Intro

We write λ for the Lebesgue measure on \mathbb{R} so λ is defined either on $Bor(\mathbb{R})$ (the smallest σ -algebra containing all open sets) or on the algebra of measurable sets. i.e. those $A \subseteq \mathbb{R}$ for which there are Borel sets $B_1 \subseteq A \subseteq B_2$ with $\lambda(B_2 \setminus B_1) = 0$.

The outer measure λ^* , defined for all $A \subseteq \mathbb{R}$, may be written as

 $\lambda^*(A) = \inf\{\lambda(V) : A \subseteq V, V \text{ open}\}.$

Recall that λ^* is monotone and countably subadditive, that is

if
$$A_1 \subseteq A_2$$
 then $\lambda^*(A_1) \leqslant \lambda^*(A_2)$;
 $\lambda^*\left(\bigcup_n A_n\right) \leqslant \sum_n \lambda^*(A_n).$

Lebesgue Measure and intervals

Lemma. If $A \subseteq \mathbb{R}$ is a measurable set $0 < \lambda(A) < \infty$ then for every $\varepsilon > 0$ there is a nonempty interval (a, b) such that $\frac{\lambda(A \cap (a, b))}{b - a} > 1 - \varepsilon.$

Sketchy Proof. For every $\delta > 0$ there is (!) a set of the form $E = \bigcup_{i=1}^{n} (a_i, b_i)$ such that $\lambda(A \bigtriangleup E) < \delta$. If δ is really small then one of (a_i, b_i) is as required.

The Steinhaus theorem. A - A has nonempty interior for every A with $\lambda(A) > 0$.

Note that lemma above says that, given such a set A,

$$(\forall \varepsilon > 0)(\exists x)(\exists \delta)\lambda(A \cap (x - \delta, x + \delta))/(2\delta) > 1 - \varepsilon.$$

Definition. $x \in \mathbb{R}$ is a density point of (a measurable set) $A \subseteq \mathbb{R}$ if $\lim_{\delta \to 0^+} \frac{\lambda(A \cap (x - \delta, x + \delta))}{2\delta} = 1.$

Lebesgue and Vitali

Lebesgue Density Theorem. Given measurable $A \subseteq \mathbb{R}$, almost every point $x \in A$ is its density point, i.e. $\lim_{\delta \to 0^+} \frac{\lambda(A \cap (x - \delta, x + \delta))}{2\delta} = 1.$

Definition. A family \mathcal{J} of nondegenerate closed intervals is a Vitali cover of a set A if for every $x \in A$ $(\forall \varepsilon > 0)(\exists J \in \mathcal{J})x \in J \text{ and } \operatorname{diam}(J) < \varepsilon.$

Vitali Theorem. If family \mathcal{J} of nondegenerate closed intervals is a Vitali cover of an arbitrary set $A \subseteq \mathbb{R}$ then there are **pairwise disjoint** $J_n \in \mathcal{J}$ such that

 $\lambda\left(A\setminus\bigcup_n J_n\right)=0.$

Fix **bounded** $A \subseteq \mathbb{R}$ and $k \in \mathbb{N}$. It is sufficient to show that if $A_k = \left\{ x \in A : \liminf_{\delta \to 0^+} \frac{\lambda(A \cap [x - \delta, x + \delta])}{2\delta} < 1 - 1/k \right\},$ then A_k is of measure zero. Fix $\varepsilon > 0$ and open $V \supseteq A_k$ such

that $\lambda(V) < \lambda^*(A_k) + \varepsilon$.

Consider a family \mathcal{J} of closed intervals J contained in V such that $\lambda(A \cap J) \leq (1 - 1/k)\lambda(J)$. Then \mathcal{J} is a Vitali cover of $A_k!$

Take pairwise disjoint $J_n \in \mathcal{J}$ almost covering A_k .

$$\lambda^*(A_k) = \lambda^*(A_k \cap \bigcup_n J_n) \leqslant$$

$$\leqslant \sum_n \lambda^*(A_k \cap J_n) \leqslant (1 - 1/k) \sum_n \lambda(J_n) \leqslant$$

$$\leqslant \lambda(V) \leqslant (1 - 1/k) (\lambda^*(A_k) + \varepsilon).$$

Hence $\lambda^*(A_k) \leqslant \varepsilon(k - 1)$ Hence $\lambda^*(A_k) = 0$

This gives $\lambda^*(A_k) \leq \varepsilon(k-1)$. Hence $\lambda^*(A_k)$ = 0. We consider a Vitali cover \mathcal{J} of some bounded $A \subseteq \mathbb{R}$. We may assume that all the intervals from \mathcal{J} are contained in some fixed (a, b).

Define inductively $\gamma_n > 0$ and $J_n \in \mathcal{J}$ as follows:

$$\mathcal{J}_n = \{ J \in \mathcal{J} : J \cap J_i = \emptyset \text{ for every } i < n \},\$$

$$\gamma_n = \sup\{ \operatorname{diam}(J) : J \in \mathcal{J}_n \}.$$

Choose $J_n \in \mathcal{J}_n$ such that $\operatorname{diam}(J_n) > 1/2\gamma_n$. Note that $\Sigma_n \lambda(J_n) \leq b - a < \infty$. Hence $\gamma_n \leq 2\lambda(J_n) \to 0$. Let J'_n denotes an interval 5 times bigger than J_n (if $J = (z - \delta, z + \delta)$ then $J' = (x - 5\delta, x + 5\delta)$).

CLAIM. For every n

$$A \subseteq \bigcup_{i < n} J_i \cup \bigcup_{i \ge n} J'_i$$

Note that Claim immediately implies $\lambda^*(A \setminus \bigcup_n J_n) = 0$:

$$\lambda^* \left(A \setminus \bigcup_{i < n} J_i \right) \leqslant \lambda \left(\bigcup_{i \ge n} J_i' \right) \leqslant \sum_{i \ge n} \lambda(J_i') = 5 \cdot \sum_{i \ge n} \lambda(J_i) \to 0.$$

Claim

CLAIM. For every n

$i < n$ $i \ge n$	$A \subseteq \bigcup_{i \in I} J_i \cup \bigcup_{i \in I} J'_i$		$A \subseteq \bigcup_{i < n} J_i \cup \bigcup_{i \ge n} J'_i$	
-------------------	---	--	---	--

Proof. Take $x \in A \setminus \bigcup_{i < n} J_i$. There is (!) $I \in \mathcal{J}$ such that $x \in I$ and I is disjoint from $\bigcup_{i < n} J_i$. Then diam(I) > 0 and $\gamma_k \to 0$ so $I \notin \mathcal{J}_k$ for almost all k. But $\mathcal{J}_1 = \mathcal{J}$ so there is a maximal msuch that $I \in \mathcal{J}_m$. This implies (!) that $I \cap J_{m+1} \neq \emptyset$ which gives $x \in J'_{m+1}$.

(Can we use 4 rather than 5?)

Integral form of the Lebesgue density theorem

Theorem. For every $f \in L_1(\mathbb{R})$ we have $\lim_{\delta \to 0^+} (1/2\delta) \cdot \int_{x-\delta}^{x+\delta} f \, \mathrm{d}\lambda = f(x),$ for almost all $x \in \mathbb{R}$.

Proof. Consider the family \mathcal{F} of those integrable functions f for which the assertion holds.

Then \mathcal{F} contains all χ_A for measurable A of finite measure (directly by the Lebsgue density theorem).

The family \mathcal{F} is closed under addition and contains every f which is a uniform limit of a sequence $f_n \in \mathcal{F}$.

Hence \mathcal{F} contains all bounded integrable functions etc.

Differentiating integrals

Remark. If

$$\lim_{\delta \to 0^+} \frac{\lambda(A \cap (x - \delta, x + \delta))}{2\delta} = 1,$$
then

$$\lim_{\delta \to 0^+} \frac{\lambda(A \cap (x, x + \delta))}{\delta} = 1,$$

This follows from

$$\frac{\lambda(A \cap (x - \delta, x + \delta))}{2\delta} = \frac{1/2\left(\frac{\lambda(A \cap (x, x + \delta))}{\delta} + \frac{\lambda(A \cap (x - \delta, x))}{\delta}\right)}{\delta}.$$

Hence for almost all x and an integrable f we have (by analogous argument)

$$\lim_{\delta \to 0^+} (1/\delta) \cdot \int_x^{x+\delta} f \, \mathrm{d}\lambda = f(x).$$

Corollary. Given $f \in L_1([a, b])$, the function $F(x) = \int_a^x f \, d\lambda$, satisifies F' = f for almost all $x \in [a, b]$.

Remarks

- (1) In Vitali's theorem the set A does not have to be measurable itself.
- (2) The Lebesgue density folds for nonmeasurable A but we need to replace λ by λ^* in the definition of a point of density.
- (3) Vitali's theorem (and so Lebesgue's theorem) holds for some measures μ on a metric space (X, ρ). The only essential assumption is that we control the measure of balls that are 5 times bigger. For instance, it is enough to assume that there a constant C such that

 $\mu(B_{2r}(x))) \leqslant C \cdot \mu(B_r(x))$

for every $x \in X$ and r > 0 (here $B_r(x)$ is the closed ball around x of radius r.).