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Uwaga: Zadania 1-7 ze zbioru Ś. Gala. W zależności od źródła, w numeracji liczb Catalana
może wystąpić przesunięcie. Na przykład, na wykładzie liczba Cn była zdefiniowana jako liczba
nawiasów w a1 · a2 · . . . · an; tym samym, w zależności od interpretacji, mamy

Cn =
1
n

(
2(n− 1)
n− 1

)
lub Cn =

1
n+ 1

(
2n
n

)
.

1. Pokaż, że następujące liczby, oznaczane przez Ck i nazywane liczbami Catalana, są równe (w razie
problemów z interpretacją załóżmy, że C0 = C1 = 1):

(i) liczbie połączeń w pary wierzchołków wypukłego 2k-kąta, tak by odpowiadające mu prze-
kątne (lub boki) się nie przecinały,

(ii) liczbie podziałów (k + 2)-kąta wypukłego przekątnymi na trójkąty,

(iii) liczbie spacerów po siatce kwadratowej z punktu (0, 0) do (k, k) pozostających pod przekątną
i takich, że w każdym kroku można zwiększyć dowolną współrzedną o jeden,

(iv) liczbie ciągów (x1, . . . , x2n), takich że xi ∈ {−1, 1},
∑2n
i=1 xi = 0 oraz

∑k
i=1 xi ­ 0 dla każdego

k ¬ 2n.

2. Znajdź (np. wygooglaj) inne kombinatoryczne interpretacje liczb Catalana, na przykład ilość drzew
binarnych.

3. Niech Sn oznacza liczbę (nieuporządkowanych) par spacerów (γ1, γ2) długości n na płaszczyźnie
o tej własnośći, że każdy spacer wykonuje kroki tylko w prawo lub w góre długości jeden, spacery
zaczynają się w punkcie (0, 0) i mają wspólne tylko końce. Jak liczby Sn są związane z liczbami
Catalana?

4. W zadaniu poprzednim rozważyć spacery długości n, które mogą sią spotykać po drodze, ale nie
mogą się “krzyżować”.

5. Oblicz liczbę kształtów, jakie można uzyskać, ustawiając jednakowe monety w stos tak, ze w
najniższym poziomie znajduje się n monet ułożonych jedna obok drugiej w linii, a każda moneta
w następnej warstwie musi się opierać na dwu połówkach monet leżących poniżej.

6. Pokaż, że Cn =
(2n
n

)
−
( 2n
n−1

)
.

7. Znajdź kombinatoryczny dowód powyższej formuły.

8. Udowodnij kombinatorycznie, że liczba wszystkich funkcji niemalejących

f : {1, 2, . . . , n} → {1, 2, . . . , n},

gdzie n ­ 1, spełniających warunek f(i) ¬ i dla i ¬ n, wynosi 1
n+1

(2n
n

)
.



Liczby Stirlinga

9. Przypomnijmy, że liczby Stirlinga drugiego rodzaju
{n
k

}
, oznaczane też S2(n, k), można

zdefiniować

(a) kombinatorycznie:
{n
k

}
jest liczbą podziałów zbioru n-elementowego na k niepustych pod-

zbiorów

(b) analitycznie:
{n
k

}
są współczynnikami we wzorze

xn =
n∑
k=0

{
n

k

}
xk, gdzie xk = x(x− 1) . . . (x− k + 1).

Sprawdzić, że w obu przypadkach otrzymujemy te same liczby, spełniające warunek rekurencyjny{
n

k

}
= k

{
n− 1
k

}
+
{
n− 1
k − 1

}
dla k = 1, 2, . . . , n− 1,

10. Wykazać, że k!
{n
k

}
jest ilością surjekcji zbioru n elementowego na zbiór k elementowy.

11. Udowodnić, że dla n ­ 3 zachodzi wzór{
n

n− 2

}
=
n(n− 1)(n− 2)(3n− 5)

24
.

12. Znaleźć kombinatoryczny dowód tożsamości
m∑
k=0

k

{
n+ k

k

}
=
{
n+m+ 1

m

}

13. Liczby Stirlinga pierwszego rodzaju. Definiujemy
[n
k

]
jako liczbę sposobów rozmieszczenia

n obiektów w k cyklach, przy czym
[
1
0

]
= 0,

[
1
1

]
= 1. Sprawdzić, że[

n

k

]
= (n− 1)

[
n− 1
k

]
+
[
n− 1
k − 1

]
dla k = 1, 2, . . . , n− 1.

14. Obliczyć
∑n
k=1

[n
k

]
.

15. Znaleźć kombinatoryczne dowody tożsamości
m∑
k=0

(n+ k)
[
n+ k

k

]
=
[
m+ n+ 1

m

]
;

n∑
k=m

[
k

m

]
n!
k!

=
[
n+ 1
m+ 1

]
;

n∑
k=1

k

[
n

k

]
=
[
n+ 1

2

]
;

n∑
k=m

[
n

k

](
k

m

)
=
[
n+ 1
m+ 1

]
.

16. Sprawdzić, że oznaczając xk = x(x+ 1) . . . (x+ k − 1), mamy

xn =
n∑
k=1

{
n

k

}
(−1)n−kxk, xn =

n∑
k=1

[
n

k

]
(−1)n−kxk.

17. Liczby Bella. Niech B(n) będzie liczbą wszystkich partycji zbioru nc elementowego na niepuste
podzbiory; sprawdzić że B(1) = 1, B(2) = 2, B(3) = 5 oraz znaleźć wzór rekurencyjny na B(n).

18. Sprawdzić, że B(n) =
∑n
k=0

{n
k

}
.


