
G. Plebanek Measures on topological spaces (en los tiempos del cólera)

3. Intro on metrizable spaces

We shall discuss some properties of separable metrizable spaces. Such spaces have a

countable base so, by a general topological fact, can be embedded into [0, 1]N. In fact this

can be proved directly:

Theorem 3.1. If X is separable metrizable space then X is homeomorphic to a subspace

of [0, 1]N.

Proof. (Sketch) Take a metric ρ on X bounded by 1. Let {xn : n ∈ N} be a dense set in

X. For every n, fn(x) = ρ(x, xn) defines a continuous function fn : X → [0, 1]. It suffices

to check that F : X → [0, 1]N where F (x) = (fn(x))n, is a homeomorphic embedding. �

There are many linear spaces that are metrizable. Usually, we first define on a linear

space X a norm ‖ · ‖, i.e. a function X → R+ such that ‖x‖ = 0 iff x = 0, ‖a · x‖ = |a|‖x‖
and ‖x+y‖ ≤ ‖x‖+‖y‖ for any x, y ∈ X and a ∈ R. Then ρ(x, y) = ‖x−y‖ defines a metric

on X. This is so in case of Euclidean spaces Rd: the Euclidean norm is ‖x‖ =
√∑d

i=1 x
2
i .

The same is done for many ‘infinitely dimensional’ spaces; for instance L1[0, 1] is given

the norm ‖f‖1 =
∫ 1

0
|f | dλ. Here ‖ · ‖1 is indeed a norm; if ‖f‖1 = 0 then f = 0 almost

everywhere, i.e. f = 0 in L1[0, 1], where we identify functions equal almost everywhere.

Example 3.2. For any topological space we write Cb(X) for the space of real-valued

bounded continuous functions on X. This space is given the norm ‖ · ‖∞, where ‖f‖∞ =

supx∈X |f(x)|. Note that convergence in the sup-norm is simply uniform convergence.

The space Cb(X) is complete in this norm (recall that uniformly convergent sequence of

continuous functions has a continuous limit).

Note that in case of a compact space K, Cb(K) is denoted simply by C(K), since every

continuous functions on K is bounded Recall the following important fact.

Theorem 3.3 (Stone-Weierstrass). Let K be a compact space. Suppose that W ⊆ C(K)

is a linear subspace which is also a ring, i.e. W is closed under multiplication.

If W contains constant functions and distinguishes points of K (i.e. for different x, y ∈ K
there is w ∈ W such that w(x) 6= w(y)) then W is dense in C(K), so every continuous

function on K can be uniformly approximated by elements of W ..

Proof. Let us believe in it! Engelking’s book gives an elegant argument. Those interested

may google other proofs. �

Theorem 3.4. Let X be a metric space. Then Cb(X) is separable if and only if X is

compact.
1
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Proof. Consider first K = [0, 1N. Let W ⊆ C(K) be the subspace of all linear combinations

of functions that are either constant or are of the form

fn1,n2,...,nk
= πn1 · πn2 · . . . · πnk

,

where k ∈ N and πn denotes the projection onto the nth coordinate. Then W is dense

in C(K) by 3.3 — checking that W satisfies the assumptions should be easy. It is almost

immediate, that rational combinations of functions like fn1,n2,...,nk
form a countable set W0

which is dense in W so also in C(K).

Now if X is compact then we may assume that X is a closed subset of K above. Note

that C(X) = {f |X : f ∈ C(K), because by Tietze’s extension theorem every continuous

funcion on X extends to a continuous function on K. It follows from the above, that taking

the restriction to K of functions from W0 we get a countable dense set in C(X).

Suppose now that X is not compact. Since X is metrizable, there is a sequence of xn ∈ X
without converging subsequences. Then the set F = {xn : n ∈ N} is closed in X. It is also

discrete (every point of F is isolated) so every function g : F → 2 is continuous. For two

different such functions f, g we have ‖f − g‖∞ = 1. It follows that Cb(F ) is not separable.

(why?) Again Cb(F ) agrees with {f |F : f ∈ Cb(X)} (by Tietze’s theorem) so CB(X) is

not separable either. �

Definition 3.5. A topological space is Polish if it is separable and metrizable by a complete

metric.

Euclidean space Rd are clearly Polish, so are RN and [0, 1]N. If X is a Polish space and

Y is a closed subspace of X then Y is Polish too: if ρ is a complete metric on X then

its restriction to Y is also complete (recall also that a subspace of a metrizable separable

space is itself separable). Recall that a Gδ set is one that can be written as a countable

intersection of open sets.

Theorem 3.6 (Alexandrov’s). A subspace Y of a Polish space X is itself Polish if and

only if Y is a Gδ subset of X.

Proof. See L2/P B. �

Note that 3.6 implies that R\Q is Polish! Do not be shocked, the usual Euclidean metric

is veery incomplete on irrationals but there is an equivalent compete metric on R \Q. The

space R \Q has a special role in descriptive set theory; this will be mentioned later.

4. Borel sets

For the time being, we consider always separable metrizable spaces X, Y, . . ..

Given such a space X, we define the Borel σ-algebra Bor(X) to be the smallest σ-

algebra containing all open subsets of X; if TX denotes the topology on X, we can write

Bor(X) = σ(TX).



3

There is a fine theory of Borel structures. see [Kechris, 11.B] but we need only few basic

facts. Traditionally, a set A ⊆ X is called a Gδ set if A =
⋂
n Vn for some open Vn, and is

called an Fσ set if A =
⋃
n Fn for some closed sets Fn. Note that A is Gδ in X if and only

if X \ A is Fσ.

Lemma 4.1. Every closed F ⊆ X is Gδ (so every open set if Fσ).

Proof. Let ρ be a compatible metric on X. Given a closed set F ⊆ X, define

Vn = {x ∈ X : ρ(x, F ) < 1/n}.

Then Vn is open since the function x→ ρ(x, F ) is continuous. If x ∈
⋂
n Vn then ρ(x, F ) = 0

so x ∈ F (as F is closed). �

Lemma 4.2. If Y ⊆ X then Bor(Y ) = {B ∩ Y : B ∈ Bor(X)}.

Proof. Exercise! �

Theorem 4.3. For any separable metrizable spaces X, Y we have

Bor(X × Y ) = Bor(X)⊗Bor(Y ) := σ({A×B : A ∈ Bor(X), B ∈ Bor(Y )}).

Proof. Let us check the only nontrivial thing, that if U ⊆ X × Y is open then U ∈
Bor(X)⊗Bor(Y ). Take countable bases VX and VY in X and Y . Then

U =
⋃
{V × V ′ : V ∈ VX , V ′ ∈ VY , V × V ′ ⊆ V },

so U is a countable union of open rectangles and thus U ∈ Bor(X)⊗Bor(Y ). �

Theorem 4.4. For any separable metrizable spaces Xn we have

Bor(
∏
n

Xn) =
⊗
n

Bor(Xn).

Proof. By definition, the σ-algebra on RHS is the one generated by all the Borel rectangles

B1 ×B2 × . . .×Bn ×Xn+1 × . . . .

Again, the only fact that we need to check is that if U ⊆
∏

nXn is open then U can be

written as a countable union of open rectangle.

Looking back at the previous proof, it should be clear that we can repeat the argument,

as the product space has a base consisting of ‘open finite-dimensional rectangles’. �

Remark 4.5. Theorem 4.3 does not hold for merizable spaces that are not separable: take

a discrete X of size > c and check that the diagonal in X ×X is not in Bor(X)⊗Bor(X).

We shall come back to this later.
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5. Borel measures

Given the space X, we write P (X) for the family of all probability measures defined on

Bor(X), called simply Borel measures on X. 1

Theorem 5.1. For any X, every µ ∈ P (X) is regular, i.e. for every B ∈ Bor(X) and

every ε > 0 there are an open set V and a closed set F such that F ⊆ B ⊆ V and

µ(V \ F ) < ε.

Proof. Consider the family A of those A ∈ Bor(X) which have the required property (can

be approximated from below and from above as stated). Note first that every open U ⊆ X

belongs to A: indeed, using Lemma 4.1 we can write U =
⋃
n Fn for some closed sets Fn.

Taking F1, F1 ∪ F2, . . ., we can assume that, actually, Fn are increasing. By the continuity

of the measure, µ(Fn)→ µ(U). Of course, U is approximated from above by itself.

Now it remains to check that A is a σ-algebra because we then have A = Bor(X),

and this is what we want. Note that if A ∈ A then X \ A ∈ A, by symmetry of the

condition. Consider An ∈ A and set A =
⋃
nAn. Take Fm ⊆ An ⊆ Vn, where Fn are

closed, Vn are open and µ(Vn \ Fn) < ε/2n+1. Put V =
⋃
n Vn and C =

⋃
n Fn; consider

also CN =
⋃
n≤N Fn. Then µ(CN)→ µ(C) so µ(C \CN) < ε/2 if N is large enough. Then

µ(V \ CN) ≤ µ(V \ C) + µ(C \ CN) ≤
∑
n

ε/2n+1 + ε/2 = ε.

Now CN ⊆ A ⊆ V , CN is closed, V is open, as required. �

Remark 5.2. We can distinguish inner-regularity and outer-regularity defined in an obvious

manner. Note that inner-regularity implies the other (and vice versa); however, it would

be more difficult to check, say, inner-regularity alone!

Corollary 5.3. If µ is a Borel measure on X then for every B ∈ Bor(X) there are an Fσ
set A1 nd a Gδ set A2 such that A1 ⊆ B ⊆ A2 and µ(A2 \ A1) = 0.

Proof. Apply 5.1 for ε = 1/n to get Fn’s and Vn’s; then put A1 =
⋃
n Fn and A2 =⋂

n Vn. �

.

Working with measures, we do not care much about measure zero sets. The above fact

explains that from that point of view we loose interest in the Borel hierarchy at the Gδ−Fσ
lever.

Theorem 5.4. Let X be a Polish space. Then every µ ∈ P (K) is tight, i.e. for every

ε > 0 there is a compact set K ⊆ X such that µ(K) ≥ 1− ε.

Proof. Take a compatible complete metric ρ on X; we write B(x, r) for the open ball

{y ∈ X : ρ(x, y) < r}. Let D ⊆ X be a countable dense set

1P for probability; we need sometimes to refer to the power set of X, then we write P(X).
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Fix ε > 0; for every n we have X =
⋃
d∈D B(d, 1/n) (as D is dense). Hence there is a

finite In ⊆ D such that

µ(
⋃
d∈In

B(d, 1/n)) > 1− ε/2n.

Put

Fn =
⋃
d∈In

B(d, 1/n),

and let K =
⋂
n Fn. We have µ(X \ Fn) ≤ ε/2n, so

µ(X \K) ≤
∑
n

ε/2n = ε.

It remains to check that K is compact. This follows from the fact that K is a closed set in

a complete metric space (X, ρ), and K is totally bounded (for every δ > 0, K has a finite

δ-net). This is clear in view of the very definition of K. �

Corollary 5.5. If X is Polish then for every µ ∈ P (X), any B ∈ Bor(X) and ε > 0 there

is a compact set K ⊆ B such that µ(B \K) < ε.

Proof. By 5.1, there is closed F ⊆ B with µ(B\F ) < ε/2. By 5.4 there is compact K1 ⊆ X

with µ(X \K1) < ε/2. Take K = F ∩K1. �

A function f : X → R is Borel if f−1[B] ∈ Bor(X) for every B ∈ Bor(R). The following

is sometimes called Lusin’s theorem.

Theorem 5.6 (Lusin). If f : X → R is a Borel function and µ ∈ P (K) then for every

ε > 0 there is a closed set F ⊆ X such that µ(X \ F ) < ε and the restriction g|F : F → R
is continuous.

If X is Polish, we can find such a set F which is moreover compact.

Proof. Note first that if g = χB is the characteristic function of some B ∈ Bor(X) then

this is simple: take closed sets F1 ⊆ B and F2 ⊆ X \B such that µ(X \ (F1 ∪F2)) < ε (use

5.1).Then F = F1 ∪ F2 is as required (we mean: g is continuous on the subspace F of X).

Consider a Borel simple function g =
∑

k≤n akχBk
, where Bk are pairwise disjoint. We

repeat the above trick: take closed Fk ⊆ Bk and closed F0 ⊆ X \
⋃
k≤n Fn so that F =

F0 ∪ . . . ∪ Fn satisfies µ(X \ F ) < ε. Again, g is continuous on F ,

Consider now any Borel function g. Then there is B0 ∈ Bor(X) such that µ(X \B0) < ε

and g is bounded on B0. Recall that g|B is then a uniform limit of a sequence of simple

Borel functions gn : B0 → R. For every n find a closed set Fn ⊆ B0 so that gn|Fn is

continuous and µ(B0 \ Fn) < ε/2n. Finally, set F =
⋂
n Fn. Then obvious calculation give

µ(X \F ) < 2ε. Now gn|F is a sequence of continuous functions on F converging uniformly

to g|F , so g|F is continuous too.

For the proof of the final statement, repeat the trick from 5.5 �
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An abstract measure space (X,B, µ) is (sometimes) called separable if L1(µ) is separable,

it has a countable set which is dense in ‖ · ‖1-norm.

Lemma 5.7. Suppose that for a measure space (X,B, µ) there is a countable family A ⊆ B
such that

inf{µ(A4B) : A ∈ A} = 0,

for every B ∈ B. Then the measure µ is separable.

Proof. The recipe for a countable dense set in L1(µ): take all simple functions∑
k≤n

akχAk
, where ak ∈ Q, Ak ∈ A, n ∈ N.

It is routine to check that such a set is dense in the subspace of all simple functions and so

is dense in L1(µ). �

Theorem 5.8. If X is separable metrizable then every µ ∈ P (K) is separable (in the above

sense).

Proof. Take a countable base V of X. Then the family

U = {V1 ∪ . . . ∪ Vn : n ∈ N, Vi ∈ V},

is also countable and every open set W ⊆ X is an increasing union of elements of U .

If B ∈ Bor(X) and ε > 0 then, by 5.1, there is open W ⊇ B with µ(W \ B) < ε/2.

Then (by above) there is U ∈ U such that U ⊆ W and µ(W \ U) < ε/2. Then

µ(U 4B) = µ(U \B) + µ(B \ U) ≤ µ(W \B) + µ(W \ U) ε/2 + ε/2 = ε;

we can apply Lemma 5.7. �
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