
Intro

We write λ for the Lebesgue measure on R so λ is defined either
on Bor(R) (the smallest σ-algebra containing all open sets) or on
the algebra of measurable sets. i.e. those A ⊆ R for which there
are Borel sets B1 ⊆ A ⊆ B2 with λ(B2 \B1) = 0.

The outer measure λ∗, defined for all A ⊆ R, may be written as

λ∗(A) = inf{λ(V ) : A ⊆ V, V open}.

Recall that λ∗ is monotone and countably subadditive, that is

if A1 ⊆ A2 then λ∗(A1) ¬ λ∗(A2);

λ∗
(⋃
n
An

)
¬ ∑

n
λ∗(An).

1



2

Lebesgue Measure and intervals

Lemma. If A ⊆ R is a measurable set 0 < λ(A) < ∞ then
for every ε > 0 there is a nonempty interval (a, b) such that

λ(A ∩ (a, b))
b− a

> 1− ε.

Sketchy Proof. For every δ > 0 there is (!) a set of the form
E = ⋃n

i=1(ai, bi) such that λ(A4E) < δ. If δ is really small then
one of (ai, bi) is as required.

The Steinhaus theorem. A−A has nonempty interior for
every A with λ(A) > 0.

Note that lemma above says that, given such a set A,

(∀ε > 0)(∃x)(∃δ)λ(A ∩ (x− δ, x + δ))/(2δ) > 1− ε.

Definition. x ∈ R is a density point of (a measurable set)
A ⊆ R if

lim
δ→0+

λ(A ∩ (x− δ, x + δ))
2δ

= 1.
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Lebesgue and Vitali

Lebesgue Density Theorem. Given measurable A ⊆ R,
almost every point x ∈ A is its density point, i.e.

lim
δ→0+

λ(A ∩ (x− δ, x + δ))
2δ

= 1.

Definition. A family J of nondegenerate closed intervals is
a Vitali cover of a set A if for every x ∈ A

(∀ε > 0)(∃J ∈ J )x ∈ J and diam(J) < ε.

Vitali Theorem. If family J of nondegenerate closed inte-
rvals is a Vitali cover of an arbitrary set A ⊆ R then there
are pairwise disjoint Jn ∈ J such that

λ
(
A \ ⋃

n
Jn

)
= 0.
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Vitali yields Lebesgue

Fix bounded A ⊆ R and k ∈ N. It is sufficient to show that if

Ak =
x ∈ A : lim inf

δ→0+
λ(A ∩ [x− δ, x + δ])

2δ
< 1− 1/k

 ,
then Ak is of measure zero. Fix ε > 0 and open V ⊇ Ak such
that λ(V ) < λ∗(Ak) + ε.

Consider a family J of closed intervals J contained in V such
that λ(A∩ J) ¬ (1− 1/k)λ(J). Then J is a Vitali cover of Ak!

Take pairwise disjoint Jn ∈ J almost covering Ak.

λ∗(Ak) = λ∗(Ak ∩
⋃
n
Jn) ¬

¬ ∑
n
λ∗(Ak ∩ Jn) ¬ (1− 1/k)

∑
n
λ(Jn) ¬

¬ λ(V ) ¬ (1− 1/k)(λ∗(Ak) + ε).

This gives λ∗(Ak) ¬ ε(k − 1). Hence λ∗(Ak) = 0.
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Proof of Vitali Theorem

We consider a Vitali cover J of some bounded A ⊆ R. We may
assume that all the intervals from J are contained in some fixed
(a, b).

Define inductively γn > 0 and Jn ∈ J as follows:

Jn = {J ∈ J : J ∩ Ji = ∅ for every i < n},

γn = sup{diam(J) : J ∈ Jn}.

Choose Jn ∈ Jn such that diam(Jn) > 1/2γn. Note that ∑n λ(Jn) ¬
b − a < ∞. Hence γn ¬ 2λ(Jn) → 0. Let J ′n denotes an

interval 5 times bigger than Jn (if J = (z − δ, z + δ) then
J ′ = (x− 5δ, x + 5δ)).

Claim. For every n

A ⊆ ⋃
i<n

Ji ∪
⋃
in

J ′i .

Note that Claim immediately implies λ∗(A \ ⋃n Jn) = 0:

λ∗
A \ ⋃

i<n
Ji

 ¬ λ

 ⋃
in

J ′i

 ¬ ∑
in

λ(J ′i) = 5·∑
in

λ(Ji)→ 0.
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Claim

Claim. For every n

A ⊆ ⋃
i<n

Ji ∪
⋃
in

J ′i .

Proof. Take x ∈ A\ ⋃i<n Ji. There is (!) I ∈ J such that x ∈ I
and I is disjoint from ⋃

i<n Ji. Then diam(I) > 0 and γk → 0 so
I /∈ Jk for almost all k. But J1 = J so there is a maximal m
such that I ∈ Jm.This implies (!) that I ∩ Jm+1 6= ∅ which gives
x ∈ J ′m+1.

(Can we use 4 rather than 5?)
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Integral form of the Lebesgue density theorem

Theorem. For every f ∈ L1(R) we have

lim
δ→0+

(1/2δ) ·
∫ x+δ
x−δ f dλ = f (x),

for almost all x ∈ R.

Proof. Consider the family F of those integrable functions f for
which the assertion holds.

Then F contains all χA for measurable A of finite measure (di-
rectly by the Lebsgue density theorem).

The family F is closed under addition and contains every f

which is a uniform limit of a sequence fn ∈ F .
Hence F contains all bounded integrable functions etc.
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Differentiating integrals

Remark. If

lim
δ→0+

λ(A ∩ (x− δ, x + δ))
2δ

= 1,

then

lim
δ→0+

λ(A ∩ (x, x + δ))
δ

= 1,

This follows from
λ(A ∩ (x− δ, x + δ))

2δ
=

= 1/2
λ(A ∩ (x, x + δ))

δ
+
λ(A ∩ (x− δ, x))

δ

 .
Hence for almost all x and an integrable f we have (by analogous

argument)

lim
δ→0+

(1/δ) ·
∫ x+δ
x

f dλ = f (x).

Corollary. Given f ∈ L1([a, b]), the function

F (x) =
∫ x
a
f dλ,

satisifes F ′ = f for almost all x ∈ [a, b].
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Remarks

(1) In Vitali’s theorem the set A does not have to be measurable
itself.

(2) The Lebesgue density folds for nonmeasurableA but we need
to replace λ by λ∗ in the definition of a point of density.

(3) Vitali’s theorem (and so Lebesgue’s theorem) holds for some
measures µ on a metric space (X, ρ). The only essential
assumption is that we control the measure of balls that are 5
times bigger. For instance, it is enough to assume that there
a constant C such that

µ(B2r(x))) ¬ C · µ(Br(x))

for every x ∈ X and r > 0 (here Br(x) is the closed ball
around x of radius r.).


