G. PLEBANEK Measures on topological spaces (EN LOS TIEMPOS DEL COLERA)

5. MEASURES AS FUNCTIONALS

Let (E,|| - ||) be a normed space over R. A function ¢ : E — R is a functional if it is
linear, that is ¢(au+bv) = ap(u) + bp(v) for any vectors u,v € E and any scalars a,b € R.
It is easy to check that if ¢ is continuous then it is bounded on By = {v € E : |jv|| < 1}f]
Indeed, if we suppose that v, € Bg satisfy |¢(v,)| > n then taking u, = (1/v/n) - v, we
have u,, — 0 while ¢(u,) — 00, a contradiction. A norm of a continuous functional ¢ is
defined as

lell = sup [p(v)] < oo

vEBER

We come back to separable metrizable spaces X. Every p € P(X) is a function
Bor(X) — R but we are going to treat such a measure u as a functional on F = Cy(X);
recall that Cy(X), the space of all bounded continuous functions on X, is equipped with
the supremum norm. Simply p defines a functional on Cy(X), denoted by the same letter,
acting by integration

p: Cp(X) = R, M(g)z/xgdu,

Note that ||u|| = 1 for if g : X — [—1.1] then clearly |u(g)] < 1 and the norm is attained
for the constant function ¢ = 1. The space Cy(X) carries an additional structure (is a
Banach lattice) which is a partial order: f < g means that f(x) < g(z) for every z € X.
The functional given by a measure u € P(X) is positive, meaning that u(g) > 0 for every
g € Cp(X) such that g > 0.

We note first that every u € P(X) is determined by the values of the integral on contin-
uous functions.

Lemma 5.1. If u,v € P(X) satisfy u(g) = v(g) for every g € Cyp(X) then u=v.

Proof. Consider any open set V' C X. We know that V' = |J, F,, for some increasing
sequence of closed sets F,,. For every n there is (!!) a continuous function g, : X — [0, 1]
such that g¢,|F, = 1 and ¢,|X \ V = 0. It follows that g, converge pointwise to the
characteristic function yy. We have

/ Gn dpe — (V) / gn dv = v(V),
X X

by the Lebesgue dominated convergence theorem; hence p(V') = v(V).
Once we know that p and v agree on every open set, we get u(B) = v(B) for every
B € Bor(X) by (outer-)regularity of measures, see Theorem 4.1. O

here we consider ‘closed’ balls



Now the question is if we can go the other way round: given a nice functional ¢ on
Cy(X), is there a measure p € Cy(X) such that ¢(g) = [y g du for every g € Cy(X)? This
is a subject of the Riesz representation theorem which holds for any compact space
X (also in the nonmetrizable case). Hopefully, we shall come back to the general version
later; for the time being we can note a simple proof in the metrizable case, with a bit of
cheating.

Theorem 5.2. Let K be a compact metrizable space. If ¢ : C(K) — R is a norm-one
positive functional then there is a unique p € P(K) which represents ¢, i.e.

v(g) = /Kg dp  for every g € C(K).

Proof. Uniqueness follows from Lemma [5.1]

Consider first K = 2N — the proof in this case is quite simple because we have enough
simple continuous functions:

Define u(C) = ¢(xc) for every clopen C C 2Y. Then p is additive, since for disjoint
clopens C7,Cy we have xc,c, = X, + Xco,- Hence p is a finitely additive probability
measure on clop(2Y) and it extends uniquely to a measure on Bor(2Y) (denoted still by
w); recall that p is continuous from above on () for free. This is the required measure: The
formula ¢(g) = [ 9 du holds for any simple continuous function g by linearity of ¢ and
linearity of the integral. For any f € C'(2V) and & > 0 there is a simple continuous function
g such that || f — g|lcc < e. Then

/K|f—g| dp<e  and |o(f) - o(9) = lo(f — )] <=,

which implies that ¢(f) and [, f du differ by at most 2e. So, finally, they are equal.
Consider now an arbitrary metrizable compact space K. By a result proved before the
virus, there is a continuous surjection  : 2% — K. Consider

E={gof0:g9eC(K)};

this is a subspace of C'(2V). Given a functional » on C(K), we can define a functional ¢ on
E simply by ¥(go#) = ¢(g) for g € C(K). Such 9 can be extended to a positive norm-one
functional ¢ on C'(2V). A cheating factor: this is a version of the so called Hahn-Banach
theorem, it is not immediate but let us believe it.

Now we are fine: By the first part of the proof, there is v € P(2Y) such that ¢'(f) =
[on [ dv for f e C(2Y). Take the image measure p = 6[v]; then for any g € C(K) we have

/Kgduz/QNgon:@//(go@)Zw(909)=90(9)-

The first equality above follows by the general formula for ‘changing the variable in the
integral’, see List 4. U

Remark 5.3. One can conclude form the Riesz theorem that every continuous functional
¢ on C(K) (K compact) is represented by some finite signed measure, i.e. there are finite
measures 1, ¥ on K such that, for g € C(K), ¢(g) equals to the integral of g over pu — v.



6. CONVERGING SEQUENCES OF MEASURES

If pn, 0 € P(X) we might say that p, — p (pointwise, or better to say, setwise) if
pn(B) — wu(B) for every B € Bor(X). This is not what we are going to consider here.
That type of convergence, considered in functional analysis is of lesser importance.

Definition 6.1. We say that a sequence of measures p,, € P(X) converges to a measure
p and write p, — p if p, converge as functionals on Cy(X), that is

un(g)—/xgdun—>/xg dp = pu(g),

for every g € Cyp(X).

This is the only type of convergence of measures that we discuss and we should give it
a name. The problem is that in probability it is traditionally called a weak convergence
while in functional analysis it is actually weak* convergence (while the weak one means
something different:-). Let us consider a few examples. recall that J, denotes the Dirac
measure, a point mass at {x}.

Example 6.2. For any X and z,, € X, J,, — ¢, if and only if lim,, z,, = x.
Indeed, simply [ « 9 40, = g(v) and note that lim, z, = x is equivalent to saying that
lim, g(x,) = g(z) for every g € Cp(X) (right?).

Example 6.3. Consider

fn = 1/nY Oy € P([0,1].
k=1

Then 1, —> A, where X is the Lebesgue measure on [0, 1]. Indeed,

1 n %
/ gdunzl/nzg(k/n)ﬁ/ g dA,
0 k=1 0

because in the middle we have the Riemann sum of a continuous function.

Example 6.4. Let 1, be a normalized \ restricted to [0,1/n], i.e.
pin(B) = n - AM(BN[0,1/n]).
Then it is easy (I hope) to check that p, — dy.

Recall that u € P(X) is said to be a continuous measure if y({z}) = 9 for every z € X,
and p is disrete if 1 is concentrated on some countable set (see the list of problems). The
above examples show that discrete measures can converge to a continuous measure and
vice versa. Note also that pu, — p does not imply that lim,, u, (U) = p(U) even for open
sets U; in fact lim, /1,(U) may not exist — check that it happens for [6.2]

In the following characterization of convergence, a boundary of a set B C X is B\ int(B).

Theorem 6.5. Let X be any separable metrizable space and let pu,, pn € P(X). TFAE



w(EF) for every closed F C X;
wu(V') for every open V. C X;
) for every Borel set having p-null boundary.

(#1) lim sup,,, i, (F)
(111) lim inf,, 1, (V)
(iv) timn, 1 (B) = (B
Proof. (i) — (ii). Take a closed set F* C X and € > 0. There is open V' O F such that
u(V'\ F) < e. Take a continuous g : X — [0, 1] such that g|FF =1 and g|X \ V =0 (using
Tietze’s extension theorem, define g on F' and X'\ V' as required and exend it continuously).
Then for large n

un(F)S/gduné/gdu+6§u(V)+6§u(F)+2€~
X X

Note that the line above implies (i),
The equivalence (ii) <> (i) is a consequence of limsup,, p1,,(F') = 1 —liminf,, p,(X \ F).
(iii) — (iv). Taking F = B and V = int(B) we have u(F \ V) = 0. Hence

lim inf j1,(B) > liminf o, (V) > u(V) = p(B) = u(F) > limsup o (F),

<
>

so lim,, p1,,(B) = pu(B).
(1v) — (i7). Consider a compatible metric p on X. Note that for any closed F' C X, the
boundary of the set

B(Fr)y={re X :p(x,F) <r}
is contained in the ‘sphere’
S(B,r)={ze X :p(x,F) =r}.

Since S(F,r) are pairwise disjoint for different values of r, the set of those r for which
u(S(F,r)) > 0 is countable. If follows that there is a sequence of positive reals r, — 0 such
that p(S(F,r;)) = 0. We conclude that

lim sup i (F) < lim 1, (B(F,r4)) = pu(B(F. 7).

for every k. But limy u(B(F, 1) = p(F), so we are done.

(7i) — (7). Note first that to prove that p, — p it suffices to check the convergence on
every continuous g : X — [0, 1].

For such ¢ fix some k and set F; = {z € X : g(x) > j/k}. Then

! !
kY xr, <g<1/kY xr,
j=1 J=0
clever, isn’t it? We have

limsup/gd,unghmsupl/kZun <1/klemsupun(F)§

" Jj=0 j=0

<1/k2u <,qu/k‘+/gd,u,

for every k, and thls gives lim,, [, g dpn, = [, g dp. O
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