
G. Plebanek Measures on topological spaces (en los tiempos del cólera)

21. The Haar measure on a compact group

At the beginning of the course, we discussed the properties of the usual product measure

ν on the Cantor set 2N. Recall that this measure is translation invariant when 2N is equipped

with the natural operation of addition coordinatewise mod 2. The name Haar1 measure

for ν is connected with a very general phenomenon that every compact group admits such

a canonical, uniquely defined probability measure. The whole story would make this last

lecture to long so we shall concentrate on the basic elements of the construction.

We shall consider an arbitrary, not necessarily abelian, group (G, ·). We use the usual

convention that for A,B ⊆ G,

A ·B = {a · b : a ∈ A, b ∈ B} and A−1 = {a−1 : a ∈ A}.

By e we denote the neutral element of the group.

A group G is said to be a topological group if G is equipped with some topology such

that the group operations

G×G 3 (x, y)→ x · y ∈ G and G 3 x→ x−1 ∈ G

are continuous (here G × G is given its product topology). Then for every x ∈ G the

function f : G → G, f(y) = x−1y is a homeomorphism sending x to e. This implies that

the topology of G is completely determined by the local base at e ∈ G. We shall write

N(e) for the collection of open neighbourhoods of e. The continuity of the group operations

means that for every U ∈ N(e) there is V ∈ N(e) such that V · V ⊆ U and, likewise, there

is V ∈ N(e) with V −1 ⊆ U .

Below we deal with a compact (Hausdorff) group, i.e. a topological group which is a

compact space in the usual topological sense. One can check that any topological group

satisfying T1 separation axiom (saying that the points are closed) is automatically com-

pletely regular — we not discuss it. Recall, however, that every Hausdorff compact space

is normal.

For the rest of the section we fix a compact group G. We first note the following general

facts on the interplay between the topology and the group structure.

Lemma 21.1. Suppose that K ⊆ U ⊆ G, where K is compact and U is open. Then there

is V ∈ N(e) such that K · V ⊆ U .

Proof. For every x ∈ K put Wx = x−1 · U ; then Wx ∈ N(e) so there is Vx ∈ N(e) such

that Vx · Vx ⊆ Wx. The family {xVx : x ∈ K} is an open cover of K so, by compactness,

K ⊆
⋃k

i=1 xiVxi
for some k and xi ∈ K. Set V =

⋂k
i=1 Vxi

. For any x ∈ K we have

x ∈ xiVxi
for some i ≤ k so

xV ⊆ xiVxi
· Vxi

⊆ xiWxi
= U,

and hence K · V ⊆ U . �
1to honour Alfréd Haar
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Lemma 21.2. Suppose that K1, K2 ⊆ G are compact and disjoint. Then there is U ∈ N(e),

such that for every x ∈ G the set x · U cannot meet both K and L.

Proof. As G is a normal topological space, there are open disjoint U1 ⊇ K1, U2 ⊇ K2. By

Lemma 21.1, there are V1, V2 ∈ N(e) such that K1 · V1 ⊆ U1 and K2 · V2 ⊆ U2.

Consider V ′ = V1∩V2 and V ∈ N(e) such that V −1 ⊆ V ′. Then V is as required; indeed,

suppose xV ∩K1 6= ∅ and xV ∩K2 6= ∅; then

x ∈ (K1 · V −1) ∩ (K2 · V −1) ⊆ U1 ∩ U2 = ∅.

a contradiction. �

The construction of the Haar measure is based on the following concept.

Definition 21.3. Given any U ∈ N(e), for every A ⊆ K define

[A : U ] = min{|I| : I ⊆ G,A ⊆ I · U}.

Put

θU(A) =
[A : U ]

[G : U ]
.

Note that [A : U ] is finite whenever U is open since the sets xU cover G so there is a

finite subcover by compactness; consequently, θU(A) ∈ [0, 1]. Further properties are listed

below.

Lemma 21.4. For any open U, V ⊆ G and an arbitrary A,B ⊆ G the following hold

(i) [A : U ] ≤ [A ∪B : U ] ≤ [A : U ] + [B : U ];

(ii) [A : U ] ≤ [A : V ][V : U ];

(iii) [(xA) : U ] = [A : U ] for any x ∈ G.

Proof. The first inequality in (i) is clear; for the second note that if A ⊆ I ·U and B ⊆ J ·U
then A ∪B ⊆ (I ∪ J) · U .

For (ii) take finite I, J ⊆ G such that A ⊆ I · V and V ⊆ J · U ; then A ⊆ I · J · U .

To check (iii) note that if A ⊆ I · U then xA ⊆ (xI) · U and |xI| = |I|. This shows that

[(xA) : U ] ≤ [A : U ]. We then apply this inequality to A = x−1(xA). �

For the next step we might use the concept of a net in a topological space or compactness

of some product but it is more transparent to use the limit along an ultrafilter in the

following form: If f : T → [0, 1] is any function from some index set T then for any ultrafilter

F on T there is a unique a = limt→F f(t) ∈ [0, 1] such that {t ∈ T : |f(t)− a| < ε} ∈ F for

every ε > 0. This can be verified as L4/P6, only now the index set can be uncountable.

Note that this operation is additive:

lim
t→F

(
f(t) + g(t)

)
= lim

t→F
f(t) + lim

t→F
g(t).

Proposition 21.5. Let K be a family of all compact subsets of a compact group G. There

is a function θ : K → [0, 1] such that

(i) θ(G) = 1, θ(∅) = 0;
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(ii) θ(K ∪ L) = θ(K) + θ(L) whenever K,L ∈ K are disjoint;

(iii) θ(xK) = θ(K) for every J ∈ K and x ∈ G.

Proof. We shall define θ is the limit of θU for U ∈ N(e). Thus our index set will be

T = N(e). The family of all the sets {V ∈ N(e) : V ⊆ U} with U ∈ N(e) is centred (has

the finite intersection property) so there is an ultrafilter F on N(e) such that {V ∈ N(e) :

V ⊆ U} ∈ F for every U ∈ N(e).

For K ∈ K we set

θ(K) = lim
U→F

θU(K).

As θU(K) ∈ [0, 1], the limit along F is well-defined and θU(K) ∈ [0, 1]. We have θU(G) = 1

by the definition of the index so θ(G) = 1. Likewise, θ(∅) = 0.

By Lemma 21.4(i), we have θU(K ∪ L) ≤ θU(K) + θU(L) so, passing to a limit, we have

θ(K ∪ L) ≤ θ(K) ∪ θ(L) for any K,L ∈ K. More subtle is to check that

θ(K ∪ L) ≥ θ(K) + θ(L) whenever K ∩ L = ∅.

By Lemma 21.2 there is U ∈ N(e) such that every translate xU can meet K or L but

never both of them. This clearly holds also for every V ∈ N(e) with V ⊆ U . For such V

take a finite I ⊆ G such that the value of [K ∪ L : V ] is witnessed by K ∪ L ⊆ I · V . We

can now divide I into disjoint parts I(K) and I(L) by the rule that xV meets K whenever

x ∈ I(K) and I(L) = I \ I(K). Then |I| = |I(K)|+ |I(L)| and L ⊆ I(L) · V so

θV (K) + θV (L) ≤ |I(K)|+ |I(L)| = |I| = θV (K ∪ L).

From the point of view of F those V which are not contained in U are inessential so, passing

to the limit, we get θ(K) + θ(L) ≤ θ(K ∪ L), as required.

The fact that θ(xK) = θ(K) follows from Lemma 21.4(iii). �

Theorem 21.6. On every compact group G there is a probability Borel measure ν such

that (denoting by K the family o all compact subsets of G)

(i) ν is translation invariant, that is ν(xB) = ν(B) for B ∈ Bor(G) and x ∈ G;
(ii) ν is regular, i.e. ν(B) = sup{ν(K) : K ⊆ B,K ∈ K} for B ∈ Bor(G).

Proof. We take θ from Proposition 21.5 and perform a two-step regularization procedure:

θ∗(U) = sup{θ(K) : K ∈ K, K ⊆ L} for open U ⊆ G.

η(K) = inf{θ∗(U) : K ⊆ U,U open} for K ∈ K.
It is somewhat technical but quite routine, see below, to check that this defines η on K in

such a way that

η(K) + sup{η(L′) : L′ ⊆ L \K,L′ ∈ K} = η(L),

for every K ⊆ L, K,L ∈ K.

Then we extend ν to the algebra A generated by K by the formula

ν(A) = sup{η(K) : K ⊆ A,K ∈ K},
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and check that this is K-regular finitely additive measure on K. Finally by Lemma 19.3 we

conclude that ν extends to a regular Borel measure; see appendix for details.

It is not difficult to verify that the invariance to left translations is preserved at each

step of the construction. �

There are several ways to derive Theorem 21.6 from Proposition 21.5, see e.g. this handy

text of Jonathan Gleason The approach sketched above is based on David’s Fremlin mono-

graph (where everything is treated in a more general context).

Theorem 21.7. If ν is a left-invariant regular Borel measure on a compact group G then

ν(U−1) = ν(U) for every open set U ⊆ G.

Consequently, ν is also right-invariant and ν ′ = ν for every left-invariant regular proba-

bility measure ν ′

Proof. Consider any open U ⊆ G and

Γ = {(x, y) ∈ G×G : y−1x ∈ U}.

Recall that the product measure ν⊗ν (defined on Bor(G)⊗Bor(G)) extends to a Borel

measure µ on Bor(G×G) so that µ satisifes the usual Fubini formula

µ(Γ) =

∫
G

ν(Gx) dν(x) =

∫
G

ν(Gy) dν(y),

see P11/L9 (note that checking the formula for open Γ ⊆ G×G is simpler).

Every horizontal section Γy is equal to yU so it satisfies ν(Γy) = ν(U) by left-invariance.

For a vertical section Γx we have

y ∈ Γx ⇐⇒ y−1 ∈ Ux−1 ⇐⇒ y ∈ xU−1,

so ν(Γx) = ν(U−1) and Fubini says ν(U) = ν(U−1).

By outer regularity we have ν(B−1) = ν(B) for every Borel B ⊆ G. Note that, formally

speaking, B 7→ ν(B−1) defines a right-invariant measure which is equal to ν.

For uniqueness, apply the above Fubini-like argument to ν ⊗ ν ′. �

Remark 21.8. (1) There is a nontrivial theorem stating that every Haar measure satisfies

the assertion of Theorem 18.2, that Bor(G) is contained in the completion of Baire(G)

with respect to the Haar measure.

(2) The construction above can be adapted to prove that the invariant Borel measure

exists on every group which is locally compact; we start by choosing G0 ∈ N(e) having

compact closure and in the definition of θU replace G by G0. This gives ν with ν(G0) =

1. If the group is locally compact but not compact then the Haar measure is necessarily

infinite (note that the Lebesgue measure is the Haar measure on a locally compact group

(R,+)). In a non-compact case, a left-invariant measure is still unique up to a constant

but may be different from a right-invariant measure.

(3) If a infinite group G is equipped with the discrete topology then its Haar measure is

simply the counting measure (assigning ∞ to infinite sets and |A| for finite A ⊆ G).

https://www.math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Gleason.pdf
https://www1.essex.ac.uk/maths/people/fremlin/chap44.pdf
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(4) If G is infinite discrete group then the existence of an invariant finitely additive prob-

ability on (the power set of) G is another interesting story. A group is said to be

amenable if it admits such a function. We have already seen (L7/P2) that (Z,+) is

amenable (actually, every abelian group is amenable).

(5) The classical non-amenable group is F2, the free group of two generators. If you cannot

find a reason why F2 does not admit an invariant probability (and you cannot fall

asleep for that reason) then check it in Wikipedia or look into this introductory text

by Alejandra Garrido

Appendix A. How to construct a measure in 21.6

This part is fairly general (does not refer to the group structure). We are given a

(monotone, additive and sub-additive) set function θ defined on the lattice of compact

subsets of G. We define

θ∗(U) = sup{θ(K) : K ∈ K, K ⊆ L} for open U ⊆ G.

η(K) = inf{θ∗(U) : K ⊆ U,U open} for K ∈ K.
Then we want to prove that there is a Borel measure ν such that ν(B) = sup{η(K) : K ∈
K, K ⊆ B} for B ∈ Bor(G). Let us agree that below U, V (possibly with indices) stand

for open sets while K,L are always compact.

Step 1. θ∗(U1 ∪ U2) ≤ θ∗(U1) + θ∗(U2).

Indeed if K ⊆ U1 ∪ U2 then, by normality of G, we have K = K1 ∪K2 where Ki ⊆ Ui;

this immediately implies the formula.

Step 2. θ∗(U1 ∪ U2) = θ∗(U1) + θ∗(U2) whenever U1 ∩ U2 = ∅. Likewise, η(K1 ∪ K2) =

η(K1) + η(K2) whenever K1 ∩K2 = ∅.
Call it an exercise!

Step 3. Given K1 ⊆ K2, we have

η(K1) + sup{η(K) : K ⊆ K2 \K1, L
′ ∈ K} = η(K2).

Fix ε > 0; choose Ui ⊇ Ki such that θ∗(Ui) < η(Ki) + ε. Then K2 \ U1 is a compact

set contained in U2 and disjoint from K1 so there is V such that K2 \ U1 ⊆ V ⊆ U2 and

V ∩K1 = ∅. We can moreover assume that θ∗(V ) < η(K2 \ U1) + ε. Now, using Step 1,

η(K2) ≤ θ∗(U1 ∪ V ) ≤ θ∗(U1) + θ∗(V ) ≤ η(K1) + ε+ η(K2 \ U1) + ε,

which verifies the harder inequality in the formula. The reverse one follows by Step 2.

Step 4. For any K1, K2 we have

η(K1 ∪K2) + η(K1 ∩K2) ≥ η(K1) + η(K2).

By Step 3, for any ε > 0 there are Li ⊆ Ki \ (K1 ∩K2) such that η(Li) + η(K1 ∩K)
2 >

η(Ki)− ε. Then

−2ε+ η(K1) + η(K2) ≤ η(L1) + η(K1 ∩K2) + η(L2) + η(K1 ∩K2) ≤

η(L1 ∪ L2 ∪ (K1 ∩K2)) + η(K1 ∩K2) ≤ η(K1 ∪K2) + η(K1 ∩K2).

http://reh.math.uni-duesseldorf.de/~garrido/amenable.pdf
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Step 5. The family A of those Borel sets B such that for every ε > 0 there are K ⊆ B

and L ⊆ G \B with η(K) + η(L) > 1− ε is an algebra of sets containing all open sets (and

all closed sets).

Indeed, every open set is in A by Step 3 (where we put K2 = G. Clearly A is closed

under taking complements. It remains to check that if A1, A2 ∈ A then A1 ∩ A2 ∈ A. For

this fix ε > 0 and choose Ki ⊆ Ai and Li ⊆ G \ Ai witnessing that Ai ∈ A. Then, using

Step 4 twice,

η(K1∩K2)+η(L1∪L2) ≥ η(K1)+η(K2)−η(K1∪K2)+η(L1)+η(L2)−η(L1∩L2) ≥

2− 2ε− η((K1 ∪K2) ∪ (L1 ∩ L2)) ≥ 1− 2ε,

so K1 ∩K2, L1 ∪ L2 are witnesses for A1 ∩ A2 with a constant 2ε.

Step 6. We can now define ν on A by ν(A) = sup{η(K) : K ⊆ A}; such ν is finitely

additive K-regular measure on A. Indeed, if A1 ∩A2 = ∅ then ν(A1 ∪A2) ≥ ν(A1) + ν(A2)

follows from Step 2 while for the reverse inequality take any K ⊆ A1 ∪ A2, fix ε > 0 and

choose K1, L1 witnessing that A1 ∈ A and use Step 3.

Step 7. We can now apply (anstract) Lemma 19.3 saying (in particular) that if ν is an

additive set function on an algebra and ν is regular with respect to compact sets then ν

extends uniquely to a regular measure on the generated σ-algebra (recall that countable

additivity on A is equivalent to being continuous from above at ∅ which follows from

compactness).
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