Intro on graphs

Undirected graphs. A graph G = (V, E) is a pair, where V is some (finite) set of vertices (nodes) and $E \subseteq [V]^2$ is a set of edges (unordered pairs).

Dictionary.

- (i) For a vertex $v \in V$, $\deg(v) = |\{x \in V : \{x, v\} \in E\}|$ is its **degree**.
- (ii) A **path** in G is a sequence x_0, x_1, \ldots, x_n of vertices such that $\{x_i, x_{i+1}\} \in E$ for every $i = 0, \ldots, n-1$.
- (iii) A cycle is a path such that $x_0 = x_n$.
- (iv) G is **connected** if every pair of distinct vertices can be joined by a path.

Spanning trees

Definition. A tree is a connected graph without cycles.

Given a graph G = (V, E), its **spanning tree** is any tree of the form T = (V, E') where $E' \subseteq E$.

Basic properties of trees.

- (1) Every tree of at least two vertices contains a leaf, that is a vertex of degree 1.
- (2) If T = (V, E) is a tree then |E| = |V| 1.
- (3) A graph G = (V, E) is a tree if and only if G is connected and |E| = |G| 1.
- (4) Every (finite) connected graph has a spanning tree.

Minimal Spanning Tree (MST)

MSP. Consider a connected graph G=(V,E) and let $c:E\to\mathbb{R}_+$ be the cost function. Find the cheapest spanning tree T=(V,E'), the one minimizing

$$c(E') := \sum_{e \in E'} c(e).$$

A (greedy) algorithm for MST. Let n = |V|.

- (1) Take any $v_1 \in V$ and set $V_1 = \{v_1\}, E_1 = \emptyset$.
- (2) Given a tree $T_k = (V_k, E_k)$, if k = n then STOP.
- (3) For k < n consider a family F of all edges $e = \{x, y\}$, where $x \in V_k$, $y \in V \setminus V_k$. Choose $e^* = \{x^*, y^*\} \in F$ such that $c(e^*) = \min\{c(e) : e \in F\}$ and put

$$V_{k+1} = V_k \cup \{y^*\}, \quad E_{k+1} = E_k \cup \{e^*\}$$

GoTo 2.

The proof that it works.

Note that every T_k is a tree and T_n is a spanning tree. We need to check that $c(T_n)$ minimizes the costs.

Verify inductively that T_k is 'contained' (can be extended) to some optimal spanning tree. This is obvious for k = 1. Assume the claim form some k and check it for k + 1.

We know that $E_k \subseteq E'$, where (V, E') is some optimal tree. At step k+1 we added some edge e^* ; if $e^* \in E'$ then there is nothing to prove. Otherwise, $e^* \notin E'$ so the family od edges $E' \cup \{e^*\}$ must contain a cycle C. Take e^{**} which is in that cycle and in F. Then the edges from $E'' = E' \setminus \{e^{**}\} \cup \{e^*\}$ again form a tree. We know that $c(e^*) \leq c(e^{**})$ by our choice. On the other hand $c(E'') \geq c(E')$ gives $c(e^*) \geq c(e^{**})$. Hence E'' also form an optimal tree and it extends T_{k+1} .

Directed graphs

Definition. A directed graph G is a pair (V, A), where $A \subseteq V \times V \setminus \Delta$.

Shortest paths. Consider a directed graph G = (V, A) and a function $c : A \to \mathbb{R}_+$ (where c(a) is a cost or length of $a \in A$). Find the shortest path between two given vertices.

Dijkstra's algorithm¹

Suppose that $V = \{1, ..., n\}$. We find, for every $i \neq n$, the length of the shortest path from i to n.

We can assume that in G there are all possible arcs; for those virtual a we put $c(a) = \infty$.

Algorithm.

- (1) If there is only one vertex then STOP.
- (2) Find $k \neq n$ such that

$$c(k,n) = \min_{i \neq n} c(i,n).$$

Put $d_k = c(k, n)$.

(3) For $i \neq k, n$ set

$$c(i, n) := \min(c(i, n), c(i, k) + c(k, n)).$$

(4) Remove the vertex k; GoTo (1).

While removing k we update the distances:

$$c(i, j) := \min(c(i, j), c(i, k) + c(k, j)).$$

It works!

Theorem. When the algorithm terminates we get the shortest distances d_1, \ldots, d_{n-1} from vertices $1, \ldots, n-1$ to n.

Why? If $c(k,n) = \min_{i \neq n} c(i,n)$ then $d_k = c(k,n)$ and $d_i \geqslant d_k$ for other i.

Recovering the shortest path

Notation. In a directed graph G = (V, A) for $v \in V$ we write

$$\mathrm{Out}(v) = \{x \in V : (v, x) \in A\},\$$

$$In(v) = \{ x \in V : (x, v) \in A \}.$$

¹Edsger W. Dijkstra (1930–2002)

Once we have the shortest distances d_1, \ldots, d_{n-1} given we define the shortest path from 1 to n by the rule: if you are at the vertex x then go to y such that

$$c(x,y) + d_y = \min_{z \in \text{Out}(x)} \left(c(x,z) + d_z \right).$$