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2.5 Exercises

2.5.1 Check that taking preimages by a given function preserves all the basic set-
theoretic operations. Note that

f

[⋃
n

An

]
=
⋃
n

f [An],

for any subsets An of the domain of f . Check that the inclusion

f [A1 ∩ A2] ⊆ f [A1] ∩ f [A2]

may be strict.

2.5.2 Given a sequence of Σ-measurable functions fn : X → R, check that the follo-
wing sets belongs to Σ

(i) the set of those x for which the sequence fn(x) is increasing;
(ii) the set of those x for which fn(x) < 2 for all n;
(iii) the set of those x for which fn(x) < 2 for almost all n;
(iv) the set of those x for which fn(x) < 2 for infinitely many n;
(v) the set of those x for which supn fn(x) < 2;
(vi) the set of those x for which supn fn(x) ¬ 2;
(vii) the set of those x for which the sequence fn(x) converges;
(viii) the set of those x for which lim sup fn(x) > lim inf fn(x).

2.5.3 Prove that the sum of a convergent series of measurable functions is measurable.

2.5.4 Let f : R → R be an arbitrary function. Put Fε = {x ∈ R : oscx(f)  ε}
where oscx(f)  ε denotes that for every δ > 0 there are x′, x′′ ∈ (x − δ, x + δ) such
that |f(x′)− f(x′′)|  ε.

Check that the set Fε is closed; conclude that the set of points of continuity of f is
Borel.

2.5.5 Suppose that for every t from some set T we are given a continuous function
ft : R→ R; consider the function h = supt∈T ft. Prove that h is a Borel function (even
for an uncountable T ). For that purpose consider sets of the form {x : h(x) > a}.
2.5.6 Check that every simple function which is measurable with respect to a σ–
algebra Σ ⊆ P(X) can be written as

(i)
∑
i¬n aiχAi , where Ai ∈ Σ, A1 ⊆ A2 ⊆ . . . ⊆ An, and

(ii)
∑
i¬n biχBi where Bi ∈ Σ are pairwise disjoint.

What conditions guarantee that such representations are unique?
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2.5.7 Check that the family of all simple functions is closed under taking linear com-
binations, absolute value and multiplication.

2.5.8 Let f : R → R be a Lipschitz function, that is |f(x) − f(y)| ¬ L|x − y| for
some constant L. Prove that f [A] has Lebeshue measure zero whenever A is a set of
measure zero.

2.5.9 Conclude form the previous exercise that the image of a measurable set by a
Lipschitz function is measurable.

Hint: f [F ] is compact whenever f is continuous and F ⊆ R is compact; apply Corol-
lary 1.6.3.

2.5.10 Prove that in Exercises 8 and 9 it is sufficient to assume that f is a locally Lip-
schitz function (satisfies the Lipschitz condition on every interval of the form [−n, n];
note that every function having a continuous derivative is locally Lipschitz.

2.5.11 Note that an arbitrary nondecreasing function f : R→ R is Borel.

2.5.12 Construct a nondecreasing continuous function g : [0, 1] → [0, 1] such that
g[C] = [0, 1] where C ⊆ [0, 1] is the Cantor set.

Hint: set g(x) = 1/2 for x ∈ (1/3, 2/3); g(x) = 1/4 for x ∈ (1/9, 2/9) and so on.

2.5.13 Use the function g from the previous exercise to demonstrate that the image of
a measurable set by a continuous function need not be measurable, and the preimage
of a measurable function by such a function also may be nonmeasurable.

2.5.14 Note that if µ(X) < ∞ that for every measurable function f : X → R and
ε > 0 there is a set A such that µ(A) < ε and f is bounded on X \ A.

2.5.15 Let |fn| ¬ M and suppose that fn
µ−→ f . Check that |f | ¬ M almost every-

where.

2.5.16 Comsider a nondecreasing sequence of measurable functions fn such that fn
converge to f in measure. Prove that in such a case fn → f almost everywhere.

2.5.17 Prove that if fn
µ−→ f and gn

µ−→ g then fn + gn
µ−→ f + g. Prove that

fngn
µ−→ fg under an additional assumption that fn i gn are all bounded by the same

constant.

2.5.18 Let µ be a finite measure. Prove that if fn
µ−→ f where f(x) 6= 0 for all x then

1/fn
µ−→ 1/f .

2.5.19 Suppose that µ(X) <∞. Prove that if fn
µ−→ f and gn

µ−→ g then fngn
µ−→ fg

(compare Exercise 17). Show that this may not hold for an infinite measure.
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2.6 Problems

2.6.A Let A ⊆ R be a measurable set of finite Lebesgue measure. Investigate whether
the function

g : R→ R, g(x) = λ(A ∩ (x+ A)),

is continuous (here λ denotes the Lebesgue measure, x+A is the translate of the set).

2.6.B Prove that every Lebesgue measurable function f : R → R is a limit of a
sequence of continuous functions fn converging almost everywhere. In fact, one can
find such fn belonging to C∞.

Hint: Start from the case f = χA where A is a finite union of intervals.

2.6.C Prove that no sequence of continuous function fn : R→ R can converge poin-
twise to χQ (the characteristic function of Q).

Hint: I method: argue by contradiction, using the Darboux property of continuous
functions. II method: prove that a pointwise limit of a sequence of continuous function
must have a point of continuity.

2.6.D Let f : R → R be an arbitrary function satisfying the equation f(x + y) =
f(x) + f(y). Check that then f(x) = ax for all x ∈ Q (a = f(1)).

Prove that if the function f is measurable then f(x) = ax for all x ∈ R.

2.7 Appendix: Upper and lower limits
of sequences of reals

Let (an) be a sequence of real numbers. We call a a cluster point of the sequence if
there is a subsequence of (an) converging to a. Likewise, we define when ∞ or −∞ is
the cluster point of the sequence.

2.7.1 Prove that every sequence of reals has the least cluster point (which is a
real number or one of −∞,∞). The least cluster point is called the lower limit
lim infn→∞ an.

2.7.2 Note that lim infn→∞ an = −∞ if and only if the sequence (an) is not bounded
from below.

2.7.3 Prove that a = lim infn→∞ an (where a is a real number) if and only if for every
ε > 0 we have an > a− ε for almost all n and an < a+ ε for infinitely many n.

2.7.4 Prove that lim infn→∞ an = limn→∞ infkn ak.

2.7.5 Prove that lim infn→∞(an + bn)  lim infn→∞ an + lim infn→∞ bn.

2.7.6 Define the upper limit lim sup accordingly and note its analogous properties.
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2.7.7 Note that a sequence of reals converges if and only if its upper limit and lower
limit coincide (and they are real numbers).

2.7.8 Check that lim infn→∞(an − bn) = a− lim supn→∞ bn whenever lim an = a.


