
G. Plebanek Measures on topological spaces (en los tiempos del cólera)

5. Measures as functionals

Let (E, ‖ · ‖) be a normed space over R. A function ϕ : E → R is a functional if it is

linear, that is ϕ(au+ bv) = aϕ(u)+ bϕ(v) for any vectors u, v ∈ E and any scalars a, b ∈ R.

It is easy to check that if ϕ is continuous then it is bounded on BE = {v ∈ E : ‖v‖ ≤ 1}1.
Indeed, if we suppose that vn ∈ BE satisfy |ϕ(vn)| > n then taking un = (1/

√
n) · vn we

have un → 0 while ϕ(un) → ∞, a contradiction. A norm of a continuous functional ϕ is

defined as

‖ϕ‖ = sup
v∈BE

|ϕ(v)| <∞.

We come back to separable metrizable spaces X. Every µ ∈ P (X) is a function

Bor(X) → R but we are going to treat such a measure µ as a functional on E = Cb(X);

recall that Cb(X), the space of all bounded continuous functions on X, is equipped with

the supremum norm. Simply µ defines a functional on Cb(X), denoted by the same letter,

acting by integration

µ : Cb(X)→ R, µ(g) =

∫
X

g dµ,

Note that ‖µ‖ = 1 for if g : X → [−1.1] then clearly |µ(g)| ≤ 1 and the norm is attained

for the constant function g = 1. The space Cb(X) carries an additional structure (is a

Banach lattice) which is a partial order: f ≤ g means that f(x) ≤ g(x) for every x ∈ X.

The functional given by a measure µ ∈ P (X) is positive, meaning that µ(g) ≥ 0 for every

g ∈ Cb(X) such that g ≥ 0.

We note first that every µ ∈ P (X) is determined by the values of the integral on contin-

uous functions.

Lemma 5.1. If µ, ν ∈ P (X) satisfy µ(g) = ν(g) for every g ∈ Cb(X) then µ = ν.

Proof. Consider any open set V ⊆ X. We know that V =
⋃

n Fn for some increasing

sequence of closed sets Fn. For every n there is (!!) a continuous function gn : X → [0, 1]

such that gn|Fn = 1 and gn|X \ V = 0. It follows that gn converge pointwise to the

characteristic function χV . We have∫
X

gn dµ→ µ(V ),

∫
X

gn dν → ν(V ),

by the Lebesgue dominated convergence theorem; hence µ(V ) = ν(V ).

Once we know that µ and ν agree on every open set, we get µ(B) = ν(B) for every

B ∈ Bor(X) by (outer-)regularity of measures, see Theorem 4.1. �

1here we consider ‘closed’ balls
1
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Now the question is if we can go the other way round: given a nice functional ϕ on

Cb(X), is there a measure µ ∈ Cb(X) such that ϕ(g) =
∫
X
g dµ for every g ∈ Cb(X)? This

is a subject of the Riesz representation theorem which holds for any compact space

X (also in the nonmetrizable case). Hopefully, we shall come back to the general version

later; for the time being we can note a simple proof in the metrizable case, with a bit of

cheating.

Theorem 5.2. Let K be a compact metrizable space. If ϕ : C(K) → R is a norm-one

positive functional then there is a unique µ ∈ P (K) which represents ϕ, i.e.

ϕ(g) =

∫
K

g dµ for every g ∈ C(K).

Proof. Uniqueness follows from Lemma 5.1.

Consider first K = 2N — the proof in this case is quite simple because we have enough

simple continuous functions:

Define µ(C) = ϕ(χC) for every clopen C ⊆ 2N. Then µ is additive, since for disjoint

clopens C1, C2 we have χC∪C2 = χC1 + χC2 . Hence µ is a finitely additive probability

measure on clop(2N) and it extends uniquely to a measure on Bor(2N) (denoted still by

µ); recall that µ is continuous from above on ∅ for free. This is the required measure: The

formula ϕ(g) =
∫
K
g dµ holds for any simple continuous function g by linearity of ϕ and

linearity of the integral. For any f ∈ C(2N) and ε > 0 there is a simple continuous function

g such that ‖f − g‖∞ < ε. Then∫
K

|f − g| dµ ≤ ε, and |ϕ(f)− ϕ(g)| = |ϕ(f − g)| ≤ ε,

which implies that ϕ(f) and
∫
K
f dµ differ by at most 2ε. So, finally, they are equal.

Consider now an arbitrary metrizable compact space K. By a result proved before the

virus, there is a continuous surjection θ : 2N → K. Consider

E = {g ◦ θ : g ∈ C(K)};

this is a subspace of C(2N). Given a functional ϕ on C(K), we can define a functional ψ on

E simply by ψ(g ◦ θ) = ϕ(g) for g ∈ C(K). Such ψ can be extended to a positive norm-one

functional ψ′ on C(2N). A cheating factor: this is a version of the so called Hahn-Banach

theorem, it is not immediate but let us believe it.

Now we are fine: By the first part of the proof, there is ν ∈ P (2N) such that ψ′(f) =∫
2N
f dν for f ∈ C(2N). Take the image measure µ = θ[ν]; then for any g ∈ C(K) we have∫

K

g dµ =

∫
2N
g ◦ θ dν = ψ′(g ◦ θ) = ψ(g ◦ θ) = ϕ(g).

The first equality above follows by the general formula for ‘changing the variable in the

integral’, see List 4. �

Remark 5.3. One can conclude form the Riesz theorem that every continuous functional

ϕ on C(K) (K compact) is represented by some finite signed measure, i.e. there are finite

measures µ, ν on K such that, for g ∈ C(K), ϕ(g) equals to the integral of g over µ− ν.
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6. Converging sequences of measures

If µn, µ ∈ P (X) we might say that µn −→ µ (pointwise, or better to say, setwise) if

µn(B) → µ(B) for every B ∈ Bor(X). This is not what we are going to consider here.

That type of convergence, considered in functional analysis is of lesser importance.

Definition 6.1. We say that a sequence of measures µn ∈ P (X) converges to a measure

µ and write µn −→ µ if µn converge as functionals on Cb(X), that is

µn(g) =

∫
X

g dµn −→
∫
X

g dµ = µ(g),

for every g ∈ Cb(X).

This is the only type of convergence of measures that we discuss and we should give it

a name. The problem is that in probability it is traditionally called a weak convergence

while in functional analysis it is actually weak∗ convergence (while the weak one means

something different:-). Let us consider a few examples. recall that δx denotes the Dirac

measure, a point mass at {x}.

Example 6.2. For any X and xn ∈ X, δxn −→ δx if and only if limn xn = x.

Indeed, simply
∫
X
g dδx = g(x) and note that limn xn = x is equivalent to saying that

limn g(xn) = g(x) for every g ∈ Cb(X) (right?).

Example 6.3. Consider

µn = 1/n
n∑

k=1

δk/n ∈ P ([0, 1].

Then µn −→ λ, where λ is the Lebesgue measure on [0, 1]. Indeed,∫ 1

0

g dµn = 1/n
n∑

k=1

g(k/n) −→
∫ i

0

g dλ,

because in the middle we have the Riemann sum of a continuous function.

Example 6.4. Let µn be a normalized λ restricted to [0, 1/n], i.e.

µn(B) = n · λ(B ∩ [0, 1/n]).

Then it is easy (I hope) to check that µn −→ δ0.

Recall that µ ∈ P (X) is said to be a continuous measure if µ({x}) = 9 for every x ∈ X,

and µ is disrete if µ is concentrated on some countable set (see the list of problems). The

above examples show that discrete measures can converge to a continuous measure and

vice versa. Note also that µn −→ µ does not imply that limn µn(U) = µ(U) even for open

sets U ; in fact limn µn(U) may not exist – check that it happens for 6.2.

In the following characterization of convergence, a boundary of a set B ⊆ X is B\int(B).

Theorem 6.5. Let X be any separable metrizable space and let µn, µ ∈ P (X). TFAE

(i) µn −→ µ;
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(ii) lim supm µn(F ) ≤ µ(F ) for every closed F ⊆ X;

(iii) lim infm µn(V ) ≥ µ(V ) for every open V ⊆ X;

(iv) limn µn(B) = µ(B) for every Borel set having µ-null boundary.

Proof. (i) → (ii). Take a closed set F ⊆ X and ε > 0. There is open V ⊇ F such that

µ(V \ F ) < ε. Take a continuous g : X → [0, 1] such that g|F = 1 and g|X \ V = 0 (using

Tietze’s extension theorem, define g on F and X \V as required and exend it continuously).

Then for large n

µn(F ) ≤
∫
X

g dµn ≤
∫
X

g dµ+ ε ≤ µ(V ) + ε ≤ µ(F ) + 2ε.

Note that the line above implies (ii),

The equivalence (ii)↔ (iii) is a consequence of lim supn µn(F ) = 1− lim infn µn(X \F ).

(iii)→ (iv). Taking F = B and V = int(B) we have µ(F \ V ) = 0. Hence

lim inf
n

µn(B) ≥ lim inf
n

µn(V ) ≥ µ(V ) = µ(B) = µ(F ) ≥ lim sup
n

µn(F ),

so limn µn(B) = µ(B).

(iv)→ (ii). Consider a compatible metric ρ on X. Note that for any closed F ⊆ X, the

boundary of the set

B(F, r) = {x ∈ X : ρ(x, F ) ≤ r}

is contained in the ‘sphere’

S(B, r) = {x ∈ X : ρ(x, F ) = r}.

Since S(F, r) are pairwise disjoint for different values of r, the set of those r for which

µ(S(F, r)) > 0 is countable. If follows that there is a sequence of positive reals rk → 0 such

that µ(S(F, rk)) = 0. We conclude that

lim sup
n

µn(F ) ≤ lim
n
µn(B(F, rk)) = µ(B(F, rk),

for every k. But limk µ(B(F, rk) = µ(F ), so we are done.

(ii)→ (i). Note first that to prove that µn −→ µ it suffices to check the convergence on

every continuous g : X → [0, 1].

For such g fix some k and set Fj = {x ∈ X : g(x) ≥ j/k}. Then

1/k
l∑

j=1

χFj
≤ g ≤ 1/k

l∑
j=0

χFj
,

clever, isn’t it? We have

lim sup
n

∫
F

g dµn ≤ lim sup
n

1/k
k∑

j=0

µn(Fj) ≤ 1/k
k∑

j=0

lim sup
n

µn(Fj) ≤

≤ 1/k
k∑

j=0

µ(Fj) ≤ µ(F0)/k +

∫
X

g dµ,

for every k, and this gives limn

∫
X
g dµn =

∫
X
g dµ. �
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