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Wskazówka: Niech S będzie zbiorem z 3 wyróżnionymi elementami a, b i c. Zliczyć pewne k-
kombinacje S.

3. Wyprowadzić wzór
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Wskazówka 1: zróżniczkować wzór na (1 + x)n.

Wskazówka 2: Jesteś szefem zespołu n pracowników. Oblicz na ile sposobów możesz dać pewnej
liczbie osób podwyżkę i dodatkowo jedną z tych osób awansować.
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5. Za pomocą całkowania wzoru dwumianowego wyprowadzić wzór
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6. Sprawdzić przez indukcję wzór
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7. Obliczyć sumę 12 + 22 + . . . + n2 korzystając ze wzoru m2 = 2
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zadania.

8. Znaleźć liczby całkowite a, b i c spełniające
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Następnie znaleźć wzór na 13 + 23 + 33 + . . .+ n3.

9. Przypomnijmy, że dla x ∈ R i naturalnej liczby k ­ 1 definiujemy(
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Dodatkowo,
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10. Używając argumentacji kombinatorycznej pokazać, że dla wszystkich dodatnich liczb całkowitych
m1, m2 i n mamy
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11. Znaleźć wzór na∑
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gdzie sumowanie odbywa się względem wszystkich nieujemnych liczb całkowitych r, s i t spełnia-
jącyh r + s+ t = n.

12. Pokazać, że dla całkowitych dodatnich liczb n i k zachodzi wzór
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gdzie sumowanie odbywa się względem wszystkich nieujemnych liczb całkowitych n1, n2, . . . , nk
spełniających n1 + n2 + . . .+ nk = n.

13. Udowonić za pomocą wzoru Taylora, że dla |x| < 1 i dowolnej liczby α zachodzi wzór
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14. Udowodnić przez indukcję, że dla dowolnej naturalnej liczby n mamy
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Nieporządki

Poniżej Dn oznacza ilość nieporządków na zbiorze n-elementowym, czyli liczbę permutacji bez
punktu stałego.

15. Wyznaczyć liczbę permutacji zbioru {1, 2, . . . , 8}, w których żadna liczba parzysta nie znajduje
się na swojej naturalnej pozycji.

16. Znaleźć ogólny wzór na liczbę permutacji zbioru {1, 2, . . . , n}, w których dokładnie k liczb znaj-
duje się na swoich naturalnych pozycjach.

17. Za pomocą argumentów kombinatorycznych wyprowadzić tożsamość
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(Przyjmujemy D0 = 1.)

18. Pokazać, że liczby Dn spełniają równanie Dn = (n− 1)(Dn−2 +Dn−1) dla n ­ 3.

19. Dla liczby naturalnej n oznaczmy przez Qn liczbę permutacji zbioru {1, 2, . . . , n}, które nie za-
wierają w sobie 12, 23, . . . , (n− 1)n. (dla n = 3 dopuszczalnymi permutacjami są 213, 321, 132,
ale np. 231 jest niedopuszczalna). Pokazać, że dla n ­ 1 zachodzi wzór
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Zadania uzupełniające

20. Zadania z Rozdziału 1 (Wzór Stirlinga) zbioru zadań Światosława R. Gala.


