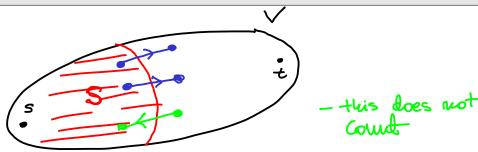
Why the flow is maximal (if there are no AP)?

Definition. A cut is any $S \subseteq V$ such that $s \in S$, $t \notin S$. The capacity of the cut S is defined as

$$c(S) = \sum_{x \in S. y \notin S, (x,y) \in A} u_{(x.y)}.$$



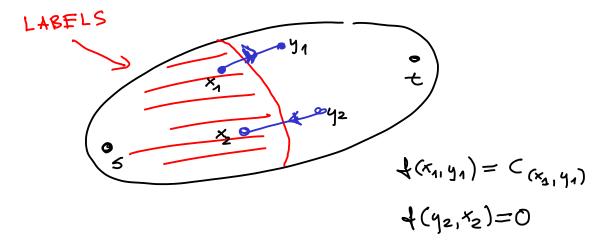
Theorem. We have $vol(f) \leq c(S)$ for every feasible flow f and every cut S.

If f and S satisfy vol(f) = c(S) then the flow f is maximal.

If there are no AP...

Theorem. If the labelling algorithm finds no augmenting paths then the given flow is maximal.

Proof. If LA stops finding no augmenting paths then we examine the set $E \subseteq V$ that got the labels. Then $s \in E$, $t \notin E$ so E is a cut. We check that vol(f) = c(E):



Does the whole algorithm works?

Lemma. If the initial data are integer-valued and we start from the initial flow with integer values then all the values of augmented flows remain integer.

Theorem. If all the capacities are integers then the Ford-Fulkerson algorithm stops after a finite number of steps.

Proof. Let

$$M = \sum_{x \in \text{Out}(s)} c_{(s,x)}.$$

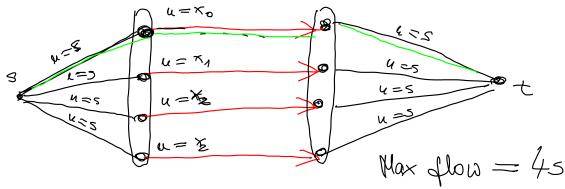
Then M is an upper bound of the volume of any feasible flow. At each step we augment the given flow by at least 1 so there will be no more then M steps.

Remark. We then perform at most 2M|A| operations during the whole process.

Corollary. If $u: A \to \mathbb{Q}_+ \cup \{\infty\}$ then FF stops after a finite number of steps.

Funny, isn't it?

The last fact is not true for in case of real-valued capacities.



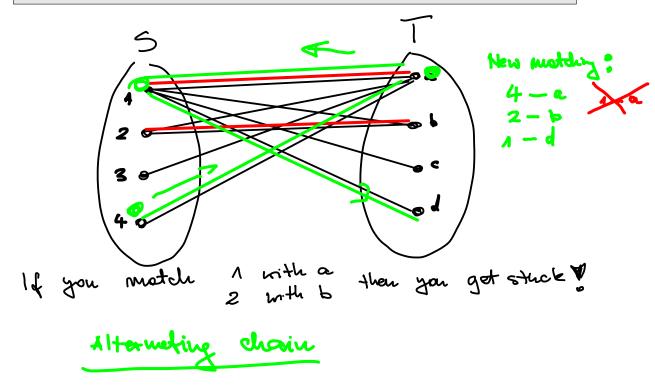
arc ce oslep
$$\sqrt{\frac{\alpha_{211}-\alpha_{11}-\alpha_{11}-\alpha_{12}}{\alpha_{11}-\alpha_{11}-\alpha_{11}-\alpha_{12}}}$$
 α_1 κ_0 κ_0 κ_0 κ_0 κ_0 κ_0
 α_2 κ_1 κ_1 κ_2 κ_2 κ_2 κ_3
 α_2 κ_1 κ_2 κ_2 κ_2 κ_3
 α_3 κ_2 κ_2 κ_2 κ_3
 α_4 κ_2 κ_2 κ_3
 α_4 κ_2 κ_2 κ_3
 α_4 κ_4 κ_4
 α_4 κ_4 κ_5
 α_4 κ_5
 α_5
 α_5

Matching in bipartite graphs

Suppose that we have a graph G = (V, A) where $V = S \cup T$ and every arc in A is of the form (x, y), where $x \in S$ and $y \in T$.

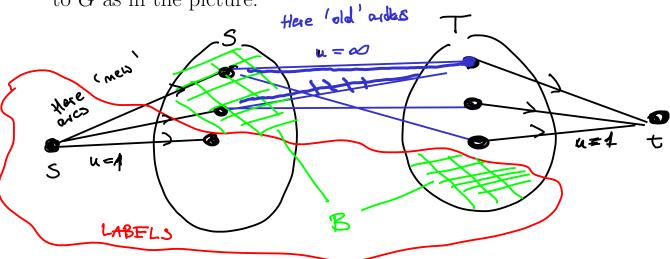
A matching in such a graph is an injective function $g: D \to T$ where $D \subseteq S$ and $(x, f(x)) \in A$ for every $x \in D$.

Problem. Given a bipartite graphs, find a maximal matching in it; the one maximizing |D|.



Matchings from flows

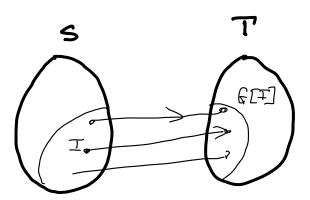
Given a bipartite graph G = (V, A), $V = S \subseteq T$ etc. extend it to \widetilde{G} as in the picture:



Observation. Every feasible flows in \widetilde{G} defines a matching in G. Augmenting paths and labelling can be interpreted inside G.

Algorithms prove theorems

Theorem (König's). In a bipartite graph, the size of a maximal matching equals the minimal number of blocking vertices $(B \subseteq V)$ is blocking if every arc either starts in B or ends in it).



Hall's marriage theorem. In a bipartite graph G = (V, A), where $G = S \cup T$ there is a matching of maximal size |S| if and only if for every $I \subseteq S$ we have $|G[I]| \ge |I|$ (here $G[I] = \{y \in T : (x, y) \in A \text{ for some } x \in I\}$).