
G. Plebanek Measures on topological spaces (en los tiempos del cólera)

16. Baire and Borel sets

We are not going to give a systematic account of various aspects of general topological

measure theory. We shall mainly discuss measures on spaces such as [0, 1]T or RT that

appear naturally in various parts of mathematics, for instance if you want to realize your

favourite stochastic process.

The first problem that arises when we start considering nonmetrizable topological spaces

is about the basic σ-algebra. In a metrizable space X, the Borel sets Bor(X) is the smallest

σ-algebra with respect to which all the continuous functions are measurable. Consider the

following example.

Example 16.1. Let S be any uncountable set; take X = S ∪ {∞} (∞ is some element

outside S). We topologize X by declaring that every {s} is open for s ∈ S, while open

neighbourhoods of ∞ are of the form VI = (S \ I) ∪ {∞}, where I ⊆ S is finite. This is

the one-point compactification of the discrete space S; X is a compact Hausdorff space.

Take any continuous function f : X → R; then for every n there is a finite set In such that

|f(x) = f(∞)| < 1/n for x ∈ VIn . This implies that f(x) = f(∞) for every x ∈ S \
⋃
n In.

It follows that every continuous function on X is measurable with respect to the σ-

algebra Σ of sets E ⊆ X, such that either E ⊆ S is countable or ∞ ∈ E and S \ E is

countable. On the other hand, Bor(X) is the power set of X.

Definition 16.2. In a topological space X, the Baire σ-algebra Baire(X) is the smallest

one with respect to which all continuous functions are measurable.

Of course, Baire(X) is generated by all the sets of the form f−1[F ], where F ⊆ R
is closed and f ∈ C(X). Since for a closed set F ⊆ R there is a continuous function

θ : R → R such that F = θ−1(0) we have f−1[F ] = (θ ◦ f)−1(0). Hence, a subset of X

that is a preimage of a closed set by a continuous function is a preimage of {0} by another

continuous function. For that reason, such sets are called zero sets (recall that a set of

measure zero is rather called a null set).

If Z is a zero set in X then Z is closed and Gδ: for a continuous g : X → R with

Z = g−1(0) we have Z =
⋂
n g
−1[(−1/n, 1/n)]. This sometimes reverses.

Lemma 16.3. In a normal space X every closed Gδ set Z is a zero set.

Proof. We have Z =
⋂
n Vn for some open Vn ⊆ X. Define gn on Z ∪ (X \ Vn) putting

gn(x) = 0 for x ∈ Z and gn(x) = 1 for x /∈ Vn. Then gn is continuous and extends to

a continuous function fn : X → [0, 1], by the Tietze extension theorem (here we need

normality of X).

Take now f =
∑

n 2−nfn; f is continuous (as the series converges uniformly), and we

check that f(x) = 0 if and only if x ∈ Z. �
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Corollary 16.4. In a normal topological space X, Baire(X) is the smallest σ-algebra

containing all closed Gδ sets.

Recall that if X =
∏

nXn is a product of separable metrizable spaces then Bor(X) =⊗
nBor(Xn). We shall see that the situation changes dramatically if we consider uncount-

able products.

Let X =
∏

t∈T Xt be an arbitrary (possibly uncountable) product. Recall that we write

A ∼ I for A ⊆ X and I ⊆ T to say that A is determined by coordinates in I, i.e.

A = π−1I [πI [A]], where πI : X →
∏

t∈I Xt is the projection. In other words, A ∼ I means

that if we take x ∈ A and change its coordinates outside I then it still belongs to A.

In the topological setting, every basic open set in X =
∏

t∈T Xt is of the form

U =
n⋂
i=1

π−1ti [Vi] = {x ∈ X : xti ∈ Vi for all i ≤ n},

for some ti ∈ T and open sets Vi ∈ Xti , so every basic open set is determined by a finite

number of coordinates.

Lemma 16.5. If X =
∏

t∈T Xt and every Xi is equipped with a σ-algebra Σt then every

set A from the product σ-algebra Σ =
⊗

t Σt is determined by countably many coordinates.

Proof. Recall that, by definition, Σ is generated by all the sets π−1t [B], t ∈ T , B ∈ Σt.

Each such a generator is determined by one coordinate. It is enough to notice that the

family of subsets of X determined by countably many coordinates is a σ-algebra. �

Example 16.6. Take K = [0, 1]T for uncountable T . Note that for no x ∈ K, the singleton

{x} is determined by countably many coordinates (it is actually determined by them all).

Hence {x} /∈
⊗

tBor[0, 1]. In particular, the product σ-algebra is much smaller then

Bor(K).

The following explains the necessity of introducing Baire sets.

Theorem 16.7. If X =
∏

t∈T Xt is the product of separable metrizable spaces then⊗
t∈T

Bor(Xt) = Baire(X).

The harder part of Theorem 16.6 is to prove that every continuous function f : X → R
is measurable with respect to the product σ-algebra. This will be a consequence of the

following general fact.

Theorem 16.8. If X =
∏

t∈T Xt is the product of separable metrizable spaces then for

every continuous f : X → R there is a countable set I ⊆ T such that f = f ′ ◦ πI for some

continuous function f ′ :
∏

t∈I Xt → R.

The philosophical conclusion is: You can use only countable many variables to define

a continuous function on a product space. Note that we can say that the function f as

above is determined by coordinates in I (f(x) = f(y) whenever x and y have the same
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coordinates in I). There is a short proof of 16.8 in the compact case (see the next problem

list); for a non-compact case we need some preparations.

For the rest of this section we fix a family {Xt : t ∈ T} of separable metrizable spaces.

We need to know that arbitrary such products are ccc; this is not suprising if |T | ≤ c

because the product of c-many separable spaces is separable. There is a combinatorial

proof of 16.9, it will be discussed later.

Lemma 16.9. The product space X =
∏

t∈T Xt is ccc, i.e. every pairwise disjoint family

of nonempty open subsets of X is countable.

Proof. For every t fix a probability measure µt ∈ P (Xt) which is positive on every nonempty

open subset of Xt (for instance, take µt =
∑

n 2−nδzn where {zn : n ∈ N} is dense in Xt).

Write µ for the product measure
⊗

t µt; we know that µ is defined on the product σ-algebra

Σ =
⊗

tBor(Xt).

Take any family U of nonempty open subsets of X. Note that every U ∈ U contains

some nonempty basic open set VU and VU ∈ Σ. Then µ(VU) > 0 and this implies that

{VU : U ∈ U} is countable. Hence, U must be countable as well. �

Lemma 16.10. If U1, U2 are disjoin open subsets of X =
∏

t∈T Xt then there is A ⊆ X

depending on countably many coordinates such that U1 ⊆ A and A ∩ U2 = ∅.

Proof. Consider the maximal pairwise disjoint family V of basic open sets contained in U1

and consider A =
⋃
V . Then U1 ⊆ A by maximality of V ; clearly A ∩ U2 = ∅.

We know from Lemma 16.9 that V is countable; every V ∈ V depends on finitely many

coordinates (since V is basic open set); hence,
⋃
V depends on countably many coordinates

and so does the closure (an exercise). �

Proof. (of Theorem 16.8) Consider a continuous function f : X → R. Enumerate by

(Pn, Qn) the family of all pairs of disjoint open intervals in R. For every n, f−1[Pn] and

f−1[Qn] are disjoint open sets so by Lemma 16.10 they can be separated by a set An
depending on a countable set In ⊆ T . Put I =

⋃
n In.

We claim that if x, y ∈ X, x|I = y|I then f(x) = f(y). Otherwise, if f(x) 6= f(y) then

there is n such that f(x) ∈ Pn and f(y) ∈ Qn so x ∈ An and y /∈ An. But x and y agree

on I, so they are the same on In, a contradiction with An ∼ In.

We can fix z ∈
∏

t∈T\I and set f ′(x′) = f(x′, z) for x′ ∈
∏

t∈I Xt; here (x′, z) denotes

the element of X that has coordinates of x′ on I and those of z, otherwise. This correctly

defines the required decomposition f = f ′ ◦ πI . �

Proof. (of Theorem 16.6) The inclusion
⊗

t∈T Bor(Xt) ⊆ Baire(X) should be clear.

For the reverse inclusion use Theorem 16.8: for a continuous function f : X → R
we have f = f ′ ◦ πI for some countable I ⊆ T . Here f ′ is a continuous function on a

separable metrizable space
∏

t∈I Xt so it is Borel on its domain. Recall that Bor(
∏

t∈I Xt) =⊗
t∈I Bor(Xt). This implies that f is measurable with respect to

⊗
t∈T Bor(Xt). �
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17. Baire or Borel measures?

People sometimes write, even in books, take the usual product measure µ on [0, 1]T when

they mean to say that we take the Lebesgue measure λ on [0, 1] and multiply it by itself |T |-
many times. The previous section explains that for uncountable T such a measure µ is not

Borel if defined only on the product σ-algebra; it is a Baire measure on the product space.

So µ is defined on a rather small family of sets and that family contains no singletons.

We may feel insecure with that but there is a remedy. It will turn out that Bor([0, 1]T ) is

contained in the completion of Baire([0, 1]T ) with respect to µ (the completion is obtained

by adding subsets of sets of measure zero).

The situation is worse if we consider the same product measure µ on (0, 1)T : for countable

T such a product is a Polish space so every measure on it is tight. For uncountable T the

measure µ is not tight, even if we think that we can define it on all Borel sets.

Indeed, take any compact set K ⊆ (0, 1)T . Then for every t ∈ T , πt[K] is a compact

subset of (0, 1) and therefore λ(πt[K]) < 1. If T is uncountable then there is δ > 0 such

that λ(πt[K]) < 1−δ for t from some uncountable T0 ⊆ T . If we take a sequence of distinct

tn ∈ T0 then we conclude that

µ(K) ≤ µ

(⋂
k≤n

π−1tk [πtk [K]]

)
≤ (1− δ)n.

for every n. Hence, µ(K) = 0.

Discussion on that drama coming soon!
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