The Cantor set

The Cantor set is $2^{\mathbb{N}}=\{0,1\}^{\mathbb{N}}$, the space of all infinite sequences of zeros and ones.

Facts.

(1) $2^{\mathbb{N}}$ is a compact space in the product topology.
(2) $2^{\mathbb{N}}$ is metrizable, for instance $d(x, y)=1 / k$, where $k=$ $\min \{n: x(n \neq y(n)\}$ for $x \neq y$ is a compatible metric.
(3) $2^{\mathbb{N}}$ is zerodimensional, ie. it has a base of clopen sets.
(4) $h: 2^{\mathbb{N}} \rightarrow C \subseteq[0,1], h(x)=\sum_{n=1}^{\infty} 2 x(n) / 3^{n}$ is a homeomorphism with the usual ternary Cantor set C.
(5) $f: 2^{\mathbb{N}} \rightarrow[0,1], f(x)=\sum_{n=1}^{\infty} x(n) / 2^{n}$ is a continuous surjeclion.
(6) Every compact metric space is a continuous image of $2^{\mathbb{N}}$.

Ad (6) there is a cat. sweechion

$$
F: 2^{\text {iN }} \xrightarrow[\text { onto }]{ }[0,1]^{\mathbb{N}}
$$

$F: \quad 2^{N} \longrightarrow\left(2^{N N}\right)^{N} \xrightarrow[\text { onto }]{\text { onto }}[0,1]^{N N}\left(2^{N}\right)^{N N} \simeq 2_{\text {is }}^{\text {NT }}$

$$
\begin{aligned}
& \left.\left(x_{1}, x_{2}, \ldots\right) \rightarrow\left(x_{1}\right), f\left(x_{2}\right), \ldots\right) \\
& x_{1} \in 2^{N i N}
\end{aligned} 2^{\text {iN }}
$$

Even compact metis space $K \underset{\sim}{\longrightarrow}[0,1]^{N / N}$

$$
F: 2^{N N} \xrightarrow[0-t_{0}]{T}[0,1]^{N} \geqslant K
$$

$$
A=F^{-1}[K] \leqslant 2^{|N|} A \text { closed }
$$

The Cantor set

Notation. If $I \subseteq \mathbb{N}$ and $\varphi: I \rightarrow\{0,1\}$ then we write

$$
[\varphi]=\left\{x \in 2^{\mathbb{N}}: x \mid I=\varphi\right\}
$$

Remark. Sets of the form $[\varphi]$, where the domain of φ is finite, form a base of the topology on $2^{\mathbb{N}}$, and over $[\varphi]$ is doper. as $[\varphi]^{c}=\psi[\psi] \quad \psi \neq \varphi \quad \psi \mid I \rightarrow\{0,1\}$
Definition. Given $I \subseteq \mathbb{N}$ and $A \subseteq 2^{\mathbb{N}}$, we say that A is determined by coordinates in I and write $A \sim I$ if

$$
(\forall x \in A)\left(\forall y \in 2^{\mathbb{N}}\right) \text { if } x|I=y| I \text { then } y \in A
$$

Equivalently, $A \sim I$ means that

$$
A=\pi_{I}^{-1}\left[\pi_{I}[A]\right], \quad \pi_{I}: 2^{\mathbb{N}} \rightarrow 2^{I}
$$

is the projection.
Lemma. $C \subseteq 2^{\mathbb{N}}$ is cloven if and only if C depends on finitely many coordinates. ($-\underset{\text { qu ie }}{\substack{N}} C_{\sim I}$).
Proof.
Assure C is doper. Then is a union of quatildy many basic $t^{\text {sets. }}$

$$
\left.C=\bigcup_{j=1}^{k}\left[\varphi_{i}\right] \quad \varphi_{j}: I_{j} \rightarrow \alpha 0,1\right\rangle
$$

$$
I=\bigcup_{j} I_{j} \text { is quite the } C \sim I
$$

$2^{\mathbb{N}}$ as a topological group

$\{0,1\}$ is a group with the operation $a \oplus b=a+b \bmod 2$. So is $2^{\mathbb{N}}$ with the coordinatewise addition $\bmod 2$:

$$
\begin{aligned}
& x \oplus y=(x(1) \oplus y(1), x(2) \oplus y(2), \ldots) . \\
& -\boldsymbol{x}=\boldsymbol{x}
\end{aligned}
$$

Definition. A topological group G is a group equipped with some topology for which

$$
G \times G \ni(x, y) \mapsto x \cdot y \in G, \quad G \ni x \mapsto x^{-1} \in G
$$

are continuous.

Fact. $\left(2^{\mathbb{N}}, \oplus\right)$ is a compact topological group.

$$
\nu=\sum_{m=1}^{\infty} \frac{1}{2}\left(\delta_{0}+\delta_{1}\right)
$$

The measure on $2^{\mathbb{N}}$

Definition. If $C \sim\{1,2, \ldots, n\}$ then we can write $C=C^{\prime} \times$ $\{0,1\} \times\{0,1\} \ldots$. Put

$$
\nu(C)=\frac{\left|C^{\prime}\right|}{2^{n}} .
$$

Theorem. ν is properly defined finitely additive set-function on the algebra $\operatorname{Clop}\left(2^{\mathbb{N}}\right)$ of cloven sets.
Such ν is continuous from above and therefore has a unique extension to a measure on $\operatorname{Bor}\left(2^{\mathbb{N}}\right)=\sigma\left(\operatorname{Clop}\left(2^{\mathbb{N}}\right)\right)$.
(xu) For every $B \in \operatorname{Bor}\left(2^{\mathbb{N}}\right)$ and $\varepsilon>0$ there is $C \in \operatorname{Clop}\left(2^{\mathbb{N}}\right)$ such that $\nu(B \triangle C)<\varepsilon$.
Cotiunals from ono rove at $\varnothing \quad A_{m} \in C \operatorname{lop}\left(2^{N}\right)$

$$
A_{1} \geq A_{2} \geq \bigcap_{n}=\varnothing>A_{n} \longrightarrow\left(A_{1}\right)=0
$$

(*) $\mathcal{A}=<A \in \operatorname{Bor}\left(2^{N}\right): \forall \varepsilon \exists c \in \operatorname{Clop}\left(2^{N}\right)$

$$
\nu(B \Delta C) \subset \varepsilon]
$$

Theorem. The measure ν is the Haar measure of the compact group $2^{\mathbb{N}}$, i.e. ν is the unique probability measure which is translation invariant, $\underline{\nu}^{\nu(x B)=\nu(B)}$ for every $x \in 2^{\mathbb{N}}$ and $B \in \operatorname{Bor}\left(2^{\mathbb{N}}\right)$.

$$
x \oplus B=\{x \oplus b, b \in B\}
$$

Sketduy Proof:

$$
\begin{aligned}
& \left.\varphi: I \rightarrow \alpha 0,1\} \quad[\varphi]=\alpha x \in Z^{N}: x \mid I=\varphi\right\} \\
& \nu([\varphi])=\frac{1}{2^{|I|}} \\
& x \oplus[\varphi]=[\psi] \quad \psi(n)=x(n) \oplus \varphi(n) \quad m \in I . \\
& \quad \therefore(x \oplus[\varphi])=\sim([\varphi]) .
\end{aligned}
$$

- ceclpp $\left(2^{N}\right) \rightarrow V(x \oplus C)=\sim(C)$.
- We wat $\lambda(x \oplus B)=-r(D)$ for $B \in B O\left(2^{I N}\right)$ Define \rightarrow 'on Bor (2 2^{N})
$\lambda^{\prime}(B)=\sim(x \oplus B)$
Then $\lambda^{\prime} \mid \operatorname{lop}\left(2^{\mid N} \mid=-1\right) \operatorname{lop}\left(2^{N}\right)$
so $\omega^{\prime}=\downarrow$.

Basic probability in $2^{\mathbb{N}}$

Definition. A set $A \subseteq 2^{\mathbb{N}}$ is called a tail set (zbiór resztowy) if $A \sim\{k: k \geqslant n\}$ for every n. In other words, A does not depend on finite number of coordinates, that is if $a \in A$ and $x(n)=a(n)$ for almost all n then $x \in A$.

Example. There are natural example of tail sets, for instance

$$
A(\beta)=\left\{x \in 2^{\mathbb{N}}: \lim _{n \rightarrow \infty} \frac{x(1)+x(2)+\ldots x(n)}{n}=\beta\right\}
$$

is a tail set since changing finite number of coordinates does affect the limit.

Kolmogorov's 0-1 law

Theorem. If $A \in \operatorname{Bor}\left(2^{\mathbb{N}}\right)$ is a Bored tail set then $\nu(A)=0$ or $\nu(A)=1$.

Proof. Consider a finite $I \subseteq \mathbb{N}$ and $\varphi: I \rightarrow 2$. Take n such that $I \subseteq\{1,2, \ldots, n\}$; then $[\varphi]$ depends on first n coordinates while A depends on $\{n+1, n+2, \ldots\}$. Hence $\nu([\varphi] \cap A)=\nu([\varphi]) \cdot \nu(A)$, see L2/P3 ${ }^{1}$.
Every $C \in \operatorname{clop}\left(2^{\mathbb{N}}\right)$ is a finite disjoint union of such sets [φ]; it follows easily that $\nu(C \cap A)=\nu(C) \cdot \nu(A)$ for any clopen set C.
Suppose that $\nu(A)>0$; we shall check that $\nu(A)=1$. Take $\varepsilon>0$ and choose $C \in \operatorname{clop}\left(2^{\mathbb{N}}\right)$ such that $\nu(A \triangle C)<\varepsilon \cdot \nu(A)$. Then

$$
\nu(A) \cdot \nu(C)=\nu(A \cap C) \geqslant \nu(A)-\varepsilon \cdot \nu(A),
$$

which gives $\nu(C) \geqslant 1-\varepsilon$. Hence

$$
\nu(A) \geqslant \nu(C)-\varepsilon \geqslant 1-2 \varepsilon
$$

as ε may be arbitrarily small, we
$2 \mathrm{PP3}: A, B \in \operatorname{Bor}\left(2^{N}\right)$

$$
\left.\begin{array}{l}
A \sim I \\
B \sim J \\
I \cap J
\end{array}\right\} \longrightarrow \sim(A \cap B)=\gamma(A)-\neg(B)
$$

[^0]
Normal numbers

$$
A(\alpha)=\left\{x \in 2^{\mathbb{N}}: \lim _{n \rightarrow \infty} \frac{x(1)+x(2)+\ldots x(n)}{n}=\alpha\right\}
$$

We have $\nu(A(\alpha)) \in\{0,1\}$. Note that $\nu(A(\alpha))=\nu(A(1-\alpha))$ which may suggest that $\nu(A(1 / 2))=1$. .

Theorem of Bored on normal numbers.

$$
\nu(A(1 / 2))=1 .
$$

Follows from SL of $L N$:
Proof. Fix $\alpha<1 / 2$ and set

$$
B_{n}^{\alpha}=\left\{x \in 2^{\mathbb{N}}: \frac{x(1)+\ldots x(n)}{n} \leqslant \alpha\right\}
$$

Claim. There is $\theta<1$ such that $\nu\left(B_{n}^{\alpha}\right) \leqslant \theta^{n}$ for every n.

By Claim, if $B^{\alpha}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} B_{k}^{\alpha}$, then $\nu\left(B^{\alpha}\right)=0$ for every $\alpha<1 / 2$. This means that the set of those $x \in 2^{\mathbb{N}}$ for which

$$
\underbrace{\liminf _{n \rightarrow \infty} \frac{x(1)+\ldots x(n)}{n}}<1 / 2-\delta,
$$

has measure zero for every $\delta>0$. Finally, the same holds for $\delta=0$.

It follows, by a symmetric argument, that the set of those $x \in 2^{\mathbb{N}}$ for which

$$
\limsup _{n \rightarrow \infty} \frac{x(1)+\ldots x(n)}{n}>1 / 2,
$$

has also measure zero, and we are done.
Using L2/P 10, we can conclude from that for λ-almost all $x \in$ $[0,1], x$ has a uniform distribution of ' 0 ' and ' 1 ' in its binary expansion. This is the simplest form of Borel's theorem, see e.g. https://en.wikipedia.org/wiki/Normal_number https://www.emis.de/journals/AUSM/C2-1/math21-8.pdf for further discussion.

Claim

$$
B_{n}^{\alpha}=\left\{x \in 2^{\mathbb{N}}: \frac{x(1)+\ldots x(n)}{n} \leqslant \alpha\right\}, \quad \alpha<1 / 2 .
$$

Claim. There is $\theta<1$ such that $\nu\left(B_{n}^{\alpha}\right) \leqslant \theta^{n}$ for every n.

Note that $\nu\left(B_{n}^{\alpha}\right)=c_{n} / 2^{n}$, where

$$
c_{n}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{[n \alpha]} ;
$$

We are to prove that there is $\theta<1$ such that $c_{n} / 2^{n} \leqslant \theta^{n}$ for every n.
Note that for any $t \in(0,1)$ we have

$$
t^{\alpha n} \cdot c_{n} \leqslant\binom{ n}{0}+\binom{n}{1} t+\ldots+\binom{n}{[\alpha n]} t^{[\alpha n]} \leqslant(1+t)^{n},
$$

SO

$$
c_{n} \leqslant\left(\frac{1+t}{t^{\alpha}}\right)^{n}
$$

It remains to find t such that $(1+t) / t^{\alpha}<2$. For this consider $f(t)=2 t^{\alpha}-t-1$: we have $f(1)=0$ and $f^{\prime}(1)=2 \alpha-1<0$ so there is $t<1$ such that $f(t)>0$, as required.

[^0]: $1_{\text {List } 2 / \text { Problem } 3}$

