Exercises 3.5

3.5.1 Check that the formula

$$\int_X \sum_{i=1}^n a_i \chi_{A_i} \, \mathrm{d}\mu = \sum_{i=1}^n a_i \mu(A_i)$$

properly defines the integral of simple functions on an arbitrary space (X, Σ, μ) .

HINT: If $\sum_{i=1}^{n} a_i \chi_{A_i} = \sum_{j=1}^{k} b_j \chi_{B_j}$ then there is a finite partition of X into measurable sets $T_s, 1 \leq s \leq p$ such that every A_i and B_j is a union of some T_s .

3.5.2 Suppose that $\mu(X) = 1$ and $\mu(A_i) \ge 1/2$ for i = 1, 2, ..., n. Prove that there is $x \in X$ belonging to at least n/2 sets A_i . For this purpose evaluate $\int_X \sum_{i \leq n} \chi_{A_i} d\mu$ (compare Problem 1.11.E).

3.5.3 Consider $f(x) = -\frac{1}{x^2+1}$ to note that one cannot define the integral $\int_{\mathbb{R}} f \, d\lambda$ as the supremum of $\int s \, d\lambda$ for simple functions $s \leq f$. Define an analogous function on [0,1].

3.5.4 Let (X, Σ, μ) be a measure space and let $f, g : X \to \mathbb{R}$ be measurable functions. Check that

- (i) if $\int_A f \, d\mu = 0$ for every $A \in \Sigma$ then f = 0 almost everywhere;
- (*ii*) if f is integrable on X then it is integrable on every $X_0 \in \Sigma$;
- (iii) if $A, B \in \Sigma$ and $\mu(A \triangle B) = 0$ then $\int_A f \, d\mu = \int_B f \, d\mu$ for every f (and that if any of the integrals is finite, so is the other);
- $(iv) \int |f g| \, \mathrm{d}\mu \ge |\int |f| \, \mathrm{d}\mu \int |g| \, \mathrm{d}\mu|.$

3.5.5 Verify whether

- (i) the product of two integrable function must be integrable;
- (ii) a function f such that f = 1 almost everywhere is integrable;

(iii) f is integrable provided it is integrable on every set of finite measure.

3.5.6 Consider the space $(\mathbb{N}, P(\mathbb{N}), \mu)$ where μ is a counting measure, that is $\mu(A) =$ |A| for finite sets and $\mu(A) = \infty$ for infinite $A \subseteq \mathbb{N}$.

Prove that $f: \mathbb{N} \to \mathbb{R}$ is integrable if and only if $\sum_{n=1}^{\infty} |f(n)| < \infty$. Note that in such a case the integral coincides with the sum of the series.

3.5.7 Can you find a sequence of integrable functions such that

- (i) it converges almost everywhere but not in measure;
- *(ii)* converges in measure but not almost everywhere;
- *(iii)* converges almost everywhere but is unbounded;
- (*iv*) uniformly convergent to zero and such that the integrals do not converge;
- (v) uniformly convergent to a non-integrable function?

For every question consider two cases: $\mu(X) < \infty$ and $\mu(X) = \infty$.

3.5.8 Let $f : [a, b] \to \mathbb{R}$ be a bounded Borel function. Note that f is Lebesgue integrable.

3.5.9 Prove that if $f : \mathbb{R} \to \mathbb{R}$ is Lebesgue integrable then for every $\varepsilon > 0$ there is an interval [a, b] such that $\int_{[a,b]} |f| d\mu > \int_{\mathbb{R}} |f| d\mu - \varepsilon$.

3.5.10 Let $f : \mathbb{R} \to \mathbb{R}$ be a nonnegative function with a finite improper Riemann integral $\int_{-\infty}^{\infty} f(x) dx$. Prove that f is Lebesgue integrable. Check that the assumption $f \ge 0$ is essential.

3.5.11 Suppose that $\mu(X) < \infty$. Prove that a measurable function f is integrable if and only if, writing $A_n = \{x : |f(x)| \ge n\}$, we have $\sum_{n=1}^{\infty} \mu(A_n) < \infty$.

3.5.12 Prove so called Chebyshev's inequality: for an integrable function f it holds

$$\int |f| \, \mathrm{d}\mu \ge \varepsilon \mu(\{x : |f(x)| \ge \varepsilon\}).$$

3.5.13 Conclude from Chebyshev's inequality that

jeżeli
$$\int |f - f_n| \, \mathrm{d}\mu \to 0$$
 to $f_n \xrightarrow{\mu} f$.

3.5.14 Let A_n be a sequence of measurable sets such that $\mu(A_n \triangle A_k) \to 0$ for $n, k \to \infty$. Prove that there is a measurable set A such that $\mu(A \triangle A_n) \to 0$.

3.5.15 Define continuous integrable functions $f_n : [0,1] \to [0,\infty)$ such that $f_n \to 0$ almost everywhere but the function $\sup_n f_n$ is not integrable.

3.5.16 Let $f : \mathbb{R} \to \mathbb{R}$ be an integrable function. Check that the function $F(x) = \int_{[0,x]} f(t) \, d\lambda(t)$ is continuous. Give examples showing that F need not be differentiable. **3.5.17** Note that the Fatou lemma does not hold without the assumption that the functions in question are nonnegative. Investigate when the following is true:

$$\limsup_{n} \int_{X} f_n \, \mathrm{d}\mu \leqslant \int_{X} \limsup_{n} f_n \, \mathrm{d}\mu.$$

3.5.18 Suppose that (f_n) is such a sequence of integrable functions that $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$. Prove that the series $\sum_n f_n$ converges almost everywhere and

$$\int \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int f_n \, \mathrm{d}\mu.$$

3.5.19 Analyze the formula from the previous exercise for $f_n(x) = x^{n-1} - 2x^{2n-1}$ on the interval (0, 1).

3.5.20 Check whether

$$\int_0^1 \sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n+x}} \, \mathrm{d}x = \sum_{n=1}^\infty \int_0^1 \frac{(-1)^n}{\sqrt{n+x}} \, \mathrm{d}x.$$

Any generalisations?

3.5.21 Let μ be a finite measure on X and let $f_n, f: X \to \mathbb{R}$ be measurable functions such that $f_n \xrightarrow{\mu} f$. Prove that of $h : \mathbb{R} \to \mathbb{R}$ is bounded and uniformly continuous then

$$\lim_{n \to \infty} \int_X h(f_n) \, \mathrm{d}\mu = \int_X h(f) \, \mathrm{d}\mu.$$

3.5.22 Let f_n be a sequence of integrable functions converging to an integrable function f almost everywhere. Prove that $\lim_{n\to\infty} \int |f_n - f| d\lambda \to 0$ if and only if $\lim_{n \to \infty} \int |f_n| \, \mathrm{d}\lambda = \int |f| \, \mathrm{d}\lambda.$

HINT: The Fatou lemma.

Problems 3.6

3.6.A We say that a measure space (X, Σ, μ) is *semi-finite* if for every $A \in \Sigma$

$$\mu(A) = \sup\{\mu(B) : B \in \Sigma, \ B \subseteq A, \ \mu(B) < \infty\}.$$

Note that every σ -finite measure is semi-finite (but not vice versa).

3.6.B Note that in the definition of the integral of a nonnegative function on a semifinite measure space one can take the supremum over integrable simple functions. Check that the basic limit theorems remain true for semi-finite measures.

3.6.C Prove that a measure space (X, Σ, μ) which is not semi-finite contains an atom of infinite measure, i.e. there is $A \in \Sigma$ such that $\mu(A) = \infty$ and $\mu(B) \in \{0, \infty\}$ for every set $B \subseteq A$ from σ -algebra Σ .