\qquad

0.4 Exercises

0.4.1 Calculate

(i) $\bigcap_{n=1}^{\infty}(0,1 / n) ; \bigcap_{n=1}^{\infty}(-1 / n, 1 / n) ; \bigcup_{n=1}^{\infty}[1 / n, n)$;
(ii) $\bigcap_{n=1}^{\infty}(n, n+3) ; \bigcup_{n=1}^{\infty}(n, n+3)$;
(iii) $\bigcap_{n=1}^{\infty}(n, 2 n) ; \bigcup_{n=1}^{\infty}\left(n-n^{2}, 1 / n\right)$.
0.4.2 For a sequence of sets A_{n} as above, calculate $\lim \sup _{n} A_{n}$ and $\liminf _{n} A_{n}$.
0.4.3 Express the interval $[a, b] \subseteq \mathbb{R}$ as an intersection of open intervals. Likewise, write (a, b) as a union of closed intervals.
0.4.4 Check that in the previous exercise one cannot exchange 'open' for 'closed'.
0.4.5 Express the triangle $T=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1,0<y<x\right\}$ as a union of rectangles. Note that in fact T is a countable union of rectangles.
0.4.6 Note that $x \in \lim \sup _{n} A_{n}$ if and only if $x \in A_{n}$ for infinitely many n; accordingly, $x \in \liminf _{n} A_{n} \Longleftrightarrow x \in A_{n}$ for almost all n.
0.4.7 Check the following relations
(i) $\bigcap_{n=1}^{\infty} A_{n} \subseteq \liminf _{n} A_{n} \subseteq \limsup \sup _{n} A_{n} \subseteq \cup_{n=1}^{\infty} A_{n}$;
(ii) $\left(\liminf _{n} A_{n}\right)^{c}=\limsup A_{n} A_{n}^{c},\left(\limsup A_{n}\right)^{c}=\liminf A_{n}^{c}$;
(iii) $\liminf _{n}\left(A_{n} \cap B_{n}\right)=\liminf _{n} A_{n} \cap \liminf _{n} B_{n}$;
(iv) $\liminf _{n}\left(A_{n} \cup B_{n}\right) \supseteq \liminf _{n} A_{n} \cup \liminf _{n} B_{n}$ i równość na ogół nie zachodzi.

Write properties of lim sup, analogous to (iii)-(iv).
0.4.8 Check that for a given sequence of sets A_{n}, if we set $B_{1}=A_{1}, B_{n}=A_{n} \backslash \bigcup_{j<n} A_{j}$ for $n>1$, then $\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} B_{n}$, and B_{n} 's are pairwise disjoint.
0.4.9 Prove that $\lim _{n} A_{n}=A \Longleftrightarrow \lim _{n}\left(A_{n} \triangle A\right)=\emptyset$.
0.4.10 Prove that every family of pairwise disjoint nonempty intervals on the real line is countable.
0.4.11 Let $U \subseteq \mathbb{R}$ be an open set. For $x, y \in U$ define $x \sim y$ if there is an interval (a, b) such that $x, y \in(a, b) \subseteq U$. Check that \sim is an equivalence relation and its equivalence classes are open intervals. Conclude that every open subset of the reals is a countable union of pairwise disjoint open intervals.
0.4.12 Check that a finite intersection of open sets is open.

0.5 Problems

0.5.A Prove the following Cauchy-like condition for a convergence of sets: A sequence of sets A_{n} is convergent if and only if for any sequences of natural numbers $\left(n_{i}\right)_{i},\left(k_{i}\right)_{i}$ with $n_{i}, k_{i} \rightarrow \infty$ we have $\bigcap_{i=1}^{\infty}\left(A_{n_{i}} \triangle A_{k_{i}}\right)=\emptyset$.
\qquad
0.5.B Prove that every sequence of sets $A_{n} \in \mathcal{P}(\mathbb{N})$ has a converging subsequence.
0.5.C Find an example of a sequence of $A_{n} \in \mathcal{P}(\mathbb{R})$, without a converging subsequence. REMARK: it is convenient to replace \mathbb{R} by another set of the same cardinality.
0.5.D Prove that if F is a closed and bounded subset of \mathbb{R} then every sequence of $x_{n} \in F$ has a subsequence converging to some $x \in F$.
Hint: $x \in F$ is a limit of a subsequence of x_{n} 's if and only if for every $\delta>0$ the interval $(x-\delta, x+\delta)$ contains x_{n} for infinitely many n 's. Assume that no $x \in F$ has such a property and apply Theorem 0.3.5.

