The Cantor set

The Cantor set is $2^{\mathbb{N}} = \{0, 1\}^{\mathbb{N}}$, the space of all infinite sequences of zeros and ones.

Facts.

- (1) $2^{\mathbb{N}}$ is a compact space in the product topology.
- (2) $2^{\mathbb{N}}$ is metrizable, for instance d(x, y) = 1/k, where $k = \min\{n : x(n \neq y(n))\}$ for $x \neq y$ is a compatible metric.
- (3) $2^{\mathbb{N}}$ is **zerodimensional**, i.e. it has a base of clopen sets.
- (4) $h: 2^{\mathbb{N}} \to C \subseteq [0, 1], h(x) = \sum_{n=1}^{\infty} 2x(n)/3^n$ is a homeomorphism with the usual ternary Cantor set C.
- (5) $f: 2^{\mathbb{N}} \to [0, 1], f(x) = \sum_{n=1}^{\infty} x(n)/2^n$ is a continuous surjection.
- (6) Every compact metric space is a continuous image of $2^{\mathbb{N}}$.

$$\begin{array}{c} \text{Ad } (6) \text{ there is a cot swychow} \\ F: 2^{\text{IN}} \xrightarrow{\text{Outo}} [0,1]^{\text{IN}} \\ F: 2^{\text{IN}} \xrightarrow{\text{Outo}} [0,1]^{\text{IN}} (2^{\text{IN}})^{\text{IN}} \cong 2^{\text{IN} \times \text{IN}} \\ (2^{\text{IN}})^{\text{IN}} \xrightarrow{\text{Outo}} [0,1]^{\text{IN}} (2^{\text{IN}})^{\text{IN}} \cong 2^{\text{IN} \times \text{IN}} \\ (x_{n1}x_{2},\dots) \longrightarrow (4(x_{n})_{1}+(x_{n})_{1}\dots) 2^{\text{IN}} \\ F: 2^{\text{IN}} \xrightarrow{\text{Vies}} [0,1]^{\text{IN}} \cong K \\ F: 2^{\text{IN}} \xrightarrow{\text{Outo}} [0,1]^{\text{IN}} \cong K \\ A = F^{-1}[K] \cong 2^{\text{IN}} A \text{ diosed} \\ \hline \text{There is a refrection} \tau: 2^{\text{IN}} \xrightarrow{\text{Outo}} K \\ \hline \text{Then} \quad F \circ s: 2^{\text{IN}} \xrightarrow{\text{Outo}} K. \end{array}$$

The Cantor set

Notation. If $I \subseteq \mathbb{N}$ and $\varphi : I \to \{0, 1\}$ then we write $[\varphi] = \{x \in 2^{\mathbb{N}} : x | I = \varphi\}.$

is the projection.

Lemma. $C \subseteq 2^{\mathbb{N}}$ is clopen if and only if C depends on finitely many coordinates. $(\neg \downarrow \downarrow \subseteq \mathbb{N} \quad \subset \sim \downarrow)$.

Proof.
Assure C is dopen. Then is a union of qubiled
may lossic sets.

$$C = \bigcup [Q_i] \qquad Q_i: I_i \longrightarrow do_i)$$

 $J = \bigcup [Q_i] \qquad J \qquad J_j \qquad J_j$
 $J = \bigcup I_j$ is qube. The $C \sim I$.

$2^{\mathbb{N}}$ as a topological group

 $\{0,1\}$ is a group with the operation $a \oplus b = a + b \mod 2$. So is $2^{\mathbb{N}}$ with the coordinatewise addition mod 2:

$$x \oplus y = (x(1) \oplus y(1), x(2) \oplus y(2), \ldots).$$

- x = x

Definition. A topological group G is a group equipped with some topology for which

$$G \times G \ni (x, y) \mapsto x \cdot y \in G, \quad G \ni x \mapsto x^{-1} \in G$$

are continuous.

Fact. $(2^{\mathbb{N}}, \oplus)$ is a compact topological group.

$$\gamma = \bigotimes_{m=1}^{\infty} \frac{1}{2} \left(5_0 + \delta_1 \right)$$

4

The measure on $2^{\mathbb{N}}$

Definition. If $C \sim \{1, 2, \dots, n\}$ then we can write $C = C' \times \{0, 1\} \times \{0, 1\} \dots$ Put $\nu(C) = \frac{|C'|}{2^n}.$

Theorem. ν is properly defined finitely additive set-function on the algebra $\operatorname{Clop}(2^{\mathbb{N}})$ of clopen sets. Such ν is continuous from above and therefore has a <u>unique</u> extension to a measure on $Bor(2^{\mathbb{N}}) = \sigma(\operatorname{Clop}(2^{\mathbb{N}}))$. For every $B \in Bor(2^{\mathbb{N}})$ and $\varepsilon > 0$ there is $C \in \operatorname{Clop}(2^{\mathbb{N}})$ such that $\nu(B \triangle C) < \varepsilon$. (at it uses from above at \varnothing $A_n \in \operatorname{Clop}(2^{\mathbb{M}})$ $A_1 \ge A_2 \ge \cdots$ $(A_n = \emptyset \longrightarrow \forall A_n \leftarrow (A_n) = \emptyset$ $A_1 \ge A_2 \ge \cdots$ $(A_n = \emptyset \longrightarrow \forall A_n \leftarrow (A_n) = \emptyset$ $(A_1) = 0$ $(A_1) =$

The Haar measure

Theorem. The measure ν is the Haar measure of the compact group $2^{\mathbb{N}}$, i.e. ν is the unique probability measure which is translation invariant, $\underline{\nu(x\oplus B)} = \nu(B)$ for every $x \in 2^{\mathbb{N}}$ and $B\in Bor(2^{\mathbb{N}}).$

$$x \notin B = \langle x \oplus b \rangle \ b \in B \}$$

Sketchy Proof:
$$T = \neg \forall p : T = \neg \forall p : T = \neg \forall p : X \mid T = \varphi \}$$

$$\varphi: T \rightarrow \alpha(n, 1) \quad (\varphi) \leftarrow \forall (CZ \quad n \in 1 \neq 1)$$

$$\gamma(T\varphi) = \frac{1}{2^{|T|}}$$

$$x \oplus [\varphi] = [\psi] \quad \psi(m) = x(n) \oplus \varphi(n) \quad m \in I$$

$$\gamma(x \oplus [\varphi]) = \gamma(T\varphi).$$

$$(x \oplus [\varphi]) = \gamma(T\varphi).$$

$$(x \oplus [\varphi]) = \gamma(x \oplus [\varphi]) \quad \forall x \quad B \in \mathbb{R}^{n}(2^{|N|})$$

$$(B) = \gamma(x \oplus B)$$

$$Then \quad \gamma'(B) = \gamma(x \oplus B)$$

$$nen = \frac{1}{(lop(2))} = \frac{1}{(lop(2))} = \frac{1}{(lop(2))}$$

71

Basic probability in $2^{\mathbb{N}}$

Definition. A set $A \subseteq 2^{\mathbb{N}}$ is called a tail set (*zbiór resztowy*) if $A \sim \{k : k \ge n\}$ for every n. In other words, A does not depend on finite number of coordinates, that is if $a \in A$ and x(n) = a(n) for almost all n then $x \in A$.

Example. There are natural example of tail sets, for instance $A(\beta) = \left\{ x \in 2^{\mathbb{N}} : \lim_{n \to \infty} \frac{x(1) + x(2) + \dots + x(n)}{n} = \beta \right\},$

is a tail set since changing finite number of coordinates does affect the limit.

Kolmogorov's 0-1 law

Theorem. If $A \in Bor(2^{\mathbb{N}})$ is a Borel tail set then $\nu(A) = 0$ or $\nu(A) = 1$.

Proof. Consider a finite $I \subseteq \mathbb{N}$ and $\varphi : I \to 2$. Take n such that $I \subseteq \{1, 2, \ldots, n\}$; then $[\varphi]$ depends on first n coordinates while A depends on $\{n+1, n+2, \ldots\}$. Hence $\nu([\varphi] \cap A) = \nu([\varphi]) \cdot \nu(A)$, see L2/P3¹.

Every $C \in clop(2^{\mathbb{N}})$ is a finite disjoint union of such sets $[\varphi]$; it follows easily that $\nu(C \cap A) = \nu(C) \cdot \nu(A)$ for any clopen set C. Suppose that $\nu(A) > 0$; we shall check that $\nu(A) = 1$. Take $\varepsilon > 0$ and choose $C \in clop(2^{\mathbb{N}})$ such that $\nu(A \bigtriangleup C) < \varepsilon \cdot \nu(A)$. Then

$$\nu(A) \cdot \nu(C) = \nu(A \cap C) \ge \nu(A) - \varepsilon \cdot \nu(A),$$

which gives $\nu(C) \ge 1 - \varepsilon$. Hence

$$\nu(A) \ge \nu(C) - \varepsilon \ge 1 - 2\varepsilon;$$

as ε may be arbitrarily small, we get $\mu(A) = 1$

L2/P3: ABE Bor (2^{IN})

$$A \sim T$$

 $B \sim J$
 $T \sim J$
 $A \sim T$
 $B \sim J$
 $A \sim T$
 $A \sim T$
 $B \sim J$
 $A \sim T$
 $A \sim$

¹List 2/Problem 3

Normal numbers

$$A(\alpha) = \left\{ x \in 2^{\mathbb{N}} : \lim_{n \to \infty} \frac{x(1) + x(2) + \dots + x(n)}{n} = \alpha \right\}$$

We have $\nu(A(\alpha)) \in \{0,1\}$. Note that $\nu(A(\alpha)) = \nu(A(1-\alpha))$ which may suggest that $\nu(A(1/2)) = 1...$

Theorem of Borel on normal numbers.
$$\nu(A(1/2)) = 1.$$

Follows from 5Lot LN :

Proof. Fix $\alpha < 1/2$ and set

 $\delta = 0.$

$$B_n^{\alpha} = \{ x \in 2^{\mathbb{N}} : \frac{x(1) + \dots x(n)}{n} \leqslant \alpha \}.$$

CLAIM. There is $\theta < 1$ such that $\nu(B_n^{\alpha}) \leq \theta^n$ for every n. $= \langle x \in 2, N : \psi = \langle x \rangle = 0$ for every $\alpha < 1/2$. This means that the set of those $x \in 2^{\mathbb{N}}$ for which $\lim_{n \to \infty} \inf \frac{x(1) + \dots + x(n)}{n} < 1/2 - \delta$, has measure zero for every $\delta > 0$. Finally, the same holds for

8

It follows, by a symmetric argument, that the set of those $x \in 2^{\mathbb{N}}$ for which

$$\limsup_{n \to \infty} \frac{x(1) + \dots x(n)}{n} > 1/2,$$

has also measure zero, and we are done.

Using L2/P 10, we can conclude from that for λ -almost all $x \in [0, 1]$, x has a uniform distribution of '0' and '1' in its binary expansion. This is the simplest form of Borel's theorem, see e.g. https://en.wikipedia.org/wiki/Normal_number https://www.emis.de/journals/AUSM/C2-1/math21-8.pdf for further discussion.

Claim

$$B_n^{\alpha} = \{ x \in 2^{\mathbb{N}} : \frac{x(1) + \dots x(n)}{n} \leqslant \alpha \}, \quad \alpha < 1/2.$$

CLAIM. There is $\theta < 1$ such that $\nu(B_n^{\alpha}) \leq \theta^n$ for every n.

Note that $\nu(B_n^{\alpha}) = c_n/2^n$, where

$$c_n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{[n\alpha]};$$

We are to prove that there is $\theta < 1$ such that $c_n/2^n \leq \theta^n$ for every n.

Note that for any $t \in (0, 1)$ we have

$$t^{\alpha n} \cdot c_n \leqslant \binom{n}{0} + \binom{n}{1}t + \ldots + \binom{n}{[\alpha n]}t^{[\alpha n]} \leqslant (1+t)^n,$$

SO

$$c_n \leqslant \left(\frac{1+t}{t^{\alpha}}\right)^n.$$

It remains to find t such that $(1 + t)/t^{\alpha} < 2$. For this consider $f(t) = 2t^{\alpha} - t - 1$: we have f(1) = 0 and $f'(1) = 2\alpha - 1 < 0$ so there is t < 1 such that f(t) > 0, as required.