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Rozdziat 0O

Wiadomosci wstepne

Young man, in mathematics you don’t un-
derstand things. You just get used to them.
John von Neumann

0.1 O czym i dla kogo jest ten tekst?

Niniejszy skrypt zawiera podstawowy wyktad z teorii miary i catki i obejmuje mate-
riat, ktéry w Instytucie Matematycznym UWr jest wyktadany w trakcie semestralnego
wyktadu, noszacego tradycyjna (acz nieco mylaca) nazwe Funkcje rzeczywiste. Skrypt
winien by¢ dostepny dla kazdego studenta IT roku matematyki badz informatyki — do
zrozumienia wigkszosci zagadnien wystarcza dobra znajomosé rachunku rozniczkowe-
go i catkowego funkcji jednej zmiennej oraz teorii mnogosci w zakresie podstawowym.
W miejscach, gdzie potrzebna jest gtebsza znajomos¢ zagadnien teoriomnogosciowych,
czytelnik zostanie kazdorazowo ostrzezony. Skrypt pisany jest z mysla o studentach,
ktorzy nie stuchali jeszcze wyktadu z topologii — niezbedne elementy topologii prze-
strzeni metrycznych bedg wprowadzane w miare potrzeb.

Jest wiele ksigzek w jezyku angielskim i kilka po polsku, traktujacych o podstawach
teorii miary i calki; ponizej wymieniam jedynie te, do ktorych zagladatem w trakcie
pisania skryptu:

[1] P. Billingsley, Prawdopodobienstwo i miara, PWN, Warszawa (1987).
[2] P. Halmos, Measure theory, Springer, New York (1974).

[3] D.H. Fremlin, Measure theory vol. 1: The Irreducible minimum, Torres Fremlin,
Colchester (2000).

[4] D.H. Fremlin, Measure theory vol. 2: Broad foundations, Torres Fremlin, Colche-
ster (2000).

[5] S. Lojasiewicz, Wstep do teorii funkcji rzeczywistych, PWN, Warszawa (1976).

Prezentowane w skrypcie podejscie do wprowadzenia miary i catki jest jak najbar-
dziej standardowe i unika eksperymentéw formalnych. Dlatego wiele koncepcji zostato
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wprost zaczerpnietych z klasycznej ksiazki Halmosa, a wiele dowodow korzysta z ele-
ganckiego podejscia, zaprezentowanego przez podrecznik Billingsley’a. Mam jednak
nadzieje, ze ponizszy wyktad, dzieki stosownemu wyborowi zagadnien i sposobowi
prezentacji bedzie przydatny i, do pewnego stopnia, oryginalny. W moim przeswiad-
czeniu skrypt zawiera zagadnienia, ktére winien dobrze opanowac kazdy dobry student
matematyki, niezaleznie od tego, jaka bedzie droga jego specjalizacji na wyzszych la-
tach studiow.

Kazdy rozdzial konczy lista zadan oraz lista problemow. Zadania majg stanowic
integralng czes¢ wyktadu, komentowac¢ twierdzenia, dostarcza¢ przyktadéw, zachecaé
do przeprowadzania samodzielnych rozumowan. Problemy to zagadnienia, ktore albo
(czasami tylko chwilowym) stopniem trudnosci, albo tez tematyka wykraczaja poza
poziom podstawowy wyktadu; w kazdym razie problemy mozna pominaé przy pierw-
szej lekturze. Niektore problemy wymagajg znajomosci indukceji pozaskonczonej; w in-
nych przypadkach rozréznienie pomiedzy problemem a zadaniem jest czysto umowne.
Wiele zadan nalezy do klasyki przedmiotu i mozna je znalez¢ w cytowanych podrecz-
nikach. Inne powstaly w wyniku moich wtasnych doswiadczen z uczeniem studentéw
matematyki we Wroctawiu badz zostaly zaczerpniete z internetu, w szczegdlnosci z fo-
rum dyskusyjnego ASK AN ANALYST, ktore byto prowadzone na portalu TOPOLOGY
ATrAs!

0.2 Troche teorii mnogosci

Bedziemy najczesciej prowadzi¢ rozwazania, dotyczace podzbiorow jakie$ ustalonej
przestrzeni X; rodzine wszystkich podzbioréw zbioru X nazywamy zbiorem potego-
wym i oznaczamy zazwyczaj przez P(X). Oprocz zwyktych operacji AU B, AN B,
A\ B, okreslonych dla A, B C X, mozemy méwi¢ o dopelnieniu A° = X \ A zbioru A.
Przypomnijmy, ze operacja réznicy symetrycznej zbiorow jest okreslona jako

AAB=(A\B)U(B\A)=(AUB)\ (AN B).

Podstawowymi beda dla nas operacje mnogosciowe wykonywane na ciggach zbio-
row. Jedli dla kazdej liczby naturalnej n € N wybraliémy pewien podzbiér A,, prze-
strzeni X to (A,), nazwiemy ciagiem podzbioréw X i dla takiego ciagu definiujemy
przekréj N2, A, i sume Up?, A, przez warunki

T € ﬂ A,  wtedy i tylko wtedy gdy = € A,, dla kazdego n € N;

n=1

x € U A, wtedy i tylko wtedy gdy istnieje n € N takie ze x € A,,.
n=1

Ipatrz http://at.yorku.ca/topology/ — ten link juz nie dziala
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Przyktad 0.2.1 Rozwazajac podzbiory postaci (a,b) = {x € R: a < x < b} mozemy
napisac

NOUm =0 (1/m1/m =0} Ut/nn=0.00)

co jest oczywiste, nieprawdaz??

Oczywiscie umiejetnos¢ formalnego zapisania tego typu definicji za pomocg kwan-
tyfikator6w (oraz ich zrozumienia) jest jak najbardziej pozadana, ale warto zwrdcié
uwage na to, ze Scistosé¢ i precyzja matematyczna nie ktoci sie z uzyciem jezyka po-
tocznego.

Lemat 0.2.2 Dla dowolnego ciggu zbiorow A, w ustalonej przestrzeni X zachodzg
prawa de Morgana

o (-0 o (0

Cc

= ) A
n=1

Dowdéd. Aby udowodni¢ wzér (i) zauwazmy, ze z € (N7, A,)¢ wtedy i tylko wtedy
gdy x nie nalezy do zbioru N2, A, co jest réwnowazne temu, ze x ¢ A dla pewnego
k, a to jest tozsame ze stwierdzeniem, ze x € ;> AS.

Wzér (ii) mozna wyprowadzi¢ z (i) 1 oczywistej zaleznosci (A°)¢ = A:

As-[(Qe)] -[Ger] -(G+)-
¢

Podamy teraz pewne definicje i oznaczenia, ktére beda bardzo przydatne w dal-
szym ciggu. Niech (A,,), bedzie ciagiem zbioréw w ustalonej przestrzeni X. Taki ciag
nazywamy rosngcym jesli A, C A, dla kazdego n; analogicznie ciag jest malejgcy
gdy A, D A, dla wszystkich n. Bedziemy pisa¢

A, T A aby zaznaczy¢, ze ciag (A, ), jest rosnacy i A = U A,

n=1

A, | A aby zaznaczy¢, ze ciag (A,), jest malejacy i A = () A,.

n=1

Tego typu zbieznos¢ zbioréw moze by¢ uogolniona w sposob nastepujacy.

2 oczywistosé jest kategoria psychologiczng; w praktyce matematycznej umawiamy sie, ze kazdy

fakt oczywisty ma swdj dowdd i bedzie okazany na zadanie oponenta badz egzaminatora
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Definicja 0.2.3 Dia ciggu zbiorow (A,), zbiory

limsup A, = ﬂ U Ag, liminf A, = U ﬂ Ay,
n—oo n=1k=n oo n=1k=n
nazywamy, odpowiednio, granica gbérna i granica dolna ciggu (A, )n.
Mowimy, ze cigg (An), jest zbieiny do zbioru A, piszgc A = lim, A, gdy

A =limsup 4, = hq{gg}f A,.

Innym waznym pojeciem jest przeliczalnosé¢ zbioréw. Przypomnijmy, ze dwa zbio-
ry X i Y sa réwnoliczne jezeli istnieje bijekcja f : X — Y (czyli funkcja wzajemnie
jednoznaczna), odwzorowujaca X na Y. Zbiér X nazywamy przeliczalnym jezeli X
jest skonczony lub tez X jest roéwnoliczny ze zbiorem liczb naturalnych N. Inaczej
mowigc zbior jest przeliczalny jezeli jest rownoliczny z pewnym podzbiorem N. Naj-
bardziej intuicyjnym wyrazeniem przeliczalnosci bedzie nastepujaca uwaga: niepusty
zbior przeliczalny X mozna zapisa¢ w postaci X = {z, : n € N} (wyliczyé wszystkie
jego elementy; tutaj nie zakladamy, ze z,, sa parami rézne). Przypomnijmy sobie na-
stepujace wtasnosci zbioréw przeliczalnych (dowod ponizej jest ledwie naszkicowany).

Twierdzenie 0.2.4
(1) Zbior N x N jest przeliczalny.
(i1) Jesli zbiory X 1Y sq przeliczalne to zbiory X UY @ X XY teZ sq przeliczalne.
(iii) Jesli zbiory X1, X, ... sq przeliczalne to zbiér X =32, X,, jest przeliczalny®.
(1v) Zbior liczb wymiernych Q jest przeliczalny.
(v) Zbior {(p,q) : p < q,p,q € Q} (wszystkich przedzialow na prostej o koticach
wymiernych) jest przeliczalny.

(vi) Ani zbior liczb rzeczywistych R, ani tez Zaden jego niepusty przedziat (a,b) C R
nie jest przeliczalny.

Dowdéd. Dowdd (i) wynika stad, ze ciag

(1,1),(1,2), (2,1), (1,3), (2,2), (3, 1), ...

w ktorym wyliczamy wszystkie pary o sumie 2, nastepnie wszystkie pary o sumie 3
itd., zawiera wszystkie elementy zbioru N x N.

W czedei (i) dowdd przeliczalnosei X U'Y zostawiamy czytelnikowi, natomiast
przeliczalno$¢ X x Y wynika tatwo z (i).

W (iii) na mocy zalozenia mozemy napisa¢ X,, = {z} : k € N} dla kazdego n. W
ten sposob otrzymamy zbiér X = {z} : n, k € N} ponumerowany za pomoca N x N|
a to na mocy (i) uzasadnia jego przeliczalnos¢.

3dla wielbicieli teorii ZF: ten fakt wymaga pewnika wyboru
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Przeliczalno$¢ Q wynika tatwo z (i) i pierwszej czesei (ii). Z wielu réznych spo-
sobow wykazania nieprzeliczalnosci R wspomnimy nastepujacy: niech x, bedzie do-
wolnym ciggiem liczb rzeczywistych; wykazemy, ze R # {z, : n € N}. Wybierzmy
dowolne liczby a; < by, takie ze przedzial [ai,b;] nie zawiera liczby x;. Zauwazmy,
ze istnieja liczby as, by takie ze a1 < ay < by < by 1 29 ¢ [ag, by]. Postepujac analo-
gicznie zdefiniujemy zstepujacy ciag niezdegenerowanych przedzialow [a,,b,] tak ze
T1,%2, ..., Tp & |an,by]. Rzecz w tym, ze istnieje liczba y € N>, [an, b,] — na mocy
aksjomatu Dedekinda mozna przyja¢ y = sup,, a,,. Ostatecznie y # z,, dla kazdego n i
to konczy dowod. Latwo ten argument zmodyfikowaé, aby pokazaé ze zaden niepusty
przedzial (a,b) na prostej nie jest przeliczalny. <

Tradycyjnie moc zbioru R oznaczana jest przez ¢ i nosi nazwe continuum. W teorii
mnogo$ci dowodzi sie, ze rodzina P(N) wszystkich podzbioréw N jest réwnoliczna z
R, czyli ze P(N) tez jest mocy c.

0.3 Odrobina topologii

W tym miejscu wprowadzimy podstawowe pojecia topologiczne na prostej rzeczywi-
stej. Przypomnijmy, ze o zbiorze R, oprécz zwyktych aksjomatow opisujacych wlasno-
Sci dziatan + i - oraz wtasnosci porzadku, zaktadamy nastepujacy aksjomat Dedekinda:
Kazdy niepusty 1 ograniczony z gory zbior A C R ma najmniejsze ograniczenie gorne
(ktore oznaczamy sup A).

Definicja 0.3.1 Zbior U C R jest otwarty jezeli dla kazdego x € U istnieje liczba 9,
taka ze (v — 6,z +9) CU.

Zbior F C R nazywamy domknietym jesli zbior R\ F jest otwarty, to znaczy jesli
dla kazdego x ¢ F istnieje § > 0, taka ze (x — d,x + )N EF = 0.

Przyklad 0.3.2 Jest rzeczg oczywisty, ale godng odnotowania, ze zbiory () i R sa
otwarte, a wiec sa takze domkniete. Dowolny przedzial postaci (a,b) jest otwartym
podzbiorem prostej; istotnie, jesli x € (a, b) to wystarczy przyja¢ 6 = min{z—a,b—=x}.
Z podobnych powodéw otwartymi sa pétproste postaci (a, 00), (—o0, b).

Przedzial postaci [a, b] jest domknietym zbiorem w sensie powyzszej definicji, dla-
tego ze R\ [a,b] = (—o0,a) U (b,00) jest zbiorem otwartym. Tym samym terminy
‘otwarty’ i ‘domkniety’ rozszerzaja potoczne okreslenia stosowane dla przedziatow.

Przedzial postaci [a,b) dla a < b nie jest ani otwarty, jako ze nie spelnia definicji
otwartosci dla x = a, ani tez domkniety.

Nietrudno wywnioskowac z definicji, ze zbidr jest otwarty wtedy i tylko wtedy gdy
jest suma pewnej rodziny przedziatéw. W istocie mamy nastepujace

Twierdzenie 0.3.3 Kazdy niepusty zbior otwarty U C R jest postact

U= U (Gn, by)
n=1
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dla pewnych liczb wymiernych a,, b,.

Dowdéd. Dla kazdego = € U istnieje d > 0, taka ze (z — §,z + 0) C U. Korzystajac z
gestosci zbioru Q mozemy znalezé a,, b, € Q, takieze v —d < a, <x < b, < x4+, a
wtedy x € (ag,b,) € U. W ten sposéb zdefiniowalismy rodzine przedziatéw {(a,b,) :
x € U} o koncach wymiernych. Rodzina ta jest przeliczalna na mocy Twierdzenia
0.2.4(v); jesli (pn, ¢,) jest numeracja wszystkich elementéw tej rodziny to otrzymamy
U= U>21(Pn,qn), poniewaz dla dowolnego x € U mamy = € (ay,by) = (pn,q,) dla
pewnego n.

Nieco inng metodg mozna wykazaé¢ nastepujaca wersje Twierdzenia 0.3.3: kaZdy
otwarty podzbior R jest przeliczalng sumg przedziatow parami rozlgcznych, patrz Za-
danie 0.4.11.

Na koniec wspomnimy jeszcze o specjalnej wtasnosci odcinkéw domknietych, ktora
w topologii jest nazywana zwartoscia.

Twierdzenie 0.3.4 Jezeli [a,b] C Us(an,b,) to istnieje n € N, takie ze |a,b] C
iz (@i, bi).

Dowdd. Niech S bedzie zbiorem tych liczb s € [a, b], dla ktérych odcinek [a, s] pokrywa
sie skoriczong iloScia przedzialow (ay,, b,). Wtedy S # () poniewaz a € S. Zbiér S jako
niepusty i ograniczony z gory podzbidér prostej ma kres gorny, niech ¢t = sup S. Wtedy
t € [a,b] wiect € (a;, b;) dla pewnego i. Poniewaz a; < t wiec istnieje s € S, taki ze a; <
s < t. Oznacza to, ze odcinek |a, s] pokrywa si¢ skonczona iloscia przedziatéw (a,, by, ),
a zatem réwniez odcinek [a,t] ma taka sama wlasno$¢ — wystarczy do poprzedniego
pokrycia skonczonego dotaczy¢ (a;, b;). W ten sposéb sprawdzilismy, ze ¢ € S. Gdyby
t < b to biorac s takie ze t < s < b; otrzymalibyémy s € S z powodu jak wyzej, a
to jest sprzeczne z definicjg kresu gérnego. Tym samym ¢ = b i to wladnie nalezato
wykazaé.

Whniosek 0.3.5 Niech F bedzie domknietym i ograniczonym podzbiorem prostej. Je-
zeli FF C U2 (an, by) to istnieje n € N, takie ze F' C U, (a;, b;).

Dowdd. Mamy F C [a,b] dla pewnych a,b, jako ze F jest zbiorem ograniczonym.
Ponadto R\ F' jest zbiorem otwartym wiec R\ F' = U, (pn, ¢n) dla pewnych (p,, q,),
patrz Twierdzenie 0.3.3. Teraz wystarczy zastosowaé¢ Twierdzenie 0.3.4 do pokrycia
odcinka [a, b] odcinkami (a,, b,) i (Pn, ¢n). &

Moéwiac w jezyku topologii kazdy domkniety i ograniczony podzbiér R jest zwarty.
Zwartos¢ mozna wystowi¢ tez w jezyku ciagéw — patrz Problem 0.5.D.
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0.4 Zadania

0.4.1 Obliczy¢
(1) Mz (0,1/n); MLy (=1/n,1/n); UpZy[1/n, n);
(1) MpZi(n,n+3); UnZi(n,n + 3);
(iii) (i1 (n, 2n); UpZy (n —n?,1/n).
0.4.2 Dla ciagdéw zbioréw A, z poprzedniego zadania obliczy¢ lim sup,, A, i liminf,, A,.
0.4.3 Zapisaé przedzial domkniety postaci [a,b] C R jako przekréj ciagu przedziatéw

otwartych. Podobnie zapisaé przedzial otwarty (a,b) jako sume przedziatéw domknie-
tych.

0.4.4 Wykazaé, ze w powyzszym zadaniu nie mozna zamieni¢ miejscami okreslen
‘otwarty’ i ‘domkniety’.

0.4.5 Zapisaé trojkat T = {(z,y) e R? : 0 <z < 1,0 < y < z} jako sume prosto-
katow. Zauwazy¢, ze wystarczy wysumowacé przeliczalnie wiele prostokatow, aby taki
trojkat uzyskac.
0.4.6 Zauwazy¢, ze x € limsup,, A, wtedy i tylko wtedy gdy =z € A,, dla nieskonczenie
wielu n; podobnie z € liminf, A, <= x € A, dla prawie wszystkich n.
0.4.7 Uzasadni¢ nastepujace zaleznosci

(1) Noy A, C liminf, A, Climsup, A4, C U2 An;

(i1) (liminf, A,)¢ = limsup,, AS, (limsup,, A,)¢ = liminf, AS;
(117) liminf, (A, N B,) = liminf, A, Nliminf, B,;
(iv) liminf,(A, U B,) 2 liminf, A, Uliminf, B, i rowno$¢ na ogdét nie zachodzi.
Zapisaé zaleznosci dla granicy goérnej lim sup, analogiczne do (iii)—(iv).
0.4.8 Sprawdzi¢, ze dla danego ciagu zbioréw A,, przyjmujac By = Ay, B, = A, \
Uj<n 4; dla n > 1, otrzymujemy U;2; A, = UyZ, By, przy czym zbiory B, sa parami
roztaczne.
0.4.9 Udowodni¢, ze lim, A, = A < lim, (A4, A A) = 0.
0.4.10 Wykaza¢é, ze kazda rodzina parami rozltacznych przedzialdw na prostej jest
przeliczalna.
0.4.11 Niech U C R bedzie zbiorem otwartym. Dla z,y € U definiujemy =z ~ y
jesli istnieje przedzial (a,b), taki ze x,y € (a,b) C U. Sprawdzié, ze ~ jest relacja
rownowaznosci, a jej klasy abstrakcji sa przedziatami otwartymi. Wywnioskowaé stad
i z zadania poprzedniego, ze kazdy otwarty podzbior prostej jest sumg ciggu parami
roztacznych przedziatow.

0.4.12 Sprawdzi¢, ze przekrdj skonczonej ilosci zbioréw otwartych jest otwarty.
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0.5 Problemy

0.5.A Udowodni¢ nastepujacy “warunek Cauchy’ego”: cigg zbioréw A, jest zbiezny
wtedy i tylko wtedy gdy dla dowolnych ciagéw liczb naturalnych (n;);, (k;); rozbiez-
nych do nieskonczonosci mamy N2, (A4, A Ag,) = 0.

0.5.B Udowodnié, ze dowolny ciag zbioréw A, € P(N) ma podciag zbiezny.

0.5.C Podaé przyklad ciagu A, € P(R), ktéry nie ma podciagu zbieznego. UWAGA:
moze by¢ trudne; lepiej zastgpi¢ R innym zbiorem tej samej mocy.

0.5.D Udowodni¢, ze jesli F' jest domknietym i ograniczonym podzbiorem R to dla
kazdego ciggu x,, € I istnieje podcigg tego ciggu zbiezny do pewnego x € F.

WsSKAZOWKA: Aby = € F byl granicg pewnego podciggu z,, potrzeba i wystarcza by
dla kazdego § > 0 w (z — 0,z + 0) znajdowalo si¢ nieskonczenie wiele wyrazéw ciagu
Tn. Przyjaé, ze zaden x € F' nie ma tej wlasnosci i zastosowa¢ Twierdzenie 0.3.5.



Rozdziat 1
Rodziny zbioréw i miary

TQVTWY XPNUATWY UNTpwr avTlpwrwe
Czlowiek jest miarg wszechrzeczy (istniejgcych,
Ze istniejq i nieistniejgcych, Ze nie istniejq).
Protagoras z Abdery

W rozdziale tym wprowadzimy podstawowe pojecia teorii miary, a nastepnie udo-
wodnimy twierdzenie, pozwalajace konstruowaé miary z funkcji zbioru okreslonych na
pierécieniach. Konstrukcja ta bedzie zilustrowana wprowadzeniem miary Lebesgue’a
na prostej rzeczywiste;j.

1.1 Rodziny zbioréw

W tym podrozdziale, jak i w wielu nastepnych, bedziemy rozwazac¢ rodziny podzbioréw
ustalonej niepustej przestrzeni X; przypomnijmy, ze P(X) oznacza rodzine wszystkich
podzbiorow X.

Definicja 1.1.1 Moéwimy, ze rodzina R C P(X) jest pierscieniem zbioréw jezeli
(i) D € R;
(ii) jezeli A,B€R to AUB, A\ B€R.

Rodzina R jest ciatem zbioréw jezeli R jest pierscieniem zbiorow oraz X € R.

Powyzsza terminologia nawiazuje nieco do poje¢ algebraicznych (pierécienie i ciala
w algebrze to struktury, w ktérych wykonalne sa pewne dziatania), ta analogia jest
nieco powierzchowna (ale patrz Zadanie 1.9.1). Poniewaz nie bedzie to prowadzi¢ do
nieporozumien, w dalszym ciggu bedziemy po prostu méwic, ze dana rodzina R jest
pierscieniem lub ciatem.

Zauwazmy, ze w pierécieniu R mozemy wykonywaé operacje réznicy symetrycznej i
przekroju; istotnie, jezeli A, B € R to AAB € R, co wynika bezposrednio z aksjomatu
(ii) w Definicji 1.1.1; ponadto AN B = A\ (A\ B) € R. Zauwazmy tez, ze na to,
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aby rodzina R byla cialem potrzeba i wystarcza zeby () € R oraz AU B, A° € R dla
dowolnych A, B € R. Dostateczno$¢ tych warunkéw wynika z tozsamosci X = ()¢ oraz

A\ B=ANB* = (A°UB)-.

Jezeli dana rodzina zbiorow R jest zamknieta na sumy dwdch swoich elementéw to
prosta indukcja pokaze, ze U, A; € R dla dowolnego n i A; € R. Mozemy wiec
powiedzie¢, ze cialo zbioréw to rodzina zamknieta na wszystkie skonczone operacje
mnogosciowe.

Definicja 1.1.2 Moéwimy, Ze rodzina R C P(X) jest o—pierscieniem zbioréw jezeli R
jest pierscieniem zamknietym na przeliczalne sumy, to znaczy spetniajgcym warunek
~ 1A, € R dla dowolnego ciggu A, € R.
Jezeli R jest o—pierscieniem © X € R to R nazywamy o—ciatem.

Zauwazmy, ze w o—ciele R wykonywalne sg wszystkie przeliczalne operacje mno-
gosciowe, na przyktad jezeli 4, € R to N,~; A, € R na mocy Lematu 0.2.2, oraz

limsup A, lirr}linf A, €R,

jako ze rodzina R jest zamknieta na przeliczalne sumy i przekroje.

Przyklad 1.1.3 Rodzina R = {(}} jest oczywiscie pierscieniem, a rodzina A = {0, X'}
jest najmniejszym ciatem podzbioréw X. Zauwazmy, ze zbior potegowy P(X) jest o—
ciatem.

Jesli oznaczymy przez R rodzine wszystkich skonczonych podzbioréw nieskonczo-
nej przestrzeni X to R jest pierscieniem, ale nie jest ciatem. Zauwazmy tez, ze taka
rodzina nie jest o—pierscieniem bo, skoro X jest nieskonczonym zbiorem to w X mozna
wyrdézni¢ ciag z,, parami réznych jego elementéw. Przyjmujac A = {z,, : n € N} oraz
A, ={z,} mamy A, € R ale A ¢ R.

Analogicznie w nieprzeliczalnej przestrzeni X rodzina C wszystkich podzbioréow
przeliczalnych stanowi naturalny przyktad o—pierscienia, ktory nie jest o—ciatem. <

Podamy teraz mniej banalny i wazny przyktad pierscienia podzbiorow R.
Lemat 1.1.4 Rodzina R tych zbiorow A C R, ktore mozna, dla pewnych n € N,
a;,b; € R, zapisac¢ w postaci

n

(*) A= U[aiabi)v

i=1

jest pierscieniem podzbiorow prostej rzeczywistej. Kazdy A € R ma takie przedstawie-
nie (*), w ktérym odcinki [a;, b;) sq parami rozlgczne.



G. Plebanek, MIARA I CALKA Rozdziat 1: Rodziny zbioréw i miary 11

Dowdd. Mamy () = [0,0) € R; z samej postaci formuty (*) wynika, ze rodzina R
jest zamknieta na skonczone sumy. Zauwazmy, ze zbiér [a,b) \ [c, d) jest albo pusty,
albo odcinkiem postaci [z, y), albo tez, w przypadku gdy a < ¢ < d < b, jest zbiorem
la,c) U [d,b) € R. Korzystajac z tej uwagi latwo jest przez indukcje sprawdzié, ze
[a,b) \ A € R dla zbioru A jak w (*). Stad z kolei wynika, ze R jest zamknieta na
odejmowanie zbioréw.

Sprawdzenie koficowego stwierdzenia pozostawiamy czytelnikowi (patrz tez Zada-
nie 1.9.6). ¢

Na ogd6t trudno jest opisywaé¢ w konkretny sposob rodziny ktére sa zamknigte na
przeliczalne operacje — zamiast tego wygodniej jest moéwi¢ o generowaniu danego
o—pierscienia lub o—ciata przez jakas wyrdzniong rodzine zbiorow. Zauwazmy, ze dla
dowolnej rodziny F C P(X) istnieje najmniejszy pierscien Ry zawierajacy J; R jest
po prostu przekrojem wszystkich mozliwych pierscieni R 2 F (por. Zadanie 1.9.3).
Ta uwaga odnosi si¢ tez do ciat i o—ciat.

Definicja 1.1.5 Dla dowolnej rodziny F C P(X) przyjmiemy oznaczenia
r(F) — pierscieni generowany przez rodzine F (Ring);

s(F) — o—piericien generowany przez rodzine F (Sigma ring);
)

(F) — cialo generowane przez rodzine F (Algebra);

Q

o(F) — o-cialo generowane przez rodzing F (c—algebra).

W nawiasach podano wyjasnienie wybranych liter — w terminologii angielskiej
czesto cialo = field nazywa sie tez algebra = algebra. Oznaczenia te beda stosowane
tylko w biezacym rozdziale. Wyjatkiem jest oznaczenie o(-), ktére warto zapamietaé
bo jego rola jest duzo powazniejsza.

Zauwazmy, ze pierscien przedzialéw R z Lematu 1.1.4 jest generowany przez ro-
dzing F = {[a,b) : a < b}, natomiast o-pierscien zbioréw przeliczalnych z Przyktadu
1.1 jest generowany przez rodzine wszystkich singletonéw {z} dla = € X (inne przy-
ktady generowania znajduja sie w zadaniach). Generowanie pierscieni czy cial moz-
na poréwnac¢ do sytuacji, gdy w danej przestrzeni liniowej moéwimy o podprzestrzeni
generowanej przez wybrany uktad wektorow lub w ustalonej grupie — o podgrupie
generowanej przez pewien jej podzbior.

Definicja 1.1.6 Najmniejsze o —ciato zawierajgce rodzine U wszystkich otwartych pod-
zbioréw R oznaczamy Bor(R) = o(U) i nazywamy o-cialem zbioréw borelowskich.

Powyzsza definicja uogodlnia sie w oczywisty sposéb na inne przestrzenie euklideso-
we oraz przestrzenie metryczne. W przypadku prostej rzeczywistej warto odnotowac
bardziej “konkretne” rodziny generatoréow zbioréw borelowskich — patrz lemat poni-
zej oraz Zadanie 1.9.13.

Lemat 1.1.7 Niech F bedzie rodzing przedzialow postaci [p,q) gdzie p,q € Q. Witedy
o(F) = Bor(R).
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Dowdd. Poniewaz [p,q) = No2y(p — 1/n,q) wiec [p,q), jako przekrdj przeliczalnie
wielu zbioréw otwartych, jest elementem Bor(R). Stad F C Bor(R) i tym samym
o(F) C Bor(R).

Z drugiej strony dla dowolnych a < b mozemy napisac (a, b) = Uy [pn, Gn) € o(F),
gdzie p,, ¢, sa odpowiednio dobranymi ciggami liczb wymiernych. Stad i z Twierdzenia
0.3.3 wynika, ze dowolny zbiér otwarty U jest elementem o(F), a zatem Bor(R) C

o(F). ¢

O zbiorze borelowskim B € Bor(R) mozna mysle¢ jako o takim zbiorze, ktéry
mozna zapisa¢ za pomoca przedzialéw oraz przeliczalnych operacji mnogosciowych.
Mowigc pogladowo kazdy zbiér, ktory “mozna zapisa¢ wzorem” jest borelowski i w
znacznej czesci rozwazan matematycznych wystepuja tylko zbiory borelowskie. W isto-
cie wskazanie zbioru spoza Bor(R), a raczej udowodnienie, ze istnieja nieborelowskie
podzbiory prostej, wymaga pewnego wysitku — patrz Problem 1.10.C.

1.2 Addytywne funkcje zbioru

Dla ustalonej rodziny R funkcje f : R — R nazywamy funkcja zbioru (aby wyraz-
nie zaznaczy¢, ze argumenty tej funkcji majg inna nature niz zmienne rzeczywiste).
Tradycyjnie funkcje zbioru oznaczane sg literami alfabetu greckiego. Naturanym jest
zaktadaé, ze funkcja zbioru moze takze przyjmowaé wartos¢ oo, czyli rozwazaé funkcje
zbioru

R — R} =R U{oo} = [0, o];

o symbolu nieskonczonosci zaktadamy na razie tylko tyle, ze x < coi x4 00 = oo dla
r € R.

Definicja 1.2.1 Niech R C P(X) bedzie pierscieniem zbioréw. Funkcje p : R —
[0, 00] nazywamy addytywna funkcja zbioru (albo miara skonczenie addytywna) jezeli
(i) u(0) =0;
(ii) jesli A, Be R iANB =0 to u(AUB) = u(A) + u(B).

Zauwazmy, ze jesli istnieje A € R, dla ktérego u(A) < oo to

pu(A) = p(AU0) = p(A) + p(®), wiee () = 0.

Innymi stowy warunek (i) w definicji jest potrzebny tylko po to, aby wykluczyé przy-
padek funkcji stale rownej co. Warunek skonczonej addytywnosei (i) ma nastepujace
konsekwencje.

Lemat 1.2.2 Niech p bedzie addytywng funkcjg na pierscieniu R i niech A, B, A; €
R.
(a) Jezeli A C B to u(A) < u(B).
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(b) Jezeli AC B i pu(A) < oo tou(B\ A) = u(B) — u(A).
(c) Jezeli zbiory Ay, ..., A, sq parami rozlgczne to u(Ur_y A;) = S0 w(A;).

Dowéd. Poniewaz B = AU(B\ A) dla zbioréw A C B, wiec u(B) = pu(A) + u(B\ A).
Stad wynika (a), jako ze pu(B \ A) > 0 oraz (b).
Czesé (c) dowodzi sie przez tatwa indukcje. <

Definicja 1.2.3 Jesli p jest addytywng funkcjg na pierscieniu R to mowimy zZe L
jest przeliczalnie addytywng funkcjg zbioru, jezeli dla dowolnych R € R i parami
roztgcznych A, € R, takich ze R =, A, zachodzi wzor

W powyzszej definicji musimy zatozy¢, ze nieskonczona suma zbioréw jest elemen-
tem R, jako ze rodzina R jest z zatozenia jedynie pierscieniem. Odnotujmy, ze warunek
przeliczalnej addytywnosci z tej definicji moze oznaczaé zaréwno ze szereg > oo | 1(Ay)
jest zbiezny do wartosci po lewej stronie, jak i ze szereg jest rozbiezny i miara zbioru
U2, A, jest nieskoniczona.

Definicja przeliczalnej addytywnosci jest dostosowana do potrzeb Twierdzenia 1.4.4
ponizej. Naszym docelowym obiektem badan bedzie miara, czyli przeliczalnie addy-
tywna funkcja zbioru okreslona na o—ciele.

Lemat 1.2.4 Jesli o jest przeliczalnie addytywng funkcjg na pierscieniu R to dla
R € R i dowolnego ciggu A,, € R, takich ze R = ;> Ay, zachodzi nierownos$é

1 <:1 An) < EM(A“)‘

Dowdéd. Przyjmijmy B; = A; oraz

<n

dla n > 1. Wtedy zbiory B, sa parami roztaczne, B, C A, oraz U, B, = U, A, = R
wiec na mocy Lematu 1.2.2(a)

n(R) = ZM(Bn) < ZN(An)-

O

Zauwazmy, ze dla funkcji addytywnej p na R i zbioru R € R, ktory jest suma
parami roztacznego ciagu zbioréw A, € R, dla kazdego n zachodzi nier6wnosé
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co implikuje p(R) > >0, u(A,). Méwiac obrazowo: funkcja addytywna jest przeli-
czalnie nadaddytywna. Jak zobaczymy na przyktadach przeliczalna addytywnosc¢ jest
warunkiem istotnie mocniejszym. Najpierw jednak przekonamy sie, ze przeliczalng
addytywnos¢ mozna wyrazi¢ na rézne sposoby.

Twierdzenie 1.2.5 Addytywna funkcji zbioru p na pierscieniu R jest przeliczanie
addytywna wtedy i tylko wtedy gdy jest cigglta z dotu, to znaczy dla kazdego A € R 1
ciggu A, € R, takiego Ze A, T A, zachodzi wzor lim,, p(A,) = pu(A).

Dowdod. Warunek ciagtosci z dotu jest konieczny: Dla rosnacego ciggu zbioréw A, T A
potézmy By = A; oraz B, = A, \ A,1 gdy n > 1. Wtedy A = U,, By, przy czym
zbiory B, sa parami roztaczne, a zatem

p(A) = p (E_j Bn) = i p(By) = lim 2_: (Bn) = lim p(Ay).

n

Rozwazmy teraz parami roztaczne zbiory A, i A = U, A, € R. Niech S,, = U, A;.
Wtedy S, T A i warunek ciggtosci pocigga za soba

p(A) =lim p(Sy) = lim(u(Ar) + .. p(An)) = > p(An),
a wiec przeliczalng addytywnosé.

Twierdzenie 1.2.6 Dla addytywnej funkcji zbioru p na pierscieniu R, przyjmujgce]
tylko wartosci skonczone nastepujgce warunki sq réwnowazne (gdzie zawsze A, A €
R)

(1) w jest przeliczalnie addytywna;

(11) w jest ciggla z gory, to znaczy lim, u(A,) = u(A) jezeli A, | A;

(ii1) p jest ciggla z gory na zbiorze 0, czyli lim, u(A,) = 0 jezeli A, | 0.

Dowdd. (i) = (i) Tutaj przyjmujemy B, = A; \ A,; wtedy B, T A; \ A wiec, na
mocy Twierdzenia 1.2.5,

lim(Ay \ An) = lim p(By) = p(Ar\ A) = p(Ar) — p(A),

co implikuje lim,, pu(A,) = pu(A) po odjeciu p(A;) stronami.
Imlikacja (i) = (4i7) jest oczywista po wstawieniu A = ().
(17i) = (i) Rozwazmy parami roztaczne zbiory A, i A = U, A,. Niech S, =
P A Wtedy S, T Ai

p(A) = p(Ar) + .. p(An) + (AN Sy).

Poniewaz lim,, u(A \ S,,) = 0, powyzsze pocigga zbieznosé¢ szeregu do u(A).
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Przyktad 1.2.7 Niech A bedzie cialem generowanym przez wszystkie skonczone pod-
zbiory X, gdzie X jest nieskonczony. Wtedy A € A wtedy i tylko wtedy gdy

(t) A jest skoniczony lub X \ A jest skonczony.

Istotnie, kazdy zbiér o wlasnosci (1) nalezy do A, jako ze taki zbior tatwo zapisaé za
pomoca singletondéw i operacji sumy i dopetienia. Z drugiej strony rodzina zbioréw o
wilasnosci (1) jest zamknieta na sumy skonczone i dopelnienia, a wiec rodzina ta jest
ciatem.

Zdefiniujmy funkcje pu na A, gdzie pu(A) = 0 gdy A jest skonczony i p(A) =1 w
przeciwnym przypadku. Wtedy u jest skonczenie addytywna na A. Istotnie jesli A, B €
A sg roztaczne to u(AU B) = u(A) + p(B), poniewaz albo oba zbiory sa skonczone (i
po obu stronach wzoru jest 0), albo doktadnie jeden zbidr jest nieskonczony i mamy
réownos$é 1=1; (zauwazmy, ze jesli obydwa zbiory A, B € A sa nieskonczone to AN B #
(). Jesli X jest nieskoniczonym zbiorem przeliczalnym to mozemy napisa¢ X = U, {z,}
dla pewnego ciggu x,, i dlatego p nie jest przeliczalnie addytywna w tym przypadku.

Niech teraz ¥ bedzie o—ciatem generowanym przez wszystkie przeliczalne podzbio-
ry X, gdzie sam X jest nieprzeliczalny. Mozemy analogicznie sprawdzi¢, ze A € X
wtedy i tylko wtedy gdy albo zbiér A, albo jego dopetnienie X \ A jest przeliczalne.
Kladac pu(A) = 0 gdy A jest przeliczalny i pu(A) = 1 w przeciwnym przypadku, okre-
slamy miare na Y. Istotnie, jedli A,, € X sg parami roztaczne i wszystkie zbiory A, sa
przeliczalne to takze zbior A = U, A, jest przeliczalny i dlatego

0=p(A) = uA,) =0

Jesli Ay jest nieprzeliczalny dla pewnego k to zbiory A, C X \ Ay dla n # k sa
przeliczalne i po obu stronach wzoru powyzej mamy 1.

Na o—ciele P(X) mozna zdefiniowa¢ miare w nastepujacy prosty sposéb: ustalmy
ro € X i przyjmijmy pu(A) = 0 gdy 2o ¢ A i u(A) = 1 dla zp € A. Sprawdzenie
przeliczalnej addytywnosci nie powinno przedstawiaé trudnosci (por. Zadanie 1.9.19).
Miare taka nazywamy deltq Diraca i oznaczamy p = 0,,. &

1.3 Miara Lebesgue’a I

Przyktad 1.2 podaje proste, wrecz banalne, przyktady miar. W tej czesci zdefiniujemy
naturalng funkcje zbioru A na pierscieniu R, generowanym przez przedziaty postaci
[a,b), por. Przyktad 1.1.4. Funkcja A ma za zadanie mierzy¢ “dlugosé” zbioréw na
prostej rzeczywistej i dlatego przyjmujemy A([a,b)) = b — a dla a < b. Dla zbioru
R € R postaci

(*) R=Jlai,b;), gdzie a; <b;,la;,b;)N[aj,b;) =0 dlai# j, definujemy
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n

(#%)  A(R) =D (b — a;).

i=1
W dalszym ciggu sprawdzimy, ze A jest dobrze okreslona, przeliczalnie addytywna
funkcja zbioru na pierécieniu R. Ponizej przyjmiemy dla uproszczenia konwencje, ze
dla kazdego rozwazanego przedziatu [a, b) milczaco zaktadamy, ze [a,b) # 0, czyli ze
a < b.

Lemat 1.3.1 Jezeli [y, by) jest skoriczonym lub nieskoriczonym ciggiem parami roz-
lacznych przedzialéw zawartych w |a,b) to

> (by—a,) <b-—a.

Dowdd. Dowdd dla ciagu skonczonego [ay, by), .. ., [an, b,) mozna przeprowadzié przez
indukcje: przyjmijmy, ze b, = max(by,...,b,). Wtedy b; < a,, dla i < n wiec [a;, b;) C
la,a,) dla i < n i dlatego, na mocy zatozenia indukcyjnego, >, (b; — ;) < a, — a.
Teraz

> (b —a;) < (ap—a)+ (b, —an) =b, —a <b—a.

i<n
W przypadku nieskoriczonego ciagu [ay, b,) mamy >, <y (b, —a,) < (b—a) dla kazdego
N wiec, przechodzac z N do nieskoniczonosci, otrzymujemy >, (b, — a,) < (b —a). &

Lemat 1.3.2 Jezeli [ay, by,) jest skoniczonym lub nieskoniczonym ciggiem przedziatow
i [a,b) C Uplan,by) to

b—a <)) (b, —ay).

Dowdd. (1) Przypadek skoniczony dowodzimy znowu przez indukcje: niech [a,b) C

Uicnlai, bi). Mozemy bez zmniejszenia ogélnosci zatozy¢, ze b € [an, b,); wtedy [a, a,) C

Uicnlai, b)) wiec a, —a < Y, (b; — a;) z zalozenia indukcyjnego, i
b—a<bn—an+an—a<2(bi—ai).

<n

(2) Zauwazmy, ze przypadek nieskoriczony nie redukuje sie do skoficzonego w oczy-
wisty sposéb i dlatego w rozumowaniu wykorzystamy Twierdzenie 0.3.4. Ustalmy
e > 0; skoro [a,b) C U,[an, bn) to

l[a,b—¢] C U(an — 27" by),

wiec na mocy 0.3.4 dla pewnego N zachodzi [a,b — €] C U,<y(an —€27",b,) co na
mocy (1) daje

b—a—e< Y (by—an+27") <D (by—an) +e.

n<N n

W ten sposéb, z uwagi na dowolnosé € > 0, otrzymujemy zadang nier6wnosé.
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Lemat 1.3.3 Definicja X\ jest poprawna.

Dowdd. Zauwazmy najpierw, ze z Lematéw 1.3.1 1 1.3.2 wynika, ze jesli [a,b) jest
roztaczng sumg przedzialow [ai,b1), ..., [an, by) to b —a = X, (b — a;).

Kazdy R € R ma przynajmniej jedno przedstawienie w postaci sumy parami
roztacznych przedziatéow jak w (*), patrz Lemat 1.1.4. Niech

R = U[az,bl) = U[Ci7dj)

i<n <k

beda dwiema takimi reprezentacjami. Dla i < n, j < k oznaczmy przez P, ; = [a;,b;) N
[cj,d;); wtedy P, ; jest pusty lub jest przedziatem postaci [x,y).
Dla ustalonego ¢ < n mamy

[ai, b)) = (J[ai, b:) N [ej, dy),

Jj<k

co daje b; — a; = X< AM(Fj) na mocy uwagi powyzej. Ostatecznie

Z(bi - Clz‘) = Z )\(Pz‘,j) = Z(dz - Cz')7

i<n j<k

gdzie druga rowno$¢ wynika z analogicznego rozumowania. {»

Twierdzenie 1.3.4 Funkcja A zdefinowana wzorem (**) jest przeliczalnie addytywng
funkcjg zbioru \ na pierscieniu przedziatow R.

Dowdd. Addytywnosé A wynika tatwo z samej definicji w (**) (i jej poprawnosci).
Jezeli [a,b) jest suma parami roztacznych zbioréw R, € R to, przedstawiajac kazdy
R, w postaci roztacznej sumy

R, = U [a?>b?)>

i<kn

otrzymujemy

b—a= > (b —af)=3 > (0] —af) =D AI).

n,i<kn n i<kn n

Przypadej ogolny, gdy R € R jest suma zbioréw R, € R otrzymamy przez prosta
indukcje po ilosci przedzialéow wystepujacych w przedstawieniu R. {
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1.4 Miary zewnetrzne: twierdzenie o konstrukcji
miary

W poprzedniej czesci pokazaliSmy, ze miare mozna zdefiniowac efektywnym wzorem na
rodzinie zbioréw zbudowanych w sposéb elementarny. Aby taks funkcje A rozszerzy¢ do
miary na o-ciele Bor(R) potrzebna jest jednak pewna ogdlna procedura, ktéra pozwoli
nam pokonac¢ trudnosci ze Sledzeniem, jak z danego uktadu zbioréw generowane jest
o-ciato.

W dalszym ciagu ustalmy dowolny pierscien R pozbioréw przestrzeni X i addy-
tywna funkcje o na tym pierécieniu.

Definicja 1.4.1 Dla dowolnego E C X definujemy

=inf{> w(R,): R, € R,EC|JR.}.

Tak okreslong funkcje p* = P(X) — [0, 00] nazywamy miara zewnetrzna pochodzaca
od wu.

W ogélnym przypadku, gdy X nie pokrywa sie ciagiem elementéw R, zbidr wy-
stepujacy po prawej stronie wzoru moze by¢ pusty — przypomnijmy, ze inf () = oo.

Lemat 1.4.2 Funkcja zbioru p* zdefiniowana w 1.4.1 ma nastepujgce wtasnosci:
(a) p(0) =0

(b) Jezeli By C Ey C X to u*(E;) <

E

p(Es).
(¢) Dla dowolnych E, C X p*(U, E,) <

S 1 (En).

n

Dowdd. (a) wynika z faktu, ze p(f) = 0, natomiast (b) z uwagi, ze inf A > inf B
dla A € B C R. Nieréwnos$¢ w (c) jest oczywista gdy p*(F,) = oo dla pewnego n.
Zat6zmy wobec tego, ze p*(FE,) < oo dla wszystkich n. Wtedy dla ustalonego ¢ > 0
istnieja R} € R, takie ze

E, CURp oraz > p(Rp) < p(E,) +¢e/2"
K k

Wtedy

n n,k

i (UB) < 0B + 22 = S () + =

n,k n

co dowodzi tezy.
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Rozdziat 1: Rodziny zbioréw i miary

Warunek 1.4.2(b) nazywany jest monotonicznoscia a warunek 1.4.2(c) to przeli-
czalna podaddytywnos$é. Czasami dowolna funkcje P(X) — [0, 00|, niekoniecznie zde-
finiowana wzorem 1.4.1, ktdra jest monotoniczna i przeliczalnie podaddytywna (oraz
znika na ()) nazywa sie miarg zewnetrzna; ta ogdlnosé nie bedzie nam potrzebna. Idea
miary zewnetrznej polega na mierzeniu dowolnych zbiorow “ od zewnatrz”, przez po-
krywanie ich ciagami zbioréw z miarg juz okreslona.

Miara zewnetrzna zadana przez 1.4.1 nie jest na ogoét przeliczalnie addytywna na
rodzinie wszystkich podzbioréw X, patrz Zadania 24 i 25. Jak sie jednak okaze, u* jes
przeliczalnie addytywna na o(R). W dalszym ciggu bedziemy zaktadaé, ze wyjsciowa
funkcja zbioru p jest o-skonczona w nastepujacym sensie.

Definicja 1.4.3 Funkcja i jest o-skonczona na pierScieniu R podzbiorow X jezeli
istniejg zbiory X, € R, takie ze X =U,, X, 1 p(X,) < oo dla kazdego n.

Nastepujace kluczowe twierdzenie mozna nazwaé¢ Twierdzeniem o konstrukcji mia-
Y.

Twierdzenie 1.4.4 Zaloimy, Ze p jest przeliczalnie addytywng i o-skoriczong funkcjq
na pierscieniu R. Niech 0(R) bedzie rodzing wszystkich podzbioréw X postaci AU B,
gdzie A € o(R) i p*(B) = 0.

(a) Rodzina o(R) jest o-cialem.

—

(b) Miara zewnetrzna p* dana wzorem 1.4.1 jest przeliczalnie addytywna na o(R).

(¢) Zachodzi wzor u(R) = p*(R) dla R € R i tym samym p* jest rozszerzeniem i na
o-cialo o(R).

(d) Dla kazdego A € @ i e > 0 istnieje B postaci B = U,, R,, R, € R, taki Ze
p (B\ A) <e.

(e) Dla kazdego A € U/(\R) istniejg By, By € 0(R), takie z2e By C A C By i pu*(By \
Bl) - O

(f) Dla kazdego A € 0/(\73), jezeli p*(A) < oo to dla kazdego € > 0 istnieje R € R,
taki ze p*(A A R) < e.

Dowod Twierdzenia podany jest w nastepnym podrozdziale.

Whniosek 1.4.5 Dowolna przeliczalnie addytywna i o-skonczona funkcja zbioru okre-
Slona na pierscieniu R rozszerza sie do przeliczalnie addytywnej funkcji na o(R).

— —

Dowéd. Poniewaz R C o(R) z poprzedniego twierdzenia wiec, jako ze o(R) jest
o-ciatem, zachodzi 0(R) C ¢(R) i mozna przyjaé¢ u(B) = pu*(B) dla B € 0(R). <
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1.5 Dowdd twierdzenia o konstrukcji miary

Podstawowy pomysl wykorzystywany w dowodzie pochodzi od Caratheodory’ego i
opiera si¢ na tym, ze zamiast rodziny o(R) rozwazamy nastepujaca rodzine zbiorow
mierzalnych.

Definicja 1.5.1 Mowimy, ze zbior A C X jest mierzalny wzgledem miary zewnetrznej
w* jezeli
pi(Z) = p(ZNA)+p (2N A,

dla dowolnego zbioru Z C X. Oznaczmy przez M(u*) rodzine wszystkich mierzalnych
podzbiorow X .

Zauwazmy, ze w warunku definiujgcym mierzalnos$é tylko nierownosé “>” jest istot-
na — nieréwnos¢ przeciwna wynika z zaleznosci Z = (Z N A) U (Z N A°) i (przeliczal-
nej) podaddytywnosci miary zewnetrznej. Zauwazmy tez, ze kazdy zbiér A spelniajacy
warunek p*(A) = 0 jest mierzalny. Dowéd Twierdzenia 1.4.4 zostanie podzielony na
szereg lematow.

Lemat 1.5.2 Rodzina 9M(u*) jest ciatem zbiorow.

Dowdd. Mamy @) € M(p*) poniewaz wzér w 1.5.1 jest spelniony dla A = (). Jesli
A € M(p*) to A° € M(u*) bo warunek 1.5.1 jest taki sam dla zbioru A, jak i dla
jego dopemienia A°. Rozwazmy A, B € M(u*) i dowolny Z C X. Wtedy, testujac
mierzalnosé zbioru A zbiorem Z, a nastepnie mierzalno$é zbioru B zbiorem Z N A,
otrzymamy

p(Z) = (ZNA) +u*(ZNAY) = (ZNANB)+ 1 (ZNANB) +u*(ZNA°) >
> (ZNANB) +p (ZN (AN B)9),
gdzie w drugiej linii korzystamy z tego ze
(ZNANB)YU(ZNA) D ZN(A°UB®) =ZnN(ANB)S,

oraz podaddytywnosci p*. W ten sposéb dowiedlismy A N B € M(u*), jako ze prze-
ciwna nier6wnos¢ jest zawsze prawdziwa. Tym samym 9U(u*) jest rodzina zamknieta
na dopelnienia i przekroje, a wiec jest ciatem. {

Lemat 1.5.3 Dla dowolnych parami rozlgcznych zbioréw Ay, ..., A, € M(u*) i do-
wolnego Z C X zachodzi wzor

(ZnJ A) =Y p(ZNA);

i<n i<n

w szczegolnoscei p* jest addytywng funkcjg na M(pu*).
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Dowdd. Dla dwoch roztacznych zbioréw A, As otrzymujemy teze, testujac mierzalnosé
zbioru A; zbiorem 7' = Z N (A1 U As) bo Z7NA =ZNA 12" NA] = ZN Ay
rozszerzenie wzoru na n sktadnikéw wymaga jedynie prostej indukcji. Addytywnoscé
@ otrzymujemy podstawiajac Z = X.

Lemat 1.5.4 Rodzina M(u*) jest o-cialem zwierajgcym R, a p* jest przeliczalnie
addytywna na M(p*). Zachodzi wzor u(R) = p*(R) dla R € R.

Dowdd. Sprawdzimy, ze M(u*) jest o-ciatem. Poniewaz I(p*) jest ciatem (Lemat
1.5.2) wiec wystarczy sprawdzié, ze M (p*) jest rodzina zamknieta na roztaczne prze-
liczalne sumy. Niech A, € 9M(p*) bedzie ciggiem parami roztacznych zbioréw i A =
U,, An. Wtedy dla dowolnego Z i n mamy na mocy 1.5.3

W(2) = (20 J A) +p° (Zm (U Az) ) > (20 A) + (20 A).

i<n <N i<n
Stad, wykorzystujac przeliczalna podaddytywnosé p*,

pN(Z) 2 D (20 A) + p (20 A°) 2 (Z 0 A) + p*(Z N A°).

To dowodzi, ze A € M(u*). Miara zewnetrzna p* jest przeliczalnie addytywna na
M (1*) jako funkcja jednoczesnie przeliczalnie podaddytywna i addytywna (por. Lemat
1.5.31 1.4.2).

Niech R € R. Aby pokazaé, ze R € 9M(p*) rozwazmy dowolny Z. Jezeli p*(Z) = oo
to automatycznie p*(Z) > p*(ZNR)+p*(ZNRC). Jezeli p*(Z) < oo to dla dowolnego
e > 0 istnieje ciag parami roztacznych zbioréw R, € R taki ze Z C U, R, 1 u*(Z) <
>on (Ry) 4 €. Wtedy

W ZNR)+u (Z0R) < Y p(RuN B)+ Y (RN RS = Y p(Ra) < °(2) e,

co dowodzi nieréwnosci p*(Z N R) + p*(Z N R°) < p*(Z), a wiec R € M(p*).
Dla R € R mamy p*(R) < u(R) z definicji p*. Jesli R C U,, R, dla pewnego ciggu
parami roztacznych zbiorow R, € R to

p(R) = p(ROJRn) = u(RNOR,) < p*(R),
gdzie stosujemy przeliczalng addytywnos$¢ pu na R. {

Lemat 1.5.5 Dia kaidego A € IM(u*) istniejg By, Bs € 0(R), takie ze B; C A C By

A~

i u*(Bg \ By) = 0. W szczegolnosci o(R) = M(u*).
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Dowdd. Rozwazmy najpierw przypadek gdy X € R i u(X) < oo; ustalmy zbior
mierzalny A. Wtedy dla kazdego p € N istnieja R € R, takie ze

ACUURE, (A +1/p> > p(RE).
Niech
B, =R
pn
Wtedy By € 0(R), A C B, oraz dla kazdego p
W (B2) < Y p(Ry) < p*(A) +1/p,

a stad p*(A) = p*(Bs). Analogicznie znajdziemy C € o(R) taki ze X \ A C C
i p* (X \ A) = pu*(CO); teraz mozemy przyja¢ By = X \ C. Poniewaz zbiér A jest
mierzalny wiec pu(X) = p*(A) + p*(X \ A), co daje

pi(Ba) = p(A) = p(X) — p" (X \ A) = p(X) — p*(C) = p*(By).

Ostatecznie p*(Bs \ By) = 0, jako ze p* jest addytywna na M(u*) 2 o(R).

W ogélnym przypadku mamy X = [J, X i dla zbioru mierzalnego A mamy A =
Uk Ak, gdzie Ay = AN X;. Mozemy teraz dla kazdego k z osobna zastosowowac
powyzsze rozumowanie do zbioru Ay (i pierécienia Ry = {R € R : R C Xj}, por.
Twierdzenie 1.6.3). Otrzymamy w ten sposob ciagi zbioréw BY C A, C B C X,
gdzie p* (B \ B¥) = 0. Wystarczy teraz zauwazy¢, ze zbiory By = U, B¥ i By = " BS
majg zadane wtasnosci.

Lemat 1.5.6 Jesli A € M(u*) spelnia warunek p*(A) < oo to dla kazdego € > 0
istnieje R € R taki Ze p*(A A R) < e.

Dowdd. Skoro p*(A) < oo wiec istnieja R, € R, takie ze

ACB=R, i D uR,) <p*(A)+e/2.

oznaczmy S, = U<, R; dla kazdego n. Wtedy S, T B i dlatego lim7i(S,) = f(B).
Mozemy wigc wskazac n takie ze 1i(S,) > fi(B) — /2. Dla R = U;¢,, R; € R mamy

TAAR) =Ti(A\ R) + I(R\ A) <A(B\ R) +A(B\ A) < £/2 +¢/2 = =,
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1.6 Przestrzenie miarowe

Terminem miara bedziemy okresla¢ przeliczalnie addytywnag funkcje zbioru okreélong
na o-ciele.

Definicja 1.6.1 Przestrzenig miarowg nazywamy trojke (X, X, p), gdzie ¥ C P(X)
jest o-ciatem, a p: 3 — [0, 00| jest miarg.

Zauwazmy, ze dla danej przestrzeni miarowej (X, X, p), jezeli ¥’ C ¥ jest mniej-
szym o-ciatem, to (X, X', ) gdzie ' = sy jest, formalnie rzecz biorac, inng prze-
strzenig miarowa. Czesto Jednak dla wygody obciecia p do podrodzin ¥ oznaczamy
ta sama litera.

Definicja 1.6.2 Przestrzen miarowg (X, X, i) nazywamy skoniczona jezeli u(X) < oo
oraz probabilistyczng w przypadku, gdy p(X) = 1. Przestrzen taka jest o-skoniczona,
jezeli istniejq zbiory Xy, € X, takie Ze X = Uy Xy @ u(Xy) < 0o dla kazdego k.

W przestrzeniach miarowych mozna dokonywaé¢ operacji brania podprzestrzeni, co
opisujemy w ponizszym twierdzeniu, ktérego dowod jest zupekie oczywisty.

Twierdzenie 1.6.3 Dla przestrzeni miarowej (X, %, p) i zbioru Y € ¥ oznaczmy
Yy={AeX:ACY}
Wtedy (Y, 3y, uy ), gdzie py (A) = p(A) dla A € Xy jest przestrzeniqg miarowq.

Jak widzieliSmy w poprzednich rozdziatach, o-cialo o(R) = IM(u*) powstaje z
0(R) przez “dorzucenie zbioréw miary zero” — proces ten, zwany uzupetnianiem miary
mozna sformalizowaé, jak nastepuje.

Definicja 1.6.4 Mowimy, ze przestrzen miarowa (X, 3, ) jest zupela jezeli dla kaz-
dego A € 3, u(A) = 0 wszystkie podzbiory A nalezq do X2. W takim przypadku mowimy
tez, ze X jest o-ciatem zupelnym wzgledem p

Lemat 1.6.5 Przestrzen miarowa (X, M(u*), i), gdzie i oznacza obciecie p* do M(p*),
jest zupeina.

Dowdéd. Zauwazmy, ze jesli pu*(A) = 0 to dla dowolnego Z mamy p*(Z N A) =
i dlatego p*(Z2) = p*(Z N A) + p*(Z N A°). Stad natychmiast wynika, ze wszystkie
podzbiory zbioru miary zewnetrznej zero sa mierzalne. <$»

Twierdzenie podane ponizej mozna formalnie wywnioskowaé z konstrukeji miary

przedstawionej w poprzednim podrozdziale, ale znacznie prostsza jest bezposrednia
droga, patrz Zadanie 1.9.27.

Twierdzenie 1.6.6 Dla kazdej przestrzent miarowej (X, %, ) istnieje przestrzen mia-
rowa zupetna (X, )y ), gdzie SOY L jest rozszerzeniem miary | na 5.
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1.7 Jednoznaczno$¢ rozszerzenia miary

Jezeli R jest pierscieniem zbioréw przeliczalnych w nieprzeliczalnym zbiorze X to
funkcje p tozsamosciowo réwna zeru na R mozna przedtuzyé na o(R) na wiele spo-
sob6ow. Okazuje sie jednak , ze w typowej sytuacji rozszerzenie do miary jest jedyne.
Dowdd tego faktu opiera si¢ na nastepujacym pomysle.

Definicja 1.7.1 Rodzing M C P(X) nazywamy klasa monotoniczng jesli dla dowol-
nego ciggu A, € M
(1) jezeli A, T A to A e M;

(i1) jezeli A, | A to A e M.

Oczywiscie kazdy o-pierscien jest automatycznie klasag monotoniczng; zauwazmy,
ze pierscien bedacy klasa monotoniczng jest o-pierécieniem, patrz Zadanie 1.9.12. Po-
nizsze, wcale nieoczywiste, twierdzenie bywa tradycyjnie nazywane lematem o klasie
monotonicznej.

Twierdzenie 1.7.2 JezZeli klasa monotoniczna M zawiera pierscien R to zawiera tez
o-pierscien s(R) generowany przez R.

Dowdd. Oznaczmy S = s(R); zauwazmy, ze wystarczy jesli sprawdzimy, ze jezeli M
jest najmniejszg klasg monotoniczng zawierajacg R to M = S. Zauwazmy przy tym,
ze M C 8, jako ze kazdy o-pierscien jest klasa monotoniczng.

Dla dowolnego A C X rozwazymy rodzine k(A), gdzie

k(A)={B: A\ B,B\ A, AUB € M).

Zauwazmy, ze B € k(A) wtedy i tylko wtedy gdy A € k(B), z uwagi na symetrie
warunkéw. Odnotujmy tez, ze rodzina k(A) jest klasa monotoniczna dla dowolnego A;
na przyktad jesli B, € k(A)i B, T B to

A\ B, | A\B, B,\A1B\A, B,UATBUA,

co dowodzi ze B € k(A).

Dla R € R z definicji pierécienia wynika natychmiast, ze R C k(R). Tym samym,
jako ze k(R) jest klasa monotoniczna, M C k(R) dla R € R. Inaczej méwiac, jesli
MeMiReTRtoMEe Ek(R), a wiec takze R € k(M). Stad otrzymujemy R C
k(M) dla M € M, a zatem M C k(M) dla M € M. To ostatnie stwierdzenie
oznacza po prostu ze M jest pierscieniem. Klasa monotoniczna bedaca pierscieniem
jest automatycznie o-pierécieniem, co ostatecznie dowodzi, ze M = S. {

Twierdzenie 1.7.3 Niech u bedzie przeliczalnie addytywng funkcjq zbioru na pier-
Scieniu R C P(X). Zatéimy, ze X = Uy, S dla pewnych Sy, € R, takich Ze u(Sk) < oo.
Wtedy p ma jednoznaczne przedtuzenie do miary na o(R).
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Dowdéd. Istnienie rozszerzenia zostalo wykazane — patrz Wniosek 1.4.5. Zalézmy, ze
p1, p2 sa miarami na o(R), takimi, ze p1(R) = p2(R) = p(R) dla R € R. Bedziemy
rozumowac podobnie jak w dowodzie Twierdzenia 1.5.5, rozwazajac wpierw przypadek
miary skonczonej.

Zatozmy, ze X € R i pu(X) < oo; rozwazmy rodzine M tych A € o(R), dla
ktérych pq(A) = po(A). Wtedy M jest klasa monotoniczna, co wynika natychmiast z
Twierdzenia 1.2.5. Wobec tego M O R i M = ¢(R) na mocy Twierdzenia 1.7.2, co
oznacza, 7e ji1 = fia.

W przypadku ogélnym mozemy zatozy¢, ze zbiory Sy sa parami roztaczne. 7 pierw-
szej czesci dowodu, zastosowanej do kazdego zbioru S, z osobna, wynika, ze jesli
A€ o(R)iAC S dla pewnego k to pi(A) = pe(A). Ostatecznie dla dowolnego
A € 0(R) otrzymujemy

pa(A) =D (AN Sy) =D pa(AN Sk) = pa(A),

na mocy przeliczalnej addytywnosci py 1 po. &

1.8 Miara Lebesgue’a 11

W podrozdziale 1.3 zdefiniowaliémy funkcje zbioru A na pierscieniu R podzbioréw
prostej, generowanym przez przedzialy postaci [a,b). Poniewaz A jest przeliczalnie
addytywna funkcja zbioru na R wiec z Twierdzenia 1.5.5 wynika, ze \* jest miara na o-
ciele zbior6w mierzalnych 9t(A*). Ponadto Twierdzenie 1.7.3 orzeka w tym przypadku,
ze A ma dokladnie jedno przedtuzenie do miary na o-ciele Bor(R) = o(R) (por.
Lemat 1.1.7). Oczywiscie oba te twierdzenia maja tu zastosowanie bo R = J,[—k, k)
i A([—k, k) = 2k < 0.

Oznaczmy przez £ o-ciato zbioréw mierzalnych 9t(A*). W dalszym ciagu dla pro-
stoty bedziemy tg sama litera A oznacza¢ miare Lebesgue’a, niezaleznie od tego, czy
rozwazamy ja na R, Bor(R) czy tez £. Jak sie za chwile okaze, do$¢ zawita konstrukcja
rozszerzenia miary z pierécienia R na £ jest konieczna do wykazania istnienia miary
Lebesgue’a, natomiast jej wtasno$ci mozna zrozumieé¢ na podstawie do$¢ prostych ob-
serwacji ponizej. W przysztosci zobaczymy, ze o A wystarczy wiedzie¢ tyle, ze jest to
jedyna miara na Bor(R), ktéra rozszerza naturalna definicje dtugosci odcinkéw.

Zauwazmy, ze \* mozna okresli¢ wzorem

MN(E) =mf{D> (by —an) : E CJlan, bn), an < by}
Wygodniej bedzie jednak w tej chwili zauwazy¢, ze

MN(E) =if{D> (bp — an) : E CJ(an, by), an < by},

por. Zadanie 1.9.31. Z tej uwagi oraz z Twierdzenia 1.4.4 wynikaja natychmiast na-
stepujace fakty.
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Twierdzenie 1.8.1 (a) Kazdy zbidr przeliczalny jest miary Lebesgue’a zero.

(b) Dla kazdego zbioru mierzalnego A € £ i € > 0 istnieje zbior otwarty V' i zbidr
domkniety F, takie z2e F CACV i N(V\F) <e.

(¢) Dla kazdego zbioru mierzalnego A € £ istniejg zbiory borelowskie By, Bs, takie
ze B1 QAQBQ Z)\(BQ\Bl) =0.

Stosujac Twierdzenie 1.5.6(f) otrzymujemy inny wazny fakt.

Twierdzenie 1.8.2 Jezeli A € £ i AM(A) < oo to dla kaZdego € > 0 istnieje zbior J
bedgcy skonczong sumqg odcinkow i taki ze N(A N J) < €.

Odnotujmy jeszcze nastepujacy wniosek.

Whniosek 1.8.3 Jezeli A € £ 1 AM(A) < 0o to dla kazdego € > 0 istnieje zbior zwarty
(czyli domkniety @ ograniczony) K C A, taki Ze A(A\ K) < e.

Dowdd. Dla A, = AN (—n,n) mamy A, T A i dlatego A(A4,) zbiega do A(A).
Wybierzmy n takie ze A(A,,) > A(A)—e/2; z Twierdzenia 1.8.1 istnieje zbiér domkniety
K C A, o wlasnosci A(A4, \ K) < /2. Wtedy K jest zbiorem zwartym i A(A \ K) <
AMANAL) +AMAN\K) <e. O

Jak sie okazuje dowolny zbiér mierzalny mozna na rézne sposoby aproksymowac z
punktu widzenia miary stosunkowo prostymi pozbiorami prostej.

Przyktad 1.8.4 Niech C' C [0, 1] bedzie “tr6jkowym” zbiorem Cantora; przypomnij-
my, ze zbior C' powstaje w ten sposob, ze odcinek jednostkowy dzielimy na 3 czesci
punktami 1/312/3 i usuwamy z niego srodkowy odcinek otwarty (1/3,2/3). Nastepnie
w drugim kroku stosujemy analogiczna operacje w odcinkach [0,1/3] i [2/3, 1], usuwa-
jac odpowiednio odcinki (1/9,2/9) i (7/9,8/9). Itd... Nietrudno policzy¢, ze taczna
dlugosé usuwanych odcinkéw wynosi 1; tym samym A\(C) =1 — 1 = 0. Zauwazmy, ze
C' jest zbiorem domknigtym i nie zawiera zadnego niepustego przedziatu.

Inaczej méwiac, zbior C' sktada sie ze wszystkich liczb = € [0, 1], ktére mozna
zapisa¢ w systemie trojkowym za pomoca cyfr 01 2. W ten sposéb mozna uzasadnié, ze
C jest zbiorem nieprzeliczalnym, rownolicznym ze zbiorem R. Istnieja tez wersje takiej
konstrukeji, prowadzace do zbioru “typu Cantora” miary dodatniej, patrz Zadanie

1.9.32 &

Wykorzystujac wtasnosci zbioru Cantora wspomniane powyzej oraz Problem 1.10.C
mozna wynioskowaé, ze £ # Bor(R). Istotnie, kazdy zbiér A C C jest mierzalny, jako
ze A\(C) = 0. W teorii mnogosci dowodzi sig, ze rodzina P(C') jest mocy 2¢ > ¢, a moc
Bor(R) wynosi jedynie ¢. Dlatego tez C' zawiera nieborelowskie zbiory mierzalne.

W tym miejcu warto wspomnie¢ o wtasnosciach miary Lebesgue’a zwiazanych ze
struktura grupy addytywnej (R, +). Dla B C R iz € R piszemy 2 + B na oznaczenie
translacji zbioru B, czyli {x +b:b € B}.
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Rozdziat 1: Rodziny zbioréw i miary

Twierdzenie 1.8.5 Dia dowolnego B € Bor(R) i x € R mamy z + B € Bor(R) i
Mz + B) = A(B).

Dowdd. Jesli oznaczymy przez A rodzine tych B € Bor(R), dla ktérych wszyst-
kie translacje sa borelowskie to A zawiera wszystkie odcinki otwarte (a,b), jako ze
z + (a,b) = (a + z,b+ x). Wystarczy teraz zauwazy¢, ze rodzina A jest o-ciatem,
aby otrzymaé A = Bor(R). Dla ustalonego x rozwazmy miare p na Bor(R), dana
przez wzor p(A) = M ax + A) (sprawdzenie, ze u jest istotnie przeliczalnie addytywna
pozostawiamy czytelnikowi). Dla a < b mamy

p([a,0)) = Az + b,z +b)) =b—a=X\[a,b));

wynika stad ze u(R) = A(R) dla R z pierécienia przedziatéw i tym samym p(B) = A(B)
dla B € Bor(R) z jednoznacznosci rozszerzenia miary Lebesgue’a.

Nietrudno rozszerzy¢ niezmienniczos¢ opisang w Twierdzeniu 1.8.5 na o-ciato zbio-
row mierzalnych £. Prowadzi to do klasycznej konstrukcji Vitalego, ktora pokazuje,
ze mozna za pomocg pewnika wyboru udowodni¢ istnienie podzbioru prostej rzeczy-
wistej, ktory nie jest mierzalny, por. Problem 1.10.G.
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1.9 Zadania

1.9.1 Niech R bedzie pierscieniem zbiorow. Zauwazy¢, ze jesli A, B € Rto AAB €R
i AN B € R. Sprawdzi¢, ze (R, A, N) jest takze pierScieniem w sensie algebraicznym.

1.9.2 Niech F bedzie taka rodzing podzbioréw X, ze X € F oraz A\ B € F dla
A, B € F. Sprawdzi¢, ze F jest ciatem.

1.9.3 Zauwazy¢, ze przekroj dowolnej ilosci pierscieni, ciat. . . jest pierscieniem, ciatem
itp.

1.9.4 Zauwazy¢, ze jesli F C G C P(X) to a(F) C «a(G), gdzie a oznacza jeden z
symboli generowania r, s, a,o.

1.9.5 Niech G bedzie rodzina wszystkich skonczonych podzbioréw X. Opisaé r(G),
s(G), a(G) i o(G).

1.9.6 Niech R bedzie pierscieniem na prostej rzeczywistej, generowanym przez prze-
dzialy postaci [a,b). Sprawdzi¢, ze A € R wtedy i tylko wtedy gdy A jest roztaczna
skonczong suma takich przedziatow.

1.9.7 Niech A C P(X) bedzie ciatem zbioréw i niech Z C X. Wykazaé, ze

a(AU{Z}) ={(ANZ)U(BNZ%: A B e A}.

1.9.8 Niech A bedzie skonczonym ciatem zbioréw. Udowodnié, ze |A| = 2™ dla pewnej
liczby naturalnej n.

1.9.9 Niech F bedzie przeliczalng rodzina zbioréw. Udowodnié, ze cialo a(F) jest
przeliczalne.

1.9.10 Udowodnié, ze jesli A jest nieskonczonym o—cialem to A ma przynajmniej ¢
elementow. WSKAZOWKA: Wykazaé, ze w kazdym nieskoriczonym o-ciele istnieje ciag
niepustych parami roztacznych zbioréw; skorzystaé z tego, ze ¢ jest moca P(N).

1.9.11 Zauwazy¢, ze jezeli C jest taka rodzina podzbioréw X ze X = U2, C, dla
pewnych C,, € C to s(C) = o(C).

1.9.12 Zauwazy¢, ze rodzina, ktora jest jednoczesnie pierscieniem i klasg monotonicz-
ng jest o-pierscieniem.

1.9.13 Sprawdzié, ze jesli A jest ciatem zbioréow i rodzina A jest zamknieta na roz-
taczne przeliczalne sumy to A jest o—ciatem.

1.9.14 Wykazad, ze rodzina podzbiorow R postaci
(FENV)U...U(FeN Vi),

gdzie F; sa domkniete, V; sg otwarte, k € N, jest ciatem.

1.9.15 Sprawdzié¢, ze o—ciato Bor(R) jest generowane przez kazda z rodzin
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(i) odcinki otwarte o koncach wymiernych;
(71) odcinki domkniete;
(111) polproste postaci (—oo, al;
(iv) poélproste postaci (a, 00);

(v) odcinki domkniete o koricach wymiernych.

1.9.16 Niech u bedzie skonczona addytywna funkcjg zbioru, okreslona na pierscieniu
R. Sprawdzié¢, ze (dla dowolnych A, B,C € R)

(1) |[(A) = w(B)| < u(A A B);
(i) p(AU B) = p(A) + u(B) — n(AN B);
(iii) p(AUBUC) = u(A)+u(B)+u(C)—u(ANB)—u(ANC) —u(BNC)+p(ANBNC).
Jak bedzie wygladal analogiczny wzor dla 4, 5. .. zbiorow?
1.9.17 Sprawdzi¢, ze dla funkcji p z poprzedniego zadania, warunek A ~ B <=

u(A A B) = 0 okresla relacje réwnowaznosci na R.

1.9.18 Niech X bedzie zbiorem skoriczonym. Sprawdzi¢, ze wzor u(A) = M okredla

1 X1
miare probabilistyczna na P(X).
1.9.19 Niech (z,) € X bedzie ustalonym ciagiem i niech (¢,) bedzie ciagiem liczb
nieujemnych. Wykazac, ze wzor

wA) = >

n:rn,€A

okresla miare na P(X) (w razie trudnosci rozwazy¢ ciag skonczony x1, ..., z,). Kiedy
taka miara jest skonczona?

1.9.20 Zauwazy¢, ze P(N) jest o—cialem generowanym przez singletony. Wykazaé, ze
kazda miara na P(N) jest postaci opisanej w poprzednim zadaniu.

1.9.21 Niech u bedzie miara na o—ciele A i niech A,, € A. Zakladajac, ze u(A,NAx) =
0 dla n # k, wykazaé ze

o0

,u( An) = Z /‘(An)
n=1 n=1

1.9.22 Niepusta rodzing J C P(X) nazywamy o—ideatem jesi A C Bi B € J
implikuje A € J oraz Up2 A, € J jesli A, € J dlan = 1,2,.... Podaj znane Ci
przyklady o-ideatéw na R i R2

1.9.23 Niech J bedzie o—ideatem na X. Opisa¢ A = o(J) (rozwazy¢ przypadki X €
J, X & J). Zdefiniowaé na A zerojedynkowa miare p, analogicznie jak w przykladzie
z rozdziatu 1.2.

1.9.24 Niech J C P(X) bedzie o—idealem nie zawierajacym X. Na a(J) definiujemy

addytywna, zerojedynkowa funkcje zbioru p (por. zadanie poprzednie). Okreslié miare
zewnetrzng za pomoca (4 i scharakteryzowaé rodzine zbiorow mierzalnych.
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1.9.25 Niech {A;, As, ...} bedzie partycja przestrzeni X na zbiory niepuste.

(i) Opisaé ciato A generowane przez zbiory A, n € N.

(i1) Na A okreslamy addytywna funkcje u, tak aby u(A,) = 27" i u(X) = 1. Jak moz-
na opisa¢ o—ciato zbioréw mierzalnych wzgledem miary zewnetrznej pochodzacej
od u? (patrz Definicja 1.5.1)

1.9.26 Niech X = [0,1) x [0,1] i niech R bedzie cialem w X generowanym przez

cylindry postaci [a, b) x[0, 1]. Na R rozwazamy funkcje zbioru, taka ze u([a, b) %[0, 1]) =

b—adla0<a<b< 1. Jak wygladaja (z grubsza...) zbiory p*~mierzalne? (patrz

Definicja 1.5.1). Zauwazy¢, ze w X mozna wskazaé¢ wiele parami roztacznych zbiorow

E niemierzanych, takich ze p*(E) = 1.

1.9.27 Uzupehié¢ szczegdty dowodu Twierdzenia 1.6.6 w nastepujacy sposob: Dla

przestrzeni miarowej (X, >, 1) zdefiniujmy X jako rodzine zbioréw postaci AN N,

gdzie A € ¥, N C B dla pewnego B € ¥ miary zero. Wtedy X jest o-cialem, a wzor

a(A A N) = pu(A) definiuje poprawnie przedtuzenie miary p z ¥ na 3.

1.9.28 Niech R bedzie pierscieniem podzbiorow Q generowanym przez zbiory postaci

QnNla,b) (a,b € R). Sprawdzié¢, ze na R mozna okresli¢ addytywna funkcje v, tak ze

v(QnNa,b)) =b—adla a < b. Udowodnié, ze v nie jest przeliczalnie addytywna na

R i obliczy¢ v*(Q).

1.9.29 Zauwazy¢, ze we wzorze na A\* mozna zastapi¢ odcinki postaci [a,b) przez

odcinki postaci (a,b) (lub [a,b]).

1.9.30 Sprawdzi¢, ze

(1) AM(A) = 0 dla kazdego zbioru skoniczonego A;
(ii) Aa,b] = Aa,b) =b—adlaa < b
(ii1) AM(U) > 0 dla kazdego zbioru otwartego U # {);
(iv) A(A) = 0 dla kazdego zbioru przeliczalnego A.
1.9.31 Poda¢ przyktad zbioru mierzalnego A, takiego ze

(i) M(A) =11 A jest nieograniczonym zbiorem otwartym;

(i1) A(int(A)) =1, A(A) =2, A(A) = 3;
(11i) M(A) =01 A C[0,1] jest zbiorem nieprzeliczalnym.
UWAGA: int(A) oznacza wnetrze zbioru, czyli najwigkszy zbiér otwarty zawarty w A.

1.9.32 Skonstruowaé, dla ustalonego ¢ > 0, zbiér domkniety F C [0,1] o wnetrzu
pustym, dla ktérego A\(F) > 1 —e.

I sPOSOB: Zmodyfikowaé¢ konstrukeje zbioru Cantora.
IT sPosOB: Niech (g,), bedzie ciagiem liczb wymiernych z [0, 1]. Rozwazyé¢ zbior
otwarty V = U (g, — €27, g, + €27 ") przy odpowiednim doborze € > 0.

1.9.33 Zauwazy¢, ze dla kazdego zbioru M € £, jesli A(M) < oo to dla kazdego e > 0
istnieje ograniczony zbiér mierzalny My C M, taki ze A(M \ M) < e.
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1.9.34 Wykazaé, ze istnieje zbiér domkniety F' C [0, 1] miary dodatniej ztozony z
liczb niewymiernych.

1.9.35 Dla B C Rix # 0, niech B oznacza zbiér {xb: b € B} (czyli jednoktadnosé
zbioru B).

Sprawdzi¢, ze takie przeskalowanie zbioru otwartego jest otwarte i ze rodzina tych
B € Bor(R) dla ktérych B € Bor(R) dla kazdego x # 0 jest o-cialem. Wyciagnaé¢
stad wniosek, ze dla kazdego B € Bor(R) i x mamy B € Bor(R) (tzn. ze o—ciato
Bor(R) jest niezmiennicze na jednoktadnosé).

1.9.36 Wykazaé, ze A(xzB) = zA(B) dla kazdego zbioru borelowskiego B i z > 0.
Rozszerzy¢ ten rezultat na zbiory mierzalne.

1.9.37 Udowodni¢, ze dla dowolnego zbioru mierzalnego M miary skonczonej i e > 0
istnieje zbiér postaci I = U<, (a4, b;), taki ze A\(M A T) < e, przy czym a;,b; € Q.

1.9.38 Niech (X, ¥, ) bedzie przestrzenia miarowa. Zbiér T € X jest atomem miary
pojesli w(T) > 0 i dla kazdego A € ¥ jesli A C T to u(A) = 0 lub p(A) = w(7T).
Moéwimy, ze miara p jest bezatomowa jesli nie ma atomow.

Sprawdzi¢, ze miara Lebesgue’a jest bezatomowa. Zauwazy¢, ze inne miary rozwazane
do tej pory mialy atomy.

1.9.39 Udowodni¢, ze skonczona miara bezatomowa g na > ma nastepujaca wtasnosé
Darboux: dla kazdego A € ¥ 10 < r < p(A) istnieje B € X, takize B C Aipu(B) =r.

WSKAZOWKA: Niech u(X) = 1; sprawdzié, ze dla kazdego ¢ > 01 A € ¥ jesli
p(A) > 0 to istnieje B € 3, ze B C Ai0 < u(B) < . Nastepnie sprawdzi¢, ze X jest
roztaczna suma zbioréw A, o whasnosci 0 < p(A4,) < e. To rozumowanie pokaze, ze
zbiér wartosci p jest gesty w [0, 1]; potem juz blisko do celu.

1.9.40 Niech (X, X, u) bedzie skoniczona przestrzenia miarowa. Wykazaé, ze jezeli
A, € ¥ i dla kazdego n zachodzi nier6wnos$¢ u(A,) > 6 > 0, to istnieje x € X, taki ze
r € A,, dla nieskonczenie wielu n.

1.9.41 Udowodni¢, ze jesli (A,,) jest ciagiem zbioréw z o—ciata, na ktérym okreslona
jest skonczona miara u, to jesli (A,) jest zbiezny do A to p(A) = lim, u(A4,). Czy
skonczono$¢ miary jest istotna?

1.10 Problemy

1.10.A Udowodnié, ze suma dowolnej (nawet nieprzeliczalnej) rodziny przedziatéw
na prostej, postaci [a,b], a < b, jest zbiorem borelowskim.

1.10.B Udowodnié, ze dla dowolnego zbioru X, | X| < ¢ wtedy i tylko wtedy gdy ist-
nieje w P(X) przeliczalna rodzina zbiorow F, taka ze o(F) zawiera wszystkie punkty.
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1.10.C Niech F C P(X) bedzie rodzing mocy < ¢. Udowodnié, ze |o(F)| < ¢. Wy-
wnioskowaé stad, ze |Bor(R)| = ¢ i Ze istnieja nieborelowskie zbiory na proste;j.

UWAGA: tuta]j potrzebna jest indukcja pozaskonczona.

1.10.D Udowodni¢, ze funkcja zbioru A zdefiniowana na pierscieniu generowanym
przez odcinki postaci [a,b) (przez warunek A([a,b)) = b — a dla a < b) jest ciagta z
gory na zbiorze () (a wiec jest przeliczalnie addytywna). WSKAZOWKA: Zbiory postaci
Ui, [ci, d;] sa zwarte i (w pewnym sensie) przyblizaja zbiory z R od $rodka.

1.10.E Niech (X, ¥, 1) bedzie przestrzenia probabilistyczna i niech Ay, ..., A € X
beda zbiorami o wlasnosci pu(A;) > 1/2. Wykazaé, ze istnieje z € X, taki ze © € A;
dla przynajmniej 1005 wartosci 2.

1.10.F Przeprowadzi¢ nastepujaca konstrukcje zbioru Vitali’ego: Dla z,y € [0,1),
niech x ~ y <= 1z —y € Q. Sprawdzi¢, ze ~ jest relacja réwnowaznosci. Niech
Z bedzie zbiorem, ktory z kazdej klasy abstrakcji tej relacji wybiera doktadnie jeden
element. Sprawdzi¢, ze U,eq(Z @ ¢q) = [0,1), gdzie ® oznacza dodawanie mod 1.
Wywnioskowaé stad i z niezmienniczosci miary Lebesgue’a na przesunigcia, ze powyz-
szy zbior Z nie jest mierzalny w sensie Lebesgue’a.

1.10.G Skonstruowa¢ zbiér borelowski B C R, taki ze A\(BN1) >0iA(B°NI) >0
dla kazdego niepustego odcinka otwartego I.

1.10.H Udowodnié¢ twierdzenie Steinhausa: Jesli A C R jest mierzalny i A(A) > 0
to zbiér A — A (r6znica kompleksowa) zawiera odcinek postaci (—d,d) dla pewnego
6> 0.

WSKAZOWKA: Mozna zalozy¢, ze A(A) < oo; pokazaé najpierw ze istnieje taki niepu-
sty odcinek I, ze A(ANT) > 3X\(I).

1.10.I Niech A C R bedzie takim zbiorem mierzalnym, ze A\(A A (x + A)) = 0 dla
kazdej liczby wymiernej x. Udowodnié, ze A(A) =0 lub A(R\ A) = 0.

WSKAZOWKA: Twierdzenie Steinhausa.
1.10.J (Wymaga indukeji pozaskonczonej.) Skonstruowaé zbiér Bernsteina Z C [0, 1],
czyli taki zbior, ze

ZNP#0, Z\P#0,
dla dowolnego zbioru domknietego nieprzeliczalnego P C [0, 1]. Zauwazy¢, ze Z nie
jest mierzalny w sensie Lebesgue’a, a nawet \*(Z) = A*([0,1]\ Z) = 1.

WSsKAZOWKA: Wszystkie zbiory P domkniete nieprzeliczalne mozna ustawi¢ w cigg
P,, o < ¢. Zdefiniowaé Z jako {z, : a < ¢}, gdzie ciag z, i pomocniczy ciag y, sa
takie, ze

Zaw Yo € Po \ {28,y5: B < a}.

Aby przeprowadzi¢ konstrukcje trzeba wiedzie¢ lub sprawdzié, ze kazdy zbior P, ma
moc ¢.



Rozdziat 2

Funkcje mierzalne

Licz to, co policzalne, mierz to, co mierzalne,
a to, co niemierzalne, uczyn mierzalnym.
Galileusz

2.1 Podstawowe wiadomosci

Przypomnijmy, ze dla dowolnej funkcji f : X — Y i dowolnych zbioréw A C X oraz
B CY, zbiory f[A] i f~![B], zdefiniowane jako

Al = {f() eV e A}, f[B]={zeX: fx)e B,

nazywamy, odpowiednio, obrazem zbioru A przez funkcje f oraz przeciwobrazem zbioru
B przez funkcje f. Operacja przeciwobrazu zachowuje wszystkie dziatania mnogoscio-
we, na przyktad

I [@ Bn] -NsiB)

dla dowolnego ciagu zbiorow B, C Y; por. Zadanie 2.5.1. W przypadku, gdy B =
{b} piszemy raczej f'[b] niz f~1[{b}], czego nie nalezy myli¢ z obliczaniem wartosci
(potencjalnie istniejacej) funkeji odwrotne;.

Przypomnijmy, ze ciggtos¢ funkcji f : R — R mozna wyrazi¢ za pomoca prze-
ciwobrazéw zbioréw przez t¢ funkcje — zbior f~V] jest otwarty dla kazdego zbioru
otwartego V' C R. Istotnie, jesli zg € f~1[V] to yo = f(zo) € V, askoro V jest otwarty
to dla pewnego € > 0 mamy (yo—¢, yo+¢) C V. Dobierajac teraz § > 0 jak w warunku
Cauchy’ego cigglodci funkeji f w g, otrzymamy natychmiast (xo—4d, zo+49) C f~L[V].
Nietrudno jest wykaza¢, ze w istocie funkcja f jest ciggta wtedy i tylko wtedy gdy
przeciwobrazy zbiorow otwartych przez te funkcje sa otwarte; ten ostatni warunek z
kolei jest rownowazny faktowi, ze zbiér f~1[F] jest domkniety dla kazdego domknie-
tego zbioru F' C R — wynika to tozsamosci R\ f~[F] = f7'[R\ F].

Rozwazmy ustalona przestrzen miarowa (X, 3, 1) (chwilowo sama miara nie bedzie
odgrywalta zadnej roli). Okazuje sie, ze odpowiednio “dobre wzgledem Y” wlasnosci
funkcji f : X — R definiuje si¢ nastepujaco.
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Definicja 2.1.1 Mowimy, ze funkcja f : X — R jest Y—mierzalna, albo po prostu
mierzalna jesli jest jasne jakie o-cialo mamy na mysli, gdy f~'[B] € ¥ dla kazdego
zbioru B € Bor(R).

Ponizszy fakt pozwoli wystowi¢ mierzalno$é¢ funkcji w prostszy sposob.

Lemat 2.1.2 Niech G C Bor(R) bedzie dowolng rodzing zbioréw, takq zZe o(G) =
Bor(R), Wtedy dla mierzalnosci funkcji f : X — R potrzeba i wystarcza, aby f~[G] €
Y dla kazdego G € G.

Dowéd. Rozwazmy rodzine A zlozong z tych B € Bor(R), dla ktérych f~1[B] € X.
Wtedy A jest o-cialem zbioréw: jesli A, € A1 A=, A, to wtedy f~1[A,] € T dla
kazdego n i

fﬁl[A] = Ufil[An] €X.

n

Jesli A € A to takze A € A, poniewaz
fHA = (A e =

Jako ze A jest o-cialem, z inkluzji G C A wynika Bor(R) = o(G) C A, czyli A =
Bor(R), co dowodzi dostatecznosci warunku — jego konieczno$é jest oczywista.

Whniosek 2.1.3 Kazdy z ponizszych warunkow pocigga mierzalnosé funkcji f : X —
R:
(i) {z: f(x) <t} € X dla kazdego t € R;

(i) {x: f(z) <t} € X dla kazdego t € R;
(iii) {z : f(x) >t} € ¥ dla kazdego t € R;
(i) {z: f(x) >t} € ¥ dla kazdego t € R.
Dowdéd. Sprawdzimy dla przyktadu dostatecznosé warunku (i). Niech G bedzie rodzina

polprostych (—oo,t) dla t € R. Wtedy f'[G] € ¥ dla G € G wiec f jest mierzalna,
jako ze G generuje Bor(R), patrz Zadanie 1.9.15 $

Whniosek 2.1.4 Jesli funkcja f : R — R jest ciggla to jest mierzalna wzgledem
Bor(R).

Przyklad 2.1.5 Funkcje f : R — R, ktora jest Bor(R)-mierzalna nazywamy po
prostu funkcja borelowska. Zauwazmy, ze dla X = [0, 1] lub innego borelowskiego
podzbioru prostej mozemy rozwazy¢ rodzing {B € Bor(R) : B C X}, ktéra jest o-
ciatem podzbioréw X. Takie o-cialo bedzie oznaczane Bor(X) — przypomnijmy, ze
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w topologii za zbiory otwarte w X uwaza si¢ zbiory postaci U N X, gdzie U C R jest
otwarty.

Przyktad 2.1.6 Dla dowolnego A z o-ciala ¥ podzbioréw dowolnej przestrzeni X
funkcje x4 : X — R, gdzie xya(x) =1 dlax € Aixa(x) =0dla z ¢ A nazywamy
funkejq charakterystyczng zbioru A. Taka funkcja jest mierzalna, jako ze x;'[U] jest
elementem rodziny {), A, A¢, X} C X.

Dla dowolnego B € Bor(R) funkcja xp jest wiec borelowska. Zauwazmy, ze xg
nie jest cigglta w zadnym punkcie prostej, co pokazuje, ze mierzalnos¢ jest wtasnoscia
znacznie ogolniejszg.

W dalszym ciagu pokazemy, ze wiele naturalnych operacji przeprowadzanych na
funkcjach mierzalnych prowadzi do funkcji mierzalnych.

Lemat 2.1.7 Jezeli funkcja f : X — R jest X-mierzalna, a funkcja g : R — R jest
ciggla to funkcja go f: X — R jest X-mierzalna.

Dowdd. Dla dowolnego zbioru otwartego U C R, zbior g~ U] jest otwarty na mocy
cigglosci g; stad (go f)7H U] = f~g U] € 2. &

Whiosek 2.1.8 Jezeli funkcja f : X — R jest Y-mierzalna to funkcje ¢ - f, f%, |f]
tez sq Y-mierzalne.

Lemat 2.1.9 Jezeli funkcje f,g : X — R sq¢ X-mierzalne to funkcja f + g jest -
mierzalna.

Dowéd. Wystarczy wykazaé¢, ze dla h = f +git € R mamy h™'[(—oo,t)] € 2. Ale

{reX:fl@)+gl@) <t}= U {fz:fl@)<ptn{z:gl)<q}

p+q<t,p,q€Q

co nietrudno sprawdzi¢, korzystajac z gestosci zbioru Q w R. Zauwazmy, ze suma mno-
nogosciowa w powyzszym wzorze jest przeliczalna, patrz Twierdzenie 0.2.4, i dlatego
nalezy do X. &

Whniosek 2.1.10 Jezeli funkcje f,g : X — R sq X-mierzalne to takzie mierzalne sq
funkcje f - g, max(f, g), min(f, g).

Dowdd. Dowdd wynika bezposrednio z rozwazan powyzej oraz tozsamosci

2 g2 2
f.g:(f+g> 2f g

max(f,g) = |f—g|2+f+g; min(f, g) =

—|f—gl+f+yg
. .
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%

Dodajmy ze mierzalno$¢ iloczynu f - g mozna sprawdzié¢ zapisujac zbior postaci

{z: fz)g(x) <t}

analogicznie jak w dowodzie Lematu 2.1.9.

Czasami wygodnie jest rozwazaé funkcje postaci f : X — R U {—o00,00}. Natu-
ralnie jest wtedy przyja¢, ze X-mierzalno$¢ funkcji f oznacza dodatkowo, ze zbiory
f7Y(—=o00) i f7'(c0) naleza do X. Przy takiej umowie mozemy dla dowolnego ciagu
funkcji mierzalnych f, : X — R zdefiniowa¢, na przyktad sup,, f,, bez koniecznosci
zakladania, ze zbiér {f,(z) : n € N} jest ograniczony dla kazdego x € X. Podobnie,
rozwazamy funkcje f = limsup,, f,, zadana oczywiscie przez f(z) = limsup,, f.(z).
Wystepujace tu pojecie granicy gornej ciggu liczbowego, a takze wlasnodci granic
goérnych i dolnych przypomniane sg w 2.7.

Lemat 2.1.11 Jezeli funkcje f, : X — R sq¢ X-mierzalne to mierzalne sq rowniez
funkcje

liminf f,, limsup f,,inf f,,sup f,.
n n n n

Dowdd. Pokazemy dla przyktadu, ze funkcja f = limsup,, f, jest mierzalna — wynika
to bezposrednio z tozsamosci

{o: f(2) =00} =N U {a: fule) > k}.

k mn>m

{z: f(x) <t}:ﬂU ﬂ {z: fulz) <t+1/k},

k m n>m
i analogicznej formuty dla —oco. Drugi ze wzoréw powyzej wynika z faktu, ze na to aby
f(z) <t potrzeba i wystarcza, aby dla dowolnej malej liczby postaci e = 1/k, prawie
wszystkie wyrazy ciagu f,(z) speliaty f,(z) <t+1/k. &

Whiosek 2.1.12 Granica punktowa zbieznego ciggu funkcji mierzalnych jest mierzal-
na.

Intuicyjnie rzecz biorac, kazda przeliczalna operacja wykonywana na funkcjach
mierzalnych prowadzi do funkcji mierzalnych i na przykltad kazda funkcja R — R
zapisana “wzorem”, w ktorym wystepuja przeliczalne kwantyfikatory jest borelowska.

Przyktad 2.1.13 Niech f, : X — R bedzie ciggiem funkcji ¥-mierzalnych; spraw-
dzimy, ze zbioér

A ={z :limsup f(z) > liminf f,(2)} € X.
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W tym celu nalezy zapisa¢ formalnie warunek definiujacy = € A za pomoca przeliczal-
nych kwantyfikatoréw. Zauwazmy, ze © € A wtedy i tylko wtedy gdy istnieja liczby
wymierne p, q, takie ze

limsup f,(z) >p>q> lim inf fn().

Warunek limsup,, f,(x) > p oznacza ze dla pewnej liczby postaci 1/m nieréwnosé
falz) > p+ 1/m zachodzi dla nieskoniczenie wielu n; analogiczna uwaga dotyczy
warunku ¢ > liminf f,(z). Tym samym = € A wtedy i tylko wtedy gdy

co pozwala napisac

A=JUN U fo:ful@) >p+1/minfe: fu(e) <q—1/m} €S,

p>q m k nyine>k

(tutaj p,q € Q, a wszyskie pozostate zmienne sa naturalne). Powyzszy przyktad ilu-
struje formalng droge sprawdzania mierzalnosci. Oczywiscie w tym przyktadzie troche
prosciej jest sprawdzié, ze X \ A € ¥: zauwazmy, ze x ¢ A oznacza, ze ciag f,(z) jest
zbiezny, co pozwala zapisac

XNA=NU N {2 fu (@) = fae(@)] < 1/m},

m k ni,ng>k

poniewaz zbiezno$¢ ciggu liczbowego jest réwnowazna warunkowi Cauchy’ego.

Na koniec tej czesci odnotujemy nastepujacy prosty, ale czesto wykorzystywany
fakt.

Lemat 2.1.14 Kazda X-mierzalng funkcje f : X — R mozna zapisa¢ w postaci f =
[T — [, réznicy funkcji mierzalnych i nieujemnych.

Dowdd. Tstotnie, niech f* = max(f,0), f~ = —min(f,0); wtedy oczywiscie f =
ft— f~,afunkcje f*, f~ sa mierzalne na mocy Wniosku 2.1.10. $

2.2 Funkcje proste

Dla ustalonego o-ciala ¥ na X mozemy zdefiniowaé¢ do$¢ bogatg rodzine funkcji mie-
rzalnych X — R.

Definicja 2.2.1 Funkcje f : X — R nazywamy funkcja prosta jesli zbior wartosci
fIX] jest skoriczony.
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Funkcja charakterystyczna x4 dowolnego zbioru A C X jest prosta. W istocie
wszystkie funkcje proste sa skonczonymi kombinacjami liniowymi funkcji charaktery-
stycznych.

Lemat 2.2.2 Funkcja f: X — R jest prosta wtedy i tylko wtedy gdy
f=72"aixa
i<n

dla pewnych liczb a; € R i zbiorow A; C X. Funkcja prosta jest YX-mierzalna wtedy 4
tylko wtedy gdy f jest kombinacjqg liniowq funkcji charakterystycznych zbiorow z 3.

Dowdd. Jezeli f[X] = {ai,...,a,} to biorac A; = f~[a;] mamy f = 3¢, a;xa,. Na
odwrot, dla funkcji postaci f = >7,,, a;x 4, jej zbior wartosci zawiera si¢ w skonczonym
zbiorze ztozonym z 0 i wszystkich liczb bedacych sumami pewnych elementéw zbioru
{ai,...,a,}. Drugie stwierdzenie wynika natychmiast z tych uwag. <

7 punktu widzenia opisanego ponizej rodzina funkcji prostych mierzalnych jest
dos¢ bogata.

Twierdzenie 2.2.3 Niech f: X — R bedzie funkcjg nieujemng, mierzalng wzgledem
pewnego o-ciata ¥ podzbiorow X. Wtedy istnieje cigg mierzalnych funkcji prostych
Sp X — R, taki ze

0<s(x) <sglz) < ...y @ 1i1£n3n(x) = f(z),

dla kazdego x € X. Je$li ponadto funkcja f jest ograniczona to ciqg s, mozna dobraé
tak, aby byt jednostajnie zbieiny do f.
Dowdéd. Ustalmy n i dla kazdego 1 < k£ < n2" niech

E—1 k
< 5
o < f@) <50

wtedy A, € X, jako ze funkcja f jest mierzalna. Niech s, bedzie zdefiniowana tak,
7€

An,k = {33 .

k—1
sp(x) = ROTE dlax € A, 1,
oraz s,(z) = n gdy f(x) > n. Niewatpliwie funkcje proste s, zdefiniowane w ten
sposob sg mierzalne i nieujemne. Jezeli x € A, dla pewnego k to s,(z) = (k—1)/2",
natomiast

Sni1(z) = (K —1)/2" Tub s,.1(x) = (2k —1)/2"+
czyli s, () < spa1(x).
Dla ustalonego z i n > f(x) mamy f(z) > s,(z) > f(x) — 1/2", co pokazuje, ze

lim, s, () = f(z). Jesli f jest ograniczona to 0 < f(z) — s, < 1/2" jednostajnie po
xr € X, o ile tylko n ogranicza f[X] z gory. &
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2.3 Prawie wszedzie

Dla ustalonej przestrzeni miarowej (X, X, 1) i funkcji mierzalnych f, g : X — R mowi-
my, ze [ = g u-prawie wszedzie jezeli u({z : f(z) # g(x)}) = 0. W wielu rozwazaniach
zmiana wartosci danej funkcji na zbiorze miary zero nie zmienia jej istotnych wlasnosci
i dlatego funkcje rowne prawie wszedzie mozna bedzie, do pewnego stopnia, utozsa-
miac¢. Ale warto pamietac, ze to zalezy od punktu widzenia: xg = 0 A-prawie wszedzie,
ale xg nie jest cigglta w zadnym punkcie proste;.

Ogolniej mozemy o dowolnej (ale “mierzalnej”) wtasnosci ¢ punktéw = € X po-
wiedzie¢, ze p(z) zachodzi prawie wszedzie jezeli u({x : ~¢(z)}) = 0. Taki charakter
ma ponizsza definicja.

Definicja 2.3.1 Cigg funkcji mierzalnych f, : X — R jest zbiezny p-prawie wszedzie
(albo po prostu prawie wszedzie) do funkcji f jezeli lim, f,(x) = f(x) dla wszystkich
x Sspoza pewnego zbioru miary zero.

Przyktad 2.3.2 Niech X = [0, 1]; rozwazmy funkcje f,(z) = 2™ Wtedy f, — 0
A-prawie wszedzie oraz f, — 1 u-prawie wszedzie, gdzie p = 07 jest deltg Diraca.

Przypomnijmy, ze dla funkcji okreslonych na prostej rzeczywistej lub jej podzbio-
rach naturalne jest rozwazaé¢ ich mierzalnosé¢ wzgledem o-ciata Bor(R), ale takze
wzgledem o-ciata £ zbioréw mierzalnych wzgledem miary Lebesgue’a. Funkcje £-
mierzalne bywaja tez nazywane A-mierzalnymi; funkcje Bor(R)-mierzalne nazywa sie
po prostu funkcjami borelowskimi. Ponizsze twierdzenie jest w pewnym sensie faktem
analogicznym do Twierdzenia 1.8.1.

Twierdzenie 2.3.3 Dla kazdej funkcji \-mierzalnej f istnieje funkcja borelowska g,
taka Ze f = g A-prawie wszedzie.

Dowéd. Niech I, I, ... bedzie ciagiem zawierajacym wszystkie odcinki postaci (p, q),
p,q € Q (por. Twierdzenie 0.2.4). Dla kazdego n zbiér f~'[I,] jest mierzalny, a wigc
na mocy Twierdzenia 1.8.1 mamy A, C f~![I,] C B, i A(B, \ A,) = 0 dla pewnych
zbioréw borelowskich A,,, B,. Tym samym f~![I,] = A, U Z,, gdzie Z, jest miary
zero. Niech Z = U, Z,; wtedy A(Z) = 0 i istnieje zbiér borelowski C, taki ze Z C C
i A(C) = 0. Zdefiniujmy funkcje g tak ze g(x) = f(x) dla ¢ C oraz g(x) = 0 dla
x € C. Wtedy g = f prawie wszedzie. Ponadto

g L) =A4,\C gdy0¢I,;

g L) =A,UC gdy0¢I,;

co w szczegblnosci oznacza, ze g '[I,] € Bor(R). Stad i z Lematu 2.1.2 wynika, ze g
jest funkcja borelowska. <
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2.4 Zbieznos$¢ ciggéw funkcyjnych

Jak wynika z Twierdzenia 2.2.3 kazda funkcja mierzalna jest granica punktowa ciggu
funkcji prostych, a kazda funkcja mierzalna ograniczona jest jednostajng granicg ciggu
takich funkcji (tutaj dla funkcji niekoniecznie nieujemnych nalezy zastosowaé jeszcze
Lemat 2.1.14). Jak si¢ za chwile przekonamy, za pomoca miary mozna definiowaé i
glebiej analizowaé rézne rodzaje zbieznosci ciagdéw funkcyjnych.

Ciag funkcji f, : [0,1] — R, fu.(x) = 2™ jest dobrze znanym przyktadem punk-
towo zbieznego ciggu funkcji, ktory nie jest zbiezny jednostajnie. Zauwazmy, ze dla
dowolnego ¢ > 0 ciag f, zbiega jednostajnie do zera na odcinku [0, 1 — £]. Mozna wiec
powiedzie¢, ze usuniecie zbioru matej miary poprawia zbieznosé ciggu. To zjawisko ma
charakter bardzo ogélny, o czym moéwi tak zwane twierdzenie Jegorowa.

Twierdzenie 2.4.1 Jezeli (X, X, u) jest skoniczong przestrzeniqg miarowq, a f, : X —
R jest ciggiem funkcji mierzalnych zbieznym prawie wszedzie do funkcji f to dla kaz-
dego € > 0 istnieje A € 3, taki Ze pu(A) < € 1 cigg f, jest jednostajnie zbieiny do f
na zbiorze X \ A.

Dowdd. Zatdézmy po prostu, ze f(z) = lim, f,(z) dla kazdego x € X — w ogdlnym
przypadku zbiér punktéw, w ktorych ciag nie jest zbiezny jest miary zero i mozna go
usunaé z dalszych rozwazan. Dla dowolnych m,n € N rozwazamy zbiory

Bom,n) = (e |fix) ~ 1) < 1/m).

Wtedy E(m,1) C E(m,2) C ... dla kazdego m oraz

UE(m,n) =X,
co wynika z tego, ze f,,(z) — f(x), czyli ze dla kazdego x istnieje n, ze | fi(x) — f(z)| <
1/m.

Ustalmy e > 0; poniewaz E(m,n) T X wiec X \ E(m,n) | 0 i, korzystajac z
ciggtodci miary skonczonej na zbiorze pustym, dla kazdego m istnieje n,,, takie ze

(X \ E(m,n,)) <e/2™.
Wtedy, ktadac

A= J(X\ E(m,ny)), mamy;

p(A) < 3 X\ B(m,ny)) < Y e/2m = e

Ponadto |f,(z) — f(z)| < 1/m dlan > n,, i x ¢ A, co oznacza jednostajna zbieznosé

famna X\ A &
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Zatozenie p(X) < oo w twierdzeniu Jegorowa jest istotne: ciag funkcji f,(z) =
x/n na prostej zbiega punktowo do zera i nie jest zbiezny jednostajnie na zadnym
nieograniczonym podzbiorze prostej. Dla potrzeb licznych zastosowan Twierdzenia
2.4.1 wprowadza si¢ nastepujaca definicje.

Definicja 2.4.2 Mowimy, Ze ciqg funkcji mierzalnych jest niemal jednostajnie zbiez-
ny jezeli dla kazdego € > 0 ciqgg f, zbiega jednostajnie na dopetnieniu pewnego zbioru
miary < €.

Wprowadzimy teraz inne wazne pojecie zbieznosci ciggéw funkcyjnych: zbieznosé
wedtug miary.

Definicja 2.4.3 Cigg f, : X — R funkcji mierzalnych jest zbiezny do funkcji f
wedlug miary jezeli dla kazdego € > 0

lim p({z:[fu(z) — f(z)] > €}) = 0.

n—oo
Piszemy f, —— f, aby odnotowaé zbiezno$é wedtug miary p.

Whiosek 2.4.4 Cigg funkcyjny zbiezny niemal jednostajnie jest zbiezny wedtug mia-
ry. W szczegolnosci, cigg funkcyjny zbieiny prawie wszedzie na przestrzeni o mierze
skonczonej jest zbiezny wedtug miary.

Dowdd. Jezeli funkcje f, zbiegaja do f niemal jednostajnie to (w szczegdlnosci) dla
dowolnego ¢ istnieje zbior A, taki ze pu(A) < i |fu(z) — f(z)] < € dla duzych n i
wszystkich x ¢ A. Wtedy {z : |f.(z) — f(z)| > e} C A wiec

pl{z [ fulz) = f(2)] > e}) < p(A) <e
dla dostatecznie duzych n. Drugie stwierdzenie wynika z Twierdzenia 2.4.1.

Zbieznos¢ wedtug miary jest jednak wtasnoscig istotnie stabszg niz zbieznosé¢ pra-
wie wszedzie, nawet przy zalozeniu skonczonoéci miary. Ponizszy przyktad nosi nazwe
“wedrujacego garbu”.

Przyktad 2.4.5 Niech f, : [0,1] — R bedzie ciagiem

X[0,1]» X[0,1/2]> X[1/2,1]> X[0,1/4]5 X[1/4,1/2]5 - - -

gdzie w ogélnosci “garb” ma dlugosé 1/2™ i przemierza caty odcinek [0, 1]. Bez trudu
sprawdzamy, ze f, zbiega do zera wedtug miary Lebesgue’a, ale liminf, f,(x) =0 i
lim sup,, fn(x) = 1 dla kazdego x € [0,1]. $

W powyzszym przyktadzie mozna bez trudu wskaza¢ podciagi ciggu f, zbiez-
ne prawie wszedzie do zera. To jest ogdélna prawidtowosé¢, wystowiona w ponizszym
twierdzeniu Riesza.
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Twierdzenie 2.4.6 Niech (X,%, u) bedzie dowolna przestrzenig miarowq i niech
fn + X — R bedzie ciggiem funkcji mierzalnych, spetniajocym warunek Cauchy’ego
wedtug miary, to znaczy

m p({z:|fu(z) = fi(z)] > €}) =0,

n,k—o0

dla kazdego € > 0. Wtedy
(a) istnieje podcigg n(k) liczb naturalnych, taki Ze cigg funkcji fnx) jest zbieiny
prawie wszedzie oraz wedtug miary do pewnej funkcji f;

(b) cigg fn jest zbiezny wedlug miary do f.

Dowdéd. Zauwazmy, ze wspomniany w zalozeniu warunek Cauchy’ego implikuje, ze
dla kazdego k istnieje n(k), takie ze dla dowolnych n, m > n(k) zachodzi

p{z [ fal@) = fnl2)| > 1/2°}) < 1/2%,

przy czym mozemy dodatkowo zazadaé, aby n(1) < n(2) < .... Niech

By = {z: |faw (@) = fagen (@) > 1/2"}, Ay = | B

n>k

wtedy p(Ag) < 1/281 i dlatego zbiér A = N, Ay jest miary zero. Jezeli x ¢ Ay, to dla
kazdego k i © ¢ A mamy

| fr@) (@) = fagen (@) < 1/2°

dla wszystkich ¢ > k. Z nierownosci trojkata otrzymujemy, ze dla 5 > ¢ > k zachodzi

| fuy () = fug ()| < 1/271

Tym samym, dla x ¢ A ciag liczbowy f,;)(«) spetnia warunek Cauchy’ego i dlatego
jest zbiezny do liczby, ktéra oczywiscie oznaczymy f(x). W ten sposéb otrzymujemy,
ze fn(r) zbiega prawie wszedzie do funkcji f.

Z powyzszych rozwazan wynika, ze {z : |f(z) — fumw(x)| = €} € A, co dowodzi
zbieznosci tego podciagu do funkcji f wedlug miary; tym samym cze$¢ (a) zostala
wykazana.

Dla sprawdzenia (b) wystarczy zauwazy¢, ze f, —— f, co wynika z zaleznoéci

{z: [fu(2)=f(2)] > e} S H{a: | fa2) = fa) (2)| = €/2}08 = [foy () = f(2)] > €/2},

i warunku Cauchy’ego dla zbieznosci wedtug miary.

Warto podkresli¢, ze badanie wlasnosci ciggdéw zbieznych wedtug miary wymaga
czesto sporego wysitku, por. Zadania 2.5.16-18.
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2.5 Zadania

2.5.1 Sprawdzi¢, ze operacja przeciwobrazu zbioru przez funkcje zachowuje podsta-
wowe operacje mnogosciowe. Zauwazy¢, ze

dla dowolnych zbioréow A, z dziedziny funkcji f. Sprawdzi¢, ze inkluzja

fIAL N Ag] C fIAL] N fAg]

moze by¢ wlasciwa.
2.5.2 Niech f, : X — R bedzie ciggiem funkcji mierzalnych wzgledem o—ciata X..
Sprawdzi¢, ze nastepujace zbiory naleza do X:
(i) zbior x, dla ktérych ciag f,(x) jest rosnacy;
(i1) zbiér z, dla ktorych f,(z) < 2 dla wszystkich n;
(i17) zbiér z, dla ktorych f,(z) < 2 dla prawie wszystkich n;
(iv) zbiér x, dla ktorych f,(x) < 2 dla nieskonczenie wielu n;
(v) zbior x, dla ktérych sup,, f.(x) < 2;
(vi) zbiér x, dla ktérych sup,, fn(x) < 2;
(vii) zbioér x, dla ktérych f,(x) jest zbiezny;
(viii) zbioér x, dla ktérych limsup f,(z) > liminf f,(z).

2.5.3 Wykazaé, ze suma zbieznego szeregu funkcji mierzalnych jest mierzalna.

2.5.4 Niech f: R — R bedzie dowolng funkcja. Niech F. = {z € R : 0sc,(f) > €},
gdzie osc,(f) > € oznacza, ze dla kazdego § > 0 istnieja o/, 2" € (x — §,x + ) takie ze
1f(@") = f(a")] > e.

Sprawdzi¢, ze zbior F. jest domkniety. Wywnioskowadé stad, ze zbior punktow ciagtosci
funkcji jest borelowski.

2.5.5 Niech dla kazdego t z pewnego zbioru T' dana bedzie funkcja ciggta f; : R — R.

Rozwazmy funkcje h = sup,cp fi. Wykazaé, ze h jest funkcjg borelowska (nawet jesli
T jest nieprzeliczalny). W tym celu rozwazy¢ zbiér postaci {x : h(x) > a}.

2.5.6 Sprawdzi¢, ze kazda funkcje prosta, mierzalna wzgledem o—ciata ¥ C P(X)
mozna zapisa¢ w postaci

(1) Yicn@ixa,, gdzie A; € ¥, Ay C Ay C ... C A,, oraz
(i) Yi<n bixp,, gdzie B; € 3, a By, ..., B, sa parami roztaczne.

Jakie warunki trzeba dopisa¢, aby takie przedstawienia byty jednoznaczne?



G. Plebanek, MIARA I CALKA ______ Zadania do rozdziatu 2 44

2.5.7 Sprawdzi¢, ze rodzina funkcji prostych jest zamknieta na kombinacje liniowe,
branie modutu i mnozenie.

2.5.8 Niech f : R — R spelia warunek Lipschitza, tzn. |f(x) — f(y)| < L|z — y|
dla pewnej stalej L. Pokazaé, ze f[A] jest miary Lebesgue’a zero dla kazdego A miary
Zero.

2.5.9 Wywnioskowa¢ z poprzedniego zadania, ze obraz zbioru mierzalnego przez funk-
cje spetniajacag warunek Lipschitza jest mierzalny.

WSKAZOWKA: f[F] jest zwarty gdy f jest ciagla i FF C R jest zwarty; zastosowaé
Whniosek 1.8.3.

2.5.10 Wykazacé, ze w zadaniach 8 i 9 wystarczy zaktadac¢, ze funkcja f spetlnia wa-
runek Lipschitza lokalnie, na kazdym odcinku postaci [—n,n], a wiec w szczegdlnosei
gdy f ma ciagta pochodna.

2.5.11 Zauwazy¢, ze dowolna funkcja niemalejaca f : R — R jest borelowska.

2.5.12 Skonstruowaé¢ niemalejaca funkcje ciagla ¢g : [0,1] — [0, 1], taka ze ¢[C] =
[0,1], gdzie C' C [0, 1] jest zbiorem Cantora.

WEKAZOWKA: niech g(x) =1/2 dla 2 € (1/3,2/3); g(z) = 1/4 dla x € (1/9,2/9) itd.

2.5.13 Stosujac funkcje g z poprzedniego zadania zauwazy¢, ze obraz zbioru mie-
rzalnego przez funkcje ciagla nie musi by¢ mierzalny oraz ze przeciwobraz zbioru
mierzalnego przez funkcje ciggta nie musi by¢ mierzalny.

2.5.14 Zauwazy¢, ze jesli u(X) < oo, a f : X — R jest funkcja mierzalng, to dla
kazdego € > 0 istnieje zbiér A, taki ze p(A) < €1 f jest ograniczona na X \ A.

2.5.15 Niech |f,| < M, gdzie f, > f. Sprawdzié, ze | f| < M prawie wszedzie.

2.5.16 Niech f,, bedzie niemalejgcym ciggiem funkcji mierzalnych, zbieznych do f
wedlug miary. Udowodni¢, ze wtedy f, — f prawie wszedzie.

2.5.17 Sprawdzié, ze jesli f, —— f i gn —— g to fo + gn —— f + g. Pokazaé, ze
fugn == fg przy dodatkowym zalozeniu, ze f, i ¢, sa wspélnie ograniczone przez
stala.

2.5.18 Niech i bedzie miarg skoniczona. Wykazaé, ze jedli f, - f oraz f(x) # 0 dla
kazdego =, to 1/f, 2> 1/f.

2.5.19 Niech p(X) < oco. Udowodnié, ze jedli f, = f i gn = g to fugn —— fg
(por. Zadanie 15). Pokazaé, ze zatozenie skonczonosci miary jest istotne.

2.6 Problemy

2.6.A Niech A C R bedzie zbiorem mierzalnym miary Lebesgue’a skonczonej. Zbadac,
czy funkcja

g:R—=R, g(x)=AAN(z+ A)),
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jest ciagta (tutaj A oznacza miare Lebesgue’a, x + A oznacza przesuniecie zbioru).

2.6.B Wykazaé, ze kazda mierzalna w sensie Lebesgue’a funkcja f : R — R jest
granica prawie wszedzie ciagu funkcji ciagtych (f,,). W istocie mozna takie f,, wybraé
klasy C°.

WSKAZOWKA: Zaczaé od przypadku f = x4, gdzie A jest skoniczong sumg przedzia-
tow.

2.6.C Wykazac, ze nie istnieje cigg funkcji cigglych f,, : R — R, zbiezny punktowo
do funkcji xg (czyli funkcji charakterystycznej zbioru Q).

WSKAZOWKA: I sposob: mozna przeprowadzi¢ dowod nie wprost, wykorzystujac je-
dynie wtasnos¢ Darboux. II sposéb: udowodnié, ze granica ciggu funkcji cigglych musi
mie¢ punkt ciggtosci.

2.6.D Niech f : R — R bedzie dowolng funkcja, spetniajaca warunek f(x +y) =
f(z) + f(y). Sprawdzi¢, ze wtedy f(z) = ax dla wszystkich x € Q (a = f(1)).

Udowodnié, ze jedli funkcja f jest mierzalna to f(z) = ax dla wszystkich z € R.

2.7 DODATEK: Granice dolne i gérne
ciggéw liczbowych

Niech (a,) bedzie ciagiem liczb rzeczywistych. Liczbe a nazywamy punktem skupienia
ciagu jesli istnieje podciag ciagu (a,) zbiezny do a. Podobnie definiujemy fakt, ze oo
lub —oo jest punktem skupienia ciggu.

2.7.1 Pokazaé, ze zawsze istnieje najmniejszy punkt skupienia danego ciagu (bedacy
liczba badz —oo, 00). Te wielkosé oznaczamy liminf, .., a,.

2.7.2 Zauwazy¢, ze liminf, . a, = —oo wtedy i tylko wtedy gdy ciag (a,) jest
nieograniczony z dotu.

2.7.3 Udowodnié, ze a = liminf, ., a, (gdzie a jest liczba) wtedy i tylko wtedy gdy
dla kazdego ¢ > 0 mamy a, > a — ¢ dla prawie wszystkich n i a, < a + ¢ dla
nieskonczenie wielu n.

2.7.4 Udowodni¢, ze liminf,, o a, = lim,_,o infy>, aj.
2.7.5 Sprawdzi¢, ze liminf, . (a, + b,) > liminf,_ a, + liminf, . b,.
2.7.6 Zdefiniowaé¢ analogiczne pojecie lim sup i zapisa¢ jego podstawowe wlasnosci.

2.7.7 Zauwazy¢, ze cigg jest zbiezny wtedy i tylko wtedy gdy jego granica gorna jest
rowna dolnej i jest liczba rzeczywista.

2.7.8 liminf, . (a, —b,) = a — limsup,,_, . b, gdy lima, = a.



Rozdziat 3
Caltka

Does anyone believe that the difference between the Le-
besgue and Riemann integrals can have physical signi-
ficance, and that whether say, an airplane would or
would not fly could depend on this difference? If such
were claimed, I should not care to fly in that plane
Richard W. Hamming

W niniejszym rozdziale wprowadzimy i zbadamy centralne pojecie skryptu, czyli
catke typu Lebesgue’a, zdefiniowang na dowolnej przestrzeni miarowej o-skonczonej.
Zaltozenie o-skonczonosci nie jest tak naprawde istotne, ale pozwala ominaé kilka kom-
plikacji, por. Problemy 3.6.A-B. Jak si¢ okaze w przypadku prostej rzeczywistej, catka
Lebesgue’a ma zastosowanie do znacznie szerszej rodziny funkcji niz klasyczna catka
Riemanna.

3.1 Catka z funkcji prostych

W tej czesci bedziemy rozwazaé ustalong przestrzen miarowa (X, X, u). Catkowanie
jest operacja liniowsa, przypisujacg funkcjom wartosci liczbowe. Poniewaz catka z funk-
c¢ji nieujemnej ma wyrazaé¢ “pole pod wykresem funkcji” wiec jasne, ze powinnismy
przyjaé [y xa du = u(A) dla A € ¥, oraz ponizsza definicje. Dla symboli co i —oo,
oprocz konwencji x + 0o = 00, * — 00 = —o0 dla x € R, przyjmujemy dodatkowo

0-00=0-(—00)=0.
Przypomnijmy, ze wyrazeniu oo — oo nie mozna nadaé sensu liczbowego.

Definicja 3.1.1 Jesli f = 3", aixa, dla A; € ¥ to definiujemy
/ fdp= Z a;i(As),
X i<n

jesli tylko wyrazenie po prawej stronie wzoru ma sens liczbowy. Mowimy, Ze funkcja f
jest catkowalna jezeli [y f dp ma wartosé skoriczong.
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Tym samym dla f = 2xjo1] + €X[3,0c) Mmamy [, f dXA = 2 gdy ¢ = 0; wartod¢ tej
cafki jest oo dla ¢ > 01 —oo dla ¢ < 0. Dla funkcji g = X[—00,0) — X[1,00) WyTazenie
Jg g A\ nie ma sensu liczbowego.

Lemat 3.1.2 Definicja catki z funkcji prostej jest poprawna, to znaczy

jezeli f =3 aixa, = Y. bixn, to S ap(A) = bu(B)).

i<n i<k i<n i<k
Dowdd. Patrz Zadanie 3.5.1. $

Oprocz calki po calej przestrzeni mozemy rozwazaé catke na dowolnym zbiorze
A € ¥; przyjmujemy po prostu za definicje wzor

[ fan= [ foxadu

Twierdzenie 3.1.3 Dla funkcji prostej mierzalnej h i funkcji prostych catkowalnych
f i g zachodzq nastepujgce zaleznosci

(i) Jx(af +bg) du=a [y fdu+b[ygdu;

(11) jezeli h =0 prawie wszedzie to [y h dp = 0;

(111) jezeli f < g prawie wszedzie to [y f du < [y g du;

(1) |[x(f+9) dul < [x |fI dp+ [x |g] dp;

(v) jezeli a < f < b prawie wszedzie to ap(X) < [y f dp < bu(X);
(vi) dla A,B € X, jezeli AN B =0 to

[, fan=[ rau+ [ fan

Dowdd. Wzér (i) dla a = b = 1, wynika natychmiast z poprawnosci definicji calki z
funkcji prostych; rozszerzenie tego wzoru na dowolne a, b € R to po prostu rozdzielnos¢
mnozenia wzgledem dodawania.

Jezeli h = 0 prawie wszedzie to mozemy przedstawic h jako Y-, a;x a,, gdzie pu(A;) =
0 i dlatego [y h du = 0.

Zauwazmy, ze jesli f > 0 prawie wszedzie to f = h' + 3, a;x 4, dla pewnej funkcji
h' réwnej zero prawie wszedzie i a; > 0; stad i z (ii) otrzymamy [y f dp > 0. Aby
sprawdzi¢ (iii) piszemy g = f + (g — f) i stosujac te uwage, otrzymujemy na mocy (i)

/deug/deN—'—/X(g_f)dM:/nglu.

(iv) wynika z (iii) 1 nieréwnosci —|f +g| < f+g < |f + g|. Podobnie sprawdzamy (v).
Wzér w (vi) wynika stad, ze xaup = xa + x5, 0 ile AN B = i dlatego

/AUdeuzfxfoUBduz/Xfodu+/XfXBdM:/AfdM+/deM



G. Plebanek, MIARA I CALKA Rozdzial 3: Calka 48

3.2 Calka z funkcji mierzalnych

W dalszym ciagu rozwazamy funkcje na ustalonej o-skonczonej przestrzeni (X, X, u)
— zaktadamy milczaco, ze wszystkie omawiane funkcje sg Y-mierzalne. Zdefinujemy
wpierw catke z funkcji mierzalnej nieujemnej f : X — R. Zauwazmy, ze jesli s jest
nieujemng funkcja prosta, przedstawiong w postaci s = 3, <, a;x 4,, gdzie A; sa parami
roztaczne i a; > 0 to warunek 0 < s < f oznacza, geometrycznie rzecz biorgc, ze
prostokaty postaci A; x [0, a;] znajduja sie pod wykresem funkcji f i dlatego powinno
by¢ tak, ze [y f du > [y s du. Istotnie, przyjmujemy nastepujaca definicje.

Definicja 3.2.1 Dla funkcji nieujemnej mierzalnej f definiujemy

/fdu:sup{/sdu:0<s<f},
X b

gdzie supremum jest liczone po funkcjach s prostych mierzalnych. Funkcje f nazywamy
catkowalng, jezeli catka z f jest skonczona.

Zauwazmy, ze w istocie catka z funkcji nieujemnej f moze by¢ zdefiniowana jako
supremum wartosci [y s du, brane po funkcjach prostych catkowalnych, por. Problem
3.6.A-B. W wielu przypadkach wygodniej jest operowaé raczej ponizszym twierdze-
niem niz wzorem podanym w Definicji 3.2.1.

Twierdzenie 3.2.2 Jesli f jest nieujemng funkcjg mierzalng, a s, ciggiem funkcji
prostych, takim Ze s; < so < ... 1lim, s, = f prawie wszedzie to

/fd,uzlim/ Sp dp.
X noJx

Dowdd. Poniewaz ciag caltek [y s, du jest niemalejacy na mocy Twierdzenia 3.1.3(iii)
wiec faktycznie granica lim,, [y s, du, wlasciwa lub niewlasciwa, zawsze istnieje oraz
na mocy definicji catki zachodzi nieréwnos¢ [y f dp > lim, [y s, du.

Rozwazmy funkcje prosta g, taka ze 0 < g < fig = X<k GiXa,, gdzie A; s parami
roztgcznymi zbiorami miary skonczonej. Wtedy Xy = U;<x A; ma miar¢ skoriczony;
niech M = max; a; (w tym momencie wielkosci p(Xo) i M sa ustalone!).

Z twierdzenia Jegorowa 2.4.1 s, zbiega do f niemal jednostajnie na zbiorze X.
Dla ustalonego € > 0 istnieje A C Xy, taki ze pu(A) < /M i zbieznosé na X \ A jest
jednostajna. Tym samym dla duzych n mamy nierownosé

9(x) = sn(x) < f(2) = sn(2) < &/p(Xo),

dla x € Xy \ A i dlatego

/gdu=/ gduz/ gdu+/gdu<
X Xo Xo\A4 A

[ (sute/n(Xo)) du+ Mp(A) < [ sy dp+ete,
Xo\A Xo
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co dowodzi, ze lim [y s, dp > [y g dp. &
Wreszcie catke z funkcji mierzalnych niekoniecznie nieujemnych definiujemy za

pomocy rozktadu opisanego w Lemacie 2.1.14.

Definicja 3.2.3 Mowimy, Ze funkcja mierzalna f : X — R jest catkowalna jezel:

J 171 dn < oo

w takim przypadku definiujemy catke wzorem

Jofdu= [ 1t du= [ 5 an
gdzie f = [+ — [~ jest rozkladem na f* =max(f,0) i f~ = —min(f,0).

Zauwazmy, ze funkcja f jest calkowalna wtedy i tylko wtedy gdy funkcje f* i f~
sa catkowalne. Oczywiscie w przypadku, gdy [y f* du =00 i [y [~ du < 0o czyms
naturalnym jest przyjac¢ [y f du = oco. Zauwazmy tez, ze dla funkcji catkowalnej f i
A € X zachodzi wzér

[ fan= [ f-xadn

Teraz bez trudu rozszerzymy podstawowe wtasnosci catki na przypadek funkcji
mierzalnych.

Twierdzenie 3.2.4 Dla funkcji catkowalnych f,q i funkcji mierzalnej h zachodzg
nastepujgce zaleznosci

(1) Ix(f +9)dp=Jx fdu+ [xgdp
(ir) jezeli f < g to [y fdp < [xgdp;

< f<btoap(X) < [y fdpu<bu(X);
(iv) jezeli h = 0 prawie wszedzie to [y h dp = 0;

(111) jezeli a

(v) jezeli [x h dp =0 i h > 0 prawie wszedzie to h = 0 prawie wszedzie;

(vi) |[x(f +9) dul < [x |fl dp+ [x gl dp;
(vii) dla A,B € X3, jezeli AN B =10 to

[, fan=[ rau+ [ fap

Dowdd. Ad (i). Dla funkcji nieujemnych f, g mozemy, korzystajac z Twierdzenia 2.2.3,
dobra¢ niemalejgce ciagi funkcji prostych s, i t,,, takie ze zachodzi zbieznosé¢ punktowa
Sp — fit, — g. Wtedy s, +t, — f+g wiec korzystajac z Twierdzenia 3.2.2 1 3.1.3(i)
otrzymujemy

/(f+g) duzlim/(sn+tn) d,u:lim/ Sn du—Him/ tn dp:/ fd,u—l—/ g du.
b nJx nJx nJx X X
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Teraz rozszerzenie wzoru na przypadek dowolny wynika natychmiast z Definicji 3.2.3.

Ad (ii). W przypadku 0 < f < ¢ nieréwnos¢ [y f du < [y g du wynika natych-
miast z Definicji 3.2.1. W ogdlnym przypadku, piszac f = f* — f~ig=g" —g,
mamy [t <gtifT =g, cayli

/f+du</g+du i /g‘du>/ [ dp;
X X X X
odejmujac te nierownosci stronami otrzymujemy zadana zaleznosé.

Ad (iii). Przyjmujac g = bxx mamy [y f du < [y g dp = bu(X) z (ii). Druga
nierownos¢ sprawdzamy analogicznie.

Ad (iv). Jezeli h = 0 prawie wszedzie to s = 0 prawie wszedzie dla kazdej funkcji
prostej s, takiej ze 0 < s < h i dlatego w tym przypadku [y h dpg = 0 na mocy
Twierdzenia 3.1.3. W przypadku ogélnym, przedstawiajac h w postaci h = h™ — h™
mamy h™ = h™ = 0 prawie wszedzie i dlatego [y h du = 0.

Ad (v). Zatézmy, ze h nie jest prawie wszedzie réwna zeru. Wtedy dla zbioru
A ={x: h(x) > 0} mamy p(A) > 0; oznaczajac A, = {z : h(z) > 1/n}, spelniona
jest zaleznos¢ A = U,, A, a zatem istnieje ng, takie ze u(A,,) > 0. Stad, na mocy

(i),
/hdu>/ hdp > (1/n0)u(An) > 0.
X Ang

Czesci (vi) i (vil) sprawdzamy tak samo jak dla funkcji prostych, por. Twierdzenie
3.1.3. O

Uwzgledniajac wtasnosci catki opisane w Twierdzeniu 3.2.4 nietrudno wywniosko-
waé nastepujacg wlasnos¢ monotonicznosci calki.

Whniosek 3.2.5 Jezeli f < g prawie wszedzie to

/f@</gm.
X X

o ile tylko calki wystepujgce we wzorze majq sens liczbowy.

3.3 Twierdzenia graniczne

Przedstawimy teraz klasyczne twierdzenia o przechodzeniu do granicy pod znakiem
catki — jak sie okaze mozliwosci wykonania takiej operacji wymagaja do$é¢ stabych
zatozen. Niezmiennie rozwazamy ustalong przestrzen o-skoriczona (X, 3, i) i milczaco
zaktadamy, ze wszystkie omawiane funkcje sg mierzalne wzgledem o-ciata X.

Twierdzenie 3.3.1 (o zbiezno$ci monotonicznej) Niech funkcje f,, bedg nieujem-
ne oraz f1 < fo < ... prawie wszedzie to funkcja graniczna f = lim, f, spelnia wzor

/deuzlirrln/xfnd,u.
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Odnotujmy przed dowodem, ze funkcje f,, nie muszg by¢ catkowalne. Funkcja gra-
niczna jest dobrze okreslona prawie wszedzie, przy czym f moze przyjmowaé wartosci
nieskonczone.

Dowdéd. Jak wynika z Wniosku 3.2.5 ciag catek [y f, du jest niemalejacy i dlatego
istnieje jego granica lim, [y f, du < [y f du. Wystarczy wiec uzasadni¢ nieréwnosé
przeciwna. W tym celu rozwazymy funkcje prosta s, taka ze 0 < s < f i pokazemy, ze
limy, [x fn dp 2 [x s dp.

Przypusémy, ze s = >,y a;x4,, gdzie a; > 0, a zbiory A; s parami rozlaczne i
p(A;) < co. Wtedy Xo = U< Ai jest zbiorem miary skoniczonej i bez zmniejszenia
ogblnosci mozna zakladaé,ze pu(Xo) > 0. Niech M = max; a;; dla ustalonego ¢ > 0 z
Twierdzenia Jegorowa istnieje zbiér mierzalny B C X, taki ze u(B) < €¢/M oraz

fn(@) > s(x) —e/u(Xo)
dla wszystkich x € X, \ B i dostatecznie duzych n. Dla takich n

[oanz [ foaps [ (s—e/n(Xo) du>

Xo\ B
2/ sdu—/sdu—e'u(o\)>/ sdu — 2e,
Xo B U(XO) Xo

poniewaz [ s du < Mu(B) < e. W ten sposéb dowdd zostal zakonczony.

Twierdzenie 3.3.2 (Lemat Fatou) Dla dowolnego ciggu funkcji nieujemnych f,
zachodzi nieréwnosé

/ liminf f, dp < liminf/ fndzp.
x n noJx

Dowdd. Oznaczajac
gn = égg fkv f = hrnnlnf fn7

otrzymujemy 0 < g1 < g2 < ... oraz lim, = f (patrz Zadanie 2.7.4). Dlatego z
Twierdzenia 3.3.1

[ fodn> [ guau— [ fap
X X X

a to daje natychmiast teze twierdzenia.

Jezeli

fn= X[0,1/2] lub f, = X[1/2,1]

w zaleznosci od tego, czy n jest parzyste, czy nieparzyste, to liminf,, f, = 0, podczas
gdy f[o,l] fa du = 1/2 dla kazdego n. Ten prosty przyklad pokazuje, ze w lemacie
Fatou nie musi by¢ rownosci; jednoczesnie przyktad ten pozwala tatwo zapamietac,
ktora nierownosé jest zawsze prawdziwa. Nietrudno tez pokaza¢ ma przyktadzie, ze
zalozenie f, > 0 w Twierdzeniu 3.3.2 jest istotne, por. Zadanie 3.5.17.
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Twierdzenie 3.3.3 (Twierdzenie Lebesgue’a o zbiezno$ci ograniczonej) Niech
fn @ g bedq takimi fukcjami mierzalnymi, Ze dla kazdego m nieréwno$é |f,| < g za-
chodzi prawie wszedzie, przy czym [y g dp < oo. Jezeli f = lim, f,, prawie wszedzie
to

lim/ |fo— fldu=0 oraz /fd,u:lim/ fn dp.
nJx X nJx

Dowdéd.  Przyjmijmy h, = |f, — f| 1 h = 2g; wtedy h, — 0 prawie wszedzie i
0 < h,, < h. Dlatego, stosujac lemat Fatou do funkcji A — h,,, otrzymujemy

/ h du :/ lim inf(h—hy) dp < liminf/ (h—hy) dp :/ hdp—limsup/ hyy dps.
X X n n X X n X

Ta zaleznoéé daje limsup,, [y h, du = 0, jako ze [y h du < oco. Pokazali$my wiec, ze
Ix |fn — f| du — 0. Poniewaz

[ ddn= [ £ au < [ 15~ flan,

to druga zalezno$¢ wynika z pierwszej.

Zauwazmy, ze dla X = [0,1] i funkcji f, = nXjo1/n zachodzi f, — 0 A-prawie
wszedzie, ale [, fn dA = 1. Jak wida¢, wystepujace (nawet w nazwie) Twierdze-
nia 3.3.3 zalozenie “zbieznosci ograniczonej” jest istotne. Z twierdzenia Lebesgue’a
bezposrednio wynika nastepujacy wniosek.

Whniosek 3.3.4 Niech u(X) < oo i niech funkcje f, bedg wspdlnie ograniczone. Jezeli
f =lim, f,, prawie wszedzie to [y f dp = lim, [y fndzp.

Teraz mozemy tatwo uzasadni¢ nastepujaca wlasnosé catki.

Twierdzenie 3.3.5 Jezeli f jest mierzalng i nieujemnqg funkcjg na przestrzeni mia-
rowej (X, %, 1) to funkcja v : ¥ — [0, 00] dana dla A € ¥ wzorem

A= fa
v(d)= | fdu
jest miarg na .

Dowdd. Jak juz byto udowodnione (Twierdzenie 3.2.4(vii)), v jest addytywna funkcja
zbioru na X. Jezeli A; T A dla pewnych zbioréw A,,, A € ¥ to x4, jest niemalejacym
ciagiem funkcji zbieznym do x4, a fxa, — fxa. Dlatego z Twierdzenia 3.3.1 wynika,
ze

v(A) = [ fdu= [ feadu=tim [ fra, dp=lmr(4,).

Stad v jest ciggta z dotu i dlatego v jest przeliczalnie addytywna.
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3.4 Calka Lebesgue’a na prostej

Na prostej rzeczywistej badz jej podzbiorach mozemy catkowaé funkcje A-mierzalne
(czyli mierzalne wzgledem o-ciatla £ zbioréw mierzalnych. Poniewaz kazda funkcja
L-mierzalna jest prawie wszedzie réwna funkeji borelowskiej wiec w wiekszosci przy-
padkéw wlasnosei catki Lebesgue’a wzgledem A sprowadzaja si¢ do rozwazania tylko
tych ostatnich. Oczywiscie nalezy wyjasni¢, jakie s zwiazki catki Lebesgue’a z kla-
syczng catkg Riemanna.

Niech f bedzie ograniczong funkcja, okreslona na odcinku [a,b] zawartym w R.
Przypomnijmy, ze do definicji catki Riemanna ff f(z) dz stuza pojecia, ktore z naszego
punktu widzenia mozna zreferowaé nastepujaco. Podziatem P odcinka [a, b] nazywamy
dowolng skonczona rodzing odcinkéw domknietych, taka ze Urep I = [a, b], przy czym
dla I,I € P, jezeli I # J to zbiér INJ jest co najwyzej jednoelementowy (gdy odcinki
maja wspolny koniec). Wyrazenia

L(f,P) = >_f(H)MI), U(f,P)=>_ sup(f)A(I),

IeP Iep I

nazywane sg, odpowiednio, sumg dolng i géornag dla podzialu P. Funkcja f jest cal-
kowalna w sensie Riemanna jezeli dla kazdego ¢ > 0 istnieje taki podzial P, ze
U(f,P)— L(f,P)<e.

Zauwazmy, ze sumy calkowe opisane powyzej to nic innego jak catki z pewnych
funcji prostych; jesli

() s=Xinf(fh to L) = [ sd

IeP [a.b]

(o) t=3 sup(f)xs to U(f,P):/[ab]tdA,

1rep 1
przy czym s < f <t poza, by¢ moze, skonczong ilosciag punktow.

Twierdzenie 3.4.1 Jezeli ograniczona funkcja f : [a,b] — R jest calkowalna w sensie
Riemanna to jest A-mierzalna i obie calki sq rowne:

/abf(x) de= [ fan

[a,0]
Dowdd. 7 zalozenia dla kazdego n istnieje podzial P, odcinka [a.b], taki ze
U(f, Pn) - L<f7 Pn) < 1/n

Mozemy przy tym zalozy¢, ze dla kazdego n podziat P, jest wspisany w podziat P,,,
to znaczy, ze kazdy I € P, jest suma pewnych odcinkéw z podziatu P, ;. Wtedy, jak
nietrudno wykazac,

L(f? PTZ) < L(f7 Pn-f—l) < U(fv Pn-i-l) < U(f? Pn)
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Dlatego tez, oznaczajac przez s, i t, funkcje proste zdefiniowane analogicznie jak we
wzorach (*) i (**) dla podzialu P = P,,, nieréwnosci

518 < ... <ty <1

zachodza prawie wszedzie, a doktadnie poza przeliczalnym zbiorem koncéw odcinkow
podziatéw. Przyjmijmy f; = lim,, s, fo = lim,, t,,; wtedy funkcje f; i f5 sa borelowskie,
f1 < fo prawie wszedzie i f[mb] f1d\ = f[a,b] fo dA, a zatem f; = fo prawie wszedzie.
Dlatego funkcja f, spetniajaca prawie wszedzie nierownosci f; < f < fs jest mierzalna.
Rownosé catek wynika natychmiast stad, ze

b
[, fa) dr=tmL(f,P) =<lim [ sedh= [ 7 ax
a n n a,b

la,b

O

Warto przypomnieé, ze w teorii catki Riemanna dowodzi sie!, ze funkcja ogra-
niczona f jest catkowalna na odcinku [a,b] wtedy i tylko wtedy gdy zbiér D(f) jej
punktéw nieciagtoscei jest miary Lebesgue’a zero. W ten sposéb réwniez mozna po-
kaza¢ A-mierzalno$¢ funkeji R-catkowalnych; por. Zadanie 2.5.3. Warto podkresli¢, ze
jezeli A jest podzbiorem zbioru Cantora, to funkcja ya jest catkowalna w sensie Rie-
manna, ale dla nieborelowkich zbioréw A taka funkcja nie jest borelowska, por. uwaga
po Przyktadzie 1.8.

Oczywiscie w dalszym ciagu nie ma potrzeby odrozniania catek Lebesgue’a i Rie-
manna; dlatego bedziemy raczej pisa¢ ff f dX\ lub po prostu ff f dx na oznaczenie
calki Lebesgue’a dla funkcji zmiennej rzeczywistej. Zadania 3.5.10 pokazuja ze catka
Lebesgue’a pokrywa sie tez z bezwzglednie zbiezng niewtasciwg catkg Riemanna. W
jednym tylko przypadku, gdy catka niewlasciwa Riemanna jest zbiezna jedynie wa-
runkowo, wedtug przyjetych definicji funkcja nie jest catkowalna w sensie Lebesgue’a.

Przypomnijmy, ze dla zbioru A = [0, 1]NQ funkcja x 4 jest klasycznym przyktadem
funkcji niecatkowalnej w sensie Riemanna. Oczywiscie fol Xa dA=0bo A(A) =0. Wa-
ro zaznaczyc¢, ze przymiotnik niecatkowalny ma inne znaczenie w przypadku obu catek:
gdy myslimy o calce Riemanna, méwimy najczesciej, ze funkcja jest niecatkowalna,
gdy jest zbyt skomplikowana i sumy catkowe nie pozwalaja prawidtowo zdefiniowaé
catki. Z punktu teorii Lebesgue’a funkcja f jest niecatkowana po prostu dlatego, ze
[1f| d\ = oo. Tutaj tez mozna napotkaé na funkcje “zbyt skomplikowane”. czyli
niemierzalne, ale nie dajg si¢ one zdefiniowaé¢ w sposéb analityczny.

Ipatrz na przyktad M. Spivak, Analiza na rozmaitosciach
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3.5 Zadania

3.5.1 Sprawdzi¢, ze wzor

/ Do aixa, dp =" aipu(Ay)
X =1 i=1

jednoznacznie definiuje catke z funkcji prostych catkowalnych na dowolnej przestrzeni
(X, 2, ).

WSKAZOWKA: Jezeli Y1 a;xa, = Z§:1 bjxp, to istnieje skonczona partycja X na
zbiory mierzalne 7,1 < s < p, takie ze kazdy zbiér A; i kazdy zbiér B; jest suma
pewnych zbiorow T.

3.5.2 Niech u(X) =11 pu(A;) > 1/2dlai =1,2,...,n. Wykazad, ze istnieje z € X
nalezacy do przynajmniej n/2 zbioréw A;. W tym celu oszacowac [y > i<, X4, dp (por.
Problem 1.9.E).

3.5.3 Rozwazy¢ funkcje f(z) = —ﬁ, aby zauwazy¢, ze nie mozna w ogdlnym przy-

padku zdefiniowa¢ catki [p f d\ jako supremum z catek [ s d\ po funkcjach prostych

s < f. Zdefiniowa¢ podobng funkcje na [0, 1].

3.5.4 Niech (X, 3, i) bedzie przestrzenia miarowa, a f, g : X — R funkcjami mierzal-

nymi. Sprawdzi¢ ze

(i) jesli [, f dp = 0 dla kazdego A € X, to f = 0 prawie wszedzie;

(i1) jesli f jest catkowalna na X, to jest tez catkowalna na kazdym X, € ¥;

(i17) jesi A, B € i u(AAB)=0,to [4fdu= [zfdudlakazdej f (oraz istnienie
jednej z calek pociaga istnienie drugiej);

(w) [1f =gl dp>|J1f du— [ gl dul.

3.5.5 Ustali¢, czy

(1) iloczyn dwéch funkeji catkowalnych jest catkowalny;
(i1) funkcja f, gdzie f = 1 prawie wszedzie jest catkowalna,;
(iii) f jest catkowalna jesli jest catkowalna na kazdym zbiorze miary skonczone;.

3.5.6 Rozpatrzmy przestrzen (N, P(N), i), gdzie p jest miara liczaca, to znaczy u(A) =
|A| dla zbioréw skonicznych i p(A) = oo dla kazdego A C N nieskoriczonego.

Udowodnié, ze f: N — R jest catkowalna wtedy i tylko wtedy gdy >°0, | f(n)| < oc.
Zauwazy¢, ze w tym przypadku catka jest suma szeregu.

3.5.7 Czy istnieje ciag funkcji, ktory jest

(i) zbiezny prawie wszedzie, ale nie wedlug miary;
(i1) zbiezny wg miary ale nie prawie wszedzie;
(i1i) zbiezny prawie wszedzie, ale nieograniczony;
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(iv) zbiezny jednostajnie do zera i taki, ze calki nie zbiegaja do zera;
(v) sktada si¢ z funkcji catkowalnych i jest zbiezny jednostajnie do funkeji niecatko-
walnej.

Przy kazdym pytaniu rozwazy¢ przypadek pu(X) < oo i u(X) = oc.

3.5.8 Niech f : [a,b] — R bedzie ograniczona funkcja borelowska. Zauwazy¢, ze f jest
catkowalna wzgledem miary Lebesgue’a na [a, b].

3.5.9 Wykazaé, ze jesli f : R — R jest catkowalna w sensie Lebesgue’a to dla kazdego
e > 0 istnieje odcinek [a, b] taki ze [, |f] dp > [ [f] dp —e.

3.5.10 Niech f : R — R bedzie nieujemng funkcja dla ktérej istnieje skonczona
catka niewlasciwa Riemanna [0 f(x) dz. Udowodnié, ze f jest calkowalna w sensie
Lebesgue’a. Wykazaé, ze zatozenie nieujemnosci funkcji jest istotne.

3.5.11 Niech p(X) < oo. Udowodnié, ze funkcja mierzalna f jest catkowalna wtedy i
tylko wtedy gdy dla zbioréw A,, = {z : |f(z)| > n} zachodzi warunek > °°, u(4,) <
00.

3.5.12 Wykazaé¢ tzw. nieréwnos¢ Czebyszewa: dla funkcji catkowalnej f zachodzi
[l = enlfa: 1f(@)] > <),
3.5.13 Wywnioskowaé z nieréwnosci Czebyszewa, ze

jezeli /|f—fnydﬂﬁo to f 2 f.

3.5.14 Niech A, bedzie ciagiem zbioréw mierzalnych, takim ze u(A, A Ax) — 0 gdy
n,k — 0o. Wykazaé, ze istnieje mierzalny zbiér A, taki ze u(A A A,) — 0.

3.5.15 Zdefiniowaé¢ funkcje ciagle catkowalne f, : [0,1] — [0, 00), takie ze f,, — 0
prawie wszedzie, ale funkcja sup,, f,, nie jest catkowalna.

3.5.16 Niech f : R — R bedzie funkcja catkowalna. Sprawdzi¢, ze funkcja F(x) =
Jouy F(t) dA(t) jest ciagla. Podac¢ przyklady swiadczace o tym, ze I nie musi by¢
rozniczkowalna.

3.5.17 Zauwazy¢, ze lemat Fatou nie jest prawdziwy bez zalozenia nieujemnosci funk-
cji. Zbadac, przy jakich zatozeniach o funkcjach zachodzi wzor

lim Sup/ fn du < / lim sup f,, du.
n X X n

3.5.18 Niech (f,,) bedzie takim ciagiem funkcji catkowalnych, ze >0, [|fn] dp < 0.
Udowodnié, ze szereg >, f, jest zbiezny prawie wszedzie i

/;fnduzg/fndw
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3.5.19 Zbadaé, czy wzér z poprzedniego zadania zachodzi dla szeregu funkcji f,(x) =
"1 — 22?1 na odcinku (0, 1).

3.5.20 Zbada¢, czy

/ \/n—l—:n Z/ n—i—:c

Jak mozna uog6lni¢ ten przyktad?

3.5.21 Niech p bedzie miara skonczona na X; f,, f : X — R beda funkcjami mie-
rzalnymi, takimi ze f, —— f. Udowodnié, ze jesli A : R — R jest ograniczona i
jednostajnie ciagta to

tim [ h(fa) dp= [ B(f) ap.

n—eo Jx

3.5.22 Niech f,, bedzie ciggiem funkcji catkowalnych, zbieznym do f prawie wszedzie.
Udowodnié, ze lim,, .o [ |f — f| dX — 0 wtedy i tylko wtedy gdy lim,, . [ |fn| dA =

J1FdA.

3.6 Problemy

3.6.A Mowimy, ze przestrzen miarowa (X, X, 1) jest semiskonczona jezeli
p(A) =sup{u(B) : BE€X, BC A, u(B) < oo}.

Zauwazy¢, ze kazda przestrzen o-skonczona jest semiskonczona.

3.6.B Zauwazy¢ ze w definicji catki z funkcji nieujemnej na przestrzeni semiskon-
czonej mozna liczy¢ supremum po funkcjach prostych catkowalnych. Sprawdzié, ze
twierdzenia graniczne dla catki zachodzg niezmienionej formie dla przestrzeni semi-
skonczonych.

3.6.C Udowodni¢, ze kazda przestrzeni (X, X, u), ktéra nie jest semiskoniczona, zawiera
nieskoniczony atom miary, to znaczy zbior A € 3, taki ze u(A) = oo i u(B) € {0,000}
dla kazdego zbioru B C A z o-ciata X.



Rozdziat 4

Miary produktowe i twierdzenie
Fubiniego

Dajcie mi Twierdzenie, a wtedy {atwo
znajde jego dowdd.
Bernhard Riemann

W tym rozdziale zdefiniujemy i zbadamy operacje produktowania przestrzeni mia-
rowych oraz udowodnimy twierdzenie Fubiniego!, ktére jest podstawows metody li-
czenia catek z funkcji wielu zmiennych. Pozwoli nam to na szybkie wprowadzenie
wielowymiarowej miary i catki Lebesgue’a w przestrzeniach euklidesowych.

4.1 Produktowanie o-cial

Rozwazmy dwie przestrzenie (X,¥) i (Y,0), gdzie ¥ C P(X) i © C P(Y) sa usta-
lonymi o-ciatami. Zbiory postaci A X B bedziemy nazywaé prostokgtami; prostokat
A x B nazwiemy mierzalnym jezeli A € ¥ 1 B € ©. W produkcie X X Y mozemy
zdefiniowa¢ nastepujace o-ciato.

Definicja 4.1.1 Symbolem ¥ ® © oznaczamy o-ciato podzbiorow X XY, zadane jako
YO0=0({AxB:AecX Be0O});
¥ ® O nazywamy produktem o-cial X i ©.

Oczywiscie sama rodzina prostokatéw mierzalnych A x B nie jest zamknieta nawet
na skonczone sumy. W dalszym ciagu bedzie tez przydatnym rozwazanie ciata

F=a({AxB:A€x, Be0}),

generowanego przez takie prostokaty; cialo F bedziemy nazywac, troche niescisle,
ciatem prostokatow mierzalnych.

!Guido Fubini (1879-1943), matematyk wloski
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Lemat 4.1.2 Zbior F' C X X Y nalezy do ciala prostokgtow F wtedy 1 tylko wtedy
gdy
(x) F= UAiXBia
i<n
dla pewnych A; € X 1 B; € ©,i=1,...,n. We wzorze (*) mozna przy tym zaZgdac,
aby prostokgty A; x B; byly parami roztgczne.

Dowéd. Wystarczy zauwazy¢, ze rodzina tych zbiorow F', ktore mozna przedstawi¢ w
postaci (*) jest ciatem. Oczywiscie rodzina ta jest zamknieta na skonczone sumy. Fakt,
ze dla zbioru F' zadanego przez (*), jego dopelienie tez mozna zapisa¢ w podobny
spos6b mozna nietrudno wywnioskowaé stad, ze

(Ax B)=(A°xXY)U (X x BY),

i faktu, ze przekroj dwoch prostokatéw tez jest prostokatem. To, ze prostokaty w
przedstawieniu (*) mozna uroztaczni¢, wynika ze wzoru

(A1 x By) \ (A3 x By) =

= [(A1\ A2) x (B1 N Ba)] U [(A1 \ A2) x (B1 \ B2)] U [(A1 N Az) x (By \ By)],
gdzie sktadniki po prawej stronie sg parami roztaczne.

Dla zbioru £ C X x Y i ustalonych x € X, y € Y, zbiory
E,={z€Y :(z,2) € E}, E'={z€ X:(z,y) € E},

nazywamy, odpowiednio, cieciem pionowym i poziomym zbioru. Analogicznie, dla
funkcji rzeczywistej f okreslonej na produkcie X x Y mozemy rozwazy¢ odpowiednie
funkcje jednej zmiennej:

fo: ¥V =R, fo2) = f((2,2)), [ X =R, [fy(2) = [({z,9))-

Lemat 4.1.3 Jezeli E € ¥ ® O to E, € O dla kazdego x € X © EY € ¥ dla kazdego
yey.

Jezeli funkcja f: X XY — R jest ¥ ® ©-mierzalna to funkcja f, jest 0-mierzalna
dla wszystkich x € X, a funkcja f¥ jest X-mierzalna dla kazdego y € Y.

Dowdd. Ustalmy x € X. Nietrudno sprawdzi¢, ze rodzina & tych zbioréw F € ¥ ® O,
dla ktérych E, € © jest o-cialem. Poniewaz (A x B), = B lub (A x B), = () wiec
kazdy prostokat mierzalny nalezy do £. Stad £ = ¥ ® ©. Oczywiscie sprawdzenie
mierzalnosci cie¢ poziomych jest analogiczne.

Rodzina tych funkcji f dla ktorych, przy ustalonym x € X, funkcja f, jest ©-
mierzalna zawiera funkcje proste i dlatego, na mocy Twierdzenia 2.2.3, teza zachodzi
dla wszystkich funkcji f nieujemnych, jako ze wspomniana rodzina jest zamknieta na
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granice punktowe. Rozszerzenie na funkcje niekoniecznie nieujemne otrzymujemy jak
zwykle przez rozklad na czesci dodatnig i ujemng. <

Dla przyktadu mozemy rozwazyé¢ o ciato produktowe Bor(R) ® Bor(R) na ptasz-
czyznie. Zauwazmy przede wszystkim, ze w R X R istnieje inne naturalne o-ciato, ktore
teraz zdefiniujemy.

Poniewaz R x R jest przestrzenia metryczng przy naturalnej metryce euklidesowej
wiec mozemy rozwazaé zbiory otwarte i domkniete na ptaszczyznie. Przypomnijmy,
ze odlegtos¢ euklidesowy liczymy wedtug wzoru

|z —yl| = \/|$1 =yl + |z — et dlaz = (z1,22),y = (Y1, ¥2)-

Jak zwykle kula B, (x) o érodku w x i promieniu r zdefiniowana jest jako

By(z) ={y: [z =yl <r}.

Zbiér U C RxR jest otwarty gdy dla kazdego = € U istnieje r > 0, takie ze B,.(z) C U.
Zauwazmy jednak, ze mozna réwnowaznie otwartos¢ U wyrazi¢ przez warunek: dla
kazdego x € U istnieje 6 > 0, taka ze

<x1—5,$1+6) X ($2—5,$2+(5> - U,

co oznacza, ze wraz z kazdym swoim elementem, zbiér U zawiera prostokat otwarty,
otaczajacy ten punkt i zawarty w U. o-cialo Bor(R x R) borelowskich podzbioréw
plaszczyzny jest zdefiniowane jako najmniejsze o-cialo zawierajace wszystkie zbiory
otwarte.

Twierdzenie 4.1.4 Bor(R) ® Bor(R) = Bor(R x R).

Dowdd. Udowodnimy najpierw, ze Bor(R) ® Bor(R) C Bor(R x R). Poniewaz dla
otwartego zbioru V' C R, zbiér V' x R jest otwarty wiec, rozwazajac rodzine

{B € Bor(R) : B xR € Bor(R xR)},

bez trudu sprawdzimy, ze taka rodzina jest rowna Bor(R). Podobny argument mozna
zastosowaé do drugiej osi; stad dla dowolnego borelowskiego prostokata A x B mamy

AxB=(AxR)N(R x B) € Bor(R x R),

co implikuje zadang inkluzje.

Zauwazmy, ze dla dowodu inkluzji przeciwnej Bor(R x R) C Bor(R) ® Bor(R)
wystarczy sprawdzié¢, ze dowolny zbiér otwarty U C R x R nalezy do o-ciata pro-
duktowego. Rozumujac jak w dowodzie Twierdzenia 0.3.3 mozna pokazac, ze taki

zbiér U mozna wyrazi¢ jako przeliczalng sume prostokatow otwartych, co oznacza, ze
U € Bor(R) ® Bor(R). &
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Przyktad 4.1.5 Z twierdzenia powyzej wynika, ze przekatna A, jako zbiér domkniety
nalezy do Bor(R) ® Bor(R); te sama wlasno$¢ ma wykres kazdej funkcji ciaglej f :
R — R. Ogdlniej, jezeli funkcja f jest borelowska to jej wykres G mozna zapisaé¢ jako

G = ﬂ U FoHIR/n, (ke + 1) /)] x [[k/n, (k+1)/n)],

n=1k=—oc0

co pokazuje, ze G € Bor(R) ® Bor(R).

4.2 Produktowanie miar

Niech (X,>,u) i (Y,0,r) beda dwiema o-skoficzonymi przestrzeniami miarowymi.
Przedstawimy teraz konstrukcje miary produktowej p ® v, okreslonej na ¥ ® ©. Jak
sie okaze, jest to jedyna taka miara, ktora spetnia naturalny wzor

V(A X B) = u(A) - v(B)

dla wszystkich prostokatéw mierzalnych.

Lemat 4.2.1 Niech F bedzie cialem podzbiorow X XY, generowanym przez prostokqgty
postaci A X B, gdzie A € X, B € ©. Wtedy funkcja zbioru k zdefiniowana dla F' € F
wzorem

(o) w(F) = [ v(F) dplx)

jest przeliczalnie addytywna; ponadto, k(A x B) = u(A) - v(B) dla wszystkich A € 3,
B € 0.

Dowdéd. Zauwazmy, ze dla F' € F, F jest skonczong suma prostokatéw mierzalnych
(Lemat 4.1.2), a stad tatwo wynika, ze funkcja z — v(F,) jest X-mierzalna funkcja
prosta. Ta uwaga uzasadnia poprawno$é¢ wzoru (xx). Addytywnosé funkcji x wynika
z wtasnosci calki: jezeli F/, F' € F sg roztaczne to

K(EUF) = /”«Euﬂ)@d) J 0B + v(F) dula) =
/ ») dp(x) + / = k(E) + K(F).

Ponadto « jest ciggta z dotu: jezeli F,, € Fi F,, T F' € F to dla kazdego x € X mamy
(Fn): T F, i dlatego v((Fy)z) — v(F,), z clagltosci miary v. Stad i z twierdzenia o
zbieznosci monotonicznej

K(F) = [ V(F).) du(a) = [ v(F) dpa) = w(F).

Ostatecznie k jest przeliczalnie addytywna jako funkcja addytywna i ciagta z dotu
(Twierdzenie 1.2.5). Wzér k(A x B) = u(A)-v(B) wynika natychmiast ze wzoru (xx).

%
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Twierdzenie 4.2.2 Niech (X, %, ) @ (Y,0,v) bedg o-skonczonymi przestrzeniami
miarowymsi. Na o-ciele X ® O istnieje jedyna miara p ® v, spetniajgca dla kazdego
A e ¥ i B e O warunek

(a) p®v(Ax B) = u(A)-v(B).

Dla dowolnego zbioru E € ¥ ® © funkcje x — v(E,) iy — p(EY) sq¢ mierzalne
wzgledem odpowiednich o-ciat i zachodzg wzory

®) pev(E) = [ vE)du) = [ u(E) dvly).

Y

Dowdd. Funkcja k zdefiniowana w Lemacie 4.2.1 jest przeliczalnie addytywna na
ciele F prostokatéw mierzalnych i dlatego rozszerza sie do miary na o(F) = ¥ ® O,
patrz Twierdzenie 1.7.3. Jedynos¢ miary produktowej wynika stad, ze kazda miara
spelniajaca wzér (x*) musi by¢ rowna funkcji k na F, por. Lemat 4.1.2. Zauwazmy, ze
jezeli miary p i v sa o-skonczone to X XY mozna pokry¢ przeliczalng suma prostokatow
mierzalnych miary s skonczone;j.

Wzér (b) sprawdzimy najpierw przy zalozeniu, ze p(X) i v(Y) sa wartoSciami
skonczonymi. Niech £ bedzie rodzing tych zbioréw F € ¥ ® O, dla ktérych funkcja
r — v(E,) jest Y-mierzalna oraz

peuB) = [ v(E) du().

Bez trudu sprawdzamy, ze rodzina £ zawiera wszystkie prostokaty mierzalne i skon-
czone roztaczne sumy takich prostokatéow. Stad i z Lematu 4.1.2 widaé, ze F C €. Aby
poazaé, ze £ = X ®O wystarczy upewnic sie, ze £ jest klasg monotoniczng i zastosowaé
Twierdzenie 1.7.2. Niech na przyktad E, € £1 E, | E. Wtedy v(E,) = lim, v((E,).)
wiec funkcja  — v(E,) jest mierzalna oraz

p & U(E) = limp @ v(E,) = lim [ v(E,).) du(x) =

= [ tim (B, due) = [ (B, du(e),

X n
gdzie zastosowalismy ciaggto$¢ miary skonczonej p ® v z géry oraz twierdzenie Lebes-
gue’a o zbieznosci ograniczonej (dla catki wzgledem p). Drugi ze wzoréw (b) mozna
sprawdzi¢ analogicznie.
Jezeli p i v sa o-skonczone to mozemy napisa¢ X i Y jako wstepujace sumy

X=X, vY=UY.

gdzie zbiory X, € X sg miary p skonczonej i zbiory Y,, € © sa miary v skonczonej.
Niech ¥ € ¥ ® 0, E = U, E,, gdzie E, = EN (X, xY,). Wtedy kazdy zbior E,
spetnia wzor (b), czyli

peUE) = [ V((E).) dux).
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Przechodzac po obu stronach do granicy n — oo otrzymamy analogiczng tozsamos¢
dla zbioru E. $

Dodajmy, ze nawet jesli miary p i v sg zupelne to miara produktowa p® v nie musi
by¢ zupelna na ¥ ® O, por. Zadanie 3.5.9. Z Twierdzenia 4.2.2 wynika w szczegdl-
nosci, ze istnieje jedyna miara A = A ® A na borelowskich podzbiorach ptaszczyzny.
Taka ptaska miara Lebesgue’a Ay jest jedyna miarg na ptaszczyznie, uogdlniajaca ele-
mentarny wzor na pole prostokata. Miare A\, mozna tez skonstruowac, postepujac jak
w rozdziale 1, to znaczy definiujac Ao na pierscieniu generowanym przez prostokaty
postaci [a, b) X [c,d), a nastepnie rozszerzajac miare na generowane przez nie o-cialo.
Konstrukcja z Twierdzenia 4.2.2 pozwala uniknaé¢ komplikacji w rachunkach, dzigki
temu, ze kluczowe fakty wyprowadza sie ze znanych juz wtasnosci calki.

4.3 'Twierdzenie Fubiniego

Twierdzenie Fubiniego, czyli wzér na catke wzgledem miary produktowej jest juz pro-
sta konsekwencja Twierdzenia 4.2.2. Twierdzenie to zwykle podaje si¢ w nastepujacych
dwdbch wersjach.

Twierdzenie 4.3.1 (Twierdzenie Fubiniego) Niech (X, %, u) i (Y,0,v) bedg o-
skonczonymi przestrzeniami miarowymi. O funkcji ¥ ® ©-mierzalnej f: X xY — R
zatozmy, ze

(i) f jest nieujemna, lub

(i1) f jest p & v-catkowalna.
Wtedy funkcje

Lio— [ fay) avly, Jiy— [ f@y)du),

(przyjmujace byé moze wartosci nieskonczone) sq mierzalne wzgledem ¥ i, odpowied-
nio, 0 oraz

(o) [ Fdusw = [ ([ ) o) dute) = [ ([ ) duta)) avy)

Dowdd. Zauwazmy, ze dla funkcji charakterystycznej f = xg zbioru £ € ¥ ® O,
wzory (***) redukuja sie do wzoru (b) z Twierdzenia 4.2.2. Stosujac addytywnosé
calek tatwo stad wynioskowaé, ze teza zachodzi dla kazdej funkcji proste;j.

Jezeli f > 0 to biorac ciag mierzalnych funkcji prostych f,, monotonicznie zbiezny
do f otrzymamy stad dowdd przy zalozeniu (i). Istotnie, I(x) = lim, I,(x), gdzie
I, :z — [y fo(x,y) dv(y) z twierdzenia o zbieznosci monotonicznej dla catki wzgledem
v. Dlatego I jest funkcjg mierzalng; prechodzac do granicy we wzorze

| fdnev= [ L) du)
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otrzymujemy natychmiast

| rdnev= [ 1@) @),

poniewaz po lewej stronie dziata twierdzenie o zbieznos$ci monotoniznej dla catki wzgle-
dem p ® v, a po prawej dla catki wzgledem miary u. Drugi ze wzoréw (***) mozna
wyprowadzi¢ zupekie analogicznie.

Zauwazmy, ze dla funkcji catkowalnej f > 0 mamy I(z) < oo dla pu-prawie wszyst-
kich z, co wynika natychmiast z pierwszego wzoru (***). Dlatego tez, jezeli funkcja
f=f"—f" jest u ® v-catkowalna to mozemy zastosowaé¢ udowodniong czes$é twier-
dzenia do f* i f~ i odjaé otrzymane wyniki stronami, a to da wzory catkowe dla f.

O

Twierdzenie Fubiniego nie zachodzi dla funkcji, ktére sa jedynie mierzalne — na
przyktad catki iterowane moga by¢ skonczone, ale dawaé¢ rézne wyniki, por. Zadania
3.5.101 3.5.11.

4.4 Produkty skonnczone i nieskonczone
Dla trzech przestrzeni o-skoniczonych (X;, ¥;, 1;) mozemy zdefiniowaé ich produkt jako

produkt przestrzeni (X7 X Xo, X1 ® X, j11 ® o) oraz (X3, 33, u3). Ta uwaga prowadzi
do nastepujacego uogdélnienia Twierdzenia 4.2.22.

Twierdzenie 4.4.1 Jezeli (X;,%;, ;) sq dlai = 1,...,n o-skoniczonymi przestrze-
niami miarowyms to na o-ciele @<, X; podzbioréw X = [[;<,, X;, generowanych przez
wszystkie kostki mierzalne Ay X Ag X ... X Ay, istnieje jedyna miara p = Q;<p i

spelniajgca, dla wszystkich A; € ¥;, warunek
,U(Al X A2 X ... X An) = Nl(Al) . [,LQ(AQ) L ,un(An)

W szczegdlnodei na przestrzeni euklidesowej R™ mozna zdefiniowaé n-wymiarowsa
miare Lebesgue’a \,, przyjmujac

A= QA

<n
Miara A, moze by¢ rozwazana na o-ciele

® Bor(R) = Bor(R"),

i<n

generowanym przez wszystkie n-wymiarowe kostki borelowskie; por. Zadanie 3.5.14.

2szczegbdly dowodu zostana pominiete
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Twierdzenie Fubiniego pokazuje, ze catka wzgledem miary n-wymiarowej moze by¢
sprowadzona do n catek iterowanych, Zauwazmy na przyktad, ze dla funkcji nieujemnej
f : R? — R mozemy napisa¢

/RsfdASZ/R/R/Rf(xl,xg,xg) A1) dA() dA(s),

a w istocie jest 3! takich wzorow, uwzgledniajacych rézne kolejnosci liczenia calek.

Rozwaza si¢ tez produkty nieskonczone przestrzeni miarowych probabilistycznych.
Dowod twierdzenia ponizej pomijamy; w szczegolnych przypadkach twierdzenie to
oméwimy doktadniej w dalszym ciggu.

Twierdzenie 4.4.2 Jezeli (X, %, i1n) jest ciggiem przestrzeni probabilistycznych to
na o-ciele @,, >, podzbiorow X = [[,, X,, generowanych przez wszystkie skonczenie
wymiarowe kostki mierzalne postaci

EF=A xAyx ... x A, x Xpi1 X Xppo X .00,

gdzie A; € X; dla v < n, istnieje jedyna miara p = @, bn Spetniajgca, dla wszystkich
zbiorow E jak wyzej, warunek

p(E) = pi(Ar) - pa(A2) - pin(An).

4.5 Miara na zbiorze Cantora

Zagadnienie nieskonczonych produktéw zilustrujemy nastepujacym waznym przykta-
dem3. Na zbiorze dwuelementowym X, = {0,1} mozemy zdefiniowa¢ miare¢ p =
1/2(do + 61), okre$lona na wszystkich podzbiorach X,. Zauwazmy, ze dla n € N,
miara ®;c, p# na {0, 1}" jest po prostu unormowang miarg liczaca: kazdy punkt prze-
strzeni ma miare 1/2". Okazuje sie, ze operacja nieskonczonego produktu nawet dla
tak prostej miary jak p prowadzi do jako$ciowo zupelnie innej miary.

Niech K = {0,1}" bedzie zbiorem wszystkich nieskoficzonych ciagéw zerojedyn-
kowych. Nietrudno sprawdzi¢, ze na zbiorze K mozna okresli¢ metryke d wzorem

d(xz,y) = 1/n gdzie n = min{k : x(k) # y(k)},

dla x # y; ponadto przyjmujemy d(x,z) = 0. Zauwazmy, ze zbiezno$¢ w metryce d
to zbieznos$é po wspétrzednych, to znaczy dla z,,r € K, zbieznosé d(x,,z) — 0 jest
réwnowazna temu, ze x,(k) — z(k) dla kazdego k (co w tym przypadku oznacza, ze
zn(k) = x(k) dla dostatecznie duzych n). Dowodzi sie, ze przestrzen K jest zwarta
w metryce d — ten fakt wynika tez z nastepujacego twierdzenia, ktére méwi, ze
przestrzen K jest nieco tylko innym opisem zbioru Cantora.

3ta cze$é podana jest nieco szkicowo i stanowi material nieobowigzkowy



G. Plebanek, MIARA I CALKA _____ Rozdzial 4: Miary produktowe 66

Twierdzenie 4.5.1 Funkcja

>, 2x(n)
T3

feK =101, f(z) =

n=

jest homeomorfizmem pomiedzy przestrzeniq K i zbiorem f[K] C [0,1], ktory jest
trojkowym zbiorem Cantora C'.

Dowdd. Jezeli d(x,y) < 1/n to (i) = y(i) dla i < n i dlatego

> x(k) —ylk s
(@) - f)l < k_ZWQ( v <k§1§=2-?jﬂl_ﬂ/3 —1/3"

Ta zalezno$é¢ oznacza, ze funkcja f jest ciagla. Z drugiej strony dla = # y biorac
najmniejsze n, takie ze x(n) # y(n), otrzymujemy

NORTOIEET: I g

k=n+1

>2/3" —1/3" =1/3",

co dowodzi réznowartosciowosci f oraz faktu, ze funkcja odwrotna tez jest ciagta.
Oczywiscie f[K]| = C, jako ze elementy C to te liczby z [0, 1], ktére w rozwinieciu
trojkowym maja tylko cyfry 0i 2.

Dlatego tez zbior K = {0,1}" jest po prostu nazywany zbiorem Cantora. Dla
funkcji ¢ : A — {0,1} dziedzine funkcji A oznaczaé bedziemy A = dom(p). Dla
dowolnego skonczonego zbioru A C N definiujemy

o] ={z € K :x(i) = p(i) dlai € dom(yp)}.

Zauwazmy, ze dla A = {1,2,...,n} i dowolnej ¢ : A — {0, 1}, jesli x € [¢] to [¢] jest
kulg o $rodku w x i promieniu 1/n wzgledem metryki d.

Lemat 4.5.2 Zbiory postaci [¢]| sa jednoczesnie otwarte i domkniete w K. Rodzina
takich zbiorow stanow: baze topologit w K.

Dowdd. Zbiér postaci [p] jest otwarty bo jezeli x € [p] in jest taka liczba, ze dom(p) C
{L,2,...,n} to kula B = By,(z) (o érodku w z i promieniu 1/n) zawiera te y,
ktére zgadzaja sie z x na pierwszych n wspolrzednych, a zatem B C [¢]|. Z drugiej
strony dopetnienie zbioru [p] jest skoniczona suma zbioréw postaci 1], gdzie dom(v)) =
dom(yp) i ¥ # . Dlatego [¢] jest takze zbiorem domknietym.

Oznaczmy przez C cialo podzbiorow K generowane przez wszystkie cylindry postaci
[¢], gdzie dom(p) C N. Zauwazmy, ze jest przeliczalnie wiele takich funkcji ¢ i dlatego
cialo C tez jest przeliczalne, patrz Zadanie 1.9.9. Mozna sprawdzi¢, ze kazdy zbioér
C' € C jest sumg skoniczenie wielu zbior6w postaci [p] 1 dlatego kazdy taki zbior C' jest
otwarto-domkniety.
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Lemat 4.5.3 Zbior C € C wtedy i tylko wtedy gdy istnieje n i C' C {0,1}", takie ze
(1) C=C"x{0,1} x....

Dowdéd. Zauwazmy, ze rodzina zbior6w postaci jak w (1) jest cialem i zawiera cylindry
postaci [p]. &

Zdefiniujemy teraz funkcje zbioru v : C — [0, 1] wzorem

_ ¢

gdzie C jest zapisany w postaci (1). Nietrudno sprawdzi¢, ze wielkoé¢ v(C') nie zalezy
od sposobu przedstawienia zbioru C oraz ze v jest addytywna funkcja zbioru.

Twierdzenie 4.5.4 Funkcja v rozszerza sie jednoznacznie do miary na Bor(K). Mia-
ra ta (oznaczana w dalszym ciggu przez v) ma nastepujgcg wlasno$é: dla kazdego
B € Bor(K) ie > 0 istnieje zbior C € C, taki zZe v(B A C) < €.

Dowdd. Zauwazmy, ze v, rozpatrywana na ciele C jest ciggla z géry na zbiorze pu-
stym, bo jesli C,, € C 1 C, | 0 to C,, = 0 dla duzych n. Jest to konsekwencja zwartosci
przestrzeni K. Dlatego tez v jest przeliczalnie addytywna na C i rozszerza si¢ jedno-
znacznie na o(C), patrz Twierdzenie 1.7.3, przy czym o(C) = Bor(K), jako ze zbiory
z C sa otwarte oraz kazdy zbiér otwarty jest suma przeliczalng zbioréw z C. Wlasnoscé
rozszerzenia miary wynika z Twierdzenia 1.5.6.

Miara v skonstruowana powyzej spetnia wzor

A9]) = s

dla cylindréw [p]. Jak wida¢ v = ®,, 1, gdzie p jest miara na {0, 1} wspomniana na
poczatku tej czesci. Zauwazmy, ze v znika na punktach , a wiec takze na zbiorach prze-
liczalnych. Zbiér Cantora K z miara v jest naturalnym modelem probabilistycznym
dla “nieskonczonego ciggu niezaleznych rzutéw symetryczng monetg”; por. Problemy
3.6.

Wspomnijmy na koniec, ze miara v jest $cisle zwigzana ze struktura grupowa zbioru
Cantora K. Przypomnimy, ze zbiér {0, 1} jst grupa (dodawania mod 2). Oznaczajac
to dziatanie przez & mozemy zdefiniowac

r @y = (x(n) ®y(n)n € K,

dla x,y € K. W ten sposéb K jest grupa z dziataniem &. Mamy = & = = 0, czyli
—r = x w tej grupie. Ponadto dziatanie & jest ciagtle; jezeli z, — z iy, — ¥y
to x, &y, — x &y, co wynika natychmiast z natury zbieznosci w K. Méwimy w
takim przypadku, ze grupa K jest grupa topologiczna. 7Z cigglosci dziatania grupowego
wynika, ze translacja x @ B zbioru borelowskiego B tez jest zbiorem borelowkim (patrz
Problem 3.6.E) oraz v(x®B) = v(B); méwimy ze v jest miara niezmiennicza na grupie,
albo miarg Haara grupy.
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4.6 Zadania

4.6.1 Niech f: R — R, bedzie funkcja borelowska. Wykazaé, ze zbiér pod jej wykre-
sem {(z,y) : 0 <y < f(x)} jest borelowskim podzbiorem plaszczyzny.

4.6.2 Niech f: X — R, bedzie nieujemna funkcja mierzalna na przestrzeni (X, 3, p);
niech P = {(z,t) : 0 < t < f(x)} bedzie zbiorem pod wykresem funkcji. Sprawdzié¢,
ze P mnalezy do o-ciata ¥ ® Bor(R) oraz wywnioskowa¢ z twierdzenia Fubiniego, ze

M®A(P)=/deu'

4.6.3 Zauwazy¢, ze zbior borelowski A C [0, 1]? jest plaskiej miary zero wtedy i tylko
wtedy, gdy A(A,) = 0 dla prawie wszystkich = € [0, 1].

4.6.4 Zauwazy¢, ze jesli zbiory borelowskie A, B C [0, 1] spelniajg zalezno$é A(A,) =
A(B,) dla wszystkich x to A\y(A) = \a(B).

4.6.5 Obliczy¢ miare Lebesgue’a zbioréw
A={(z,y): 2€QluibyeQ};  B={(z,y): v—yeQ}.

4.6.6 Wychodzac ze znanego faktu, ze izometrie ptaszczyzny nie zmieniajg pola pro-
stokatow wykazac, ze ptaska miara Lebesgue’a jest niezmiennicza na izometrie ptasz-
czyzny.

4.6.7 Zauwazy¢, ze ptaska miara Lebesgue’a jest niezmiennicza na translacje oraz
zachodzi wzor \o(J,[B]) = r?Xo(B) dla B € Bor(R?), gdzie J, jest jednokladnoscia o
skali 7.

4.6.8 Wyprowadzi¢ z tw. Fubiniego

(i) wzbér na objeto$¢ stozka o wysokosci h, ktéry na podstawie ma zbiér borelowski
B C R?
(ii) wzor na objetoé¢ kuli o promieniu r w R3 i R%.
4.6.9 Zauwazy¢, ze A ® A nie jest miara zupelna na £ ® £.
4.6.10 Niech v bedzie miara liczacag na wszystkich podzbiorach N. Podaé¢ przyktad

funkcji f : N x N — R, dla ktorej catki iterowane w twierdzeniu Fubiniego daja rézne
wyniki skonczone.

WSKAZOWKA: Okresli¢ niezerowe wartosci f(n,n) i f(n+1,n) dlan € N,
4.6.11 Na kwadracie jednostkowym rozwazy¢ funkcje

2y 2?2 — 92

@ 1Y

fz,y) = @ 1)

£(0,0) = ¢g(0,0) = 0. Zbadaé¢ catkowalnosé, istnienie catek iterowanych, ich réwnosé i
odnies¢ te obserwacje do twierdzenia Fubiniego.
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4.6.12 Wykazac¢, ze dla catkowalnej funkcji f : [0,1]> — R zachodzi wzor

// F(a,y) dA\(y) dA(z // Fla,y) dA(z) dA(y).

4.6.13 Niech A bedzie o—cialem na [0, 1], generowanym przez zbiory przeliczalne.
Pokazaé, ze przekatna A = {(z,y) € [0,1]? : x = y} nie nalezy do A ® A.
4.6.14 Funkcja f : R" — RF jest borelowska jesli f~![B] € Bor(R") dla B € Bor(R¥).
Tutaj Bor(R™) oznacza o-cialo generowane przez otwarte podzbiory R™. Sprawdzié,
ze

(i) Bor(R?) jest generowane przez otwarte prostokaty U x V;

(1) Bor(R™) jest generowane przez otwarte kostki Uy x Uy X ... x Uy;
(111) kazda funkcja ciggla f : R™ — R jest borelowska,;

(iv) funkcja g = (g1, g2) : R — R? jest borelowska wtedy i tylko wtedy gdy g1, g sa
borelowskie.

4.6.15 Wywnioskowac¢ z poprzedniego zadania, ze jesli g1, g2 : R — R sg mierzalne to
g1+ g2, 91 - go tez sa mierzalne.

4.6.16 Niech f : X — Y bedzie odwzorowaniem mierzalnym pomiedzy przestrzeniami
(X,3,p) i (Y A), to znaczy f~[A] € ¥ dla kazdego A € A. Sprawdzi¢, ze wzoér
v(A) = p(f'[A]) definiuje miare¢ na A. Te miare nazywamy obrazem pu przez f;
oznaczamy v = f|u].

4.7 Problemy

4.7.A Przy zalozeniu hipotezy continuum mozna odcinek [0, 1] uporzadkowaé relacja
< tak, ze kazdy odcinek poczatkowy {a : @ < b} w tym porzadku jest przeliczalny dla
b € [0, 1]. Zauwazy¢, ze zbior

Z ={(z,y) €10,1] x [0,1] : z < y},

nie spetnia twierdzenia Fubiniego, a wiec nie jest mierzalny na ptaszczyznie.

4.7.B Pokazaé, ze istnieje na plaszczyznie zbior A miary ptlaskiej zero, taki ze A
przecina wszystkie prostokaty mierzalne miary dodatnie;j.

WskKAZOWKA: Uogdlnié¢ najpierw tw. Steinhausa do postaci: jesli A, B sg miary do-
datniej to A — B zawiera liczbe wymierna.

4.7.C Niech A = {(z,z) : * € X} bedzie przekatna. Udowodni¢, ze A nalezy do
P(X)®P(X) wtedy i tylko wtedy gdy | X| < ¢
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4.7.D Niech

h:{0, 1} —=1[0,1], h(z)= 2 z;:)

Sprawdzi¢, ze h jest funkcja ciagla, a wiec mierzalng wzgledem o—ciata Bor{0, 1} i
h[{0, 1} =[0,1].
Wykazaé¢, ze miara A na [0, 1] jest obrazem miary Haara v na {0, 1} przez te funkcje.

4.7.E Niech A C {0,1}" bedzie zbiorem tych z, w ktérych pojawia sie, choé¢ raz,
ustalony skonczony ciag (e1, €2, ...,&,) zer i jedynek. Wykazaé, ze v(A) = 1.

4.7.F Udowodni¢, ze v(z @ A) = v(A) dla kazdego borelowskiego zbioru A w zbiorze
Cantora {0, 1}".

WSKAZOWKA: Sprawdzi¢ najpierw wzoér dla zbioréw C' z ciala C zdefiniowanego w
4.5.

4.7.G Zbior borelowski A C {0, 1} jest nazywany zdarzeniem resztowym jezeli e A =
A dla dowolnego e € {0, 1}, dla ktérego e(n) = 0 dla prawie wszystkich n. Udowodnié,
ze v(A) = 0 lub v(A) = 1 dla kazdego zdarzenia resztowego (jest tzw. prawo 0-1
Kolmogorowa).

WSKAZOWKA: Jezeli A jest takim zdarzeniem to v(A N C) = v(A)v(C) dla kazdego
C' € C; skorzystac z tego, ze wielkosé v(A A C') moze byé dowolnie mata.



Rozdziat 5

Miary znakowane
i twierdzenie Radona-Nikodyma

If people do not believe that mathematics
is sitmple, it is only because they do not
realize how complicated life is.

John von Neumann

Rozdzial jest w catosci poswiecony zwiazkom, jakie moga zachodzi¢ pomiedzy dwie-
ma miarami okreslonymi na tym samym o-ciele. Gtéwnym wynikiem jest tutaj tytuto-
we twierdzenie Radona-Nikodyma', nalezace do najwazniejszych faktéw z teorii miary.
W ostatniej czesci dokonamy, w charakterze matego podsumowania, przegladu miar
na prostej rzeczywiste;j.

5.1 Miary znakowane

Niech ¥ bedzie ustalonym o-ciatem podzbioréw przestrzeni X. Jezeli i v sa miarami
okreslonymi na X, to p+ v tez jest miara na ¥ — sprawdzenie przeliczalnej addytyw-
nosci p + v nie przedstawia trudnosci. W przypadku, gdy przynajmniej jedna z miar
i i v jest skonczona mozna takze rozwazy¢ funkcje zbioru p — v na 3. Taka funkcja
zbioru nie musi by¢ miarg, jako ze moze przyjmowac¢ wartosci ujemne. Jednakze p—v
spetnia warunek przeliczalnej addytywnos$ci, wiec w pewnym sensie dalej jest miara.

Definicja 5.1.1 Funkcje zbioru o : ¥ — [—00, 00|, przyjmujgcg co najwyzej jedng z
wartosci nieskonczonych —oo, 0o nazywamy miara znakowang jezeli a(()) = 0 oraz

o (U An> Y a(Ay),

n

dla kazdego ciggu parami roztgcznych zbiorow A, € X.

1Otton Nikodym (1887-1974), matematyk polski, po wojnie w USA; Johann Radon (1887-1956)
pracowal na Universitiat Breslau do roku 1945
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Jak si¢ okaze, kazda miara znakowana daje przedstawié¢ si¢ jako roznica dwoch
miar i mozna takiego rozktadu dokona¢ w pewien kanoniczny sposob.

Twierdzenie 5.1.2 (rozklad Hahna) Jezeli a jest miarg znakowang na o-ciele 3
podzbioréw X to istniejg rozlgezne zbiory X+ i X, takie ze X = XU X~ oraz dla
dowolnego A € ¥,
(1) jezeli A C XT to a(A) > 0;
(ii) jezeli A C X~ to a(A) < 0.

Dowdd. Zatdézmy dla przyktadu, ze o nie przyjmuje wartosci —oo. Dla potrzeb do-
wodu powiedzmy, ze zbiér B € ¥ jest negatywny, jezeli a(A) < 0 dla kazdego zbioru
mierzalnego A C B. Niech r = infg a(B), gdzie infimum jest liczone po wszystkich
zbiorach negatywnych.

Wtedy istnieje zbiér negatywny B taki, ze o(B) = r. Istotnie, z okreslenia kresu
dolnego (ktéry, a priori, moze by¢ réwny —oo) istnieje ciag zbioréw negatywnych B,
taki ze «(B,) — r. Jak latwo sprawdzi¢, zbiér B = U, B, jest takze negatywny, a
wiec dla kazdego n

a(B) = a(B,) + a(B\ B,) < a(B,,),

co pokazuje, ze a(B) = r (a w szczegblnosci, ze r > —o0). Niech X~ = Bi XT =
X \ X~. Wystarczy teraz upewni¢ sie, ze Xt jest pozytywny, to znaczy spelnia cze$é
(ii) tezy twierdzenia.

Przypusémy, ze Ey € X7 jest takim zbiorem mierzalnym, ze a(FEp) < 0. Wtedy
Ey nie moze by¢ negatywny bo inaczej mielibySmy

a(BU Ey) = a(B) + a(Ey) < a(B) =,

co przeczytoby definicji liczby r. Istnieje wiec najmniejsza liczba naturalna k; i E; C
Ey o whasnosci a(E7) > 1/k;. Teraz

a(Ey\ Ey) = a(Ey) —a(F) <0

i mozemy powtorzy¢ nasze ostatnie rozumowanie: istnieje najmniejsza liczba ko € N,
taka ze dla pewnego Es C Ey \ Ei, a(FEy) > 1/ky. W ten sposob definiujemy ciag
parami roztacznych zbioréw mierzalnych FE,, C FE, i ciag liczb k, € N, takich ze
a(E,) > 1/k, dla kazdego n, przy czym k, jest najmniejsza liczba naturalng o tej
wlasnosci. Zauwazmy, ze a(E) < oo dla kazdego E C Ey (skoro a(Ep) < 0) i dlatego,
stosujac te uwage do zbioru £ = U,,>; £y, wnioskujemy, ze

a(E)=>"1/k, < o0,

co oznacza w szczegélnosci, ze lim, 1/k, = 0. Dla zbioru F' = E; \ E' mamy «(F) <0
oraz jezeli A C F to, dla kazdego n, A C Ey \ E,, a zatem «(A) < 1/(k, — 1) z
minimalnosci liczby k,,. Oznacza to, ze a(A) < 0, czyli ze F' jest negatywnym zbiorem,
a to stanowi sprzeczno$¢, gdyz znowu mielibysmy a(F U B) < «(B) =r.
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Whniosek 5.1.3 (Rozklad Jordana) Jezeli a jest miarg znakowang na o-ciele ¥
podzbioréw X to istniejg miary o i o~ na X, takie ze o = ot —a”.

Dowdéd. Jezeli X = X U X~ jest rozkladem Hahna dla miary znakowanej o to
wystarczy zdefiniowaé

at(A)=a(ANX"), a (A)=—-a(ANX"),

dla A € 3. Wtedy a™ i a~ sg przeliczalnie addytywne i nieujemne, a wiec sg miarami;
dla dowolnego A € X,

a(Ad)=a(ANXT)+a(ANX")=a"(4) —a (A);

w ten sposob dowdd zostat zakonczony.

5.2 Absolutna cigglo$é i singularnosé¢ miar

Powr6émy do dwoéch miar p i v, okreslonych na tym samym o-ciele ¥ podzbioréw
przestrzeni X. Nastepujace dwie definicje okreslajg zwiazki, jakie moga zachodzi¢
pomiedzy tymi miarami.

Definicja 5.2.1 Mowimy, Ze miara v jest absolutnie ciggla wzgledem miary i, jezeli
dla wszystkich A € ¥ zachodzi implikacja

gezeli u(A)=0 to v(A)=0.
Relacje absolutnej cigglosci miar oznaczamy przez v <K .

Definicja 5.2.2 Mowimy, ze miara v jest singularna wzgledem miary p, jezeli istniejq
A, B €Y, takie ze X = AUB, ANB =10, u(A) =0 i u(B) = 0. Relacje singularnosci
miar oznaczamy przez v L .

Zauwazmy, ze obie wlasnosci s w pewnym sensie przeciwstawne, patrz Zadanie

5.5.5.

Przyktad 5.2.3 Jezeli v dana jest przez catke
A= fa
v(d)= | fdu

z nieujemnej funkcji mierzalnej f, por. Twierdzenie 3.3.5, to v < pu, bo catka po
zbiorze miary zero jest rOwna zero.

Prostym przyktadem singularnosci miar jest A L J,. gdzie J, jest deltg Diraca w
punkcie x € R. $

Odnotujmy, ze rozklad Jordana a = a™ — a~ byl tak zdefiniowany, ze o™ L a~;
nietrudno sprawdzi¢, ze jest to jedyny rozkitad miary znakowanej na réznice dwdch
miar wzajemnie singularnych.
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Definicja 5.2.4 Dla miary znakowanej o = o™ — o~ przyjmujemy
ol =a" +a7;
a miare || nazywamy absolutnym wahaniem miary znakowanej .

Dla dwoch muiar znakowanych o @ 3 okreslonych na tym samym o-ciele X przyj-
mujemy, Ze a <K [ gdy |a| < |B|; podobnie o L (3 jezeli |a| L |3].

Nietrudno jest wystowi¢ warunki |a| < |5] 1 o] L |5] w jezyku miar a®,a~ oraz
B*, 37, patrz Zadanie 5.5.6.

Definicja absolutnej ciagtosci miar ma swoje przetozenie na warunek, ktory troche
uzasadnia nazwe tej relacji.

Lemat 5.2.5 Jezeli v jest miarg skonczong na X to dla dowolnej miary p na X wa-
runek v < p jest rownowazny warunkows

(x) (Ve>0)(F)(VAe D)u(A) <d=v(A) <e.
Dowdd. Dostateczno$¢é warunku (k) jest oczywista. Zatdézmy, ze (x) nie zachodzi;

wtedy istnieje ¢ > 0 oraz zbiory A,, € ¥, takie ze u(A,) < 1/2" i v(A,) > . Wtedy
dla A = limsup,, A, mamy u(A) = 0, jako ze

p(A) < (U A < 301728 = 17201

dla kazdego n. Z drugiej strony z ciggtosci miary skonczonej v z géory mozemy wynio-
skowad, ze v(A) > e, wiec v nie jest absolutnie ciagla wzgledem p.

5.3 Twierdzenie Radona-Nikodyma

Tytutowe twierdzenie to po prostu odwrdcenie uwagi z Przyktadu 5.2.4: kazda miara
absolutnie ciggta jest dana przez catke (przy dosé ogdlnych zalozeniach). Przed udo-
wodnieniem tego podstawowego i nieoczywistego faktu podamy pewien lemat tech-
niczny, potrzebny w gtownym dowodzie.

Lemat 5.3.1 Niech p i v bedg skonczonymi miarami na 3; zalozimy, ze v # 0 i
v < p. Wtedy istnieje P € 3, taki ze u(P) > 0 i P jest pozytywny dla miary
znakowanej v — e, to znaczy v(B) > ep(B) dla kaZdego mierzalnego B C P.

Dowdd. Dla kazdego n mozemy rozwazy¢ miare znakowana v—(1/n)u i odpowiadajacy
jej rozktad Hahna przestrzeni X = X7 U X, jak w Twierdzeniu 5.1.2. Niech

A=UX;, B=X;.
Wtedy B C X, dla kazdego n wiec v(B)—(1/n)u(B) < 0, co daje v(B) = 0. Poniewaz

v(X)>01X =AU B wiec v(A) > 01 takze, z warunku v < p, u(A) > 0. Istnieje
zatem n, takie ze u(X;7) > 0; wtedy € = 1/n oraz P = X, spelniaja teze.



G. Plebanek, MIARA I CALKA ____Rozdzial 5: Twierdzenie Radona-Nikodyma ____ 75

Twierdzenie 5.3.2 (Radona-Nikodyma) Niech (X, X, u) bedzie o-skonczong prze-
strzeniq miarowq i niech v bedzie takq miarg znakowang na X2, Ze |v| jest o-skoriczona.
Jezeli v < p to istnieje mierzalna funkcja f: X — R, taka Ze dla wszystkich A € X

v(A) = /Af du.

Dowdd. Zauwazmy przede wszystkim, ze wystarczy udowodnié¢ twierdzenie dla miary
v nieujemnej — w ogolnym przypadku miary znakowanej zastosujemy te wersje do
vt iv~. Ponadto mozemy dodatkowo zaltozy¢, ze obie miary p i v sg skoficzone — w
przypadku o-skoniczonym bedziemy mogli zapisa¢ X jako roztaczng sume X = U,, X,,,
gdzie pu(X,),v(X,) < oo i zdefiniowaé¢ odpowiednia funkcje na kazdej czesci X, z
osobna.

Niech H bedzie rodzina wszystkich mierzalnych funkeji h > 0, takich ze dla kazdego
A € ¥ zachodzi nier6wnosc¢

/Ah dp < v(A).

Wykazemy, ze w rodzinie H istnieje funkcja, w pewnym sensie, maksymalna i ze
speklia ona teze twierdzenia. Niech

r:sup{/xhdu:heH};

wtedy istnieje ciag h, € H, taki ze lim, [y h, du = r. Rozwazmy funkcje g,, , gdzie

Jn = rznglx h;.
Dowolny zbiér A mozemy zapisa¢ jako roztaczng sume A = U<, A;, gdzie g, = h; na
A;; wtedy

/Agnduzz

<n

/Ai hi dp < 3" v(A;) = v(A).

<n

Pokazuje to, ze takze g, € H; teraz biorac granice punktows f = lim,, g, mamy f € H
i [y f dpu = r z twierdzenia o zbiezno$ci monotonicznej. Zauwazmy, ze [y f dp <
v(X) < oo, wiec f jest funkcja skoniczong v-prawie wszedzie.

Aby przekonac sie, ze f jest poszukiwang funkcja sprawdzimy, ze miara v, dana
wzorem

vo(4) = v(4) = [ f an

dla A € ¥ jest tozsamosciowo réwna zeru. W przeciwnym przypadku, gdy v(X) > 0,
na mocy Lematu 5.3.1, istnieje ¢ > 01 P € X, takie ze

epn(PNA) <y(PNA)=v(PNA)— PmAf du,
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dla wszystkich A € 3. Rozwazmy funkcje g = f+exp i A € X; korzystajac z ostatniej
nierownosci, mamy

/Agdu:/Afdu—l—su(PﬂA)<

< /A F dutv(PNA)— /P N /A U (PNA) S U(AVP)+/(PNA) = (4).

Stad g € H, ale [y gdu > [y f du = r, co jest sprzecznoscia z definicja liczby r.
Twierdzenie nie musi zachodzi¢ dla miar p, ktére nie sg o-skoniczone, patrz Zadanie
5.5.7. Funkcja f spelniajaca teze twierdzenia Radona-Nikodyma bywa oznaczana przez
dv
f= du’
1

funkcja ta nosi nazwe pochodnej Radona-Nikodyma miary v wzgledem miary p. Ozna-
czenie na te pochodng jest przydatne w zapamietywaniu niektorych wzordéw, patrz
Zadania 5.5.9 1 5.3.2 ponizej. Zauwazmy, ze pochodna jest wyznaczona niejednoznacz-
nie, ale v-prawie wszedzie.

Whniosek 5.3.3 Dla miar p @ v jak w Twierdzeniu 5.3.2, wzor

/ngZ/g-dydu,
X b's dp

zachodzi dla kazdej v-catkowalnej funkcyi g.

Dowdd. Dla g = xa wzor jest konsekwencjg definicji pochodnej RN. Z addytyw-
nosci catki tatwo wynioskowaé wzor dla funkcji prostych. Z twierdzenia o zbieznosci
monotonicznej otrzymamy teze dla funkcji nieujemnych itd. (czytelnik sam uzupeini
szczegdly, por. Zadanie 5.5.8). <

Nastepujacy prosty wniosek jest wykorzystywany w rachunku prawdopodobienstwa

do definiowania tak zwanych warunkowych wartosci oczekiwanych.

Whniosek 5.3.4 Niech (X, X, 1) bedzie o-skoticzong przestrzeniq miarowq i niech g C
Y bedzie dowolnym o-ciatem. Wtedy dla kaZdego A € Y istnieje Yg-mierzalna funkcja
f, taka Ze

n(ANB) Z/deu,
dla wszystkich B € Y.

Dowéd. Wystarczy zastosowaé Twierdzenie 5.3.2 do miary p na Yy i v danej wzorem
v(B) =u(ANB)dla B € %y. &

Z twierdzenia Radona-Nikodyma nietrudno wywnioskowaé¢ nastepujace twierdzenie
o rozktadzie miar.
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Twierdzenie 5.3.5 Niech p i v bedg o-skoniczonymi miaramsi, okreslonymi na tym
samym o-ciele. Wtedy istnieje rozklad v = v, + vg, gdzie v, < p i vs L p.

Dowoéd. Mamy v < p+ v wiec tym bardziej v < p + v; niech f bedzie pochodng RN
miary v wzgledem miary p + v. Zauwazmy, ze wtedy 0 < f < 1 v-prawie wszedzie.
Niech X; = {x: f(z) <1} i Xy = {z: f(z) = 1}. Poniewaz

v(Xo) = [t [ f v = () +v(Xo)
wiec pu(Xs) = 0. Definiujemy
vo(A) =v(ANXy), vs(A)=v(ANX,) dlaAeX.

Wtedy oczywisdcie v = v, + vs 1 vy L pu, jako ze v, jest skupiona na X,. Pozostaje
sprawdzié, ze p, < p. Niech u(A) = 0. Wtedy

ya(A):y(/mxl):/AmxlfdM/AﬂXIfdu:/A fdv.

nXiy

Stad

/Amu ~fdv=o0,

co implikuje v,(A) = v(AN X;) =0, jako ze 1 — f > 0 na zbiorze X;.

5.4 Miary na prostej rzeczywistej

W tej czesci dokonamy przegladu miar v okreslonych na o-ciele Bor(R), ktore sa
lokalnie skonczone, to znaczy przyjmuja skonczone wartosci na kazdym przedziale.
Zauwazmy, ze taka miara v jest automatycznie o-skonczona. Wtasnos¢ lokalnej skon-
czonosci jest jednak istotnie silniejsza: biorac

V:Z5q

qeQ

mozemy tatwo okresli¢ miare o-skonczong, ktéra przyjmuje warto$¢ oo na kazdym
niepustym przedziale.

Jezeli v < A to Twierdzenie 5.3.2 1 wzér w 5.3.3 pozwalajg zredukowaé catke
wzgledem v do klasycznej catki Lebesgue’a. Wiele podstawowych miar probabilistycz-
nych na prostej jest absolutnie ciagtych wzgledem A; na przyktad rozktad normalny
(miara Gaussa), czyli podstawowa miara probabilistyczna, jest zadana jako

V(A) = \/127 /A e~/ d) ().
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W ogélnym przypadku, kazda v mozemy przedstawi¢ jako v = v, + v, gdzie,
zgodnie z Twierdzeniem 5.3.5, v, < Aiv, L A. Rozwazmy w dalszym ciagu przypadek
v L \. Taka miara v moze by¢ dodatnia tylko na przeliczalnej ilosci punktéw. Mozemy
wiec napisac

/
V:ch5tn+l/,
n

dla pewnych ¢, > 0, pewnych punktow ¢, € R, gdzie miara v/ spelnia juz warunek
p'{t} = 0 dla kazdego t. Klasycznym przykladem miary skupionej na zbiorze prze-
liczalnym jest rozktad Poissona v, czyli miara probabilistyczna skupiona na liczbach
catkowitych nieujemnych i spetniajaca, dla ustalonego parametru s > 0, warunek

e %s"

v{n} =

Zauwazmy, ze dla miary postaci p = Y, ¢,0;, , catka redukuje si¢ do sumy szeregu:

/Rg dp = Zn: ng(tn)-

nl

Pozostale miary maja te wlasnosé, ze znikaja na punktach (czyli sa bezatomowe,
por. Zadanie 5.5.14), ale sa skupione na zbiorze miary Lebesgue’a zero. Takie miary
rzeczywiscie istnieja, jak mogliSmy przekonac sie w 4.5.

Wszystkie miary lokalnie skoriczone na prostej mozna wygenerowa¢ w opisany
ponizej sposob. Zacznijmy od prostej uwagi.

Lemat 5.4.1 Jezeli p i v sqg miarami na Bor(R) i dla kaZdego a < b mamy
pla,b) = via,b) < oo,

to p=v.

Dowdéd. Rodzina
{B € Bor(R): BC0,1],u(B) =v(B)}

jest klasa monotoniczna wiec u(B) = v(B) dla wszystkich borelowskich podzbioréw
[0,1) z Twierdzenia 1.7.2. Te uwage mozna odnie$¢ do kazdego odcinka postaci [n,n+
1). Ostatecznie, dla B € Bor(R) mamy

w(B) =S (BN [nn+1) =S v(Bn[nn+1)) =v(B).

n

¢
Niech F': R — R bedzie funkcja niemalejaca; przyjmijmy

Ar([a, b)) = F(b) = F(a),
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dla a < b. Te definicje mozna w oczywisty sposob rozszerzy¢ na elementy pierscienia
przedzialéw, rozwazanego w rodziale 1. Jesli funkcja zbioru Arp ma by¢ przeliczalnie
addytywna to konieczne jest, aby funkcja F' byla lewostronnie ciggta, poniewaz wtedy
dla ciagu h,, > 0, h, — 0

F(z) — F(x — hy) = Ap[x — hy,x) — 0,

jako ze przekroj N, [x—hy, ) jest pusty. Jak sie okazuje dla funkcji lewostronnie ciaglej
F, funkcja zbioru A\ jest przeliczalnie addytywna na pierécieniu odcinkéw i rozszerza
sie jednoznacznie do miary borelowskiej na prostej, co mozna wykaza¢ analogicznie,
jak w przypadku miary Lebesgue’a. Istnieje jednak w tej chwili znacznie krétsza droga.

Twierdzenie 5.4.2 Dla kazdej lewostronnie cigglej niemalejgcej funkeji F': R — R
istnieje jedyna miara (Lebesgue’a-Stieltjesa) Ap okreslona na Bor(R), taka Ze

Arla,b) = F(b) — F(a) dlaa<b.
Dowdd. Zatézmy, dla ustalenia uwagi, ze

M = lim F(z) =00, K= lim F(z)= —oc.

T—00 T——00

Niech funkcja h bedzie zdefiniowana wzorem

h(y) = sup{z : F(z) < y.}

Wtedy warunek a < h(y) jest rtéwnowazny warunkowi F'(a) < y na mocy lewostronnej
ciaglodci F', natomiast warunek h(y) < b oznacza y < F(b). Tym samym dla a < b
mamy

W=t [a, b)] = [F(a), F(b)).

Funkcja h : R — R jest niemalejaca, a wiec borelowska, patrz Zadanie 2.5.11. Mozemy
wiec rozwazy¢ obraz miary

Ar = R[N, gdze Ap(B) = A(h"'[B)),

dla B € Bor(R), patrz Zadanie 4.6.16. Wtedy Ag spelnia zadane réwnanie. Jedynosé
otrzymujemy natychmiast z Lematu 5.4.1. {

Zauwazmy, ze kazda miara lokalnie skonczona p na prostej jest postaci p = A dla
pewnej funkcji F' — wystarczy przyjaé, ze F(x) = pl0,x) dlax > 01 F(z) = —p[z,0)
poza tym, por. Zadanie 5.5.12. Nalezy zaznaczy¢, ze wszedzie tutaj stosowaliémy zasa-
de rozwazania odcinkéw postaci [a, b) przy definiowaniu miar postaci Ag; trzeba mie¢
swiadomosé, ze réwnie dobrze mozna rozwazaé wzér postaci Ag(a,b] = F(b) — F(a)
— wtedy F' jest oczywiscie prawostronnie ciggta.

W niektérych przypadkach catka wzgledem miary Ap wyraza sie w prosty sposob.
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Twierdzenie 5.4.3 Jezeli funkcja niemalejgca F' ma cigglq pochodng to

/gd/\F:/g-F’d)\,
R R

dla kazdej A\p-catkowalnej funkcyi g.

Dowdd. Jezeli g = Xpop) dla a < b to po lewej stronie wzoru mamy Apla,b) =
F(b) — F(a), a po prawej

b
/g~F’d)\:/ F'(z) da,
R a

czyli tyle samo. Mamy F’ > 0 i mozemy zdefiniowaé¢ miare p wzorem
u(B) = / F'd\, B e Bor(R).
B

Jak dotad sprawdzilismy, ze ¢ = Ap na odcinkach, a wiec © = Ar z Lematu 5.4.1.
Innymi stowy, wzor z twierdzenia jest wiec spetniony dla kazdej funkcji g = x g, gdzie
B € Bor(R). Dalej rozszerzamy wzor standardowo na funkcje proste oraz mierzalne
(por. dowdd 5.3.2). &
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5.5 Zadania

5.5.1 Zauwazy¢, ze rozklad Hahna X = Xt U X~ dla miary znakowanej & jest ”jed-
noznaczny z dokladnoscig do zbioréw miary zero” (co to znaczy?). Czy rozklad o na
roznice dwoch miar jest jedyny?

5.5.2 Zauwazy¢, ze jesli miara znakowana v przyjmuje tylko wartosci rzeczywiste, to
jest ograniczona.

5.5.3 Niech f bedzie takg funkcjg mierzalng, ze przynajmniej jedna z funkcji f*, f~
jest p—catkowalna i niech v(A) = [, f du dla zbioréw A € ¥ (tutaj p jest miara na
¥)). Zapisa¢ v, v~ oraz |v| za pomoca calek.

5.5.4 Zauwazy¢, ze dla miary znakowanej v, [v|(A) = 0 wtedy i tylko wtedy gdy
v(B) =0 dla kazdego B C A (A,B € X).

5.5.5 Zauwazy¢, ze jezeliv < piv L ptov =0.

5.5.6 Zauwazy¢, ze v < u wtedy i tylko wtedy gdy v+, v~ < i ze podobng wlasnosé
ma relacja singularnosci miar.

5.5.7 Twierdzenie RN nie musi zachodzi¢ dla u, ktére nie sa o—skonczone. Niech

Y. bedzie o—ciatem generowanym przez przeliczalne podzbiory [0, 1]; rozwazy¢ miare
liczacag p na X oraz zerojedynkowsa miare v na .

5.5.8 Uzupemi¢ szczegdty dowodu Wniosku 5.3.2 wedtug podanego szkicu.
5.5.9 Niech pu,v beda o—skonczonymi miarami na X, takimi ze v < p i p < v.
Wykazaé, ze prawie wszedzie zachodzi zalezno$c¢

dv | dv

=1 .
du /du

5.5.10 Niech u, v bedg miarami o—skonczonymi, v < p i niech funkcja f = S—Z bedzie
wszedzie dodatnia. Sprawdzi¢, ze pu < v.
5.5.11 Niech (X, ¥, i) bedzie przestrzenia probabilistyczna i niech A bedzie o—cialem

zawartym w 2. Wykazaé, ze dla kazdej X-mierzalnej funkcji catkowalnej f: X — R
istnieje A-mierzalna funkcja g, taka ze dla kazdego A € A

/Agduz/Afdu-

(Taka g = E(f|.A) nazywa sie w probabilistyce warunkowa wartoscia oczekiwana.)
5.5.12 Dystrybuanta miary probabilistycznej p na Bor(R) nazywamy funkcje F), :
R — R, dana wzorem F),(z) = pu(—o0,z) dla z € R. Sprawdzi¢, ze F), jest niemalejaca
funkcja lewostronnie ciagla, przy czym lim, .o F,(z) = 1.

UWAGA: Czasami przyjmuje sie definicje F),(z) = pu(—o0, z]; jak wptywa to na wla-
snosci F),?
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5.5.13 Wykazac, ze dystrybuanta F), jest ciggla wtedy i tylko wtedy gdy p znika na
punktach.

5.5.14 Miara znikajaca na punktach bywa nazywana miarg ciagta. Wykazaé, ze pro-
babilistyczna miara p na Bor(R) jest ciagta wtedy i tylko wtedy, gdy jest bezatomowa.

5.5.15 Jak juz wiemy (!) na zbiorze tréjkowym Cantora C' istnieje miara probabili-
styczna pu, ktora znika na punktach. Niech F(z) = p((—oo,z)) bedzie dystrybuanta
tej miary. Zauwazy¢, ze F jest funkcja ciagla, oraz F[C] = [0, 1]. Wywnioskowa¢ stad,
ze obraz zbioru miary zero przez funkcje ciagta nie musi by¢ miary zero, a nawet nie
musi by¢ mierzalny.

5.5.16 Obliczy¢ (albo sprowadzi¢ do znanej catki); poda¢ uzasadnienia rachunkow:
(1) Jg f(x) dp gdzie p = 0o, 1 = do + 61, p = Y00, 0, (tutaj 0, oznacza miare

probabilistyczna skupiona w punkcie x).

(ii) Jioq [ dA; gdzie f(z) =z dlaz ¢ Q, f(z) =0dlaz € Q;

(v) Jjpomsinz du, gdzie pu(A) = [, x? dA(2);

(v) [z [ d\; gdzie f(z) =2? dlaz € Q, f(z) =0dlax ¢ Q;

(vi) Jp1/(2% +1) dA(2);
(vii) [gcosz du, gdzie u(A) = [, 1/(2® + 1) d\(x);
(viii) [g cosx du, gdzie p jest taka ze p(—oo, x) = arctan x + m/2;

(i) [io.00)[2] dpt, gdzie p jest taka ze pln,n+1) = n=?

(5) fulx — []) dp, gdzie

n= Z 5n+1/n;
n=1
(zi)
n?x + 2 n

lim ————— dA(x) lim

n—oo Jio1] n?x +n + 3 n—00 J0,00] 1% + 3

dA\(x).

5.6 Problemy

5.6.A Niech (X, X, u) bedzie przestrzenig miarowa. Dla dowolnego Z C X piszemy
p(Z) = inf{u(A) : A € ¥, 7 C A}. Zauwazy¢, ze p* jest miara zewnetrzna (jest
przeliczalnie podaddytywna i monotoniczna), ale na ogét nie jest addytywna.

Udowodni¢, ze dla ustalonego Z C X wzér v(ANZ) = p*(AN Z) definiuje miare na
o-ciele {ANZ: A € X} podzbioréw Z.
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5.6.B Istnieje przestrzen metryczna Z C [0, 1] i probabilistyczna miara v na Bor(Z),
taka ze v(K) = 0 dla K C Z zwartych.

WsKAZOWKA: Wziaé na poczatek Z C [0, 1] niemierzalny w sensie Lebesgue’a i miare
v 7 poprzedniego problemu.

5.6.C Niech (X, X, 1) bedzie przestrzenig probabilistyczna. Jak wiemy, A ~ B <=
p(A A B) = 0 definiuje relacje réownowaznosci. Niech B = {[A] : A € X} oznacza
rodzine klas abstrakcji tej relacji.

Zauwazy¢, ze na ‘B mozna wprowadzi¢ naturalne dziatania
[A]V[B]=[AuB], [AJA[Bl=[ANDB], —[4]=[A7.

Wtedy ‘B staje sie algebra Boole’a (98, V, A, - ,0, 1) (to znaczy, ze wprowadzone dziata-
nia maja takie same wlasnosci jak "zwykle” dzialania mnogosciowe; 0 = [0], 1 = [X]).
Tak zdefiniowana algebre nazywamy algebra miary.

5.6.D Sprawdzi¢, ze algebra miary B jest przestrzenig metryczng, gdzie metryke za-
dajemy wzorem d([A], [B]) = u(A A B). Udowodni¢, ze metryka ta jest zupelna.

5.6.E Algebra miary Lebesgue’a A na [0, 1] jest przestrzenia osrodkowa.



Rozdzial 6

Przestrzenie funkcji catkowalnych

Moim najwiekszym odkryciem matema-
tycznym jest Stefan Banach.
Hugo Steinhaus

W rozdziale ostatnim wprowadzimy klasyczne przestrzenie Banacha postaci L, (p)
i wyprowadzimy podstawowe ich wtasnosci. Oprocz tego rozwazymy ogdlne wlasnosci
miar na przestrzeniach euklidesowych i zastosujemy je do znalezienia zbiorow gestych
w przestrzeniach funkcji catkowalnych.

6.1 Klasyczne nieré6wnosci

W podrozdziale wyprowadzimy klasyczne nieréwnosci catkowe Cauchy’ego-Holdera
oraz Minkowskiego. Niech, po raz kolejny, (X, X, 1) bedzie ustalona przestrzenia mia-
rowa o-skonczong; dalej milczaco przyjmujemy, ze wszystkie rozwazane funkcje sa
mierzalne wzgledem 3.

Lemat 6.1.1 Dla dowolnych liczb dodatnich a,b,p,q, jezeli 1/p+1/q =1 to

a? bl
ab < — + —.
p q
Dowéd. Rozwazmy funkcje f(t) = t*~! na odcinku [0, a]. Z zalozenia p > 1 wigc
istnieje funkcja odwrotna do f dana wzorem g(s) = s*/®~1. Zauwazmy, ze pola pod
wykresami funkcji f : [0,a] — R1ig:[0,b] — R pokrywaja kwadrat [0, a] x [0, b]. Stad

a b pl@ "k P q
abg/ 1 dt+/ gt/ P=1) qg = [t] + [81 — a _f_bij
0 0 Py q]g b q

poniewaz 1 +1/(p—1)=p/(p—1) =¢q. &
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Definicja 6.1.2 Dia dowolnej funkcji (calkowalnej badz nie) f : X — R ip > 1
wyrazenie

1t = (17 aw) ™

nazywamy p-tg normqg catkowq funkcyi.

Twierdzenie 6.1.3 (Nieréwnosé Cauchy-ego-Hoéldera) Dia dowolnych funkcji f, g
i liczb p,q > 0, takich ze 1/p+ 1/q = 1, zachodzi nieréunosé

Jo 17 gl an < 1111y - gl

Dowdéd. Oczywiscie nierownosé jest prawdziwa, gdy jedna z norm jest nieskonczona.
W przypadku skonczonym, dla dowolnego x € X podstawmy

L@, lola)
/1l [gllq
do nieréwnosci w Lemacie 6.1.1; wtedy otrzymamy wszedzie nieréwnosé

p q
R o Vi S 1]

Al - Hglle 2 ISl a lglla
Catkujac te ostatnia nieréwnos¢ wzgledem miary otrzymujemy

dp 1 1
clfgldp 1 1 _

||f‘|p'“9”q\p q
co konczy dowod. <&

Twierdzenie 6.1.4 (Nieréwnosé¢ Minkowskiego) Dla dowolnych funkcji f, g i licz-
by p > 1, zachodzi nierownosé

1+ gllp < [[£1lp + llgllp-

Dowéd. Nieréwno$¢ oczywiscie zachodzi dla p = 1 (patrz Twierdzenie 3.2.3). Dlap > 1
mozemy dobra¢ liczbe ¢ speliajaca warunwk 1/p 4+ 1/¢ = 1. Wtedy, uwzgledniajac
(p — 1)g = p i stosujac nieréwnosé z 6.1.3,

1F +gllr = [ 1f + g du <
< AT+ ol dut [ gl 1+ gl die <

1/q 1/q
U1l ([ 17+ 012 i) 4 Dl ([ 17+ 91907 die) ™ =

1/q
= (15l + llgll)) - ([ 17+ g1 dis) ™ = (151l + llla)) - 115 + gl

Teraz, dziclac (skrajne) strony nieréwnosci przez || f + g||B/4, otrzymujemy nieréwnosé
Minkowskiego. Nalezy jednak zaznaczy¢, ze dla poprawnosci tego argumentu konieczne
jest, aby sprawdzi¢, ze jesli || fl],,||g]|, < oo to ||f + g||, < oo, patrz Zadanie 6.6.1. {
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6.2 Przestrzenie Banacha funkcji calkowalnych

Niech F bedzie przestrzeniag liniowg nad cialem liczb rzeczywistych lub zespolonych.
Oznacza to, ze w E okreslone jest dzialanie dodawania (wektoréow) oraz mnozenia
wektoréw przez skalary z ciata, przy czym zachowane sg aksjomaty dobrze znane z
algebry liniowej przestrzeni euklidesowych.

Definicja 6.2.1 Funkcje || - || : E — Ry nazywamy normgq jezeli dla dowolnych
x,y € F i c z ciala skalaréow zachodzg zaleznosci

(i) ||z|| = 0 wtedy i tylko wtedy gdy x = 0;
(i) |lc- || = |c] - [[]];

(iii) ||z +yll <[zl + [yl

Warunek (ii) w definicji nazywa si¢ jednorodnoscia, a warunek (iii) oczywiscie nie-
réwnoscia trojkata. W kazdej przestrzeni unormowanej (E, || - ||) mozemy zdefiniowaé
metryke wzorem

p(z,y) = ||z —yll,

dla z,y € FE. Zauwazmy, ze tak wtasnie definiowana jest metryka w przestrzeni eukli-
desowej R", gdzie norma euklidesowa zadana jest wzorem

1/2
||zl = (Z W) :
<n

Definicja 6.2.2 Przestrzen unormowang (E, || ||) nazywamy przestrzeniqg Banacha,
jezeli metryka wyznaczona przez norme jest zupetna.

Wspomniana zupetno$é oznacza, ze dla ciagu x,, wektoréw z FE, spelniajacego

warunek Cauchy’ego

lim ||z, —x|| =0,
n,k—o0

istnieje z € E, taki ze ||z, — x|] — 0 (czyli granica tego ciagu). Przestrzenie euklide-
sowe sg wiec przestrzeniami Banacha, ale w analizie funkcjonalnej rozwaza sie wiele
przestrzeni Banacha nieskonczenie wymiarowych, na ogét ztozonych z pewnych funk-
cji. Na przyktad norma || f|| = sup, |f(¢)| czyni z przestrzeni funkeji ciagltych C10, 1]
przestrzen Banacha. Naszym celem bedzie wprowadzenie przestrzeni Banacha funkcji
catkowalnych.

Funkcja || - ||, zdefiniowana w 6.1.2 nie bez powodu nosi nazwe p-tej normy: nie-
rownos¢ Minkowskiego 6.1.4 to po prostu nieréwnosé trojkata dla ||-||,. Jednorodnosé
|| - ||, wynika natychmiast z wlasnosci calki. Jedyny problem, to taki, ze, formalnie
rzecz biorac, || - ||, nie spelia pierwszego aksjomatu normy, jako ze ||f||, = 0 oznacza
jedynie, ze f = 0 prawie wszedzie. Aby pokonaé te przeszkode dokonujemy nastepu-
jacego zabiegu.
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Definicja 6.2.3 Dla ustalonej przestrzeni miarowej (X, X, 1) symbolem L,(p) ozna-
czamy przestrzen wszystkich funkcji mierzalnych f : X — R, dla ktorych || f||, < oo.
Przyjmugemy przy tym zasade, Ze utoZzsamiamy elementy L,(p) rowne prawie wszedzie.

Formalnie rzecz biorac, L,(p) nie sktada sie wigc z funkeji, ale z klas abstrakeji
relacji rownowaznosci

f = g prawie wszedzie.

Powszechnie stosuje si¢ jednak umowe, ze elementy L,(4) nazywamy po prostu funk-
cjami; nie prowadzi to do wigkszych niejasnosci. Tym samym L, (p) jest przestrzenia
unormowang z p-norma catkowa. L,(u) bywa oznaczana tez L,(X, 3, i) lub, w innych
przypadkach, L,(X). Na przykltad piszemy najczesciej L,[0, 1] i L,(R) dla odpowied-
nich przestrzeni catkowych wzgledem miary Lebesgue’a na [0, 1] lub R.
Twierdzenie 6.2.4 Przestrzen L,(u) z normg || - ||, jest przestrzeniq Banacha.

Dowéd. Rozwazmy p = 1. Niech f,, € Li(u) bedzie ciagiem Cauchy’ego, to znaczy

J 1= il du =0,
X

gdy n,k — oo. Wtedy dla € > 0 z nieréwnosci Czebyszewa

o= fil di> el fue) = )] > <),

wynika, ze ciag f, jest Cauchy’ego wedtug miary. Z Twierdzenia 2.4.6 istnieje wiec
rosnacy ciag liczb naturalnych n; i funkcja f, taki ze f,, — f prawie wszedzie. Z kolei
z lematu Fatou

/ f] dp < liminf/ [ fo| dpt < o0,
X k X

jako ze z warunku Cauchy’ego wynika oczywiscie ograniczono$¢ ciagu catek [y | f,| du.
Stosujac jeszcze raz lemat Fatou otrzymujemy

J1F = ful = [ it £, = fo] dpp < Timind [ 1fy, = fo] du <2,
X X J g J x

dla dostatecznie duzych k. Ostatecznie, poniewaz

JIf = fldn < [ 1F = ful an+ [ 1f = £l di

wigc istotnie f jest granicg ciagu f, w przestrzeni L,(u).
Dowdd dla p > 1 jest dosé automatyczna modyfikacja przedstawionego argumentu,
patrz Zadanie 6.6.2 <
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Oprocz rzeczywistych przestrzeni funkeji catkowalnych rozwaza si¢ ich odpowied-
niki zespolone. Dla przestrzeni (X, %, ) i funkcji f : X — C, powiemy, ze f jest
funkcja mierzalng gdy f~![B] € ¥ dla kazdego borelowskiego podzbioru C (przypo-
mnijmy, ze C mozna utozsamiaé¢ z R X R). Mozemy taka funkcje przedstawi¢ w postaci
f = fi+1i- fy dla funkcji rzeczywistych f1, fo : X — R. Nietrudno sprawdzi¢, ze f jest
mierzalna wtedy i tylko wtedy gdy f1, fo sa mierzalne, patrz Zadanie 6.6.5. Dla funkcji

f: X — C mierzalnej jej modul |f| = /[ + f2 jest wiec tez mierzalny. Funkcja f
jest catkowalna przy niezmienionej definicji: [y |f| du < 0o, natomiast wzoér

Jordu=[ fap+i- [ pap

mozna przyjac za definicje catki. Klasyczne nieréwnosci z podrozdziatu 6.1 i Twier-
dzenie 6.2.4 pozostaja prawdziwe dla funkcji zespolonych.

6.3 Jednakowa caltkowalnosé

Jak widzielismy w dowodzie Twierdzenia 6.2.4 zbieznosé ciagu f,, do funkcji f w Lq(p)
pociaga za soba zbieznos¢ wedtug miary. Prosty przyktad

Jo=n" X[0,1/n]

pokazuje, ze zbiezno$¢ wedtug miary jest jednak istotnie stabsza niz ta w Lqi(u). W
przypadku miary skonczonej czesto stosuje sie nastepujace kryterium zbieznosci w

Ly ().
Przypomnijmy, ze dla funkcji catkowalnej f : X — R na przestrzeni miarowej

(X, %, 1), wzor v(A) = [, |f] du okresla miare v i v < p. Dlatego na mocy Lematu
5.2.5 mamy warunek

(Ve > 0)(36 > 0)(VA € ¥ {M(A) <5 /A 1f] dp < g] .

O ciggu funkcji calkowalnych f, méwimy, ze jest on jednakowo catkowalny gdy
powyzszy warunek jest spetniony jednostajnie po n, to znaczy

(Ve > 0)(36 > 0)(VA € %) (Vn) [M(A) <5 /A fol dpe < g] |

Twierdzenie 6.3.1 Jezeli u(X) < oo to cigg f, jest zbieiny w Ly () wtedy i tylko
wtedy gdy ciqg f, zbiega wedlug miary oraz funkcje f, sq¢ jednakowo catkowalne

Dowdd. Niech [y |f, — f| du — 0 dla f,, f € Li(u). Jak poprzednio,

J = fldn> 2l @) = f@)] > <),
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dla kazdego € > 0, co dowodzi, ze f, - f. Sprawdzmy zatem jednakowa catkowal-
no$¢. Dla ustalonego € > 0 mamy [y |f, — f| du < e dla n > ng. Mozemy dobraé
d > 0, takie ze dla wszystkich funkcji h € {f, fi1,..., fuo} zachodzi [, |h| du < € jesli
tylko p(A) < 6. Dla n > ny mamy z kolei

[t di < [ 1= Fl et 1 dn <2

co pokazuje, ze cigg f, jest jednakowo catkowalny.
Udowodnimy przeciwng implikacje. Ustalmy € > 0 i niech

Angp = {2 [fal2) = fi(2)] > €}

Wtedy dla dowolnej liczby 6 > 0 mamy p(A,x) < ¢ dla duzych n, k i dlatego

ol gilan= [ Af=fiddus [ 1= fildn <

<[ Maldut [l dute p(x),
An,k An,k

co, z warunku jednakowej catkowalnosci, pociaga za soba [y |f, — fx| du — 0. Ciag
fn jest ciagiem Cauchy’ego w Lq (1), a wiec jest zbiezny (patrz twierdzenie 6.2.4).

6.4 Miary na przestrzeniach euklidesowych

W tym podrozdziale oméwimy kilka wtasnosci miar na przestrzeniach euklidesowych.
Jak sie za chwile okaze, niektore wlasnosci miary Lebesgue’a przystuguja wszystkim
takim miarom i jest to raczej zastuga struktury o-ciata zbioréw borelowskich niz samej
konstrukeji miary. Czesé tych faktow w istocie wymaga jedynie zatozenia metrycznosci
przestrzeni i w tej czesci ustalimy przestrzen metryczna (X, d) — w przypadku, gdy
X = R" metryka euklidesowa d dana jest wzorem

d(z,y) = > (xe —ye)*

k<n

Jak poprzednio piszemy B,.(z) aby oznaczy¢ kule B,.(z) = {y : d(x,y) < r}. Zbior
U nazywamy otwartym gdy dla kazdego x € U istnieje § > 0, taka ze Bs(z) C U,
analogicznie definiujemy zbiory domkniete i o-cialo Bor(X).

Lemat 6.4.1 W przestrzeni metrycznej (X, d) kazdy zbiér domkniety F' mozna zapi-
sa¢ w postaci F' =, Vy, gdzie zbiory V,, C X sa otwarte. Kazdy zbior otwarty w X
jest przeliczalng sumq zbiorow domknietych.
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Dowdéd. Niech V,, bedzie zbiorem tych x € X, dla ktorych istnieje a € F', takie
ze d(z,a) < 1/n. Z whasnosci metryki tatwo sprawdzi¢, ze zbiér V,, jest otwarty.
Oczywiscie F' C V,, dla kazdego n. Jezeli x € N, V,, to dla kazdego n istnieje a,, € F,
taki ze d(ay,x) < 1/n. Oznacza to, ze a, — x i, z domknietoéci F', x € F. Drugie
stwierdzenie wynika z praw de Morgana. <

Twierdzenie 6.4.2 Niech i bedzie skonczong miarg na o-ciele Bor(X) w przestrzeni
metrycznej X. Wtedy dla kazdego B € Bor(X) zachodzq zaleinosci

(+) n(B) = sup{u(F): F € By =int{u(V): BCV},
gdzie F' oznacza zawsze zbior domkniety, a V' zbior otwarty.

Dowdd. Oznaczmy przez A rodzine tych B € Bor(X), dla ktérych spetniony jest wa-
runek (*). Jezeli zbior F jest domkniety to F' =, V}, dla pewnych zbioréw otwartych,
patrz Lemat 6.4.1, przy czym mozemy zatozy¢, ze V,, | F. 7Z ciagtosci z géry miary
skonczonej wynika, ze p(V,,) — u(F). Stad natychmiast wynika , ze F' € A.

Wystarczy teraz wykazaé, ze A jest o-cialem, aby upewnié sie ze A = Bor(X).
Jezeli A € A to dla kazdego £ > 0 istniejg zbior otwarty V i domkniety F', takie ze
FCACViu(V\F)<e Wtedy

VECACFS 1 p(F\V)=pV\F)<e,

co pokazuje, ze A° € A.

Biorac A, € Ai A = U, A,, pokazemy, ze A € A. Dla ¢ > 0 i kazdego n z
warunku A,, € A istniejg zbiory domkniete F;,, C A, i otwarte V,, O A,, o wlasnosci
(Vo \ Fr) < €/2". Niech V= U, V,, i nlech F' = U, <y F, gdzie liczba N jest tak
dobrana, ze

N(UFn><N(U E,) +¢

n<N

takie N istnieje na mocy ciagtosci z dotu miary. Wtedy zbiér V' O A jest otwarty
(jako suma zbioréw otwartych), a zbior F' C A jest domkniety (jako suma skoniczonej
ilosci takich zbioréw). Ponadto,

(VA F) < pUVi \UF) + ulUE N\ F) < Y e/2" +c =2

n

W ten sposéb otrzymujemy A € A i dowdd zostat zakoniczony.

Twierdzenie 6.4.3 (Luzina) Niech g bedzie funkcjq borelowskq na przestrzeni me-
trycznej X. Wtedy dla dowolnej miary skoriczonej na Bor(X) i e > 0 istnieje zbior
domkniety FF C X, taki Ze (X \ F) < € i g jest funkcjq ciggla na zbiorze F.
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Dowdd. Sprawdzmy najpierw, ze twierdzenie zachodzi dla funkcji prostej. Istotnie,
jezeli

QZZCM'XB“

i<n

gdzie zbiory borelowskie B; sa parami roztaczne to z Twierdzenia 6.4.1 dla kazdego
i < n istnieje zbiér domkniety F; C B;, przy czym u(B; \ F;) < ¢/n. Wtedy mozna
przyja¢ F' = U<, Fi; funkcja g jest ciagla na tym zbiorze (jako ze zbiory F; sa parami
roztaczne).

Rozwazmy funkcje nieujemng g i € > 0. Wtedy istnieje Xy € Bor(X) taki ze
u(X\Xo) < /21 funkcja g jest ograniczona na Xj. Istnieje zatem ciag funkeji prostych
gn zbiezny jednostajnie do g na zbiorze X, patrz Twierdzenie 2.2.3. Z pierwszej czesci
dowodu mozemy dobrac¢ zbiory domkniete F,,, takie ze

w(Xo \ F,) < /2"
i g, jest ciagta na F},. Biorac F' =), F,, mamy

UK\ F) < p(X\ Xo) + (X0 \ F) < 2/2+ Y /2 = c.

Ponadto na zbiorze F' wszystkie funkcje g, sa ciggte i zbiezne jednostajnie do g —
dlatego g jest ciagta na F.
Przypadek ogélny funkcji g : X — R wynika tatwo przez rozklad g = g™ — g~.

Miare p zdefiniowana na Bor(R™) nazwiemy lokalnie skoriczong jezeli
[k, k") < oo

dla kazdego k, por. 5.4. Dla miar lokalnie skonczonych mamy nastepujacy wniosek z
poprzedniego twierdzenia.

Whniosek 6.4.4 Niech p bedzie miarg borelowskq lokalnie skoriczong na przestrzeni
euklidesowej R™ 1 niech B € Bor(R"™) bedzie zbiorem miary p skonczonej.
(a) Dla kazdego € > 0 istnieje zbior zwarty F i otwarty V', takie 2e F C B CV i
pu(V\F) <e.
(b) Jezeli funkcja g : B — R jest borelowska to dla € > 0 istnieje zbidr zwarty
F C A, taki ze u(A\ F) < e i g jest ciggla na F.

Dowdéd. Skoro u(B) < oo to u(B N [—k,k]") jest dla duzych k bliskie u(A) i dla-
tego zagadnienie redukuje sie do zbioru ograniczonego B; mozemy teraz zastosowac
poprzednie twierdzenie do przestrzeni metrycznej postaci [—k, k]™; przypomnijmy, ze
podzbiory domkniete i ograniczone w przestrzeniach euklidesowych sg zwarte.

Whniosek 6.4.5 Niech p bedzie miarg lokalnie skonczong na R™ 1 niech V bedzie ro-
dzing zbiorow otwartych, spetniajgcq warunks:
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(i) ViuVae V dla Vi, Va € V;

(11) dla kazdego otwartego U C R™ istniejq Vi, € V, takie ze U = U, Vj.
Wtedy dla kazdego B € Bor(R™) miary p skonczonej i € > 0 istnieje V € V), taki ze
w(BAV) <e.

Dowdd. Dla e > 0 dobierzmy zbior otwarty U O B, taki ze u(U\ B) < /2. Z zatozenia
wynika, ze istnieje wstepujacy ciag V,, € V, taki ze U = U,, V.. Wtedy p(V,) — u(U)
wiec dla duzych n mamy u(U \ V,,) < ¢e/21i

w(BAV,) <K pu(U\V,)+u(U\B) <e/24¢/2=c¢.

6.5 Zbiory geste w L,

W przestrzeni Banacha F z norma || - || zbiér D C E jest gesty jezeli dla kazdego
r € E'ie > 0 istnieje d € D, taki ze ||d — z|| < e. Inacze] méwiac kazdy © € FE
jest granica pewnego ciggu d, € D. Przestrzen Banacha jest osrodkowa gdy zawiera

zbiér gesty przeliczalny. Ponizej rozwazamy przestrzenie postaci Li(u), ale wyniki
naturalnie uogdlniaja si¢ na przestrzenie L,(u).

Lemat 6.5.1 Funkcje proste catkowalne stanowiq zbidr gesty w Li(i).

Dowdd. Niech f € Ly(p) bedzie funkcja nieujemna. Wtedy istnieje ciag funkcji pro-
stych s, zbiezny monotonicznie i prawie wszedzie do f. Otrzymujemy

J (F = s du—0.
X
wiec ||f — snllt — 0. O

Twierdzenie 6.5.2 W przestrzeni Ly () funkcji catkowalnych wzgledem lokalnie skon-
czonej miary p na n-wymiarowej przestrzeni euklidesowej funkcje ciggte stanowig zbior

gesty.
Dowdd. (1) Niech g = xv, gdzie V jest otwarta kostka postaci
V= (al,bl) X ... X (an,bn).

Nietrudno pokazaé, ze dla kazdego 6 > 0 istnieje funkcja ciagta g : R* — [0, 1], taka
zeglr)=1dlaz e Vsig(x)=0dlax ¢V, gdzie

%:(a1+6,b1—5)x...x(an—i—é,bn—é).
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Wtedy xv — g = 0 poza zbiorem V' \ V; i dlatego
Ixv — gl < p(V\V;) =0 dla §—0.

Zauwazmy, ze stad wynika, ze funkcje ciagte aproksymujg tez xy w przypadku, gdy
V' jest skonczong suma otwartych kostek.

(2) Niech xg € Li(p), czyli u(B) < co. Na mocy Wniosku 6.4.5 dla € > 0 istnieje
zbiér V| bedacy skonczona suma kostek i taki ze u(B A V) < e. Wtedy

Ixs —xv|| =B AV) <e.
Dlatego z (1) wynika, ze funkcje ciagte aproksymuja funkcje xp w normie || - ||;.

(3) Jezeli s = 3",y a;x 4, jest catkowalng funkcja prosta to z (2) dla kazdego i < k
istnieje funkcja ciagta g;, taka ze

lgi = xall <e/(kM),

dla danego € > 0, gdzie M = max;<x(|a;|+1). Wtedy funkcja g = >, a;0; jest ciagla
i

lg = sl <3 [lailixa, = gil du <=

i<k
(4) Ostatecznie, dla funkcji f € Ly(u) teze otrzymujemy z Lematu 6.5.1

W istocie mozna pokazaé, ze funkcje klasy C*° (majace wszystkie pochodne czast-
kowe ciagle) leza gesto w Li(p) dla p jak w twierdzeniu powyzej — nalezy tylko
sprawdzi¢ te mocniejsza wlasnosé w czesci (1) dowodu.

Twierdzenie 6.5.3 Dla kazdej miary lokalnie skonczonej p na R™ przestrzen Bana-
cha Ly(p) jest oSrodkowa.

Dowdd. Niech V bedzie rodzina wszystkich skonczonych sum kostek otwartych postaci
V= (al,bl) X ... X (CLn, bn>7

gdzie a;,b; € Q. Wtedy V jest rodzing przeliczalng. Z Wniosku 6.4.5 wynika, ze jezeli
p(B) < oo to dla kazdego e > 0 istnieje V € V, u(V A B) < e. Dlatego rozumujac jak
w dowodzie Twierdzenia 6.5.2 mozna sprawdzi¢, ze rodzina funkcji postaci

> aqixvi, gdzie g, €Q,V; €V

i<k

stanowi zbior gesty w Ly (u). &
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6.6 Zadania

6.6.1 Sprawdzi¢, ze |a+b|P < 2P/9(|al? + |b|P), gdzie 1/p+1/q = 1; wynioskowaé stad,
ze L, () jest przestrzenia liniows.

V

6.6.2 Sprawdzi¢, ze nastepujace fakty dowodzi sie analogicznie jak dla Lq () (p > 1)
(1) Ly(1) jest zupeha,
(1) funkcje proste leza gesto w L, (u);
(111) C[0,1] lezy gesto w L,[0, 1].
6.6.3 Ustali¢, czy zachodzg jakie$ inkluzje pomiedzy L,(R) dla réznych p. A jak jest
w przypadku L,|[0, 1]?
6.6.4 Ustali¢, ktore z ponizszych stwierdzen sg prawdziwe zawsze, a ktore w przypad-
ku u(X) < oo; f, jest tutaj ciagiem funkcji mierzalnych.
(i) jesli f,, sa calkowalne i zbiezne jednostajnie do f to f, zbiegaja w L;
(i1) jesli f, sa catkowalne i zbiezne niemal jednostajnie do f to f,, zbiegaja w L1;
(117) jesli 0 < f1 < fo < ...isup, [ fn du < oo to granica jest catkowalna,;
(iv) jesli f, zbiegaja w Lq(p) to pewnien podciag zbiega prawie wszedzie;
(v) jesli f, sa catkowalne i zbiezne do 0 prawie wszedzie to f, sa jednakowo calko-
walne;

(vi) jesli | f,| <

(vii) jesli |fn| < g, [ g du < oo, f, zbiegaja prawie wszedzie to f, zbiegaja w Lq(u)
(viii) jesli f,, € Lo(u)NLqi(p) i f, zbiegaja w Li(u) to f, zbiegaja w Lo(p); na odwrot?
(iz) (viil) przy dodatkowym zalozeniu, ze f, sa wspélnie ograniczone;

g, gdzie [ g dp < oo to f, sa jednakowo catkowalne;

6.6.5 Zauwazy¢, ze dla funkcji f : X — C, f = f1 + i - fo, jej mierzalnosé jest réw-
nowazna mierzalnosci czesci rzeczywistej fi i urojonej fo. Ponadto, f jest catkowalna
wtedy i tylko wtedy gdy f1, fo sa catkowalne.

6.6.6 Dla funkcji f : X — R na przestrzeni miarowej (X, X, p) oznaczmy przez || f/||
jej istotne supremum, to znaczy

|| f1loo = inf{sup [f] : u(A) = 0}.
X\A

Wykazaé, ze || - ||oo jest norma zupena na przestrzeni Lo, (1), ztozonych z tych funkcji,
dla ktérych || f||eo < 00, po utozsamieniu funkeji réwnych prawie wszedzie.

6.6.7 Wykazac, ze dla f € L[0, 1] zachodzi wzér lim, . || f]l, = || f]]co-
6.6.8 Sprawdzi¢, ze przestrzen Ly [0, 1] nie jest osSrodkowa.

6.6.9 O mierze p powiemy ze jest osrodkowa jesli L;(u) jest oSrodkows przestrzenia
Banacha. Wykazac¢, ze u jest osrodkowa wtedy i tylko wtedy gdy istnieje przeliczalna
rodzina § C ¥ ze dla kazdego A € X

inf{u(AAS): SeS8}=0.
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6.7 Problemy

6.7.A Niech (X, 3, 1) bedzie bezatomowa przestrzenia probabilistyczna. Wykazaé, ze
istnieje mierzalna funkcja f: X — [0, 1], taka ze flu] = A.

WSKAZOWKA: Wystarczy zbudowaé g : X — {0, 1}, taka ze g[u] = v, gdzie v jest
miarg Haara na zbiorze Cantora. Wybraé¢ dla kazdego n roztaczne zbiory A, € ¥,
e € {0,1}" tak ze u(A.) =27"1 AU A = A..

6.7.B Wykazacd, ze jesli (X, 21, p1) 1 (Xa, Lo, p2) sa dwiema osrodkowymi bezatomo-
wymi przestrzeniami probabilistycznymi, to odpowiadajace im algebry Boole’a 2 i
2, sg izomorficzne w nastepujacym sensie: istnieje zachowujgca dziatania boolowskie
bijekcja g : A; — Ay, ktoéra jest izometrig 2y, As jako przestrzeni metrycznych.

WskAZOWKA: Wybraé A, € ¥, takie jak w problemie A oraz takie ze rodzina S;
wszystkich sum skonczonych A., ¢ € {0,1}", n € N jest gesta. Analogicznie wybraé¢
taka rodzine B, € Y.

Okresli¢ g([A.]) = [Be] i przedtuzy¢ g na S; z zachowaniem dzialan; wtedy g jest
izometrig i przedtuza sie na domkniecie dziedziny.

6.7.C Wykaza¢, ze dla przestrzeni miarowych z poprzedniego problemu L,(s) jest
liniowo izometryczne z L,(p2) (gdzie 1 < p < 00).

WSKAZOWKA: Okreslié odwzorowanie liniowe 1" : L, (p1) — Ly(p2) najpierw na funk-
cjach prostych, korzystajac z poprzedniego zadania. Wykorzystaé¢ fakt, ze izometrie
mozna przedtuza¢ na domkniegcie dziedziny.

6.7.D (dla znajacych ultrafiltry). Niech F bedzie dowolnym ultrafiltrem niegtéwnym
na N. Udowodnié¢, ze zbiér Z C {0, 1}V, gdzie
Z ={xr: F € F},

jest zbiorem niemierzalnym wzgledem miary Haara.

WSKAZOWKA: Taki zbiér jest zdarzeniem resztowym wiec gdyby byl mierzalny, to
miatby miare 0 badz 1; rozwazy¢ przesuniecie Z o element 1 (wzgledem dziatania
grupowego).

6.7.E Tle jest réznych miar (skoriczonych, o—skonczonych, dowolnych) na o—ciele Bor(R)?



