6.6 Exercises

6.6.1 Check that $|a+b|^p \leq 2^{p/q}(|a|^p+|b|^p)$, where 1/p+1/q=1; conclude that $L_p(\mu)$ is a linear space.

6.6.2 Check the facts mentioned below can be proved following the argument for $L_1(\mu)$ $(p \ge 1)$

- (i) $L_p(\mu)$ is complete;
- (*ii*) simple functions are dense in $L_p(\mu)$;
- (*iii*) C[0,1] is dense in $L_p[0,1]$.

6.6.3 Check if there are any inclusions between $L_p(\mathbb{R})$ for various p. Consider the same question for $L_p[0, 1]$.

6.6.4 Check whether the following statements are always true or if they hold under the assumption $\mu(X) < \infty$; here f_n is a sequence of measurable functions.

(i) if f_n are integrable and converge uniformly to f then f_n converge in L_1 ;

(ii) if f_n are integrable and converge to f almost uniformly then f_n converge in L_1 ;

(*iii*) if $0 \leq f_1 \leq f_2 \leq \ldots$ and $\sup_n \int f_n \, d\mu < \infty$ then the limit is integrable;

(iv) if f_n converge in $L_1(\mu)$ then some subsequence converges almost everywhere;

(v) if f_n are integrable and converge to 0 almost everywhere then f_n are equi-integrable;

(vi) if $|f_n| \leq g$ where $\int g \, d\mu < \infty$ then f_n are equi-integrable;

(vii) if $|f_n| \leq g$, $\int g \, d\mu < \infty$, f_n converge almost everywhere then f_n converge in $L_1(\mu)$ (viii) if $f_n \in L_2(\mu) \cap L_1(\mu)$ and f_n converge in $L_1(\mu)$ then f_n converge in $L_2(\mu)$; vice versa?

(*ix*) consider (viii) for uniformly bounded f_n .

6.6.5 Note that for a function $f: X \to \mathbb{C}$, $f = f_1 + i \cdot f_2$ its measurability is equivalent to measurability of both the real f_1 and imaginary part f_2 . Moreover, f is integrable if and only if f_1, f_2 are integrable.

6.6.6 For a function $f : X \to \mathbb{R}$ on a given space (X, Σ, μ) we write $||f||_{\infty}$ for its essential supremum which is

$$||f||_{\infty} = \inf\{\sup_{X \setminus A} |f| : \mu(A) = 0\}.$$

Prove that $|| \cdot ||_{\infty}$ is a complete norm on the space $L_{\infty}(\mu)$ of those functions that satisfy $||f||_{\infty} < \infty$, when we identify functions equal almost everywhere.

6.6.7 Prove that for $f \in L_{\infty}[0,1]$ we have $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.

6.6.8 Prove that the space $L_{\infty}[0,1]$ is not separable.

6.6.9 We say that a measure μ is separable if $L_1(\mu)$ is separable as a Banach space. Prove that μ is separable if and only if there is a countable family $S \subseteq \Sigma$ such that for every $A \in \Sigma$

$$\inf\{\mu(A \bigtriangleup S) : S \in \mathcal{S}\} = 0.$$

6.7 Problems

6.7.A Consider a nonatomic probability measure space (X, Σ, μ) . Prove that there is a measurable function $f: X \to [0, 1]$ such that $f[\mu] = \lambda$.

HINT: It is enough to define $g: X \to \{0,1\}^{\mathbb{N}}$ with $g[\mu] = \nu$, where ν is the Haar measure on the Cantor set. For every *n* choose disjoint $A_{\varepsilon} \in \Sigma$, $\varepsilon \in \{0,1\}^n$ so that $\mu(A_{\varepsilon}) = 2^{-n}$ and $A_{\varepsilon \frown 0} \cup A_{\varepsilon \frown 1} = A_{\varepsilon}$.

6.7.B Prove that if (X_1, Σ_1, μ_1) and (X_2, Σ_2, μ_2) are nonatomic separable probability measure spaces then the corresponding measure algebras are isomorphic, that is there is a bijection between then preserving Boolean operations and their metric structures.

HINT: Pick $A_{\varepsilon} \in \Sigma_1$ as in Problem A with the property that the family S_1 of finite unions of sets from $A_{\varepsilon}, \varepsilon \in \{0, 1\}^n, n \in \mathbb{N}$ is dense. Choose $B_{\varepsilon} \in \Sigma_2$ analogously.

Define $g([A_{\varepsilon}]) = [B_{\varepsilon}]$ and extend g to S_1 preserving Boolean operations; then g is an isometry so it can be extended to the closure.

6.7.C Prove that for the measures as above, $L_p(\mu_1)$ is linearly isometric to $L_p(\mu_2)$ (here $1 \le p \le \infty$).

HINT: Define a linear mapping $T : L_p(\mu_1) \to L_p(\mu_2)$, first on simple functions. Use the fact that every isometry defined on a subset of a metric space can be extended to the closure of its domain.

6.7.D (if you are familiar with ultrafilters). Let \mathcal{F} be a non-principial ultrafilter on \mathbb{N} . Prove that the set $Z \subseteq \{0, 1\}^{\mathbb{N}}$, where

$$Z = \{\chi_F : F \in \mathcal{F}\},\$$

is not measurable with respect to the Haar measure.

HINT: Such a set is a tail set so, if measurable, it has either measure 0 or 1. consider the translation of Z by the constant 1 element of the group.

6.7.E How many measures (finite, σ -finite, arbitrary) one can define on $Bor(\mathbb{R})$?