

i λ(C) = 0. Zdefiniujmy funkcję g tak że g(x) = f(x) dla x /∈ C oraz g(x) = 0 dla
x ∈ C. Wtedy g = f prawie wszędzie. Ponadto

g−1[In] = An \ C gdy 0 /∈ In;

g−1[In] = An ∪ C gdy 0 /∈ In;

co w szczególności oznacza, że g−1[In] ∈ Bor(R). Stąd i z Lematu 2.1.2 wynika, że g
jest funkcją borelowską. ♦
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2.4 Zbieżność ciągów funkcyjnych

Jak wynika z Twierdzenia 2.2.3 każda funkcja mierzalna jest granicą punktową ciągu
funkcji prostych, a każda funkcja mierzalna ograniczona jest jednostajną granicą ciągu
takich funkcji (tutaj dla funkcji niekoniecznie nieujemnych należy zastosować jeszcze
Lemat 2.1.14). Jak się za chwile przekonamy, za pomocą miary można definiować i
głebiej analizować różne rodzaje zbieżności ciągów funkcyjnych.

Ciąg funkcji fn : [0, 1] → R, fn(x) = xn jest dobrze znanym przykładem punk-
towo zbieżnego ciągu funkcji, który nie jest zbieżny jednostajnie. Zauważmy, że dla
dowolnego ε > 0 ciąg fn zbiega jednostajnie do zera na odcinku [0, 1− ε]. Można więc
powiedzieć, że usunięcie zbioru małej miary poprawia zbieżność ciągu. To zjawisko ma
charakter bardzo ogólny, o czym mówi tak zwane twierdzenie Jegorowa.

Twierdzenie 2.4.1 Jeżeli (X,Σ, µ) jest skończoną przestrzenią miarową, a fn : X →
R jest ciągiem funkcji mierzalnych zbieżnym prawie wszędzie do funkcji f to dla każ-
dego ε > 0 istnieje A ∈ Σ, taki że µ(A) ¬ ε i ciąg fn jest jednostajnie zbieżny do f
na zbiorze X \ A.

Dowód. Załóżmy po prostu, że f(x) = limn fn(x) dla każdego x ∈ X — w ogólnym
przypadku zbiór punktów, w których ciąg nie jest zbieżny jest miary zero i można go
usunąć z dalszych rozważań. Dla dowolnych m,n ∈ N rozważamy zbiory

E(m,n) =
∞⋂
i=n

{x : |fi(x)− f(x)| < 1/m}.

Wtedy E(m, 1) ⊆ E(m, 2) ⊆ . . . dla każdego m oraz⋃
n

E(m,n) = X,

co wynika z tego, że fn(x)→ f(x), czyli że dla każdego x istnieje n, że |fi(x)−f(x)| <
1/m.

Ustalmy ε > 0; ponieważ E(m,n) ↑ X więc X \ E(m,n) ↓ ∅ i, korzystając z
ciągłości miary skończonej na zbiorze pustym, dla każdego m istnieje nm, takie że

µ(X \ E(m,nm)) < ε/2m.

Wtedy, kładąc

A =
⋃
m

(X \ E(m,nm)), mamy;

µ(A) ¬
∑
m

µ(X \ E(m,nm)) ¬
∑
m

ε/2m = ε.

Ponadto |fn(x)− f(x)| < 1/m dla n > nm i x /∈ A, co oznacza jednostajną zbieżność
fn na X \ A. ♦
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Założenie µ(X) < ∞ w twierdzeniu Jegorowa jest istotne: ciąg funkcji fn(x) =
x/n na prostej zbiega punktowo do zera i nie jest zbieżny jednostajnie na żadnym
nieograniczonym podzbiorze prostej. Dla potrzeb licznych zastosowań Twierdzenia
2.4.1 wprowadza się następującą definicję.

Definicja 2.4.2 Mówimy, że ciąg funkcji mierzalnych jest niemal jednostajnie zbież-
ny jeżeli dla każdego ε > 0 ciąg fn zbiega jednostajnie na dopełnieniu pewnego zbioru
miary < ε.

Wprowadzimy teraz inne ważne pojęcie zbieżności ciągów funkcyjnych: zbieżność
według miary.

Definicja 2.4.3 Ciąg fn : X → R funkcji mierzalnych jest zbieżny do funkcji f
według miary jeżeli dla każdego ε > 0

lim
n→∞

µ({x : |fn(x)− f(x)| ­ ε}) = 0.

Piszemy fn
µ−→ f , aby odnotować zbieżność według miary µ.

Wniosek 2.4.4 Ciąg funkcyjny zbieżny niemal jednostajnie jest zbieżny według mia-
ry. W szczególności, ciąg funkcyjny zbieżny prawie wszędzie na przestrzeni o mierze
skończonej jest zbieżny według miary.

Dowód. Jeżeli funkcje fn zbiegają do f niemal jednostajnie to (w szczególności) dla
dowolnego ε istnieje zbiór A, taki że µ(A) < ε i |fn(x) − f(x)| < ε dla dużych n i
wszystkich x /∈ A. Wtedy {x : |fn(x)− f(x)| ­ ε} ⊆ A więc

µ({x : |fn(x)− f(x)| ­ ε}) ¬ µ(A) < ε

dla dostatecznie dużych n. Drugie stwierdzenie wynika z Twierdzenia 2.4.1. ♦
Zbieżność według miary jest jednak własnością istotnie słabszą niż zbieżność pra-

wie wszędzie, nawet przy założeniu skończoności miary. Poniższy przykład nosi nazwę
“wędrującego garbu”.

Przykład 2.4.5 Niech fn : [0, 1]→ R będzie ciągiem

χ[0,1], χ[0,1/2], χ[1/2,1], χ[0,1/4], χ[1/4,1/2], . . .

gdzie w ogólności “garb” ma długość 1/2n i przemierza cały odcinek [0, 1]. Bez trudu
sprawdzamy, że fn zbiega do zera według miary Lebesgue’a, ale lim infn fn(x) = 0 i
lim supn fn(x) = 1 dla każdego x ∈ [0, 1]. ♦

W powyższym przykładzie można bez trudu wskazać podciągi ciągu fn zbież-
ne prawie wszędzie do zera. To jest ogólna prawidłowość, wysłowiona w poniższym
twierdzeniu Riesza.
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Twierdzenie 2.4.6 Niech (X,Σ, µ) będzie dowolną przestrzenią miarową i niech
fn : X → R będzie ciągiem funkcji mierzalnych, spełniającym warunek Cauchy’ego
według miary, to znaczy

lim
n,k→∞

µ({x : |fn(x)− fk(x)| ­ ε}) = 0,

dla każdego ε > 0. Wtedy
(a) istnieje podciąg n(k) liczb naturalnych, taki że ciąg funkcji fn(k) jest zbieżny
prawie wszędzie oraz według miary do pewnej funkcji f ;

(b) ciąg fn jest zbieżny według miary do f .

Dowód. Zauważmy, że wspomniany w założeniu warunek Cauchy’ego implikuje, że
dla każdego k istnieje n(k), takie że dla dowolnych n,m ­ n(k) zachodzi

µ({x : |fn(x)− fm(x)| ­ 1/2k}) ¬ 1/2k,

przy czym możemy dodatkowo zażądać, aby n(1) < n(2) < . . .. Niech

Ek = {x : |fn(k)(x)− fn(k+1)(x)| ­ 1/2k}, Ak =
⋃
n­k

Ek;

wtedy µ(Ak) ¬ 1/2k−1 i dlatego zbiór A =
⋂
k Ak jest miary zero. Jeżeli x /∈ Ak to dla

każdego k i x /∈ Ak mamy

|fn(i)(x)− fn(i+1)(x)| ¬ 1/2i

dla wszystkich i ­ k. Z nierówności trójkąta otrzymujemy, że dla j > i ­ k zachodzi

|fn(i)(x)− fn(j)(x)| ¬ 1/2i−1.

Tym samym, dla x /∈ A ciąg liczbowy fn(i)(x) spełnia warunek Cauchy’ego i dlatego
jest zbieżny do liczby, którą oczywiście oznaczymy f(x). W ten sposób otrzymujemy,
że fn(k) zbiega prawie wszędzie do funkcji f .

Z powyższych rozważań wynika, że {x : |f(x) − fn(k)(x)| ­ ε} ⊆ Ak, co dowodzi
zbieżności tego podciągu do funkcji f według miary; tym samym część (a) została
wykazana.

Dla sprawdzenia (b) wystarczy zauważyć, że fn
µ−→ f , co wynika z zależności

{x : |fn(x)−f(x)| ­ ε} ⊆ {x : |fn(x)−fn(k)(x)| ­ ε/2}∪{x : |fn(k)(x)−f(x)| ­ ε/2},

i warunku Cauchy’ego dla zbieżności według miary. ♦

Warto podkreślić, że badanie własności ciągów zbieżnych według miary wymaga
często sporego wysiłku, por. Zadania 2.5.16–18.
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2.5 Zadania

2.5.1 Sprawdzić, że operacja przeciwobrazu zbioru przez funkcję zachowuje podsta-
wowe operacje mnogościowe. Zauważyć, że

f

[⋃
n

An

]
=
⋃
n

f [An],

dla dowolnych zbiorów An z dziedziny funkcji f . Sprawdzić, że inkluzja

f [A1 ∩ A2] ⊆ f [A1] ∩ f [A2]

może być właściwa.

2.5.2 Niech fn : X → R będzie ciągiem funkcji mierzalnych względem σ–ciała Σ.
Sprawdzić, że następujące zbiory należą do Σ:

(i) zbiór x, dla których ciąg fn(x) jest rosnący;
(ii) zbiór x, dla których fn(x) < 2 dla wszystkich n;

(iii) zbiór x, dla których fn(x) < 2 dla prawie wszystkich n;
(iv) zbiór x, dla których fn(x) < 2 dla nieskończenie wielu n;
(v) zbiór x, dla których supn fn(x) < 2;

(vi) zbiór x, dla których supn fn(x) ¬ 2;
(vii) zbiór x, dla których fn(x) jest zbieżny;
(viii) zbiór x, dla których lim sup fn(x) > lim inf fn(x).

2.5.3 Wykazać, że suma zbieżnego szeregu funkcji mierzalnych jest mierzalna.

2.5.4 Niech f : R → R będzie dowolną funkcją. Niech Fε = {x ∈ R : oscx(f) ­ ε},
gdzie oscx(f) ­ ε oznacza, że dla każdego δ > 0 istnieją x′, x′′ ∈ (x− δ, x+ δ) takie że
|f(x′)− f(x′′)| ­ ε.

Sprawdzić, że zbiór Fε jest domknięty. Wywnioskować stąd, że zbiór punktów ciągłości
funkcji jest borelowski.

2.5.5 Niech dla każdego t z pewnego zbioru T dana będzie funkcja ciągła ft : R→ R.
Rozważmy funkcję h = supt∈T ft. Wykazać, że h jest funkcją borelowską (nawet jeśli
T jest nieprzeliczalny). W tym celu rozważyć zbiór postaci {x : h(x) > a}.
2.5.6 Sprawdzić, że każdą funkcję prostą, mierzalną względem σ–ciała Σ ⊆ P (X)
można zapisać w postaci

(i)
∑
i¬n aiχAi , gdzie Ai ∈ Σ, A1 ⊆ A2 ⊆ . . . ⊆ An, oraz

(ii)
∑
i¬n biχBi , gdzie Bi ∈ Σ, a B1, . . . , Bn są parami rozłączne.

Jakie warunki trzeba dopisać, aby takie przedstawienia były jednoznaczne?
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2.5.7 Sprawdzić, że rodzina funkcji prostych jest zamknięta na kombinacje liniowe,
branie modułu i mnożenie.

2.5.8 Niech f : R → R spełnia warunek Lipschitza, tzn. |f(x) − f(y)| ¬ L|x − y|
dla pewnej stałej L. Pokazać, że f [A] jest miary Lebesgue’a zero dla każdego A miary
zero.

2.5.9 Wywnioskować z poprzedniego zadania, że obraz zbioru mierzalnego przez funk-
cję spełniającą warunek Lipschitza jest mierzalny.

Wskazówka: f [F ] jest zwarty gdy f jest ciągła i F ⊆ R jest zwarty; zastosować
Wniosek 1.8.3.

2.5.10 Wykazać, że w zadaniach 8 i 9 wystarczy zakładać, że funkcja f spełnia wa-
runek Lipschitza lokalnie, na każdym odcinku postaci [−n, n], a więc w szczególności
gdy f ma ciągłą pochodną.

2.5.11 Zauważyć, że dowolna funkcja niemalejąca f : R→ R jest borelowska.

2.5.12 Skonstruować niemalejącą funkcję ciągłą g : [0, 1] → [0, 1], taką że g[C] =
[0, 1], gdzie C ⊆ [0, 1] jest zbiorem Cantora.

Wkazówka: niech g(x) = 1/2 dla x ∈ (1/3, 2/3); g(x) = 1/4 dla x ∈ (1/9, 2/9) itd.

2.5.13 Stosując funkcję g z poprzedniego zadania zauważyć, że obraz zbioru mie-
rzalnego przez funkcję ciągłą nie musi być mierzalny oraz że przeciwobraz zbioru
mierzalnego przez funkcję ciągłą nie musi być mierzalny.

2.5.14 Zauważyć, że jeśli µ(X) < ∞, a f : X → R jest funkcją mierzalną, to dla
każdego ε > 0 istnieje zbiór A, taki że µ(A) < ε i f jest ograniczona na X \ A.

2.5.15 Niech |fn| ¬M , gdzie fn
µ−→ f . Sprawdzić, że |f | ¬M prawie wszędzie.

2.5.16 Niech fn będzie niemalejącym ciągiem funkcji mierzalnych, zbieżnych do f
według miary. Udowodnić, że wtedy fn → f prawie wszędzie.

2.5.17 Sprawdzić, że jeśli fn
µ−→ f i gn

µ−→ g to fn + gn
µ−→ f + g. Pokazać, że

fngn
µ−→ fg przy dodatkowym założeniu, że fn i gn są wspólnie ograniczone przez

stałą.

2.5.18 Niech µ będzie miarą skończoną. Wykazać, że jeśli fn
µ−→ f oraz f(x) 6= 0 dla

każdego x, to 1/fn
µ−→ 1/f .

2.5.19 Niech µ(X) < ∞. Udowodnić, że jeśli fn
µ−→ f i gn

µ−→ g to fngn
µ−→ fg

(por. Zadanie 15). Pokazać, że założenie skończoności miary jest istotne.

2.6 Problemy

2.6.A Niech A ⊆ R będzie zbiorem mierzalnym miary Lebesgue’a skończonej. Zbadać,
czy funkcja

g : R→ R, g(x) = λ(A ∩ (x+ A)),
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jest ciągła (tutaj λ oznacza miarę Lebesgue’a, x+ A oznacza przesunięcie zbioru).

2.6.B Wykazać, że każda mierzalna w sensie Lebesgue’a funkcja f : R → R jest
granicą prawie wszędzie ciągu funkcji ciągłych (fn). W istocie można takie fn wybrać
klasy C∞.

Wskazówka: Zacząć od przypadku f = χA, gdzie A jest skończoną sumą przedzia-
łów.

2.6.C Wykazać, że nie istnieje ciąg funkcji ciągłych fn : R → R, zbieżny punktowo
do funkcji χQ (czyli funkcji charakterystycznej zbioru Q).

Wskazówka: I sposób: można przeprowadzić dowód nie wprost, wykorzystując je-
dynie własność Darboux. II sposób: udowodnić, że granica ciągu funkcji ciągłych musi
mieć punkt ciągłości.

2.6.D Niech f : R → R będzie dowolną funkcją, spełniającą warunek f(x + y) =
f(x) + f(y). Sprawdzić, że wtedy f(x) = ax dla wszystkich x ∈ Q (a = f(1)).

Udowodnić, że jeśli funkcja f jest mierzalna to f(x) = ax dla wszystkich x ∈ R.

2.7 DODATEK: Granice dolne i górne
ciągów liczbowych

Niech (an) będzie ciągiem liczb rzeczywistych. Liczbę a nazywamy punktem skupienia
ciągu jeśli istnieje podciąg ciągu (an) zbieżny do a. Podobnie definiujemy fakt, że ∞
lub −∞ jest punktem skupienia ciągu.

2.7.1 Pokazać, że zawsze istnieje najmniejszy punkt skupienia danego ciągu (będący
liczbą bądź −∞,∞). Tę wielkość oznaczamy lim infn→∞ an.

2.7.2 Zauważyć, że lim infn→∞ an = −∞ wtedy i tylko wtedy gdy ciąg (an) jest
nieograniczony z dołu.

2.7.3 Udowodnić, że a = lim infn→∞ an (gdzie a jest liczbą) wtedy i tylko wtedy gdy
dla każdego ε > 0 mamy an > a − ε dla prawie wszystkich n i an < a + ε dla
nieskończenie wielu n.

2.7.4 Udowodnić, że lim infn→∞ an = limn→∞ infk­n ak.

2.7.5 Sprawdzić, że lim infn→∞(an + bn) ­ lim infn→∞ an + lim infn→∞ bn.

2.7.6 Zdefiniować analogiczne pojęcie lim sup i zapisać jego podstawowe własności.

2.7.7 Zauważyć, że ciąg jest zbieżny wtedy i tylko wtedy gdy jego granica górna jest
równa dolnej i jest liczbą rzeczywistą.

2.7.8 lim infn→∞(an − bn) = a− lim supn→∞ bn gdy lim an = a.



Rozdział 3

Całka

Does anyone believe that the difference between the Le-
besgue and Riemann integrals can have physical signi-
ficance, and that whether say, an airplane would or
would not fly could depend on this difference? If such
were claimed, I should not care to fly in that plane
Richard W. Hamming

W niniejszym rozdziale wprowadzimy i zbadamy centralne pojęcie skryptu, czyli
całkę typu Lebesgue’a, zdefiniowaną na dowolnej przestrzeni miarowej σ-skończonej.
Założenie σ-skończoności nie jest tak naprawdę istotne, ale pozwala ominąć kilka kom-
plikacji, por. Problemy 3.6.A–B. Jak się okaże w przypadku prostej rzeczywistej, całka
Lebesgue’a ma zastosowanie do znacznie szerszej rodziny funkcji niż klasyczna całka
Riemanna.

3.1 Całka z funkcji prostych

W tej części będziemy rozważać ustaloną przestrzeń miarową (X,Σ, µ). Całkowanie
jest operacją liniową, przypisującą funkcjom wartości liczbowe. Ponieważ całka z funk-
cji nieujemnej ma wyrażać “pole pod wykresem funkcji” więc jasne, że powinniśmy
przyjąć

∫
X χA dµ = µ(A) dla A ∈ Σ, oraz poniższą definicję. Dla symboli ∞ i −∞,

oprócz konwencji x+∞ =∞, x−∞ = −∞ dla x ∈ R, przyjmujemy dodatkowo

0 · ∞ = 0 · (−∞) = 0.

Przypomnijmy, że wyrażeniu ∞−∞ nie można nadać sensu liczbowego.

Definicja 3.1.1 Jeśli f =
∑
i¬n aiχAi dla Ai ∈ Σ to definiujemy∫

X
f dµ =

∑
i¬n

aiµ(Ai),

jeśli tylko wyrażenie po prawej stronie wzoru ma sens liczbowy. Mówimy, że funkcja f
jest całkowalna jeżeli

∫
X f dµ ma wartość skończoną.
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Tym samym dla f = 2χ[0,1] + cχ[3,∞] mamy
∫
R f dλ = 2 gdy c = 0; wartość tej

całki jest ∞ dla c > 0 i −∞ dla c < 0. Dla funkcji g = χ[−∞,0) − χ[1,∞) wyrażenie∫
R g dλ nie ma sensu liczbowego.

Lemat 3.1.2 Definicja całki z funkcji prostej jest poprawna, to znaczy

jeżeli f =
∑
i¬n

aiχAi =
∑
j¬k

bjχBj to
∑
i¬n

aiµ(Ai) =
∑
j¬k

bjµ(Bj).

Dowód. Patrz Zadanie 3.5.1. ♦
Oprócz całki po całej przestrzeni możemy rozważać całkę na dowolnym zbiorze

A ∈ Σ; przyjmujemy po prostu za definicję wzór∫
A
f dµ =

∫
X
f · χA dµ.

Twierdzenie 3.1.3 Dla funkcji prostej mierzalnej h i funkcji prostych całkowalnych
f i g zachodzą nastepujące zależności

(i)
∫
X(af + bg) dµ = a

∫
X f dµ+ b

∫
X g dµ;

(ii) jeżeli h = 0 prawie wszędzie to
∫
X h dµ = 0;

(iii) jeżeli f ¬ g prawie wszędzie to
∫
X f dµ ¬

∫
X g dµ;

(iv) |
∫
X(f + g) dµ| ¬

∫
X |f | dµ+

∫
X |g| dµ;

(v) jeżeli a ¬ f ¬ b prawie wszędzie to aµ(X) ¬
∫
X f dµ ¬ bµ(X);

(vi) dla A,B ∈ Σ, jeżeli A ∩B = ∅ to∫
A∪B

f dµ =
∫
A
f dµ+

∫
B
f dµ.

Dowód. Wzór (i) dla a = b = 1, wynika natychmiast z poprawności definicji całki z
funkcji prostych; rozszerzenie tego wzoru na dowolne a, b ∈ R to po prostu rozdzielność
mnożenia względem dodawania.

Jeżeli h = 0 prawie wszędzie to możemy przedstawić h jako
∑
i aiχAi , gdzie µ(Ai) =

0 i dlatego
∫
X h dµ = 0.

Zauważmy, że jeśli f ­ 0 prawie wszędzie to f = h′ +
∑
i aiχAi dla pewnej funkcji

h′ równej zero prawie wszędzie i ai ­ 0; stąd i z (ii) otrzymamy
∫
X f dµ ­ 0. Aby

sprawdzić (iii) piszemy g = f + (g− f) i stosując te uwagę, otrzymujemy na mocy (i)∫
X
f dµ ¬

∫
X
f dµ+

∫
X

(g − f) dµ =
∫
X
g dµ.

(iv) wynika z (iii) i nierówności −|f + g| ¬ f + g ¬ |f + g|. Podobnie sprawdzamy (v).
Wzór w (vi) wynika stąd, że χA∪B = χA + χB, o ile A ∩B = ∅ i dlatego∫

A∪B
f dµ =

∫
X
fχA∪B dµ =

∫
X
fχA dµ+

∫
X
fχB dµ =

∫
A
f dµ+

∫
B
f dµ.

♦
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3.2 Całka z funkcji mierzalnych

W dalszym ciągu rozważamy funkcje na ustalonej σ-skończonej przestrzeni (X,Σ, µ)
— zakładamy milcząco, że wszystkie omawiane funkcje są Σ-mierzalne. Zdefinujemy
wpierw całkę z funkcji mierzalnej nieujemnej f : X → R. Zauważmy, że jeśli s jest
nieujemną funkcją prostą, przedstawioną w postaci s =

∑
i¬n aiχAi , gdzie Ai są parami

rozłączne i ai ­ 0 to warunek 0 ¬ s ¬ f oznacza, geometrycznie rzecz biorąc, że
prostokąty postaci Ai× [0, ai] znajdują się pod wykresem funkcji f i dlatego powinno
być tak, że

∫
X f dµ ­

∫
X s dµ. Istotnie, przyjmujemy następującą definicję.

Definicja 3.2.1 Dla funkcji nieujemnej mierzalnej f definiujemy∫
X
f dµ = sup{

∫
X
s dµ : 0 ¬ s ¬ f},

gdzie supremum jest liczone po funkcjach s prostych mierzalnych. Funkcję f nazywamy
całkowalną, jeżeli całka z f jest skończona.

Zauważmy, że w istocie całka z funkcji nieujemnej f może być zdefiniowana jako
supremum wartości

∫
X s dµ, brane po funkcjach prostych całkowalnych, por. Problem

3.6.A–B. W wielu przypadkach wygodniej jest operować raczej poniższym twierdze-
niem niż wzorem podanym w Definicji 3.2.1.

Twierdzenie 3.2.2 Jeśli f jest nieujemną funkcją mierzalną, a sn ciągiem funkcji
prostych, takim że s1 ¬ s2 ¬ . . . i limn sn = f prawie wszędzie to∫

X
f dµ = lim

n

∫
X
sn dµ.

Dowód. Ponieważ ciąg całek
∫
X sn dµ jest niemalejący na mocy Twierdzenia 3.1.3(iii)

więc faktycznie granica limn

∫
X sn dµ, właściwa lub niewłaściwa, zawsze istnieje oraz

na mocy definicji całki zachodzi nierówność
∫
X f dµ ­ limn

∫
X sn dµ.

Rozważmy funkcję prostą g, taką że 0 ¬ g ¬ f i g =
∑
i¬k aiχAi , gdzie Ai są parami

rozłącznymi zbiorami miary skończonej. Wtedy X0 =
⋃
i¬k Ai ma miarę skończoną;

niech M = maxi ai (w tym momencie wielkości µ(X0) i M są ustalone!).
Z twierdzenia Jegorowa 2.4.1 sn zbiega do f niemal jednostajnie na zbiorze X0.

Dla ustalonego ε > 0 istnieje A ⊆ X0, taki że µ(A) < ε/M i zbieżność na X0 \ A jest
jednostajna. Tym samym dla dużych n mamy nierówność

g(x)− sn(x) ¬ f(x)− sn(x) < ε/µ(X0),

dla x ∈ X0 \ A i dlatego∫
X
g dµ =

∫
X0
g dµ =

∫
X0\A

g dµ+
∫
A
g dµ ¬

∫
X0\A

(sn + ε/µ(X0)) dµ+Mµ(A) ¬
∫
X0
sn dµ+ ε+ ε,
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co dowodzi, że lim
∫
X sn dµ ­

∫
X g dµ. ♦

Wreszcie całkę z funkcji mierzalnych niekoniecznie nieujemnych definiujemy za
pomocą rozkładu opisanego w Lemacie 2.1.14.

Definicja 3.2.3 Mówimy, że funkcja mierzalna f : X → R jest całkowalna jeżeli∫
X
|f | dµ <∞;

w takim przypadku definiujemy całkę wzorem∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ,

gdzie f = f+ − f− jest rozkładem na f+ = max(f, 0) i f− = −min(f, 0).

Zauważmy, że funkcja f jest całkowalna wtedy i tylko wtedy gdy funkcje f+ i f−

sa całkowalne. Oczywiście w przypadku, gdy
∫
X f

+ dµ = ∞ i
∫
X f

− dµ < ∞ czymś
naturalnym jest przyjąć

∫
X f dµ = ∞. Zauważmy też, że dla funkcji całkowalnej f i

A ∈ Σ, zachodzi wzór∫
A
f dµ =

∫
X
f · χA dµ.

Teraz bez trudu rozszerzymy podstawowe własności całki na przypadek funkcji
mierzalnych.

Twierdzenie 3.2.4 Dla funkcji całkowalnych f, g i funkcji mierzalnej h zachodzą
nastepujące zależności

(i)
∫
X(f + g) dµ =

∫
X f dµ+

∫
X g dµ;

(ii) jeżeli f ¬ g to
∫
X f dµ ¬

∫
X g dµ;

(iii) jeżeli a ¬ f ¬ b to aµ(X) ¬
∫
X f dµ ¬ bµ(X);

(iv) jeżeli h = 0 prawie wszędzie to
∫
X h dµ = 0;

(v) jeżeli
∫
X h dµ = 0 i h ­ 0 prawie wszędzie to h = 0 prawie wszędzie;

(vi) |
∫
X(f + g) dµ| ¬

∫
X |f | dµ+

∫
X |g| dµ;

(vii) dla A,B ∈ Σ, jeżeli A ∩B = ∅ to∫
A∪B

f dµ =
∫
A
f dµ+

∫
B
f dµ.

Dowód. Ad (i). Dla funkcji nieujemnych f, g możemy, korzystając z Twierdzenia 2.2.3,
dobrać niemalejące ciągi funkcji prostych sn i tn, takie że zachodzi zbieżność punktowa
sn → f i tn → g. Wtedy sn+tn → f+g więc korzystając z Twierdzenia 3.2.2 i 3.1.3(i)
otrzymujemy∫

X
(f+g) dµ = lim

n

∫
X

(sn+tn) dµ = lim
n

∫
X
sn dµ+lim

n

∫
X
tn dµ =

∫
X
f dµ+

∫
X
g dµ.
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Teraz rozszerzenie wzoru na przypadek dowolny wynika natychmiast z Definicji 3.2.3.
Ad (ii). W przypadku 0 ¬ f ¬ g nierówność

∫
X f dµ ¬

∫
X g dµ wynika natych-

miast z Definicji 3.2.1. W ogólnym przypadku, pisząc f = f+ − f− i g = g+ − g−,
mamy f+ ¬ g+ i f− ­ g−, czyli∫

X
f+ dµ ¬

∫
X
g+ dµ i

∫
X
g− dµ ­

∫
X
f− dµ;

odejmując te nierówności stronami otrzymujemy żądaną zależność.
Ad (iii). Przyjmując g = bχX mamy

∫
X f dµ ¬

∫
X g dµ = bµ(X) z (ii). Drugą

nierówność sprawdzamy analogicznie.
Ad (iv). Jeżeli h = 0 prawie wszędzie to s = 0 prawie wszędzie dla każdej funkcji

prostej s, takiej że 0 ¬ s ¬ h i dlatego w tym przypadku
∫
X h dµ = 0 na mocy

Twierdzenia 3.1.3. W przypadku ogólnym, przedstawiając h w postaci h = h+ − h−
mamy h+ = h− = 0 prawie wszędzie i dlatego

∫
X h dµ = 0.

Ad (v). Załóżmy, że h nie jest prawie wszędzie równa zeru. Wtedy dla zbioru
A = {x : h(x) > 0} mamy µ(A) > 0; oznaczając An = {x : h(x) > 1/n}, spełniona
jest zależność A =

⋃
nAn, a zatem istnieje n0, takie że µ(An0) > 0. Stąd, na mocy

(iii), ∫
X
h dµ ­

∫
An0

h dµ ­ (1/n0)µ(An0) > 0.

Części (vi) i (vii) sprawdzamy tak samo jak dla funkcji prostych, por. Twierdzenie
3.1.3. ♦

Uwzględniając własności całki opisane w Twierdzeniu 3.2.4 nietrudno wywniosko-
wać następującą własność monotoniczności całki.

Wniosek 3.2.5 Jeżeli f ¬ g prawie wszędzie to∫
X
f dµ ¬

∫
X
g dµ.

o ile tylko całki występujące we wzorze mają sens liczbowy.

3.3 Twierdzenia graniczne

Przedstawimy teraz klasyczne twierdzenia o przechodzeniu do granicy pod znakiem
całki — jak się okaże możliwości wykonania takiej operacji wymagają dość słabych
założeń. Niezmiennie rozważamy ustaloną przestrzeń σ-skończoną (X,Σ, µ) i milcząco
zakładamy, że wszystkie omawiane funkcje są mierzalne względem σ-ciała Σ.

Twierdzenie 3.3.1 (o zbieżności monotonicznej) Niech funkcje fn będą nieujem-
ne oraz f1 ¬ f2 ¬ . . . prawie wszędzie to funkcja graniczna f = limn fn spełnia wzór∫

X
f dµ = lim

n

∫
X
fn dµ.
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Odnotujmy przed dowodem, że funkcje fn nie muszą być całkowalne. Funkcja gra-
niczna jest dobrze określona prawie wszędzie, przy czym f może przyjmować wartości
nieskończone.

Dowód. Jak wynika z Wniosku 3.2.5 ciąg całek
∫
X fn dµ jest niemalejący i dlatego

istnieje jego granica limn

∫
X fn dµ ¬

∫
X f dµ. Wystarczy więc uzasadnić nierówność

przeciwną. W tym celu rozważymy funkcję prostą s, taką że 0 ¬ s ¬ f i pokażemy, że
limn

∫
X fn dµ ­

∫
X s dµ.

Przypuśćmy, że s =
∑
i¬k aiχAi , gdzie ai > 0, a zbiory Ai są parami rozłączne i

µ(Ai) < ∞. Wtedy X0 =
⋃
i¬k Ai jest zbiorem miary skończonej i bez zmniejszenia

ogólności można zakładać,że µ(X0) > 0. Niech M = maxi ai; dla ustalonego ε > 0 z
Twierdzenia Jegorowa istnieje zbiór mierzalny B ⊆ X0, taki że µ(B) < ε/M oraz

fn(x) ­ s(x)− ε/µ(X0)

dla wszystkich x ∈ X0 \B i dostatecznie dużych n. Dla takich n∫
X
fn dµ ­

∫
X0\B

fn dµ ­
∫
X0\B

(s− ε/µ(X0)) dµ ­

­
∫
X0
s dµ−

∫
B
s dµ− εµ(X0 \B)

µ(X0)
­
∫
X0
s dµ− 2ε,

ponieważ
∫
B s dµ ¬Mµ(B) ¬ ε. W ten sposób dowód został zakończony. ♦

Twierdzenie 3.3.2 (Lemat Fatou) Dla dowolnego ciągu funkcji nieujemnych fn
zachodzi nierówność∫

X
lim inf

n
fn dµ ¬ lim inf

n

∫
X
fndxµ.

Dowód. Oznaczając

gn = inf
k­n

fk, f = lim inf
n

fn,

otrzymujemy 0 ¬ g1 ¬ g2 ¬ . . . oraz limn = f (patrz Zadanie 2.7.4). Dlatego z
Twierdzenia 3.3.1∫

X
fn dµ ­

∫
X
gn dµ→

∫
X
f dµ,

a to daje natychmiast tezę twierdzenia. ♦
Jeżeli

fn = χ[0,1/2] lub fn = χ[1/2,1]

w zależności od tego, czy n jest parzyste, czy nieparzyste, to lim infn fn = 0, podczas
gdy

∫
[0,1] fn dµ = 1/2 dla każdego n. Ten prosty przykład pokazuje, że w lemacie

Fatou nie musi być równości; jednocześnie przykład ten pozwala łatwo zapamiętać,
która nierówność jest zawsze prawdziwa. Nietrudno też pokazać ma przykładzie, że
założenie fn ­ 0 w Twierdzeniu 3.3.2 jest istotne, por. Zadanie 3.5.17.
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Twierdzenie 3.3.3 (Twierdzenie Lebesgue’a o zbieżności ograniczonej) Niech
fn i g będą takimi fukcjami mierzalnymi, że dla każdego n nierówność |fn| ¬ g za-
chodzi prawie wszędzie, przy czym

∫
X g dµ < ∞. Jeżeli f = limn fn prawie wszędzie

to

lim
n

∫
X
|fn − f | dµ = 0 oraz

∫
X
f dµ = lim

n

∫
X
fn dµ.

Dowód. Przyjmijmy hn = |fn − f | i h = 2g; wtedy hn → 0 prawie wszędzie i
0 ¬ hn ¬ h. Dlatego, stosując lemat Fatou do funkcji h− hn, otrzymujemy∫

X
h dµ =

∫
X

lim inf
n

(h−hn) dµ ¬ lim inf
n

∫
X

(h−hn) dµ =
∫
X
h dµ−lim sup

n

∫
X
hn dµ.

Ta zależność daje lim supn
∫
X hn dµ = 0, jako że

∫
X h dµ < ∞. Pokazaliśmy więc, że∫

X |fn − f | dµ→ 0. Ponieważ∣∣∣∣∫
X
fn dµ−

∫
X
f dµ

∣∣∣∣ ¬ ∫
X
|fn − f | dµ,

to druga zależność wynika z pierwszej. ♦
Zauważmy, że dla X = [0, 1] i funkcji fn = nχ[0,1/n] zachodzi fn → 0 λ-prawie

wszędzie, ale
∫
[0,1] fn dλ = 1. Jak widać, występujące (nawet w nazwie) Twierdze-

nia 3.3.3 założenie “zbieżności ograniczonej” jest istotne. Z twierdzenia Lebesgue’a
bezpośrednio wynika następujący wniosek.

Wniosek 3.3.4 Niech µ(X) <∞ i niech funkcje fn będą wspólnie ograniczone. Jeżeli
f = limn fn prawie wszędzie to

∫
X f dµ = limn

∫
X fndxµ.

Teraz możemy łatwo uzasadnić następującą własność całki.

Twierdzenie 3.3.5 Jeżeli f jest mierzalną i nieujemną funkcją na przestrzeni mia-
rowej (X,Σ, µ) to funkcja ν : Σ→ [0,∞] dana dla A ∈ Σ wzorem

ν(A) =
∫
A
f dµ

jest miarą na Σ.

Dowód. Jak już było udowodnione (Twierdzenie 3.2.4(vii)), ν jest addytywną funkcją
zbioru na Σ. Jeżeli A1 ↑ A dla pewnych zbiorów An, A ∈ Σ to χAn jest niemalejącym
ciągiem funkcji zbieżnym do χA, a fχAn → fχA. Dlatego z Twierdzenia 3.3.1 wynika,
że

ν(A) =
∫
A
f dµ =

∫
X
fχA dµ = lim

n

∫
X
fχAn dµ = lim

n
ν(An).

Stąd ν jest ciągła z dołu i dlatego ν jest przeliczalnie addytywna. ♦
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3.4 Całka Lebesgue’a na prostej

Na prostej rzeczywistej bądź jej podzbiorach możemy całkować funkcje λ-mierzalne
(czyli mierzalne względem σ-ciała L zbiorów mierzalnych. Ponieważ każda funkcja
L-mierzalna jest prawie wszędzie równa funkcji borelowskiej więc w wiekszości przy-
padków własności całki Lebesgue’a wzgledem λ sprowadzają się do rozważania tylko
tych ostatnich. Oczywiście należy wyjaśnić, jakie są związki całki Lebesgue’a z kla-
syczną całką Riemanna.

Niech f będzie ograniczoną funkcją, określoną na odcinku [a, b] zawartym w R.
Przypomnijmy, że do definicji całki Riemanna

∫ b
a f(x) dx służą pojęcia, które z naszego

punktu widzenia można zreferować następująco. Podziałem P odcinka [a, b] nazywamy
dowolną skończoną rodzinę odcinków domknietych, taką że

⋃
I∈P I = [a, b], przy czym

dla I, I ∈ P , jeżeli I 6= J to zbiór I∩J jest co najwyżej jednoelementowy (gdy odcinki
mają wspólny koniec). Wyrażenia

L(f,P) =
∑
I∈P

inf
I

(f)λ(I), U(f,P) =
∑
I∈P

sup
I

(f)λ(I),

nazywane są, odpowiednio, sumą dolną i górną dla podziału P . Funkcja f jest cał-
kowalna w sensie Riemanna jeżeli dla każdego ε > 0 istnieje taki podział P , że
U(f,P)− L(f,P) < ε.

Zauważmy, że sumy całkowe opisane powyżej to nic innego jak całki z pewnych
funcji prostych; jeśli

(∗) s =
∑
I∈P

inf
I

(f)χI to L(f,P) =
∫

[a,b]
s dλ,

(∗∗) t =
∑
I∈P

sup
I

(f)χI to U(f,P) =
∫

[a,b]
t dλ,

przy czym s ¬ f ¬ t poza, być może, skończoną ilością punktów.

Twierdzenie 3.4.1 Jeżeli ograniczona funkcja f : [a, b]→ R jest całkowalna w sensie
Riemanna to jest λ-mierzalna i obie całki są równe:∫ b

a
f(x) dx =

∫
[a,b]

f dλ.

Dowód. Z założenia dla każdego n istnieje podział Pn odcinka [a.b], taki że

U(f,Pn)− L(f,Pn) < 1/n.

Możemy przy tym założyć, że dla każdego n podział Pn+1 jest wspisany w podział Pn,
to znaczy, że każdy I ∈ Pn jest sumą pewnych odcinków z podziału Pn+1. Wtedy, jak
nietrudno wykazać,

L(f,Pn) ¬ L(f,Pn+1) ¬ U(f,Pn+1) ¬ U(f,Pn).
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Dlatego też, oznaczając przez sn i tn funkcje proste zdefiniowane analogicznie jak we
wzorach (*) i (**) dla podziału P = Pn, nierówności

s1 ¬ s2 ¬ . . . ¬ t2 ¬ t1

zachodzą prawie wszędzie, a dokładnie poza przeliczalnym zbiorem końców odcinków
podziałów. Przyjmijmy f1 = limn sn, f2 = limn tn; wtedy funkcje f1 i f2 są borelowskie,
f1 ¬ f2 prawie wszędzie i

∫
[a,b] f1 dλ =

∫
[a,b] f2 dλ, a zatem f1 = f2 prawie wszędzie.

Dlatego funkcja f , spełniająca prawie wszędzie nierówności f1 ¬ f ¬ f2 jest mierzalna.
Równość całek wynika natychmiast stąd, że∫ b

a
f(x) dx = lim

n
L(f,Pn) = lim

n

∫
[a,b]

sn dλ =
∫

[a,b]
f dλ.

♦

Warto przypomnieć, że w teorii całki Riemanna dowodzi się1, że funkcja ogra-
niczona f jest całkowalna na odcinku [a, b] wtedy i tylko wtedy gdy zbiór D(f) jej
punktów nieciągłości jest miary Lebesgue’a zero. W ten sposób również można po-
kazać λ-mierzalność funkcji R-całkowalnych; por. Zadanie 2.5.3. Warto podkreślić, że
jeżeli A jest podzbiorem zbioru Cantora, to funkcja χA jest całkowalna w sensie Rie-
manna, ale dla nieborelowkich zbiorów A taka funkcja nie jest borelowska, por. uwaga
po Przykładzie 1.8.

Oczywiście w dalszym ciągu nie ma potrzeby odróżniania całek Lebesgue’a i Rie-
manna; dlatego będziemy raczej pisać

∫ b
a f dλ lub po prostu

∫ b
a f dx na oznaczenie

całki Lebesgue’a dla funkcji zmiennej rzeczywistej. Zadania 3.5.10 pokazują że całka
Lebesgue’a pokrywa się też z bezwzględnie zbieżną niewłaściwą całką Riemanna. W
jednym tylko przypadku, gdy całka niewłaściwa Riemanna jest zbieżna jedynie wa-
runkowo, według przyjętych definicji funkcja nie jest całkowalna w sensie Lebesgue’a.

Przypomnijmy, że dla zbioru A = [0, 1]∩Q funkcja χA jest klasycznym przykładem
funkcji niecałkowalnej w sensie Riemanna. Oczywiście

∫ 1
0 χA dλ = 0 bo λ(A) = 0. Wa-

ro zaznaczyć, że przymiotnik niecałkowalny ma inne znaczenie w przypadku obu całek:
gdy myślimy o całce Riemanna, mówimy najczęściej, że funkcja jest niecałkowalna,
gdy jest zbyt skomplikowana i sumy całkowe nie pozwalają prawidłowo zdefiniować
całki. Z punktu teorii Lebesgue’a funkcja f jest niecałkowana po prostu dlatego, że∫
|f | dλ = ∞. Tutaj też można napotkać na funkcje “zbyt skomplikowane”. czyli

niemierzalne, ale nie dają się one zdefiniować w sposób analityczny.

1patrz na przykład M. Spivak, Analiza na rozmaitościach
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3.5 Zadania

3.5.1 Sprawdzić, że wzór

∫
X

n∑
i=1

aiχAi dµ =
n∑
i=1

aiµ(Ai)

jednoznacznie definiuje całkę z funkcji prostych całkowalnych na dowolnej przestrzeni
(X,Σ, µ).

Wskazówka: Jeżeli
∑n
i=1 aiχAi =

∑k
j=1 bjχBj to istnieje skończona partycja X na

zbiory mierzalne Ts, 1 ¬ s ¬ p, takie że każdy zbiór Ai i każdy zbiór Bj jest sumą
pewnych zbiorów Ts.

3.5.2 Niech µ(X) = 1 i µ(Ai) ­ 1/2 dla i = 1, 2, . . . , n. Wykazać, że istnieje x ∈ X
należący do przynajmniej n/2 zbiorów Ai. W tym celu oszacować

∫
X

∑
i¬n χAi dµ (por.

Problem 1.9.E).

3.5.3 Rozważyć funkcję f(x) = − 1
x2+1 , aby zauważyć, że nie można w ogólnym przy-

padku zdefiniować całki
∫
R f dλ jako supremum z całek

∫
s dλ po funkcjach prostych

s ¬ f . Zdefiniować podobną funkcję na [0, 1].

3.5.4 Niech (X,Σ, µ) będzie przestrzenią miarową, a f, g : X → R funkcjami mierzal-
nymi. Sprawdzić że

(i) jeśli
∫
A f dµ = 0 dla każdego A ∈ Σ, to f = 0 prawie wszędzie;

(ii) jeśli f jest całkowalna na X, to jest też całkowalna na każdym X0 ∈ Σ;
(iii) jeśli A,B ∈ Σ i µ(A4 B) = 0, to

∫
A f dµ =

∫
B f dµ dla każdej f (oraz istnienie

jednej z całek pociąga istnienie drugiej);
(iv)

∫
|f − g| dµ ­ |

∫
|f | dµ−

∫
|g| dµ|.

3.5.5 Ustalić, czy

(i) iloczyn dwóch funkcji całkowalnych jest całkowalny;
(ii) funkcja f , gdzie f = 1 prawie wszędzie jest całkowalna;

(iii) f jest całkowalna jeśli jest całkowalna na każdym zbiorze miary skończonej.

3.5.6 Rozpatrzmy przestrzeń (N, P (N), µ), gdzie µ jest miarą liczącą, to znaczy µ(A) =
|A| dla zbiorów skończnych i µ(A) =∞ dla każdego A ⊆ N nieskończonego.

Udowodnić, że f : N→ R jest całkowalna wtedy i tylko wtedy gdy
∑∞
n=1 |f(n)| <∞.

Zauważyć, że w tym przypadku całka jest sumą szeregu.

3.5.7 Czy istnieje ciąg funkcji, który jest

(i) zbieżny prawie wszędzie, ale nie według miary;
(ii) zbieżny wg miary ale nie prawie wszędzie;

(iii) zbieżny prawie wszędzie, ale nieograniczony;
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(iv) zbieżny jednostajnie do zera i taki, że całki nie zbiegają do zera;
(v) składa się z funkcji całkowalnych i jest zbieżny jednostajnie do funkcji niecałko-

walnej.

Przy każdym pytaniu rozważyć przypadek µ(X) <∞ i µ(X) =∞.

3.5.8 Niech f : [a, b]→ R będzie ograniczoną funkcją borelowską. Zauważyć, że f jest
całkowalna względem miary Lebesgue’a na [a, b].

3.5.9 Wykazać, że jeśli f : R→ R jest całkowalna w sensie Lebesgue’a to dla każdego
ε > 0 istnieje odcinek [a, b] taki że

∫
[a,b] |f | dµ >

∫
R |f | dµ− ε.

3.5.10 Niech f : R → R będzie nieujemną funkcją dla której istnieje skończona
całka niewłaściwa Riemanna

∫∞
−∞ f(x) dx. Udowodnić, że f jest całkowalna w sensie

Lebesgue’a. Wykazać, że założenie nieujemności funkcji jest istotne.

3.5.11 Niech µ(X) <∞. Udowodnić, że funkcja mierzalna f jest całkowalna wtedy i
tylko wtedy gdy dla zbiorów An = {x : |f(x)| ­ n} zachodzi warunek

∑∞
n=1 µ(An) <

∞.
3.5.12 Wykazać tzw. nierówność Czebyszewa: dla funkcji całkowalnej f zachodzi∫

|f | dµ ­ εµ({x : |f(x)| ­ ε}).

3.5.13 Wywnioskować z nierówności Czebyszewa, że

jeżeli
∫
|f − fn| dµ→ 0 to fn

µ−→ f.

3.5.14 Niech An będzie ciągiem zbiorów mierzalnych, takim że µ(An4Ak)→ 0 gdy
n, k →∞. Wykazać, że istnieje mierzalny zbiór A, taki że µ(A4 An)→ 0.

3.5.15 Zdefiniować funkcje ciągłe całkowalne fn : [0, 1] → [0,∞), takie że fn → 0
prawie wszędzie, ale funkcja supn fn nie jest całkowalna.

3.5.16 Niech f : R → R będzie funkcją całkowalną. Sprawdzić, że funkcja F (x) =∫
[0,x] f(t) dλ(t) jest ciągła. Podać przykłady świadczące o tym, że F nie musi być

różniczkowalna.

3.5.17 Zauważyć, że lemat Fatou nie jest prawdziwy bez założenia nieujemności funk-
cji. Zbadać, przy jakich założeniach o funkcjach zachodzi wzór

lim sup
n

∫
X
fn dµ ¬

∫
X

lim sup
n

fn dµ.

3.5.18 Niech (fn) będzie takim ciągiem funkcji całkowalnych, że
∑∞
n=1

∫
|fn| dµ <∞.

Udowodnić, że szereg
∑
n fn jest zbieżny prawie wszędzie i∫ ∞∑

n=1

fn dµ =
∞∑
n=1

∫
fn dµ.
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3.5.19 Zbadać, czy wzór z poprzedniego zadania zachodzi dla szeregu funkcji fn(x) =
xn−1 − 2x2n−1 na odcinku (0, 1).

3.5.20 Zbadać, czy

∫ 1

0

∞∑
n=1

(−1)n√
n+ x

dx =
∞∑
n=1

∫ 1

0

(−1)n√
n+ x

dx.

Jak można uogólnić ten przykład?

3.5.21 Niech µ będzie miarą skończoną na X; fn, f : X → R będą funkcjami mie-
rzalnymi, takimi że fn

µ−→ f . Udowodnić, że jeśli h : R → R jest ograniczona i
jednostajnie ciągła to

lim
n→∞

∫
X
h(fn) dµ =

∫
X
h(f) dµ.

3.5.22 Niech fn będzie ciągiem funkcji całkowalnych, zbieżnym do f prawie wszędzie.
Udowodnić, że limn→∞

∫
|fn− f | dλ→ 0 wtedy i tylko wtedy gdy limn→∞

∫
|fn| dλ =∫

|f | dλ.

3.6 Problemy

3.6.A Mówimy, że przestrzeń miarowa (X,Σ, µ) jest semiskończona jeżeli

µ(A) = sup{µ(B) : B ∈ Σ, B ⊆ A, µ(B) <∞}.

Zauważyć, że każda przestrzeń σ-skończona jest semiskończona.

3.6.B Zauważyć że w definicji całki z funkcji nieujemnej na przestrzeni semiskoń-
czonej można liczyć supremum po funkcjach prostych całkowalnych. Sprawdzić, że
twierdzenia graniczne dla całki zachodzą niezmienionej formie dla przestrzeni semi-
skończonych.

3.6.C Udowodnić, że każda przestrzeń (X,Σ, µ), która nie jest semiskończona, zawiera
nieskończony atom miary, to znaczy zbiór A ∈ Σ, taki że µ(A) =∞ i µ(B) ∈ {0,∞}
dla każdego zbioru B ⊆ A z σ-ciała Σ.



Rozdział 4

Miary produktowe i twierdzenie
Fubiniego

Dajcie mi Twierdzenie, a wtedy łatwo
znajdę jego dowód.
Bernhard Riemann

W tym rozdziale zdefiniujemy i zbadamy operację produktowania przestrzeni mia-
rowych oraz udowodnimy twierdzenie Fubiniego1, które jest podstawową metodą li-
czenia całek z funkcji wielu zmiennych. Pozwoli nam to na szybkie wprowadzenie
wielowymiarowej miary i całki Lebesgue’a w przestrzeniach euklidesowych.

4.1 Produktowanie σ-ciał

Rozważmy dwie przestrzenie (X,Σ) i (Y,Θ), gdzie Σ ⊆ P (X) i Θ ⊆ P (Y ) są usta-
lonymi σ-ciałami. Zbiory postaci A × B będziemy nazywać prostokątami; prostokąt
A × B nazwiemy mierzalnym jeżeli A ∈ Σ i B ∈ Θ. W produkcie X × Y możemy
zdefiniować następujące σ-ciało.

Definicja 4.1.1 Symbolem Σ⊗Θ oznaczamy σ-ciało podzbiorów X×Y , zadane jako

Σ⊗Θ = σ ({A×B : A ∈ Σ, B ∈ Θ}) ;

Σ⊗Θ nazywamy produktem σ-ciał Σ i Θ.

Oczywiście sama rodzina prostokątów mierzalnych A×B nie jest zamknięta nawet
na skończone sumy. W dalszym ciągu będzie też przydatnym rozważanie ciała

F = a ({A×B : A ∈ Σ, B ∈ Θ}) ,

generowanego przez takie prostokąty; ciało F będziemy nazywać, troche nieściśle,
ciałem prostokątów mierzalnych.
1Guido Fubini (1879–1943), matematyk włoski
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Lemat 4.1.2 Zbiór F ⊆ X × Y należy do ciała prostokątów F wtedy i tylko wtedy
gdy

(∗) F =
⋃
i¬n

Ai ×Bi,

dla pewnych Ai ∈ Σ i Bi ∈ Θ, i = 1, . . . , n. We wzorze (*) mozna przy tym zażądać,
aby prostokąty Ai ×Bi były parami rozłączne.

Dowód. Wystarczy zauważyć, że rodzina tych zbiorów F , które można przedstawić w
postaci (*) jest ciałem. Oczywiście rodzina ta jest zamknięta na skończone sumy. Fakt,
że dla zbioru F zadanego przez (*), jego dopełnienie też mozna zapisać w podobny
sposób można nietrudno wywnioskować stąd, że

(A×B)c = (Ac × Y ) ∪ (X ×Bc),

i faktu, że przekrój dwóch prostokątów też jest prostokątem. To, że prostokąty w
przedstawieniu (*) można urozłącznić, wynika ze wzoru

(A1 ×B1) \ (A2 ×B2) =

= [(A1 \ A2)× (B1 ∩B2)] ∪ [(A1 \ A2)× (B1 \B2)] ∪ [(A1 ∩ A2)× (B1 \B2)] ,

gdzie składniki po prawej stronie są parami rozłączne. ♦
Dla zbioru E ⊆ X × Y i ustalonych x ∈ X, y ∈ Y , zbiory

Ex = {z ∈ Y : 〈x, z〉 ∈ E}, Ey = {z ∈ X : 〈z, y〉 ∈ E},

nazywamy, odpowiednio, cięciem pionowym i poziomym zbioru. Analogicznie, dla
funkcji rzeczywistej f określonej na produkcie X × Y możemy rozważyć odpowiednie
funkcje jednej zmiennej:

fx : Y → R, fx(z) = f(〈x, z〉), f y : X → R, fy(z) = f(〈z, y〉).

Lemat 4.1.3 Jeżeli E ∈ Σ ⊗ Θ to Ex ∈ Θ dla każdego x ∈ X i Ey ∈ Σ dla każdego
y ∈ Y .

Jeżeli funkcja f : X × Y → R jest Σ⊗Θ-mierzalna to funkcja fx jest θ-mierzalna
dla wszystkich x ∈ X, a funkcja f y jest Σ-mierzalna dla każdego y ∈ Y .

Dowód. Ustalmy x ∈ X. Nietrudno sprawdzić, że rodzina E tych zbiorów E ∈ Σ⊗Θ,
dla których Ex ∈ Θ jest σ-ciałem. Ponieważ (A × B)x = B lub (A × B)x = ∅ więc
każdy prostokąt mierzalny należy do E . Stąd E = Σ ⊗ Θ. Oczywiście sprawdzenie
mierzalności cięć poziomych jest analogiczne.

Rodzina tych funkcji f dla których, przy ustalonym x ∈ X, funkcja fx jest Θ-
mierzalna zawiera funkcje proste i dlatego, na mocy Twierdzenia 2.2.3, teza zachodzi
dla wszystkich funkcji f nieujemnych, jako że wspomniana rodzina jest zamknięta na
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granice punktowe. Rozszerzenie na funkcje niekoniecznie nieujemne otrzymujemy jak
zwykle przez rozkład na części dodatnią i ujemną. ♦

Dla przykładu możemy rozważyć σ ciało produktowe Bor(R)⊗Bor(R) na płasz-
czyźnie. Zauważmy przede wszystkim, że w R×R istnieje inne naturalne σ-ciało, które
teraz zdefiniujemy.

Ponieważ R×R jest przestrzenią metryczną przy naturalnej metryce euklidesowej
więc możemy rozważać zbiory otwarte i domknięte na płaszczyźnie. Przypomnijmy,
że odległość euklidesową liczymy według wzoru

||x− y|| =
√
|x1 − y1|2 + |x2 − y2|2, dla x = 〈x1, x2〉, y = 〈y1, y2〉.

Jak zwykle kula Br(x) o środku w x i promieniu r zdefiniowana jest jako

Br(x) = {y : ||x− y|| < r}.

Zbiór U ⊆ R×R jest otwarty gdy dla każdego x ∈ U istnieje r > 0, takie że Br(x) ⊆ U .
Zauważmy jednak, że można równoważnie otwartość U wyrazić przez warunek: dla
każdego x ∈ U istnieje δ > 0, taka że

(x1 − δ, x1 + δ)× (x2 − δ, x2 + δ) ⊆ U,

co oznacza, że wraz z każdym swoim elementem, zbiór U zawiera prostokąt otwarty,
otaczający ten punkt i zawarty w U . σ-ciało Bor(R × R) borelowskich podzbiorów
płaszczyzny jest zdefiniowane jako najmniejsze σ-ciało zawierające wszystkie zbiory
otwarte.

Twierdzenie 4.1.4 Bor(R)⊗Bor(R) = Bor(R× R).

Dowód. Udowodnimy najpierw, że Bor(R) ⊗ Bor(R) ⊆ Bor(R × R). Ponieważ dla
otwartego zbioru V ⊆ R, zbiór V × R jest otwarty więc, rozważając rodzinę

{B ∈ Bor(R) : B × R ∈ Bor(R× R)},

bez trudu sprawdzimy, że taka rodzina jest równa Bor(R). Podobny argument można
zastosować do drugiej osi; stąd dla dowolnego borelowskiego prostokąta A×B mamy

A×B = (A× R) ∩ (R×B) ∈ Bor(R× R),

co implikuje żądaną inkluzję.
Zauważmy, że dla dowodu inkluzji przeciwnej Bor(R × R) ⊆ Bor(R) ⊗ Bor(R)

wystarczy sprawdzić, że dowolny zbiór otwarty U ⊆ R × R należy do σ-ciała pro-
duktowego. Rozumując jak w dowodzie Twierdzenia 0.3.3 można pokazać, że taki
zbiór U można wyrazić jako przeliczalną sumę prostokątów otwartych, co oznacza, że
U ∈ Bor(R)⊗Bor(R). ♦
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Przykład 4.1.5 Z twierdzenia powyżej wynika, że przekątna ∆, jako zbiór domknięty
należy do Bor(R) ⊗ Bor(R); tę samą własność ma wykres każdej funkcji ciągłej f :
R→ R. Ogólniej, jeżeli funkcja f jest borelowska to jej wykres G można zapisać jako

G =
∞⋂
n=1

∞⋃
k=−∞

f−1 [[k/n, (k + 1)/n)]× [[k/n, (k + 1)/n)] ,

co pokazuje, że G ∈ Bor(R)⊗Bor(R). ♦

4.2 Produktowanie miar

Niech (X,Σ, µ) i (Y,Θ, ν) będą dwiema σ-skończonymi przestrzeniami miarowymi.
Przedstawimy teraz konstrukcję miary produktowej µ ⊗ ν, określonej na Σ ⊗ Θ. Jak
się okaże, jest to jedyna taka miara, która spełnia naturalny wzór

µ⊗ ν(A×B) = µ(A) · ν(B)

dla wszystkich prostokątów mierzalnych.

Lemat 4.2.1 Niech F będzie ciałem podzbiorów X×Y , generowanym przez prostokąty
postaci A×B, gdzie A ∈ Σ, B ∈ Θ. Wtedy funkcja zbioru κ zdefiniowana dla F ∈ F
wzorem

(∗∗) κ(F ) =
∫
X
ν(Fx) dµ(x)

jest przeliczalnie addytywna; ponadto, κ(A×B) = µ(A) · ν(B) dla wszystkich A ∈ Σ,
B ∈ Θ.

Dowód. Zauważmy, że dla F ∈ F , F jest skończoną sumą prostokątów mierzalnych
(Lemat 4.1.2), a stąd łatwo wynika, że funkcja x → ν(Fx) jest Σ-mierzalną funkcją
prostą. Ta uwaga uzasadnia poprawność wzoru (∗∗). Addytywność funkcji κ wynika
z własności całki: jeżeli E,F ∈ F są rozłączne to

κ(E ∪ F ) =
∫
X
ν((E ∪ F )x) dµ(x) =

∫
X

(ν(Ex) + ν(Fx)) dµ(x) =

=
∫
X
ν(Ex) dµ(x) +

∫
X
ν(Fx) dµ(x) = κ(E) + κ(F ).

Ponadto κ jest ciągła z dołu: jeżeli Fn ∈ F i Fn ↑ F ∈ F to dla każdego x ∈ X mamy
(Fn)x ↑ Fx i dlatego ν((Fn)x) → ν(Fx), z ciągłości miary ν. Stąd i z twierdzenia o
zbieżności monotonicznej

κ(Fn) =
∫
X
ν((Fn)x) dµ(x)→

∫
X
ν(Fx) dµ(x) = κ(F ).

Ostatecznie κ jest przeliczalnie addytywna jako funkcja addytywna i ciągła z dołu
(Twierdzenie 1.2.5). Wzór κ(A×B) = µ(A) ·ν(B) wynika natychmiast ze wzoru (∗∗).
♦
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Twierdzenie 4.2.2 Niech (X,Σ, µ) i (Y,Θ, ν) będą σ-skończonymi przestrzeniami
miarowymi. Na σ-ciele Σ ⊗ Θ istnieje jedyna miara µ ⊗ ν, spełniająca dla każdego
A ∈ Σ i B ∈ Θ warunek

(a) µ⊗ ν(A×B) = µ(A) · ν(B).

Dla dowolnego zbioru E ∈ Σ ⊗ Θ funkcje x → ν(Ex) i y → µ(Ey) są mierzalne
względem odpowiednich σ-ciał i zachodzą wzory

(b) µ⊗ ν(E) =
∫
X
ν(Ex) dµ(x) =

∫
Y
µ(Ey) dν(y).

Dowód. Funkcja κ zdefiniowana w Lemacie 4.2.1 jest przeliczalnie addytywna na
ciele F prostokątów mierzalnych i dlatego rozszerza się do miary na σ(F) = Σ ⊗ Θ,
patrz Twierdzenie 1.7.3. Jedyność miary produktowej wynika stąd, że każda miara
spełniająca wzór (∗∗) musi być równa funkcji κ na F , por. Lemat 4.1.2. Zauważmy, że
jeżeli miary µ i ν są σ-skończone toX×Y można pokryć przeliczalną sumą prostokątów
mierzalnych miary κ skończonej.

Wzór (b) sprawdzimy najpierw przy założeniu, że µ(X) i ν(Y ) są wartościami
skończonymi. Niech E będzie rodziną tych zbiorów E ∈ Σ ⊗ Θ, dla których funkcja
x→ ν(Ex) jest Σ-mierzalna oraz

µ⊗ ν(E) =
∫
X
ν(Ex) dµ(x).

Bez trudu sprawdzamy, że rodzina E zawiera wszystkie prostokąty mierzalne i skoń-
czone rozłączne sumy takich prostokątów. Stąd i z Lematu 4.1.2 widać, że F ⊆ E . Aby
poazać, że E = Σ⊗Θ wystarczy upewnić się, że E jest klasą monotoniczną i zastosować
Twierdzenie 1.7.2. Niech na przykład En ∈ E i En ↓ E. Wtedy ν(Ex) = limn ν((En)x)
więc funkcja x→ ν(Ex) jest mierzalna oraz

µ⊗ ν(E) = lim
n
µ⊗ ν(En) = lim

n

∫
X
ν((En)x) dµ(x) =

=
∫
X

lim
n
ν((En)x) dµ(x) =

∫
X
ν(Ex) dµ(x),

gdzie zastosowaliśmy ciągłość miary skończonej µ⊗ ν z góry oraz twierdzenie Lebes-
gue’a o zbieżności ograniczonej (dla całki względem µ). Drugi ze wzorów (b) można
sprawdzić analogicznie.

Jeżeli µ i ν są σ-skończone to możemy napisać X i Y jako wstępujące sumy

X =
⋃
n

Xn, Y =
⋃
n

Yn,

gdzie zbiory Xn ∈ Σ są miary µ skończonej i zbiory Yn ∈ Θ są miary ν skończonej.
Niech E ∈ Σ ⊗ Θ, E =

⋃
nEn, gdzie En = E ∩ (Xn × Yn). Wtedy każdy zbiór En

spełnia wzór (b), czyli

µ⊗ ν(En) =
∫
X
ν((En)x) dµ(x).
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Przechodząc po obu stronach do granicy n → ∞ otrzymamy analogiczną tożsamość
dla zbioru E. ♦

Dodajmy, że nawet jeśli miary µ i ν są zupełne to miara produktowa µ⊗ν nie musi
być zupełna na Σ ⊗ Θ, por. Zadanie 3.5.9. Z Twierdzenia 4.2.2 wynika w szczegól-
ności, że istnieje jedyna miara λ2 = λ ⊗ λ na borelowskich podzbiorach płaszczyzny.
Taka płaska miara Lebesgue’a λ2 jest jedyną miarą na płaszczyźnie, uogólniającą ele-
mentarny wzór na pole prostokąta. Miarę λ2 można też skonstruować, postępując jak
w rozdziale 1, to znaczy definiując λ2 na pierścieniu generowanym przez prostokąty
postaci [a, b)× [c, d), a następnie rozszerzając miarę na generowane przez nie σ-ciało.
Konstrukcja z Twierdzenia 4.2.2 pozwala uniknąć komplikacji w rachunkach, dzięki
temu, że kluczowe fakty wyprowadza się ze znanych już własności całki.

4.3 Twierdzenie Fubiniego

Twierdzenie Fubiniego, czyli wzór na całkę względem miary produktowej jest już pro-
stą konsekwencją Twierdzenia 4.2.2. Twierdzenie to zwykle podaje się w następujących
dwóch wersjach.

Twierdzenie 4.3.1 (Twierdzenie Fubiniego) Niech (X,Σ, µ) i (Y,Θ, ν) będą σ-
skończonymi przestrzeniami miarowymi. O funkcji Σ⊗Θ-mierzalnej f : X × Y → R
załóżmy, że

(i) f jest nieujemna, lub

(ii) f jest µ⊗ ν-całkowalna.
Wtedy funkcje

I : x→
∫
Y
f(x, y) dν(y), J : y →

∫
X
f(x, y) dµ(x),

(przyjmujące być może wartości nieskończone) są mierzalne względem Σ i, odpowied-
nio, θ oraz

(∗∗∗)
∫
X×Y

f dµ⊗ν =
∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y).

Dowód. Zauważmy, że dla funkcji charakterystycznej f = χE zbioru E ∈ Σ ⊗ Θ,
wzory (***) redukują się do wzoru (b) z Twierdzenia 4.2.2. Stosując addytywność
całek łatwo stąd wynioskować, że teza zachodzi dla każdej funkcji prostej.

Jeżeli f ­ 0 to biorąc ciąg mierzalnych funkcji prostych fn monotonicznie zbieżny
do f otrzymamy stąd dowód przy założeniu (i). Istotnie, I(x) = limn In(x), gdzie
In : x→

∫
Y fn(x, y) dν(y) z twierdzenia o zbieżności monotonicznej dla całki względem

ν. Dlatego I jest funkcją mierzalną; prechodząc do granicy we wzorze∫
X×Y

fn dµ⊗ ν =
∫
X
In(x) dµ(x),
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otrzymujemy natychmiast∫
X×Y

f dµ⊗ ν =
∫
X
I(x) dµ(x),

ponieważ po lewej stronie działa twierdzenie o zbieżności monotoniznej dla całki wzglę-
dem µ ⊗ ν, a po prawej dla całki względem miary µ. Drugi ze wzorów (***) można
wyprowadzić zupełnie analogicznie.

Zauważmy, że dla funkcji całkowalnej f ­ 0 mamy I(x) <∞ dla µ-prawie wszyst-
kich x, co wynika natychmiast z pierwszego wzoru (***). Dlatego też, jeżeli funkcja
f = f+ − f− jest µ⊗ ν-całkowalna to możemy zastosować udowodnioną część twier-
dzenia do f+ i f− i odjąć otrzymane wyniki stronami, a to da wzory całkowe dla f .
♦

Twierdzenie Fubiniego nie zachodzi dla funkcji, które są jedynie mierzalne — na
przykład całki iterowane mogą być skończone, ale dawać różne wyniki, por. Zadania
3.5.10 i 3.5.11.

4.4 Produkty skończone i nieskończone

Dla trzech przestrzeni σ-skończonych (Xi,Σi, µi) możemy zdefiniować ich produkt jako
produkt przestrzeni (X1×X2,Σ1⊗Σ2, µ1⊗µ2) oraz (X3,Σ3, µ3). Ta uwaga prowadzi
do następującego uogólnienia Twierdzenia 4.2.22.

Twierdzenie 4.4.1 Jeżeli (Xi,Σi, µi) są dla i = 1, . . . , n σ-skończonymi przestrze-
niami miarowymi to na σ-ciele

⊗
i¬n Σi podzbiorów X =

∏
i¬nXi, generowanych przez

wszystkie kostki mierzalne A1 × A2 × . . . × An, istnieje jedyna miara µ =
⊗

i¬n µi
spełniająca, dla wszystkich Ai ∈ Σi, warunek

µ(A1 × A2 × . . .× An) = µ1(A1) · µ2(A2) · . . . · µn(An).

W szczególności na przestrzeni euklidesowej Rn można zdefiniować n-wymiarową
miarę Lebesgue’a λn, przyjmując

λn =
⊗
i¬n

λ.

Miara λn może być rozważana na σ-ciele⊗
i¬n

Bor(R) = Bor(Rn),

generowanym przez wszystkie n-wymiarowe kostki borelowskie; por. Zadanie 3.5.14.

2szczegóły dowodu zostaną pominiete
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Twierdzenie Fubiniego pokazuje, że całka względem miary n-wymiarowej może być
sprowadzona do n całek iterowanych, Zauważmy na przykład, że dla funkcji nieujemnej
f : R3 → R możemy napisać∫

R3
f dλ3 =

∫
R

∫
R

∫
R
f(x1, x2, x3) dλ(x1) dλ(x2) dλ(x3),

a w istocie jest 3! takich wzorów, uwzględniających różne kolejności liczenia całek.
Rozważa się też produkty nieskończone przestrzeni miarowych probabilistycznych.

Dowód twierdzenia poniżej pomijamy; w szczególnych przypadkach twierdzenie to
omówimy dokładniej w dalszym ciągu.

Twierdzenie 4.4.2 Jeżeli (Xn,Σn, µn) jest ciągiem przestrzeni probabilistycznych to
na σ-ciele

⊗
n Σn podzbiorów X =

∏
nXn, generowanych przez wszystkie skończenie

wymiarowe kostki mierzalne postaci

E = A1 × A2 × . . .× An ×Xn+1 ×Xn+2 × . . . ,

gdzie Ai ∈ Σi dla i ¬ n, istnieje jedyna miara µ =
⊗

n µn spełniająca, dla wszystkich
zbiorów E jak wyżej, warunek

µ(E) = µ1(A1) · µ2(A2) · . . . · µn(An).

4.5 Miara na zbiorze Cantora

Zagadnienie nieskończonych produktów zilustrujemy następującym ważnym przykła-
dem3. Na zbiorze dwuelementowym X0 = {0, 1} możemy zdefiniować miarę µ =
1/2(δ0 + δ1), określoną na wszystkich podzbiorach X0. Zauważmy, że dla n ∈ N,
miara

⊗
i¬n µ na {0, 1}n jest po prostu unormowaną miarą liczącą: każdy punkt prze-

strzeni ma miarę 1/2n. Okazuje się, że operacja nieskończonego produktu nawet dla
tak prostej miary jak µ prowadzi do jakościowo zupełnie innej miary.

Niech K = {0, 1}N będzie zbiorem wszystkich nieskończonych ciągów zerojedyn-
kowych. Nietrudno sprawdzić, że na zbiorze K można określić metrykę d wzorem

d(x, y) = 1/n gdzie n = min{k : x(k) 6= y(k)},

dla x 6= y; ponadto przyjmujemy d(x, x) = 0. Zauważmy, że zbieżność w metryce d
to zbieżność po współrzędnych, to znaczy dla xn, x ∈ K, zbieżność d(xn, x) → 0 jest
równoważna temu, że xn(k) → x(k) dla każdego k (co w tym przypadku oznacza, że
xn(k) = x(k) dla dostatecznie dużych n). Dowodzi się, że przestrzeń K jest zwarta
w metryce d — ten fakt wynika też z następującego twierdzenia, które mówi, że
przestrzeń K jest nieco tylko innym opisem zbioru Cantora.

3ta część podana jest nieco szkicowo i stanowi materiał nieobowiązkowy
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Twierdzenie 4.5.1 Funkcja

f : K → [0, 1], f(x) =
∞∑
n=1

2x(n)
3n

,

jest homeomorfizmem pomiedzy przestrzenią K i zbiorem f [K] ⊆ [0, 1], który jest
trójkowym zbiorem Cantora C.

Dowód. Jeżeli d(x, y) < 1/n to x(i) = y(i) dla i ¬ n i dlatego

|f(x)− f(y)| ¬

∣∣∣∣∣∣
∞∑

k=n+1

2(x(k)− y(k))
3k

∣∣∣∣∣∣ ¬
∞∑

k=n+1

2
3k

= 2 · 1
3n+1

1
1− 1/3

= 1/3n.

Ta zależność oznacza, że funkcja f jest ciągła. Z drugiej strony dla x 6= y biorąc
najmniejsze n, takie że x(n) 6= y(n), otrzymujemy

|f(x)− f(y)| ­ 2/3n −
∞∑

k=n+1

2|x(k)− y(k)|
3k

­ 2/3n − 1/3n = 1/3n,

co dowodzi różnowartościowości f oraz faktu, że funkcja odwrotna też jest ciągła.
Oczywiście f [K] = C, jako że elementy C to te liczby z [0, 1], które w rozwinięciu
trójkowym mają tylko cyfry 0 i 2. ♦

Dlatego też zbiór K = {0, 1}N jest po prostu nazywany zbiorem Cantora. Dla
funkcji ϕ : A → {0, 1} dziedzinę funkcji A oznaczać będziemy A = dom(ϕ). Dla
dowolnego skończonego zbioru A ⊆ N definiujemy

[ϕ] = {x ∈ K : x(i) = ϕ(i) dla i ∈ dom(ϕ)}.

Zauważmy, że dla A = {1, 2, . . . , n} i dowolnej ϕ : A→ {0, 1}, jeśli x ∈ [ϕ] to [ϕ] jest
kulą o środku w x i promieniu 1/n względem metryki d.

Lemat 4.5.2 Zbiory postaci [ϕ] są jednocześnie otwarte i domknięte w K. Rodzina
takich zbiorów stanowi bazę topologii w K.

Dowód. Zbiór postaci [ϕ] jest otwarty bo jeżeli x ∈ [ϕ] i n jest taką liczbą, że dom(ϕ) ⊆
{1, 2, . . . , n} to kula B = B1/n(x) (o środku w x i promieniu 1/n) zawiera te y,
które zgadzają się z x na pierwszych n współrzędnych, a zatem B ⊆ [ϕ]. Z drugiej
strony dopełnienie zbioru [ϕ] jest skończoną sumą zbiorów postaci [ψ], gdzie dom(ψ) =
dom(ϕ) i ψ 6= ϕ. Dlatego [ϕ] jest także zbiorem domkniętym. ♦

Oznaczmy przez C ciało podzbiorówK generowane przez wszystkie cylindry postaci
[ϕ], gdzie dom(ϕ) ⊆ N. Zauważmy, że jest przeliczalnie wiele takich funkcji ϕ i dlatego
ciało C też jest przeliczalne, patrz Zadanie 1.9.9. Można sprawdzić, że każdy zbiór
C ∈ C jest sumą skończenie wielu zbiorów postaci [ϕ] i dlatego każdy taki zbiór C jest
otwarto-domknięty.
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Lemat 4.5.3 Zbiór C ∈ C wtedy i tylko wtedy gdy istnieje n i C ′ ⊆ {0, 1}n, takie że

(†) C = C ′ × {0, 1} × . . . .

Dowód. Zauważmy, że rodzina zbiorów postaci jak w (†) jest ciałem i zawiera cylindry
postaci [ϕ]. ♦

Zdefiniujemy teraz funkcję zbioru ν : C → [0, 1] wzorem

ν(C) =
|C ′|
2n

,

gdzie C jest zapisany w postaci (†). Nietrudno sprawdzić, że wielkość ν(C) nie zależy
od sposobu przedstawienia zbioru C oraz że ν jest addytywną funkcją zbioru.

Twierdzenie 4.5.4 Funkcja ν rozszerza się jednoznacznie do miary na Bor(K). Mia-
ra ta (oznaczana w dalszym ciągu przez ν) ma następującą własność: dla każdego
B ∈ Bor(K) i ε > 0 istnieje zbiór C ∈ C, taki że ν(B 4 C) < ε.

Dowód. Zauważmy, że ν, rozpatrywana na ciele C jest ciągła z góry na zbiorze pu-
stym, bo jeśli Cn ∈ C i Cn ↓ ∅ to Cn = ∅ dla dużych n. Jest to konsekwencja zwartości
przestrzeni K. Dlatego też ν jest przeliczalnie addytywna na C i rozszerza się jedno-
znacznie na σ(C), patrz Twierdzenie 1.7.3, przy czym σ(C) = Bor(K), jako że zbiory
z C są otwarte oraz każdy zbiór otwarty jest sumą przeliczalną zbiorów z C. Własność
rozszerzenia miary wynika z Twierdzenia 1.5.6. ♦

Miara ν skonstruowana powyżej spełnia wzór

ν([ϕ]) =
1

2|dom(ϕ)| ,

dla cylindrów [ϕ]. Jak widać ν =
⊗

n µ, gdzie µ jest miarą na {0, 1} wspomnianą na
początku tej części. Zauważmy, że ν znika na punktach , a więc także na zbiorach prze-
liczalnych. Zbiór Cantora K z miarą ν jest naturalnym modelem probabilistycznym
dla “nieskończonego ciągu niezależnych rzutów symetryczną monetą”; por. Problemy
3.6.

Wspomnijmy na koniec, że miara ν jest ściśle związana ze strukturą grupową zbioru
Cantora K. Przypomnimy, że zbiór {0, 1} jst grupą (dodawania mod 2). Oznaczając
to działanie przez ⊕ możemy zdefiniować

x⊕ y = (x(n)⊕ y(n))n ∈ K,

dla x, y ∈ K. W ten sposób K jest grupą z działaniem ⊕. Mamy x ⊕ x = 0, czyli
−x = x w tej grupie. Ponadto działanie ⊕ jest ciągłe; jeżeli xn → x i yn → y
to xn ⊕ yn → x ⊕ y, co wynika natychmiast z natury zbieżności w K. Mówimy w
takim przypadku, że grupa K jest grupą topologiczną. Z ciągłości działania grupowego
wynika, ze translacja x⊕B zbioru borelowskiego B też jest zbiorem borelowkim (patrz
Problem 3.6.E) oraz ν(x⊕B) = ν(B); mówimy że ν jest miarą niezmienniczą na grupie,
albo miarą Haara grupy.
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4.6 Zadania

4.6.1 Niech f : R→ R+ będzie funkcją borelowską. Wykazać, że zbiór pod jej wykre-
sem {(x, y) : 0 ¬ y ¬ f(x)} jest borelowskim podzbiorem płaszczyzny.

4.6.2 Niech f : X → R+ będzie nieujemną funkcją mierzalną na przestrzeni (X,Σ, µ);
niech P = {(x, t) : 0 ¬ t ¬ f(x)} będzie zbiorem pod wykresem funkcji. Sprawdzić,
że P należy do σ-ciała Σ⊗Bor(R) oraz wywnioskować z twierdzenia Fubiniego, że

µ⊗ λ(P ) =
∫
X
f dµ.

4.6.3 Zauważyć, że zbiór borelowski A ⊆ [0, 1]2 jest płaskiej miary zero wtedy i tylko
wtedy, gdy λ(Ax) = 0 dla prawie wszystkich x ∈ [0, 1].

4.6.4 Zauważyć, że jeśli zbiory borelowskie A,B ⊆ [0, 1]2 spełniają zależność λ(Ax) =
λ(Bx) dla wszystkich x to λ2(A) = λ2(B).

4.6.5 Obliczyć miarę Lebesgue’a zbiorów

A = {(x, y) : x ∈ Q lub y ∈ Q}; B = {(x, y) : x− y ∈ Q}.

4.6.6 Wychodząc ze znanego faktu, że izometrie płaszczyzny nie zmieniają pola pro-
stokątów wykazać, że płaska miara Lebesgue’a jest niezmiennicza na izometrie płasz-
czyzny.

4.6.7 Zauważyć, że płaska miara Lebesgue’a jest niezmiennicza na translacje oraz
zachodzi wzór λ2(Jr[B]) = r2λ2(B) dla B ∈ Bor(R2), gdzie Jr jest jednokładnością o
skali r.

4.6.8 Wyprowadzić z tw. Fubiniego

(i) wzór na objętość stożka o wysokości h, który na podstawie ma zbiór borelowski
B ⊆ R2;

(ii) wzór na objętość kuli o promieniu r w R3 i R4.

4.6.9 Zauważyć, że λ⊗ λ nie jest miarą zupełną na L⊗ L.

4.6.10 Niech ν będzie miarą liczącą na wszystkich podzbiorach N. Podać przykład
funkcji f : N×N→ R, dla której całki iterowane w twierdzeniu Fubiniego dają różne
wyniki skończone.

Wskazówka: Określić niezerowe wartości f(n, n) i f(n+ 1, n) dla n ∈ N.

4.6.11 Na kwadracie jednostkowym rozważyć funkcje

f(x, y) =
2xy

(x2 + y2)2
g(x, y) =

x2 − y2

(x2 + y2)2
,

f(0, 0) = g(0, 0) = 0. Zbadać całkowalność, istnienie całek iterowanych, ich równość i
odnieść te obserwacje do twierdzenia Fubiniego.
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4.6.12 Wykazać, że dla całkowalnej funkcji f : [0, 1]2 → R zachodzi wzór∫ 1

0

∫ x

0
f(x, y) dλ(y) dλ(x) =

∫ 1

0

∫ 1

y
f(x, y) dλ(x) dλ(y).

4.6.13 Niech A będzie σ–ciałem na [0, 1], generowanym przez zbiory przeliczalne.
Pokazać, że przekątna ∆ = {(x, y) ∈ [0, 1]2 : x = y} nie należy do A⊗A.

4.6.14 Funkcja f : Rn → Rk jest borelowska jeśli f−1[B] ∈ Bor(Rn) dla B ∈ Bor(Rk).
Tutaj Bor(Rn) oznacza σ-ciało generowane przez otwarte podzbiory Rn. Sprawdzić,
że

(i) Bor(R2) jest generowane przez otwarte prostokąty U × V ;
(ii) Bor(Rn) jest generowane przez otwarte kostki U1 × U2 × . . .× Un;

(iii) każda funkcja ciągła f : Rn → R jest borelowska;
(iv) funkcja g = (g1, g2) : R → R2 jest borelowska wtedy i tylko wtedy gdy g1, g2 są

borelowskie.

4.6.15 Wywnioskować z poprzedniego zadania, że jeśli g1, g2 : R→ R są mierzalne to
g1 + g2, g1 · g2 też są mierzalne.

4.6.16 Niech f : X → Y będzie odwzorowaniem mierzalnym pomiędzy przestrzeniami
(X,Σ, µ) i (Y,A), to znaczy f−1[A] ∈ Σ dla każdego A ∈ A. Sprawdzić, że wzór
ν(A) = µ(f−1[A]) definiuje miarę na A. Te miarę nazywamy obrazem µ przez f ;
oznaczamy ν = f [µ].

4.7 Problemy

4.7.A Przy założeniu hipotezy continuum można odcinek [0, 1] uporządkować relacją
≺ tak, że każdy odcinek początkowy {a : a ≺ b} w tym porządku jest przeliczalny dla
b ∈ [0, 1]. Zauważyć, że zbiór

Z = {(x, y) ∈ [0, 1]× [0, 1] : x ≺ y},

nie spełnia twierdzenia Fubiniego, a więc nie jest mierzalny na płaszczyźnie.

4.7.B Pokazać, że istnieje na płaszczyźnie zbiór A miary płaskiej zero, taki że A
przecina wszystkie prostokąty mierzalne miary dodatniej.

Wskazówka: Uogólnić najpierw tw. Steinhausa do postaci: jeśli A,B są miary do-
datniej to A−B zawiera liczbę wymierną.

4.7.C Niech ∆ = {(x, x) : x ∈ X} będzie przekątną. Udowodnić, że ∆ należy do
P(X)⊗ P(X) wtedy i tylko wtedy gdy |X| ¬ c.
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4.7.D Niech

h : {0, 1}N → [0, 1], h(x) =
∞∑
n=1

x(n)
2n

.

Sprawdzić, że h jest funkcją ciągłą, a więc mierzalną względem σ–ciała Bor{0, 1}N i
h[{0, 1}N] = [0, 1].

Wykazać, że miara λ na [0, 1] jest obrazem miary Haara ν na {0, 1}N przez tę funkcję.

4.7.E Niech A ⊆ {0, 1}N będzie zbiorem tych x, w których pojawia się, choć raz,
ustalony skończony ciąg (ε1, ε2, . . . , εn) zer i jedynek. Wykazać, że ν(A) = 1.

4.7.F Udowodnić, że ν(x⊕A) = ν(A) dla każdego borelowskiego zbioru A w zbiorze
Cantora {0, 1}N.

Wskazówka: Sprawdzić najpierw wzór dla zbiorów C z ciała C zdefiniowanego w
4.5.

4.7.G Zbiór borelowski A ⊆ {0, 1} jest nazywany zdarzeniem resztowym jeżeli e⊕A =
A dla dowolnego e ∈ {0, 1}, dla którego e(n) = 0 dla prawie wszystkich n. Udowodnić,
że ν(A) = 0 lub ν(A) = 1 dla każdego zdarzenia resztowego (jest tzw. prawo 0-1
Kołmogorowa).

Wskazówka: Jeżeli A jest takim zdarzeniem to ν(A ∩ C) = ν(A)ν(C) dla każdego
C ∈ C; skorzystać z tego, że wielkość ν(A4 C) może być dowolnie mała.



Rozdział 5

Miary znakowane
i twierdzenie Radona-Nikodyma

If people do not believe that mathematics
is simple, it is only because they do not
realize how complicated life is.
John von Neumann

Rozdział jest w całości poświęcony związkom, jakie mogą zachodzić pomiędzy dwie-
ma miarami określonymi na tym samym σ-ciele. Głównym wynikiem jest tutaj tytuło-
we twierdzenie Radona-Nikodyma1, należące do najważniejszych faktów z teorii miary.
W ostatniej części dokonamy, w charakterze małego podsumowania, przeglądu miar
na prostej rzeczywistej.

5.1 Miary znakowane

Niech Σ będzie ustalonym σ-ciałem podzbiorów przestrzeni X. Jeżeli µ i ν są miarami
określonymi na Σ, to µ+ ν też jest miarą na Σ — sprawdzenie przeliczalnej addytyw-
ności µ + ν nie przedstawia trudności. W przypadku, gdy przynajmniej jedna z miar
µ i ν jest skończona można także rozważyć funkcję zbioru µ − ν na Σ. Taka funkcja
zbioru nie musi być miarą, jako że może przyjmować wartości ujemne. Jednakże µ−ν
spełnia warunek przeliczalnej addytywności, więc w pewnym sensie dalej jest miarą.

Definicja 5.1.1 Funkcję zbioru α : Σ → [−∞,∞], przyjmującą co najwyżej jedną z
wartości nieskończonych −∞,∞ nazywamy miarą znakowaną jeżeli α(∅) = 0 oraz

α

(⋃
n

An

)
=
∑
n

α(An),

dla każdego ciągu parami rozłącznych zbiorów An ∈ Σ.

1Otton Nikodym (1887-1974), matematyk polski, po wojnie w USA; Johann Radon (1887-1956)
pracował na Universität Breslau do roku 1945
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Jak się okaże, każda miara znakowana daje przedstawić się jako różnica dwóch
miar i można takiego rozkładu dokonać w pewien kanoniczny sposób.

Twierdzenie 5.1.2 (rozkład Hahna) Jeżeli α jest miarą znakowaną na σ-ciele Σ
podzbiorów X to istnieją rozłączne zbiory X+ i X−, takie że X = X+ ∪X− oraz dla
dowolnego A ∈ Σ,

(i) jeżeli A ⊆ X+ to α(A) ­ 0;

(ii) jeżeli A ⊆ X− to α(A) ¬ 0.

Dowód. Załóżmy dla przykładu, że α nie przyjmuje wartości −∞. Dla potrzeb do-
wodu powiedzmy, że zbiór B ∈ Σ jest negatywny, jeżeli α(A) ¬ 0 dla każdego zbioru
mierzalnego A ⊆ B. Niech r = infB α(B), gdzie infimum jest liczone po wszystkich
zbiorach negatywnych.

Wtedy istnieje zbiór negatywny B taki, że α(B) = r. Istotnie, z określenia kresu
dolnego (który, a priori, może być równy −∞) istnieje ciąg zbiorów negatywnych Bn,
taki że α(Bn) → r. Jak łatwo sprawdzić, zbiór B =

⋃
nBn jest także negatywny, a

więc dla każdego n

α(B) = α(Bn) + α(B \Bn) ¬ α(Bn),

co pokazuje, że α(B) = r (a w szczególności, że r > −∞). Niech X− = B i X+ =
X \X−. Wystarczy teraz upewnić się, że X+ jest pozytywny, to znaczy spełnia część
(ii) tezy twierdzenia.

Przypuśćmy, że E0 ⊆ X+ jest takim zbiorem mierzalnym, że α(E0) < 0. Wtedy
E0 nie może być negatywny bo inaczej mielibyśmy

α(B ∪ E0) = α(B) + α(E0) < α(B) = r,

co przeczyłoby definicji liczby r. Istnieje więc najmniejsza liczba naturalna k1 i E1 ⊆
E0 o własności α(E1) ­ 1/k1. Teraz

α(E0 \ E1) = α(E0)− α(E1) < 0

i możemy powtórzyć nasze ostatnie rozumowanie: istnieje najmniejsza liczba k2 ∈ N,
taka że dla pewnego E2 ⊆ E0 \ E1, α(E2) ­ 1/k2. W ten sposób definiujemy ciąg
parami rozłącznych zbiorów mierzalnych En ⊆ E0 i ciąg liczb kn ∈ N, takich że
α(En) ­ 1/kn dla każdego n, przy czym kn jest najmniejszą liczbą naturalną o tej
własności. Zauważmy, że α(E) <∞ dla każdego E ⊆ E0 (skoro α(E0) < 0) i dlatego,
stosując tę uwagę do zbioru E =

⋃
n­1En, wnioskujemy, że

α(E) =
∑
n

1/kn <∞,

co oznacza w szczególności, że limn 1/kn = 0. Dla zbioru F = E0 \E mamy α(F ) < 0
oraz jeżeli A ⊆ F to, dla każdego n, A ⊆ E0 \ En, a zatem α(A) ¬ 1/(kn − 1) z
minimalności liczby kn. Oznacza to, że α(A) ¬ 0, czyli że F jest negatywnym zbiorem,
a to stanowi sprzeczność, gdyż znowu mielibyśmy α(F ∪B) < α(B) = r. ♦
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Wniosek 5.1.3 (Rozkład Jordana) Jeżeli α jest miarą znakowaną na σ-ciele Σ
podzbiorów X to istnieją miary α+ i α− na Σ, takie że α = α+ − α−.

Dowód. Jeżeli X = X+ ∪ X− jest rozkładem Hahna dla miary znakowanej α to
wystarczy zdefiniować

α+(A) = α(A ∩X+), α−(A) = −α(A ∩X−),

dla A ∈ Σ. Wtedy α+ i α− są przeliczalnie addytywne i nieujemne, a więc są miarami;
dla dowolnego A ∈ Σ,

α(A) = α(A ∩X+) + α(A ∩X−) = α+(A)− α−(A);

w ten sposób dowód został zakończony. ♦

5.2 Absolutna ciągłość i singularność miar

Powróćmy do dwóch miar µ i ν, określonych na tym samym σ-ciele Σ podzbiorów
przestrzeni X. Następujące dwie definicje określają związki, jakie mogą zachodzić
pomiędzy tymi miarami.

Definicja 5.2.1 Mówimy, że miara ν jest absolutnie ciągła względem miary µ, jeżeli
dla wszystkich A ∈ Σ zachodzi implikacja

jeżeli µ(A) = 0 to ν(A) = 0.

Relację absolutnej ciągłości miar oznaczamy przez ν � µ.

Definicja 5.2.2 Mówimy, że miara ν jest singularna względem miary µ, jeżeli istnieją
A,B ∈ Σ, takie że X = A∪B, A∩B = ∅, µ(A) = 0 i µ(B) = 0. Relację singularności
miar oznaczamy przez ν ⊥ µ.

Zauważmy, że obie własności są w pewnym sensie przeciwstawne, patrz Zadanie
5.5.5.

Przykład 5.2.3 Jeżeli ν dana jest przez całkę

ν(A) =
∫
A
f dµ

z nieujemnej funkcji mierzalnej f , por. Twierdzenie 3.3.5, to ν � µ, bo całka po
zbiorze miary zero jest równa zero.

Prostym przykładem singularności miar jest λ ⊥ δx. gdzie δx jest deltą Diraca w
punkcie x ∈ R. ♦

Odnotujmy, że rozkład Jordana α = α+ − α− był tak zdefiniowany, że α+ ⊥ α−;
nietrudno sprawdzić, że jest to jedyny rozkład miary znakowanej na różnice dwóch
miar wzajemnie singularnych.
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Definicja 5.2.4 Dla miary znakowanej α = α+ − α− przyjmujemy

|α| = α+ + α−;

a miarę |α| nazywamy absolutnym wahaniem miary znakowanej α.
Dla dwóch miar znakowanych α i β określonych na tym samym σ-ciele Σ przyj-

mujemy, że α� β gdy |α| � |β|; podobnie α ⊥ β jeżeli |α| ⊥ |β|.

Nietrudno jest wysłowić warunki |α| � |β| i |α| ⊥ |β| w języku miar α+, α− oraz
β+, β−, patrz Zadanie 5.5.6.

Definicja absolutnej ciągłości miar ma swoje przełożenie na warunek, który trochę
uzasadnia nazwę tej relacji.

Lemat 5.2.5 Jeżeli ν jest miarą skończoną na Σ to dla dowolnej miary µ na Σ wa-
runek ν � µ jest równoważny warunkowi

(∗) (∀ε > 0)(∃δ)(∀A ∈ Σ)µ(A) < δ ⇒ ν(A) < ε.

Dowód. Dostateczność warunku (∗) jest oczywista. Załóżmy, że (∗) nie zachodzi;
wtedy istnieje ε > 0 oraz zbiory An ∈ Σ, takie że µ(An) < 1/2n i ν(An) ­ ε. Wtedy
dla A = lim supnAn mamy µ(A) = 0, jako że

µ(A) ¬ µ(
∞⋃
k=n

Ak) ¬
∞∑
n=k

1/2k = 1/2n−1

dla każdego n. Z drugiej strony z ciągłości miary skończonej ν z góry możemy wynio-
skować, że ν(A) ­ ε, więc ν nie jest absolutnie ciągła względem µ. ♦

5.3 Twierdzenie Radona-Nikodyma

Tytułowe twierdzenie to po prostu odwrócenie uwagi z Przykładu 5.2.4: każda miara
absolutnie ciągła jest dana przez całkę (przy dość ogólnych założeniach). Przed udo-
wodnieniem tego podstawowego i nieoczywistego faktu podamy pewien lemat tech-
niczny, potrzebny w głównym dowodzie.

Lemat 5.3.1 Niech µ i ν będą skończonymi miarami na Σ; załóżmy, że ν 6= 0 i
ν � µ. Wtedy istnieje P ∈ Σ, taki że µ(P ) > 0 i P jest pozytywny dla miary
znakowanej ν − εµ, to znaczy ν(B) ­ εµ(B) dla każdego mierzalnego B ⊆ P .

Dowód. Dla każdego n możemy rozważyć miarę znakowaną ν−(1/n)µ i odpowiadający
jej rozkład Hahna przestrzeni X = X+

n ∪X−n jak w Twierdzeniu 5.1.2. Niech

A =
⋃
n

X+
n , B =

⋂
n

X−n .

Wtedy B ⊆ X−n dla każdego n więc ν(B)−(1/n)µ(B) ¬ 0, co daje ν(B) = 0. Ponieważ
ν(X) > 0 i X = A ∪ B więc ν(A) > 0 i także, z warunku ν � µ, µ(A) > 0. Istnieje
zatem n, takie że µ(X+

n ) > 0; wtedy ε = 1/n oraz P = X+
n spełniają tezę. ♦
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Twierdzenie 5.3.2 (Radona-Nikodyma) Niech (X,Σ, µ) będzie σ-skończoną prze-
strzenią miarową i niech ν będzie taką miarą znakowaną na Σ, że |ν| jest σ-skończona.
Jeżeli ν � µ to istnieje mierzalna funkcja f : X → R, taka że dla wszystkich A ∈ Σ

ν(A) =
∫
A
f dµ.

Dowód. Zauważmy przede wszystkim, że wystarczy udowodnić twierdzenie dla miary
ν nieujemnej — w ogólnym przypadku miary znakowanej zastosujemy tę wersję do
ν+ i ν−. Ponadto możemy dodatkowo założyć, że obie miary µ i ν są skończone — w
przypadku σ-skończonym będziemy mogli zapisać X jako rozłączną sumę X =

⋃
nXn,

gdzie µ(Xn), ν(Xn) < ∞ i zdefiniować odpowiednią funkcję na każdej części Xn z
osobna.

NiechH będzie rodziną wszystkich mierzalnych funkcji h ­ 0, takich że dla każdego
A ∈ Σ zachodzi nierówność∫

A
h dµ ¬ ν(A).

Wykażemy, że w rodzinie H istnieje funkcja, w pewnym sensie, maksymalna i że
spełnia ona tezę twierdzenia. Niech

r = sup{
∫
X
h dµ : h ∈ H};

wtedy istnieje ciąg hn ∈ H, taki że limn

∫
X hn dµ = r. Rozważmy funkcje gn , gdzie

gn = max
i¬n

hi.

Dowolny zbiór A możemy zapisać jako rozłączną sumę A =
⋃
i¬nAi, gdzie gn = hi na

Ai; wtedy∫
A
gn dµ =

∑
i¬n

∫
Ai
hi dµ ¬

∑
i¬n

ν(Ai) = ν(A).

Pokazuje to, że także gn ∈ H; teraz biorąc granicę punktową f = limn gn mamy f ∈ H
i
∫
X f dµ = r z twierdzenia o zbieżności monotonicznej. Zauważmy, że

∫
X f dµ ¬

ν(X) <∞, więc f jest funkcją skończoną ν-prawie wszędzie.
Aby przekonać się, że f jest poszukiwaną funkcją sprawdzimy, że miara ν0, dana

wzorem

ν0(A) = ν(A)−
∫
A
f dµ

dla A ∈ Σ jest tożsamościowo równa zeru. W przeciwnym przypadku, gdy ν0(X) > 0,
na mocy Lematu 5.3.1, istnieje ε > 0 i P ∈ Σ, takie że

εµ(P ∩ A) ¬ ν0(P ∩ A) = ν(P ∩ A)−
∫
P∩A

f dµ,
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dla wszystkich A ∈ Σ. Rozważmy funkcję g = f+εχP i A ∈ Σ; korzystając z ostatniej
nierówności, mamy∫

A
g dµ =

∫
A
f dµ+ εµ(P ∩ A) ¬

¬
∫
A
f dµ+ν(P∩A)−

∫
P∩A

f dµ =
∫
A\P

f dµ+ν(P∩A) ¬ ν(A\P )+ν(P∩A) = ν(A).

Stąd g ∈ H, ale
∫
X g dµ >

∫
X f dµ = r, co jest sprzecznością z definicją liczby r. ♦

Twierdzenie nie musi zachodzić dla miar µ, które nie są σ-skończone, patrz Zadanie
5.5.7. Funkcja f spełniająca tezę twierdzenia Radona-Nikodyma bywa oznaczana przez

f =
dν
dµ
,

funkcja ta nosi nazwę pochodnej Radona-Nikodyma miary ν względem miary µ. Ozna-
czenie na tę pochodną jest przydatne w zapamiętywaniu niektórych wzorów, patrz
Zadania 5.5.9 i 5.3.2 poniżej. Zauważmy, że pochodna jest wyznaczona niejednoznacz-
nie, ale ν-prawie wszędzie.

Wniosek 5.3.3 Dla miar µ i ν jak w Twierdzeniu 5.3.2, wzór∫
X
g dν =

∫
X
g · dν

dµ
dµ,

zachodzi dla każdej ν-całkowalnej funkcji g.

Dowód. Dla g = χA wzór jest konsekwencją definicji pochodnej RN. Z addytyw-
ności całki łatwo wynioskować wzór dla funkcji prostych. Z twierdzenia o zbieżności
monotonicznej otrzymamy tezę dla funkcji nieujemnych itd. (czytelnik sam uzupełni
szczegóły, por. Zadanie 5.5.8). ♦

Następujący prosty wniosek jest wykorzystywany w rachunku prawdopodobieństwa
do definiowania tak zwanych warunkowych wartości oczekiwanych.

Wniosek 5.3.4 Niech (X,Σ, µ) będzie σ-skończoną przestrzenią miarową i niech Σ0 ⊆
Σ będzie dowolnym σ-ciałem. Wtedy dla każdego A ∈ Σ istnieje Σ0-mierzalna funkcja
f , taka że

µ(A ∩B) =
∫
B
f dµ,

dla wszystkich B ∈ Σ0.

Dowód. Wystarczy zastosować Twierdzenie 5.3.2 do miary µ na Σ0 i ν danej wzorem
ν(B) = µ(A ∩B) dla B ∈ Σ0. ♦

Z twierdzenia Radona-Nikodyma nietrudno wywnioskować następujące twierdzenie
o rozkładzie miar.



G. Plebanek, MIARA I CAŁKA Rozdział 5: Twierdzenie Radona-Nikodyma 77

Twierdzenie 5.3.5 Niech µ i ν będą σ-skończonymi miarami, określonymi na tym
samym σ-ciele. Wtedy istnieje rozkład ν = νa + νs, gdzie νa � µ i νs ⊥ µ.

Dowód. Mamy ν ¬ µ+ ν więc tym bardziej ν � µ+ ν; niech f będzie pochodną RN
miary ν względem miary µ + ν. Zauważmy, że wtedy 0 ¬ f ¬ 1 ν-prawie wszędzie.
Niech X1 = {x : f(x) < 1} i X2 = {x : f(x) = 1}. Ponieważ

ν(X2) =
∫
X2
f dµ+

∫
X2
f dν = µ(X2) + ν(X2),

więc µ(X2) = 0. Definiujemy

νa(A) = ν(A ∩X1), νs(A) = ν(A ∩X2) dla A ∈ Σ.

Wtedy oczywiście ν = νa + νs i νs ⊥ µ, jako że νs jest skupiona na X2. Pozostaje
sprawdzić, że µa � µ. Niech µ(A) = 0. Wtedy

νa(A) = ν(A ∩X1) =
∫
A∩X1

f dµ+
∫
A∩X1

f dν =
∫
A∩X1

f dν.

Stąd ∫
A∩X1

(1− f) dν = 0,

co implikuje νa(A) = ν(A ∩X1) = 0, jako że 1− f > 0 na zbiorze X1. ♦

5.4 Miary na prostej rzeczywistej

W tej części dokonamy przeglądu miar ν określonych na σ-ciele Bor(R), które są
lokalnie skończone, to znaczy przyjmują skończone wartości na każdym przedziale.
Zauważmy, że taka miara ν jest automatycznie σ-skończona. Własność lokalnej skoń-
czoności jest jednak istotnie silniejsza: biorąc

ν =
∑
q∈Q

δq

możemy łatwo określić miarę σ-skończoną, która przyjmuje wartość ∞ na każdym
niepustym przedziale.

Jeżeli ν � λ to Twierdzenie 5.3.2 i wzór w 5.3.3 pozwalają zredukować całkę
względem ν do klasycznej całki Lebesgue’a. Wiele podstawowych miar probabilistycz-
nych na prostej jest absolutnie ciągłych względem λ; na przykład rozkład normalny
(miara Gaussa), czyli podstawowa miara probabilistyczna, jest zadana jako

ν(A) =
1√
2π

∫
A
e−x

2/2 dλ(x).
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W ogólnym przypadku, każdą ν możemy przedstawić jako ν = νa + νs, gdzie,
zgodnie z Twierdzeniem 5.3.5, νa � λ i νs ⊥ λ. Rozważmy w dalszym ciągu przypadek
ν ⊥ λ. Taka miara ν może być dodatnia tylko na przeliczalnej ilości punktów. Możemy
więc napisać

ν =
∑
n

cnδtn + ν ′,

dla pewnych cn ­ 0, pewnych punktów tn ∈ R, gdzie miara ν ′ spełnia już warunek
µ′{t} = 0 dla każdego t. Klasycznym przykładem miary skupionej na zbiorze prze-
liczalnym jest rozkład Poissona ν, czyli miara probabilistyczna skupiona na liczbach
całkowitych nieujemnych i spełniająca, dla ustalonego parametru s ­ 0, warunek

ν{n} =
e−ssn

n!
.

Zauważmy, że dla miary postaci µ =
∑
n cnδtn , całka redukuje się do sumy szeregu:∫

R
g dµ =

∑
n

cng(tn).

Pozostałe miary mają tę własność, że znikaja na punktach (czyli są bezatomowe,
por. Zadanie 5.5.14), ale są skupione na zbiorze miary Lebesgue’a zero. Takie miary
rzeczywiście istnieją, jak mogliśmy przekonac się w 4.5.

Wszystkie miary lokalnie skończone na prostej można wygenerować w opisany
poniżej sposób. Zacznijmy od prostej uwagi.

Lemat 5.4.1 Jeżeli µ i ν są miarami na Bor(R) i dla każdego a < b mamy

µ[a, b) = ν[a, b) <∞,

to µ = ν.

Dowód. Rodzina

{B ∈ Bor(R) : B ⊆ [0, 1], µ(B) = ν(B)}

jest klasą monotoniczną więc µ(B) = ν(B) dla wszystkich borelowskich podzbiorów
[0, 1) z Twierdzenia 1.7.2. Tę uwagę można odnieść do każdego odcinka postaci [n, n+
1). Ostatecznie, dla B ∈ Bor(R) mamy

µ(B) =
∑
n

µ(B ∩ [n, n+ 1)) =
∑
n

ν(B ∩ [n, n+ 1)) = ν(B).

♦
Niech F : R→ R będzie funkcją niemalejącą; przyjmijmy

λF ([a, b)) = F (b)− F (a),



G. Plebanek, MIARA I CAŁKA Rozdział 5: Twierdzenie Radona-Nikodyma 79

dla a < b. Tę definicję można w oczywisty sposób rozszerzyć na elementy pierścienia
przedziałów, rozważanego w rodziale 1. Jesli funkcja zbioru λF ma być przeliczalnie
addytywna to konieczne jest, aby funkcja F była lewostronnie ciągła, ponieważ wtedy
dla ciągu hn > 0, hn → 0

F (x)− F (x− hn) = λF [x− hn, x)→ 0,

jako że przekrój
⋂
n[x−hn, x) jest pusty. Jak się okazuje dla funkcji lewostronnie ciągłej

F , funkcja zbioru λF jest przeliczalnie addytywna na pierścieniu odcinków i rozszerza
się jednoznacznie do miary borelowskiej na prostej, co można wykazać analogicznie,
jak w przypadku miary Lebesgue’a. Istnieje jednak w tej chwili znacznie krótsza droga.

Twierdzenie 5.4.2 Dla każdej lewostronnie ciągłej niemalejącej funkcji F : R → R
istnieje jedyna miara (Lebesgue’a-Stieltjesa) λF określona na Bor(R), taka że

λF [a, b) = F (b)− F (a) dla a < b.

Dowód. Załóżmy, dla ustalenia uwagi, że

M = lim
x→∞

F (x) =∞, K = lim
x→−∞

F (x) = −∞.

Niech funkcja h będzie zdefiniowana wzorem

h(y) = sup{x : F (x) ¬ y.}

Wtedy warunek a ¬ h(y) jest równoważny warunkowi F (a) ¬ y na mocy lewostronnej
ciągłości F , natomiast warunek h(y) < b oznacza y < F (b). Tym samym dla a < b
mamy

h−1 [[a, b)] = [F (a), F (b)).

Funkcja h : R→ R jest niemalejąca, a wiec borelowska, patrz Zadanie 2.5.11. Możemy
więc rozważyć obraz miary

λF = h[λ], gdzie λF (B) = λ(h−1[B]),

dla B ∈ Bor(R), patrz Zadanie 4.6.16. Wtedy λF spełnia żądane równanie. Jedyność
otrzymujemy natychmiast z Lematu 5.4.1. ♦

Zauważmy, że każda miara lokalnie skończona µ na prostej jest postaci µ = λF dla
pewnej funkcji F — wystarczy przyjąć, że F (x) = µ[0, x) dla x ­ 0 i F (x) = −µ[x, 0)
poza tym, por. Zadanie 5.5.12. Należy zaznaczyć, że wszędzie tutaj stosowaliśmy zasa-
dę rozważania odcinków postaci [a, b) przy definiowaniu miar postaci λF ; trzeba mieć
świadomość, że równie dobrze można rozważać wzór postaci λF (a, b] = F (b) − F (a)
— wtedy F jest oczywiście prawostronnie ciągła.

W niektórych przypadkach całka względem miary λF wyraża się w prosty sposób.
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Twierdzenie 5.4.3 Jeżeli funkcja niemalejąca F ma ciągłą pochodną to∫
R
g dλF =

∫
R
g · F ′ dλ,

dla każdej λF -całkowalnej funkcji g.

Dowód. Jeżeli g = χ[a,b) dla a < b to po lewej stronie wzoru mamy λF [a, b) =
F (b)− F (a), a po prawej∫

R
g · F ′ dλ =

∫ b

a
F ′(x) dx,

czyli tyle samo. Mamy F ′ ­ 0 i możemy zdefiniować miarę µ wzorem

µ(B) =
∫
B
F ′ dλ, B ∈ Bor(R).

Jak dotąd sprawdziliśmy, że µ = λF na odcinkach, a więc µ = λF z Lematu 5.4.1.
Innymi słowy, wzór z twierdzenia jest więc spełniony dla każdej funkcji g = χB, gdzie
B ∈ Bor(R). Dalej rozszerzamy wzór standardowo na funkcje proste oraz mierzalne
(por. dowód 5.3.2). ♦
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5.5 Zadania

5.5.1 Zauważyć, że rozkład Hahna X = X+ ∪X− dla miary znakowanej κ jest ”jed-
noznaczny z dokładnością do zbiorów miary zero” (co to znaczy?). Czy rozkład α na
różnicę dwóch miar jest jedyny?

5.5.2 Zauważyć, że jeśli miara znakowana ν przyjmuje tylko wartości rzeczywiste, to
jest ograniczona.

5.5.3 Niech f będzie taką funkcją mierzalną, że przynajmniej jedna z funkcji f+, f−

jest µ–całkowalna i niech ν(A) =
∫
A f dµ dla zbiorów A ∈ Σ (tutaj µ jest miarą na

Σ). Zapisać ν+, ν− oraz |ν| za pomocą całek.

5.5.4 Zauważyć, że dla miary znakowanej ν, |ν|(A) = 0 wtedy i tylko wtedy gdy
ν(B) = 0 dla każdego B ⊆ A (A,B ∈ Σ).

5.5.5 Zauważyć, że jeżeli ν � µ i ν ⊥ µ to ν = 0.

5.5.6 Zauważyć, że ν � µ wtedy i tylko wtedy gdy ν+, ν− � µ i że podobną własność
ma relacja singularności miar.

5.5.7 Twierdzenie RN nie musi zachodzić dla µ, które nie są σ–skończone. Niech
Σ będzie σ–ciałem generowanym przez przeliczalne podzbiory [0, 1]; rozważyć miarę
liczącą µ na Σ oraz zerojedynkową miarę ν na Σ.

5.5.8 Uzupełnić szczegóły dowodu Wniosku 5.3.2 według podanego szkicu.

5.5.9 Niech µ, ν będą σ–skończonymi miarami na Σ, takimi że ν � µ i µ � ν.
Wykazać, że prawie wszędzie zachodzi zależność

dν
dµ

= 1/
dν
dµ
.

5.5.10 Niech µ, ν będą miarami σ–skończonymi, ν � µ i niech funkcja f = dν
dµ będzie

wszędzie dodatnia. Sprawdzić, że µ� ν.

5.5.11 Niech (X,Σ, µ) będzie przestrzenią probabilistyczną i niech A będzie σ–ciałem
zawartym w Σ. Wykazać, że dla każdej Σ–mierzalnej funkcji całkowalnej f : X → R
istnieje A–mierzalna funkcja g, taka że dla każdego A ∈ A∫

A
g dµ =

∫
A
f dµ.

(Taka g = E(f |A) nazywa się w probabilistyce warunkową wartością oczekiwaną.)

5.5.12 Dystrybuantą miary probabilistycznej µ na Bor(R) nazywamy funkcję Fµ :
R→ R, daną wzorem Fµ(x) = µ(−∞, x) dla x ∈ R. Sprawdzić, że Fµ jest niemalejącą
funkcją lewostronnie ciągłą, przy czym limx→∞ Fµ(x) = 1.

Uwaga: Czasami przyjmuje się definicję Fµ(x) = µ(−∞, x]; jak wpływa to na wła-
sności Fµ?
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5.5.13 Wykazać, że dystrybuanta Fµ jest ciągła wtedy i tylko wtedy gdy µ znika na
punktach.

5.5.14 Miara znikająca na punktach bywa nazywana miarą ciągłą. Wykazać, że pro-
babilistyczna miara µ na Bor(R) jest ciągła wtedy i tylko wtedy, gdy jest bezatomowa.

5.5.15 Jak juz wiemy (!) na zbiorze trójkowym Cantora C istnieje miara probabili-
styczna µ, która znika na punktach. Niech F (x) = µ((−∞, x)) będzie dystrybuantą
tej miary. Zauważyć, że F jest funkcją ciągłą, oraz F [C] = [0, 1]. Wywnioskować stąd,
że obraz zbioru miary zero przez funkcję ciągłą nie musi być miary zero, a nawet nie
musi być mierzalny.

5.5.16 Obliczyć (albo sprowadzić do znanej całki); podać uzasadnienia rachunków:

(i)
∫
R f(x) dµ gdzie µ = δ0, µ = δ0 + δ1, µ =

∑∞
n=1 δn (tutaj δx oznacza miarę

probabilistyczną skupioną w punkcie x).
(ii)

∫
[0,1] x

2 dλ;
(iii)

∫
[0,1] f dλ; gdzie f(x) = x dla x /∈ Q, f(x) = 0 dla x ∈ Q;

(iv)
∫

[0,2π] sinx dµ, gdzie µ(A) =
∫
A x

2 dλ(x);

(v)
∫
R f dλ; gdzie f(x) = x2 dla x ∈ Q, f(x) = 0 dla x /∈ Q;

(vi)
∫
R 1/(x2 + 1) dλ(x);

(vii)
∫
R cosx dµ, gdzie µ(A) =

∫
A 1/(x2 + 1) dλ(x);

(viii)
∫
R cosx dµ, gdzie µ jest taka że µ(−∞, x) = arctan x+ π/2;

(ix)
∫

[0,∞)[x] dµ, gdzie µ jest taka że µ[n, n+ 1) = n−3;
(x)

∫
R(x− [x]) dµ, gdzie

µ =
∞∑
n=1

δn+1/n;

(xi)

lim
n→∞

∫
[0,1]

n2x+ 2
n2x+ n+ 3

dλ(x) lim
n→∞

∫
[0,∞]

n

xn2 + 3
dλ(x).

5.6 Problemy

5.6.A Niech (X,Σ, µ) będzie przestrzenią miarową. Dla dowolnego Z ⊆ X piszemy
µ∗(Z) = inf{µ(A) : A ∈ Σ, Z ⊆ A}. Zauważyć, że µ∗ jest miarą zewnętrzną (jest
przeliczalnie podaddytywna i monotoniczna), ale na ogół nie jest addytywna.

Udowodnić, że dla ustalonego Z ⊆ X wzór ν(A ∩ Z) = µ∗(A ∩ Z) definiuje miarę na
σ–ciele {A ∩ Z : A ∈ Σ} podzbiorów Z.
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5.6.B Istnieje przestrzeń metryczna Z ⊆ [0, 1] i probabilistyczna miara ν na Bor(Z),
taka że ν(K) = 0 dla K ⊆ Z zwartych.

Wskazówka:Wziąć na początek Z ⊆ [0, 1] niemierzalny w sensie Lebesgue’a i miarę
ν z poprzedniego problemu.

5.6.C Niech (X,Σ, µ) będzie przestrzenią probabilistyczną. Jak wiemy, A ∼ B ⇐⇒
µ(A 4 B) = 0 definiuje relację równoważności. Niech B = {[A] : A ∈ Σ} oznacza
rodzinę klas abstrakcji tej relacji.

Zauważyć, że na B można wprowadzić naturalne działania

[A] ∨ [B] = [A ∪B], [A] ∧ [B] = [A ∩B], −[A] = [Ac].

Wtedy B staje się algebrą Boole’a (B,∨,∧, - , 0, 1) (to znaczy, że wprowadzone działa-
nia maja takie same własności jak ”zwykłe” działania mnogościowe; 0 = [∅], 1 = [X]).
Tak zdefiniowana algebrę nazywamy algebrą miary.

5.6.D Sprawdzić, że algebra miary B jest przestrzenią metryczną, gdzie metrykę za-
dajemy wzorem d([A], [B]) = µ(A4B). Udowodnić, że metryka ta jest zupełna.

5.6.E Algebra miary Lebesgue’a λ na [0, 1] jest przestrzenią ośrodkową.



Rozdział 6

Przestrzenie funkcji całkowalnych

Moim największym odkryciem matema-
tycznym jest Stefan Banach.
Hugo Steinhaus

W rozdziale ostatnim wprowadzimy klasyczne przestrzenie Banacha postaci Lp(µ)
i wyprowadzimy podstawowe ich własności. Oprócz tego rozważymy ogólne własności
miar na przestrzeniach euklidesowych i zastosujemy je do znalezienia zbiorów gęstych
w przestrzeniach funkcji całkowalnych.

6.1 Klasyczne nierówności

W podrozdziale wyprowadzimy klasyczne nierówności całkowe Cauchy’ego-Höldera
oraz Minkowskiego. Niech, po raz kolejny, (X,Σ, µ) będzie ustaloną przestrzenią mia-
rową σ-skończoną; dalej milcząco przyjmujemy, że wszystkie rozważane funkcje są
mierzalne względem Σ.

Lemat 6.1.1 Dla dowolnych liczb dodatnich a, b, p, q, jeżeli 1/p+ 1/q = 1 to

ab ¬ ap

p
+
bq

q
.

Dowód. Rozważmy funkcję f(t) = tp−1 na odcinku [0, a]. Z założenia p > 1 więc
istnieje funkcja odwrotna do f dana wzorem g(s) = s1/(p−1). Zauważmy, że pola pod
wykresami funkcji f : [0, a]→ R i g : [0, b]→ R pokrywają kwadrat [0, a]× [0, b]. Stąd

ab ¬
∫ a

0
tp−1 dt+

∫ b

0
s1/(p−1) ds =

[
tp

p

]a
0

+
[
sq

q

]b
0

=
ap

p
+
bq

q
,

ponieważ 1 + 1/(p− 1) = p/(p− 1) = q. ♦
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Definicja 6.1.2 Dla dowolnej funkcji (całkowalnej bądź nie) f : X → R i p ­ 1
wyrażenie

||f ||p =
(∫

X
|f |p dµ

)1/p

nazywamy p-tą normą całkową funkcji.

Twierdzenie 6.1.3 (Nierówność Cauchy-ego-Höldera) Dla dowolnych funkcji f, g
i liczb p, q > 0, takich że 1/p+ 1/q = 1, zachodzi nierówność∫

X
|f · g| dµ ¬ ||f ||p · ||g||q.

Dowód. Oczywiście nierówność jest prawdziwa, gdy jedna z norm jest nieskończona.
W przypadku skończonym, dla dowolnego x ∈ X podstawmy

a =
|f(x)|
||f ||p

, b =
|g(x)|
||g||q

do nierówności w Lemacie 6.1.1; wtedy otrzymamy wszędzie nierówność

|fg|
||f ||p · ||g||q

¬ 1
p
· |f |

p

||f ||pp
+

1
q
· |g|

q

||g||qq
.

Całkując tę ostatnią nierówność względem miary otrzymujemy∫
X |fg| dµ
||f ||p · ||g||q

¬ 1
p

+
1
q

= 1,

co kończy dowód. ♦

Twierdzenie 6.1.4 (Nierówność Minkowskiego) Dla dowolnych funkcji f, g i licz-
by p ­ 1, zachodzi nierówność

||f + g||p ¬ ||f ||p + ||g||p.

Dowód. Nierówność oczywiście zachodzi dla p = 1 (patrz Twierdzenie 3.2.3). Dla p > 1
możemy dobrać liczbę q spełniającą warunwk 1/p + 1/q = 1. Wtedy, uwzględniając
(p− 1)q = p i stosując nierówność z 6.1.3,

||f + g||p =
∫
X
|f + g|p dµ ¬

¬
∫
X
|f | · |f + g|p−1 dµ+

∫
X
|g| · |f + g|p−1 dµ ¬

||f ||p
(∫

X
|f + g|(p−1)q dµ

)1/q

+ ||g||p
(∫

X
|f + g|(p−1)q dµ

)1/q

=

= (||f ||p + ||g||p)) ·
(∫

X
|f + g|p dµ

)1/q

= (||f ||p + ||g||p)) · ||f + g||p/q.

Teraz, dzieląc (skrajne) strony nierówności przez ||f + g||p/qp , otrzymujemy nierówność
Minkowskiego. Należy jednak zaznaczyć, że dla poprawności tego argumentu konieczne
jest, aby sprawdzić, że jeśli ||f ||p, ||g||p <∞ to ||f + g||p <∞, patrz Zadanie 6.6.1. ♦
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6.2 Przestrzenie Banacha funkcji całkowalnych

Niech E będzie przestrzenią liniową nad ciałem liczb rzeczywistych lub zespolonych.
Oznacza to, że w E określone jest działanie dodawania (wektorów) oraz mnożenia
wektorów przez skalary z ciała, przy czym zachowane są aksjomaty dobrze znane z
algebry liniowej przestrzeni euklidesowych.

Definicja 6.2.1 Funkcję || · || : E → R+ nazywamy normą jeżeli dla dowolnych
x, y ∈ E i c z ciała skalarów zachodzą zależności

(i) ||x|| = 0 wtedy i tylko wtedy gdy x = 0;

(ii) ||c · x|| = |c| · ||x||;
(iii) ||x+ y|| ¬ ||x||+ ||y||.

Warunek (ii) w definicji nazywa się jednorodnością, a warunek (iii) oczywiście nie-
równością trójkąta. W każdej przestrzeni unormowanej (E, || · ||) możemy zdefiniować
metrykę wzorem

ρ(x, y) = ||x− y||,

dla x, y ∈ E. Zauważmy, że tak właśnie definiowana jest metryka w przestrzeni eukli-
desowej Rn, gdzie norma euklidesowa zadana jest wzorem

||x|| =

∑
i¬n
|x|2

1/2

.

Definicja 6.2.2 Przestrzeń unormowaną (E, || · ||) nazywamy przestrzenią Banacha,
jeżeli metryka wyznaczona przez normę jest zupełna.

Wspomniana zupełność oznacza, że dla ciągu xn wektorów z E, spełniającego
warunek Cauchy’ego

lim
n,k→∞

||xn − xk|| = 0,

istnieje x ∈ E, taki że ||xn − x|| → 0 (czyli granica tego ciągu). Przestrzenie euklide-
sowe są więc przestrzeniami Banacha, ale w analizie funkcjonalnej rozważa się wiele
przestrzeni Banacha nieskończenie wymiarowych, na ogół złożonych z pewnych funk-
cji. Na przykład norma ||f || = supt |f(t)| czyni z przestrzeni funkcji ciągłych C[0, 1]
przestrzeń Banacha. Naszym celem będzie wprowadzenie przestrzeni Banacha funkcji
całkowalnych.

Funkcja || · ||p zdefiniowana w 6.1.2 nie bez powodu nosi nazwę p-tej normy: nie-
równość Minkowskiego 6.1.4 to po prostu nierówność trójkąta dla || · ||p. Jednorodność
|| · ||p wynika natychmiast z własności całki. Jedyny problem, to taki, że, formalnie
rzecz biorąc, || · ||p nie spełnia pierwszego aksjomatu normy, jako że ||f ||p = 0 oznacza
jedynie, że f = 0 prawie wszędzie. Aby pokonać tę przeszkodę dokonujemy następu-
jącego zabiegu.
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Definicja 6.2.3 Dla ustalonej przestrzeni miarowej (X,Σ, µ) symbolem Lp(µ) ozna-
czamy przestrzeń wszystkich funkcji mierzalnych f : X → R, dla których ||f ||p < ∞.
Przyjmujemy przy tym zasadę, że utożsamiamy elementy Lp(µ) równe prawie wszędzie.

Formalnie rzecz biorąc, Lp(µ) nie składa się więc z funkcji, ale z klas abstrakcji
relacji równoważności

f = g prawie wszędzie.

Powszechnie stosuje się jednak umowę, że elementy Lp(µ) nazywamy po prostu funk-
cjami; nie prowadzi to do większych niejasności. Tym samym Lp(µ) jest przestrzenią
unormowaną z p-normą całkową. Lp(µ) bywa oznaczana też Lp(X,Σ, µ) lub, w innych
przypadkach, Lp(X). Na przykład piszemy najczęściej Lp[0, 1] i Lp(R) dla odpowied-
nich przestrzeni całkowych względem miary Lebesgue’a na [0, 1] lub R.

Twierdzenie 6.2.4 Przestrzeń Lp(µ) z normą || · ||p jest przestrzenią Banacha.

Dowód. Rozważmy p = 1. Niech fn ∈ L1(µ) będzie ciągiem Cauchy’ego, to znaczy∫
X
|fn − fk| dµ→ 0,

gdy n, k →∞. Wtedy dla ε > 0 z nierówności Czebyszewa∫
X
|fn − fk| dµ ­ ε · µ{x : |fn(x)− fk(x)| ­ ε},

wynika, że ciąg fn jest Cauchy’ego według miary. Z Twierdzenia 2.4.6 istnieje więc
rosnący ciąg liczb naturalnych nk i funkcja f , taki że fnk → f prawie wszędzie. Z kolei
z lematu Fatou∫

X
|f | dµ ¬ lim inf

k

∫
X
|fnk | dµ <∞,

jako że z warunku Cauchy’ego wynika oczywiście ograniczoność ciągu całek
∫
X |fn| dµ.

Stosując jeszcze raz lemat Fatou otrzymujemy∫
X
|f − fnk | dµ =

∫
X

lim inf
j
|fnj − fnk | dµ ¬ lim inf

j

∫
X
|fnj − fnk | dµ ¬ ε,

dla dostatecznie dużych k. Ostatecznie, ponieważ∫
X
|f − fn| dµ ¬

∫
X
|f − fnk | dµ+

∫
X
|fnk − fn| dµ,

więc istotnie f jest granicą ciągu fn w przestrzeni Lp(µ).
Dowód dla p > 1 jest dość automatyczną modyfikacją przedstawionego argumentu,

patrz Zadanie 6.6.2 ♦
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Oprócz rzeczywistych przestrzeni funkcji całkowalnych rozważa się ich odpowied-
niki zespolone. Dla przestrzeni (X,Σ, µ) i funkcji f : X → C, powiemy, że f jest
funkcją mierzalną gdy f−1[B] ∈ Σ dla każdego borelowskiego podzbioru C (przypo-
mnijmy, że C mozna utożsamiać z R×R). Możemy taką funkcję przedstawić w postaci
f = f1 + i ·f2 dla funkcji rzeczywistych f1, f2 : X → R. Nietrudno sprawdzić, że f jest
mierzalna wtedy i tylko wtedy gdy f1, f2 sa mierzalne, patrz Zadanie 6.6.5. Dla funkcji
f : X → C mierzalnej jej moduł |f | =

√
f 2

1 + f 2
2 jest więc też mierzalny. Funkcja f

jest całkowalna przy niezmienionej definicji:
∫
X |f | dµ <∞, natomiast wzór∫

X
f dµ =

∫
X
f1 dµ+ i ·

∫
X
f2 dµ

można przyjąć za definicję całki. Klasyczne nierówności z podrozdziału 6.1 i Twier-
dzenie 6.2.4 pozostają prawdziwe dla funkcji zespolonych.

6.3 Jednakowa całkowalność

Jak widzieliśmy w dowodzie Twierdzenia 6.2.4 zbieżność ciągu fn do funkcji f w L1(µ)
pociąga za sobą zbieżność według miary. Prosty przykład

fn = n · χ[0,1/n]

pokazuje, że zbieżność według miary jest jednak istotnie słabsza niż ta w L1(µ). W
przypadku miary skończonej często stosuje się następujące kryterium zbieżności w
L1(µ).

Przypomnijmy, że dla funkcji całkowalnej f : X → R na przestrzeni miarowej
(X,Σ, µ), wzór ν(A) =

∫
A |f | dµ określa miarę ν i ν � µ. Dlatego na mocy Lematu

5.2.5 mamy warunek

(∀ε > 0)(∃δ > 0)(∀A ∈ Σ)
[
µ(A) < δ ⇒

∫
A
|f | dµ < ε

]
.

O ciągu funkcji calkowalnych fn mówimy, że jest on jednakowo całkowalny gdy
powyższy warunek jest spełniony jednostajnie po n, to znaczy

(∀ε > 0)(∃δ > 0)(∀A ∈ Σ)(∀n)
[
µ(A) < δ ⇒

∫
A
|fn| dµ < ε

]
.

Twierdzenie 6.3.1 Jeżeli µ(X) < ∞ to ciąg fn jest zbieżny w L1(µ) wtedy i tylko
wtedy gdy ciąg fn zbiega według miary oraz funkcje fn są jednakowo całkowalne

Dowód. Niech
∫
X |fn − f | dµ→ 0 dla fn, f ∈ L1(µ). Jak poprzednio,∫

X
|fn − f | dµ ­ ε · µ{x : |fn(x)− f(x)| ­ ε},
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dla każdego ε > 0, co dowodzi, że fn
µ−→ f . Sprawdźmy zatem jednakową całkowal-

ność. Dla ustalonego ε > 0 mamy
∫
X |fn − f | dµ < ε dla n ­ n0. Możemy dobrać

δ > 0, takie że dla wszystkich funkcji h ∈ {f, f1, . . . , fn0} zachodzi
∫
A |h| dµ < ε jeśli

tylko µ(A) < δ. Dla n > n0 mamy z kolei∫
A
|fn| dµ ¬

∫
A
|fn − f | dµ+

∫
A
|f | dµ ¬ 2ε,

co pokazuje, że ciąg fn jest jednakowo całkowalny.
Udowodnimy przeciwną implikację. Ustalmy ε > 0 i niech

An,k = {x : |fn(x)− fk(x)| ­ ε}.

Wtedy dla dowolnej liczby δ > 0 mamy µ(An,k) < δ dla dużych n, k i dlatego∫
X
|fn − fk| dµ =

∫
An,k

|fn − fk| dµ+
∫
X\An,k

|fn − fk| dµ ¬

¬
∫
An,k

|fn| dµ+
∫
An,k

|fk| dµ+ ε · µ(X),

co, z warunku jednakowej całkowalności, pociąga za sobą
∫
X |fn − fk| dµ → 0. Ciąg

fn jest ciągiem Cauchy’ego w L1(µ), a więc jest zbieżny (patrz twierdzenie 6.2.4). ♦

6.4 Miary na przestrzeniach euklidesowych

W tym podrozdziale omówimy kilka własności miar na przestrzeniach euklidesowych.
Jak sie za chwilę okaże, niektóre własności miary Lebesgue’a przysługują wszystkim
takim miarom i jest to raczej zasługa struktury σ-ciała zbiorów borelowskich niż samej
konstrukcji miary. Część tych faktów w istocie wymaga jedynie założenia metryczności
przestrzeni i w tej częsci ustalimy przestrzeń metryczną (X, d) — w przypadku, gdy
X = Rn metryka euklidesowa d dana jest wzorem

d(x, y) =
√∑
k¬n

(xk − yk)2.

Jak poprzednio piszemy Br(x) aby oznaczyć kulę Br(x) = {y : d(x, y) < r}. Zbiór
U nazywamy otwartym gdy dla każdego x ∈ U istnieje δ > 0, taka że Bδ(x) ⊆ U ;
analogicznie definiujemy zbiory domknięte i σ-ciało Bor(X).

Lemat 6.4.1 W przestrzeni metrycznej (X, d) każdy zbiór domknięty F mozna zapi-
sać w postaci F =

⋂
n Vn, gdzie zbiory Vn ⊆ X sa otwarte. Każdy zbiór otwarty w X

jest przeliczalną sumą zbiorów domkniętych.
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Dowód. Niech Vn będzie zbiorem tych x ∈ X, dla których istnieje a ∈ F , takie
że d(x, a) < 1/n. Z własności metryki łatwo sprawdzić, że zbiór Vn jest otwarty.
Oczywiście F ⊆ Vn dla każdego n. Jeżeli x ∈ ⋂n Vn to dla każdego n istnieje an ∈ F ,
taki że d(an, x) < 1/n. Oznacza to, że an → x i, z domkniętości F , x ∈ F . Drugie
stwierdzenie wynika z praw de Morgana. ♦

Twierdzenie 6.4.2 Niech µ będzie skończoną miarą na σ-ciele Bor(X) w przestrzeni
metrycznej X. Wtedy dla każdego B ∈ Bor(X) zachodzą zależności

(∗) µ(B) = sup{µ(F ) : F ⊆ B} = inf{µ(V ) : B ⊆ V },

gdzie F oznacza zawsze zbiór domknięty, a V zbiór otwarty.

Dowód. Oznaczmy przez A rodzinę tych B ∈ Bor(X), dla których spełniony jest wa-
runek (*). Jeżeli zbiór F jest domknięty to F =

⋂
n Vn dla pewnych zbiorów otwartych,

patrz Lemat 6.4.1, przy czym możemy założyć, że Vn ↓ F . Z ciągłości z góry miary
skończonej wynika, że µ(Vn)→ µ(F ). Stąd natychmiast wynika , że F ∈ A.

Wystarczy teraz wykazać, że A jest σ-ciałem, aby upewnić się że A = Bor(X).
Jeżeli A ∈ A to dla każdego ε > 0 istnieją zbiór otwarty V i domknięty F , takie że
F ⊆ A ⊆ V i µ(V \ F ) < ε. Wtedy

V c ⊆ Ac ⊆ F c i µ(F c \ V c) = µ(V \ F ) < ε,

co pokazuje, że Ac ∈ A.
Biorąc An ∈ A i A =

⋃
nAn, pokażemy, że A ∈ A. Dla ε > 0 i każdego n z

warunku An ∈ A istnieją zbiory domkniete Fn ⊆ An i otwarte Vn ⊇ An o własności
µ(Vn \ Fn) < ε/2n. Niech V =

⋃
n Vn i niech F =

⋃
n¬N Fn, gdzie liczba N jest tak

dobrana, że

µ(
⋃
n

Fn) < µ(
⋃
n¬N

Fn) + ε;

takie N istnieje na mocy ciągłości z dołu miary. Wtedy zbiór V ⊇ A jest otwarty
(jako suma zbiorów otwartych), a zbiór F ⊆ A jest domknięty (jako suma skończonej
ilości takich zbiorów). Ponadto,

µ(V \ F ) ¬ µ(
⋃
n

Vn \
⋃
n

Fn) + µ(
⋃
n

Fn \ F ) ¬
∑
n

ε/2n + ε = 2ε.

W ten sposób otrzymujemy A ∈ A i dowód został zakończony. ♦

Twierdzenie 6.4.3 (Łuzina) Niech g będzie funkcją borelowską na przestrzeni me-
trycznej X. Wtedy dla dowolnej miary skończonej na Bor(X) i ε > 0 istnieje zbiór
domknięty F ⊆ X, taki że µ(X \ F ) < ε i g jest funkcją ciągłą na zbiorze F .
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Dowód. Sprawdźmy najpierw, ze twierdzenie zachodzi dla funkcji prostej. Istotnie,
jeżeli

g =
∑
i¬n

ai · χBi ,

gdzie zbiory borelowskie Bi sa parami rozłączne to z Twierdzenia 6.4.1 dla każdego
i ¬ n istnieje zbiór domknięty Fi ⊆ Bi, przy czym µ(Bi \ Fi) < ε/n. Wtedy można
przyjąć F =

⋃
i¬n Fi; funkcja g jest ciągła na tym zbiorze (jako że zbiory Fi są parami

rozłączne).
Rozważmy funkcję nieujemną g i ε > 0. Wtedy istnieje X0 ∈ Bor(X) taki że

µ(X\X0) < ε/2 i funkcja g jest ograniczona na X0. Istnieje zatem ciąg funkcji prostych
gn zbieżny jednostajnie do g na zbiorze X0, patrz Twierdzenie 2.2.3. Z pierwszej części
dowodu możemy dobrać zbiory domknięte Fn, takie że

µ(X0 \ Fn) < ε/2n+1

i gn jest ciągła na Fn. Biorąc F =
⋂
n Fn mamy

µ(X \ F ) ¬ µ(X \X0) + µ(X0 \ F ) ¬ ε/2 +
∑
n

ε/2n+1 = ε.

Ponadto na zbiorze F wszystkie funkcje gn są ciągłe i zbieżne jednostajnie do g —
dlatego g jest ciągła na F .

Przypadek ogólny funkcji g : X → R wynika łatwo przez rozkład g = g+ − g−. ♦
Miarę µ zdefiniowaną na Bor(Rn) nazwiemy lokalnie skończoną jeżeli

µ([−k, k]n) <∞

dla każdego k, por. 5.4. Dla miar lokalnie skończonych mamy następujący wniosek z
poprzedniego twierdzenia.

Wniosek 6.4.4 Niech µ będzie miarą borelowską lokalnie skończoną na przestrzeni
euklidesowej Rn i niech B ∈ Bor(Rn) będzie zbiorem miary µ skończonej.

(a) Dla każdego ε > 0 istnieje zbiór zwarty F i otwarty V , takie że F ⊆ B ⊆ V i
µ(V \ F ) < ε.

(b) Jeżeli funkcja g : B → R jest borelowska to dla ε > 0 istnieje zbiór zwarty
F ⊆ A, taki że µ(A \ F ) < ε i g jest ciągła na F .

Dowód. Skoro µ(B) < ∞ to µ(B ∩ [−k, k]n) jest dla dużych k bliskie µ(A) i dla-
tego zagadnienie redukuje się do zbioru ograniczonego B; możemy teraz zastosować
poprzednie twierdzenie do przestrzeni metrycznej postaci [−k, k]n; przypomnijmy, że
podzbiory domknięte i ograniczone w przestrzeniach euklidesowych są zwarte. ♦

Wniosek 6.4.5 Niech µ będzie miarą lokalnie skończoną na Rn i niech V będzie ro-
dziną zbiorów otwartych, spełniającą warunki
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(i) V1 ∪ V2 ∈ V dla V1, V2 ∈ V;

(ii) dla każdego otwartego U ⊆ Rn istnieją Vk ∈ V, takie że U =
⋃
k Vk.

Wtedy dla każdego B ∈ Bor(Rn) miary µ skończonej i ε > 0 istnieje V ∈ V, taki że
µ(B 4 V ) < ε.

Dowód. Dla ε > 0 dobierzmy zbiór otwarty U ⊇ B, taki że µ(U \B) < ε/2. Z założenia
wynika, że istnieje wstępujący ciąg Vn ∈ V , taki że U =

⋃
n Vn. Wtedy µ(Vn)→ µ(U)

więc dla dużych n mamy µ(U \ Vn) < ε/2 i

µ(B 4 Vn) ¬ µ(U \ Vn) + µ(U \B) < ε/2 + ε/2 = ε.

♦

6.5 Zbiory gęste w L1

W przestrzeni Banacha E z normą || · || zbiór D ⊆ E jest gęsty jeżeli dla każdego
x ∈ E i ε > 0 istnieje d ∈ D, taki że ||d − x|| < ε. Inaczej mówiąc każdy x ∈ E
jest granicą pewnego ciągu dn ∈ D. Przestrzeń Banacha jest ośrodkowa gdy zawiera
zbiór gęsty przeliczalny. Poniżej rozważamy przestrzenie postaci L1(µ), ale wyniki
naturalnie uogólniają się na przestrzenie Lp(µ).

Lemat 6.5.1 Funkcje proste całkowalne stanowią zbiór gęsty w L1(µ).

Dowód. Niech f ∈ L1(µ) będzie funkcją nieujemną. Wtedy istnieje ciag funkcji pro-
stych sn zbieżny monotonicznie i prawie wszędzie do f . Otrzymujemy∫

X
(f − sn) dµ→ 0,

więc ||f − sn||1 → 0. ♦

Twierdzenie 6.5.2 W przestrzeni L1(µ) funkcji całkowalnych względem lokalnie skoń-
czonej miary µ na n-wymiarowej przestrzeni euklidesowej funkcje ciągłe stanowią zbiór
gęsty.

Dowód. (1) Niech g = χV , gdzie V jest otwartą kostką postaci

V = (a1, b1)× . . .× (an, bn).

Nietrudno pokazać, że dla każdego δ > 0 istnieje funkcja ciągła g : Rn → [0, 1], taka
że g(x) = 1 dla x ∈ Vδ i g(x) = 0 dla x /∈ V , gdzie

Vδ = (a1 + δ, b1 − δ)× . . .× (an + δ, bn − δ).



G. Plebanek, MIARA I CAŁKA Rozdział 6: Przestrzenie funkcji całkowalnych 93

Wtedy χV − g = 0 poza zbiorem V \ Vδ i dlatego

||χV − g||1 ¬ µ(V \ Vδ)→ 0 dla δ → 0.

Zauważmy, że stąd wynika, że funkcje ciągłe aproksymują też χV w przypadku, gdy
V jest skończoną sumą otwartych kostek.

(2) Niech χB ∈ L1(µ), czyli µ(B) <∞. Na mocy Wniosku 6.4.5 dla ε > 0 istnieje
zbiór V , będący skończoną sumą kostek i taki że µ(B 4 V ) < ε. Wtedy

||χB − χV || = µ(B 4 V ) < ε.

Dlatego z (1) wynika, że funkcje ciągłe aproksymują funkcję χB w normie || · ||1.
(3) Jeżeli s =

∑
i¬k aiχAi jest całkowalną funkcją prostą to z (2) dla każdego i ¬ k

istnieje funkcja ciągła gi, taka że

||gi − χAi ||1 < ε/(kM),

dla danego ε > 0, gdzie M = maxi¬k(|ai|+1). Wtedy funkcja g =
∑
i¬k aigi jest ciągła

i

||g − s||1 ¬
∑
i¬k

∫
|ai||χAi − gi| dµ ¬ ε.

(4) Ostatecznie, dla funkcji f ∈ L1(µ) tezę otrzymujemy z Lematu 6.5.1 ♦

W istocie można pokazać, że funkcje klasy C∞ (mające wszystkie pochodne cząst-
kowe ciągłe) leżą gęsto w L1(µ) dla µ jak w twierdzeniu powyżej — należy tylko
sprawdzić tę mocniejszą własność w części (1) dowodu.

Twierdzenie 6.5.3 Dla każdej miary lokalnie skończonej µ na Rn przestrzeń Bana-
cha L1(µ) jest ośrodkowa.

Dowód. Niech V bedzie rodziną wszystkich skończonych sum kostek otwartych postaci

V = (a1, b1)× . . .× (an, bn),

gdzie ai, bi ∈ Q. Wtedy V jest rodziną przeliczalną. Z Wniosku 6.4.5 wynika, że jeżeli
µ(B) <∞ to dla każdego ε > 0 istnieje V ∈ V , µ(V 4B) < ε. Dlatego rozumując jak
w dowodzie Twierdzenia 6.5.2 mozna sprawdzić, że rodzina funkcji postaci∑

i¬k
qiχVi , gdzie qi ∈ Q, Vi ∈ V

stanowi zbiór gęsty w L1(µ). ♦
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6.6 Zadania

6.6.1 Sprawdzić, że |a+ b|p ¬ 2p/q(|a|p+ |b|p), gdzie 1/p+1/q = 1; wynioskować stąd,
że Lp(µ) jest przestrzenią liniową.

6.6.2 Sprawdzić, że następujące fakty dowodzi się analogicznie jak dla L1(µ) (p ­ 1)

(i) Lp(µ) jest zupełna;
(ii) funkcje proste leżą gęsto w Lp(µ);

(iii) C[0, 1] leży gęsto w Lp[0, 1].

6.6.3 Ustalić, czy zachodzą jakieś inkluzje pomiędzy Lp(R) dla różnych p. A jak jest
w przypadku Lp[0, 1]?

6.6.4 Ustalić, które z poniższych stwierdzeń są prawdziwe zawsze, a które w przypad-
ku µ(X) <∞; fn jest tutaj ciągiem funkcji mierzalnych.

(i) jeśli fn są całkowalne i zbieżne jednostajnie do f to fn zbiegają w L1;
(ii) jeśli fn są całkowalne i zbieżne niemal jednostajnie do f to fn zbiegają w L1;

(iii) jeśli 0 ¬ f1 ¬ f2 ¬ . . . i supn
∫
fn dµ <∞ to granica jest całkowalna;

(iv) jeśli fn zbiegają w L1(µ) to pewnien podciąg zbiega prawie wszędzie;
(v) jeśli fn są całkowalne i zbieżne do 0 prawie wszędzie to fn są jednakowo całko-

walne;
(vi) jeśli |fn| ¬ g, gdzie

∫
g dµ <∞ to fn są jednakowo całkowalne;

(vii) jeśli |fn| ¬ g,
∫
g dµ <∞, fn zbiegają prawie wszędzie to fn zbiegają w L1(µ)

(viii) jeśli fn ∈ L2(µ)∩L1(µ) i fn zbiegają w L1(µ) to fn zbiegają w L2(µ); na odwrót?
(ix) (viii) przy dodatkowym założeniu, że fn są wspólnie ograniczone;

6.6.5 Zauważyć, że dla funkcji f : X → C, f = f1 + i · f2, jej mierzalność jest rów-
noważna mierzalności części rzeczywistej f1 i urojonej f2. Ponadto, f jest całkowalna
wtedy i tylko wtedy gdy f1, f2 są całkowalne.

6.6.6 Dla funkcji f : X → R na przestrzeni miarowej (X,Σ, µ) oznaczmy przez ||f ||∞
jej istotne supremum, to znaczy

||f ||∞ = inf{sup
X\A
|f | : µ(A) = 0}.

Wykazać, że || · ||∞ jest normą zupełną na przestrzeni L∞(µ), złożonych z tych funkcji,
dla których ||f ||∞ <∞, po utożsamieniu funkcji równych prawie wszędzie.

6.6.7 Wykazać, że dla f ∈ L∞[0, 1] zachodzi wzór limp→∞ ||f ||p = ||f ||∞.

6.6.8 Sprawdzić, że przestrzeń L∞[0, 1] nie jest ośrodkowa.

6.6.9 O mierze µ powiemy że jest ośrodkowa jeśli L1(µ) jest ośrodkową przestrzenią
Banacha. Wykazać, że µ jest ośrodkowa wtedy i tylko wtedy gdy istnieje przeliczalna
rodzina S ⊆ Σ że dla każdego A ∈ Σ

inf{µ(A4 S) : S ∈ S} = 0.
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6.7 Problemy

6.7.A Niech (X,Σ, µ) będzie bezatomową przestrzenią probabilistyczną. Wykazać, że
istnieje mierzalna funkcja f : X → [0, 1], taka że f [µ] = λ.

Wskazówka: Wystarczy zbudować g : X → {0, 1}N, taką że g[µ] = ν, gdzie ν jest
miarą Haara na zbiorze Cantora. Wybrać dla każdego n rozłączne zbiory Aε ∈ Σ,
ε ∈ {0, 1}n, tak że µ(Aε) = 2−n i Aε_0 ∪ Aε_1 = Aε.

6.7.B Wykazać, że jeśli (X1,Σ1, µ1) i (X2,Σ2, µ2) są dwiema ośrodkowymi bezatomo-
wymi przestrzeniami probabilistycznymi, to odpowiadające im algebry Boole’a A1 i
A2 są izomorficzne w następującym sensie: istnieje zachowująca działania boolowskie
bijekcja g : A1 → A2, która jest izometrią A1, A2 jako przestrzeni metrycznych.

Wskazówka: Wybrać Aε ∈ Σ1, takie jak w problemie A oraz takie że rodzina S1

wszystkich sum skończonych Aε, ε ∈ {0, 1}n, n ∈ N jest gęsta. Analogicznie wybrać
taką rodzinę Bε ∈ Σ2.

Określić g([Aε]) = [Bε] i przedłużyć g na S1 z zachowaniem działań; wtedy g jest
izometrią i przedłuża się na domknięcie dziedziny.

6.7.C Wykazać, że dla przestrzeni miarowych z poprzedniego problemu Lp(µ1) jest
liniowo izometryczne z Lp(µ2) (gdzie 1 ¬ p ¬ ∞).

Wskazówka: Określić odwzorowanie liniowe T : Lp(µ1)→ Lp(µ2) najpierw na funk-
cjach prostych, korzystając z poprzedniego zadania. Wykorzystać fakt, że izometrię
można przedłużać na domknięcie dziedziny.

6.7.D (dla znających ultrafiltry). Niech F będzie dowolnym ultrafiltrem niegłównym
na N. Udowodnić, że zbiór Z ⊆ {0, 1}N, gdzie

Z = {χF : F ∈ F},

jest zbiorem niemierzalnym względem miary Haara.

Wskazówka: Taki zbiór jest zdarzeniem resztowym więc gdyby był mierzalny, to
miałby miare 0 bądź 1; rozważyć przesunięcie Z o element 1 (względem działania
grupowego).

6.7.E Ile jest różnych miar (skończonych, σ–skończonych, dowolnych) na σ–cieleBor(R)?


