
G. Plebanek Measures on topological spaces (en los tiempos del cólera)

7. Topology in the spaces of measures

Let us fix a separable metrizable space X. Recall that for µ ∈ P (X) and g ∈ Cb(X) we

write µ(g) =
∫
X
g dµ for simplicity. We shall endow P (X) with a topology corresponding

to convergence of sequences of measures. Write

Nµ(g, ε) = {ν ∈ P (X) : |ν(g)− µ(g)| < ε}.

We declare Nµ(g, ε) to be open in P (X) (whenever g ∈ Cb(X)). We introduce the topology

by taking all finite intersection of such sets as a base. Hence, basic open sets in P (X)

containing µ ∈ P (X) are of the form

Nµ(g1, . . . , gn, ε) =
n⋂
k=1

Nµ(gi, ε), for gk ∈ Cb(X) and ε > 0}.

It should be clear that µn −→ µ (in the sense of the previous section) if and only if the

sequence of µn converges to µ in the topological spaces (every neighbourhood of µ contains

almost all µn’s). This topology (of weak convergence) is the only one we consider on P (X).

The topology of weak convergence is a traditional name in probability; as we mentioned,

the terminology of functional analysis is different.

Our first aim is to show that P (X) is metrizable; then we shall check that it is also

separable. We start with a certain technical but useful fact on converging sequences.

Lemma 7.1. Let A ⊆ Bor(X) be a family closed under taking finite intersections and such

that every open U ⊆ X is a countable union of sets from A. For µn, µ ∈ P (X),

if lim
n
µn(A) = µ(A) for every A ∈ A then µn −→ µ.

Proof. Note that for A,B ∈ A, we have A∩B ∈ A, so (by the assumption on convergence)

µn(A∪B) = µn(A) +µn(B)−µn(A∩B) −→ µ(A) +µ(B)−µ(A∩B) = µ(A∪B).

It follows that µn converge to µ on any finite union of sets from A.

Take open U ⊆ X. We know that U =
⋃
k Ak for some Ak ∈ A. Given ε > 0, there is p

such that writing B =
⋃p
k=1Ak we have µ(B) > µ(U)− ε. Hence

µ(U)− ε < µ(B) = lim
n
µn(B) ≤ lim inf

n
µn(U),

so we can apply Theorem 6.5(iii). �

Corollary 7.2. If X is zerodimensional (i.e. it has a base consisting of clopen sets) then

µn −→ µ in P (X) if and only if limn µn(C) = µ(C) for every C ∈ clop(X).

Proof. The condition is necessary because clopen sets have empty boundary (see Theorem

6.5). For the sufficiency, we apply Lemma 7.1 for A = clop(X). �
1
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Lemma 7.3. For any separable metrizable X there is a countable family Φ ⊆ Cb(X) testing

the convergence of sequences of measures in P (X) in the following sense:

if lim
n
µn(ϕ) = µ(ϕ) for every ϕ ∈ Φ then µn −→ µ.

Proof. We first check the following.

Claim. There is a countable family Φ ⊆ Cb(X) of functions X → [0, 1] such that for every

open U ⊆ X there is a nondecreasing sequence of ϕk ∈ Φ converging to χU pointwise.

Take a compatible metric ρ on X. Given x ∈ X and p < q define ϕ(x, p, q) by

ϕ(x, p, q)(y) =
ρ(y,X \B(x, q))

ρ(y,B(x, p)) + ρ(y,X \B(x, q))
.

This is a formula for a function that is constant 1 on B(x, p) and 0 on the complement of

the bigger ball B(x, q). Now we take the family of all such functions ϕ(x, p, q) where x runs

some countable dense set D ⊆ X and p, q ∈ Q. This is a countable family and we close it

under taking maxima to get the family Φ.

Then Φ is as required: if U ⊆ X is open and z ∈ X then there is x ∈ D and p < q such

that z ∈ B(x, p) while B(x, q) ⊆ U . This means that χU is the supremum of some sequence

from Φ; we closed Φ under taking maxima to get the required nondecreasing sequence.

Now, if limn µn(ϕ) = µ(ϕ) for every ϕ ∈ Φ then taking open U ⊆ X and ε > 0, we have

ϕ1 ≤ ϕ2 ≤ . . . −→ χU for some ϕk ∈ Φ so

µ(U)− ε < µ(ϕk) < µn(ϕk) + ε < µn(U) + ε,

for large k (by the dominated convergence theorem) and n (by convergence on Φ). The

line above gives µ(U) ≤ lim infn µn(U), so µn −→ µ by Theorem 6.5. �

Corollary 7.4. The space P (X) is metrizable for every metrizable and separable X.

Proof. This follows from 7.3: We fix an enumeration Φ = {ϕk : k ∈ N} and define a metric

σ on P (X) as

σ(µ, ν) =
∑
k

2−k|µ(ϕk)− ν(ϕk)|.

The condition σ(µ, µn)→ 0 is equivalent to µn(ϕ)→ µ(ϕ) for every ϕ ∈ Φ so µn −→ µ.

The fact that σ is a metric on P (X) compatible with the topology of P (X). follows from

two observations. Note first that the ball {ν ∈ P (X) : σ(µ.ν) < r} is open because the

condition is defined by a continuous function (on the right hand side of the definition of

σ). On the other hand, the convergence with respect to the metric σ is equivalent to the

convergence in the topological sense. �

Recall that δx ∈ P (X) is the Diract measure at x ∈ X. Write ∆X = {δx : x ∈ X}. Note

that conv∆X , the convex hull of ∆X , is the family of all measures supported by finite sets.

Theorem 7.5. If X is separable and metrizable then so is P (X).
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Proof. We only need to check separability of P (X). We first prove that conv∆X is dense

in P (X), it meets every basic open set

Nµ(g1, . . . , gn, ε) =
n⋂
k=1

Nµ(gi, ε).

Note that if g : X → R is a bounded continuous function then for ε > 0 there is a finite

partition of X into Borel sets such that the oscillation of g is < ε on every piece. By simple

induction, for a given finite family g1, . . . , gk ∈ CB(X) there is a partition of X into Borel

sets Bj, j ≤ p, such that oscBj
(gi) < ε for every i ≤ k and j ≤ p. Pick xj ∈ Bj and consider

ν =

p∑
j=1

µ(Bj)δxj ∈ conv∆X .

For any i ≤ k, we have

|ν(gi)− µ(gi)| ≤
p∑
j=1

∣∣∣∣∣
∫
Bj

gi dν −
∫
Bj

gi dµ

∣∣∣∣∣ ≤
≤

p∑
j=1

|µ(Bj)gi(xj)−
∫
Bj

gi dµ| ≤
p∑
j=1

∫
Bj

|g(xj)− g(t)| dµ(t) < ε,

so, indeed, ν ∈ conv∆X ∩Nµ(g1, . . . , gk, ε).

Now if we take a countable dense set D ⊆ X; the obvious candidate for a dense subset

of P (X) is convQ∆D, of all convex rational combinations of measures δx, x ∈ D. Note that

the set is indeed countable; it is dense in P (X) since it is clearly dense in conv∆X . �

We shall check that many properties of X are carried over to P (X) and vice versa.

Lemma 7.6. The mapping δ : X → P (X), x −→ δx is a homeomorphic embedding onto a

closed set ∆X ⊆ P (X).

Proof. We already know that limn xn = x is equivalent to δxn −→ δx, so we check that

∆X is closed. Note that, as P (X) is metrizable, it is enough to check that if δxn −→ µ

then µ ∈ ∆X . If xn has a converging subsequence (xnk
)k to x ∈ X then, automatically,

µ = δx ∈ ∆X .

Suppose that no subsequence of xn’ converges. Then for every x there is open Ux ⊆ X

containing x and such that xn ∈ Ux only for finitely many n’s. Then

µ(Ux) ≤ lim inf
n

δxn(Ux) = 0.

Hence X is covered by open sets of µ-measure zero. It follows (?!) that, µ(X) = 0, which

is really a contradiction. �

Theorem 7.7. The space P (X) is compact if and only if X is compact.

Proof. The forward implication follows immediately from Lemma 7.6.

Suppose thatX is compact; since we know that P (X) is a metrizable space, it is enough to

check the sequential characterization of compactness, that every sequence has a converging

subsequence.
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Fix µn ∈ P (X). We know that C(X) is separable so we can fix a sequence of gk, of

norm-one continuous functons which is uniformly dense in C(X).

We use the diagonal principle to find an infinite N ⊆ N such that the limit limn∈N µn(gk)

exists for every k (any doubts?— see the problem list). Then the limit limn∈N µn(g) exists

for every g ∈ C(X); this is simple: For ε > 0 there is k such that ‖g − gk‖∞ < ε and so

|µn(g)− µm(g)|| ≤ |µn(gk)− µm(gk)|+ |µn(g − gk)|+ |µm(g − gk)| ≤ 3ε,

for large n,m ∈ N .

Finally, we define a functional ϕ on C(X) by the formula ϕ(g) = limn∈N µn)(g). This is

clearly an additive positive norm-one functional so by the Riesz representation theorem it

is represented by some measure µ ∈ P (X). We have µn −→ µ as n ∈ N which means that

our subsequence has a limit in P (X), and we are done. �

Remark 7.8. If Y is a subspace of X then we may treat P (Y ) as a subspace of P (X).

Simply, every measure µ ∈ P (Y ) defines µ̃ ∈ P (X) by the formula µ̃(B) = µ(B ∩ X),

for B ∈ Bor(X). To be sure that P (Y ) indeed becomes a subspace of P (X) we need to

check that the topology of P (Y ) agrees with the topology inherited from P (X) — see the

problem list.

Theorem 7.9. The space P (X) is Polish if and only if X is Polish.

Proof. The forward implication follows again from Lemma 7.6 since the closed subspace of

a Polish space is Polish.

Assume that X is Polish. Then X embeds into [0, 1]N as a Gδ subspace (by the Alexan-

drov theorem). In the sequel, we simply assume that X is such a subspace of the Hilbert

cube. Write K for the closure of X in [0, 1]N. Then P (K) is compact (hence Polish), and

it is enough to check that P (X) is a Gδ-subspace of P (K), because we conclude that P (X)

is Polish using Alexandrov again.

Write X =
⋂
kGk, where Gk ⊆ [0, 1]N are open. Then, using Remark 7.8,

P (X) =
⋂
k

{µ̃ ∈ P (K) : µ̃(K \Gk) = 0} =
⋂
k

⋂
r

{µ̃ ∈ P (K) : µ̃(K \Gk) < 1/r}.

Now it remains to check that a set of the form {ν ∈ P (K) : ν(F ) < a} is open whenever

F ⊆ K is closed. In turn, its complement {ν ∈ P (K) : ν(F ) ≥ a} is closed by Theorem

6.5(ii). �

It is useful to recognize compact subsets of P (X) in case X is not compact; this is a

subject of Prokhorov’s1 theorem below. A subset M ⊆ P (X) is called relatively compact if

its closure in P (X) is compact; this is equivalent to saying that every sequence of µn ∈M
has a subsequence converging to some µ ∈ P (X).

Recall that every measure µ ∈ P (X) is tight whenever X is Polish (so for any ε > 0

there is a compact subset K ⊆ X such that µ(K) > 1 − ε). Tightness has its uniform

version.

1or Prohorov; Prochorow in Polish tradition
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Definition 7.10. If X is any separable metrizable space then the set M ⊆ P (X) is said

to be uniformly tight if for any ε > 0 there is a compact subset K ⊆ X such that

µ(K) > 1− ε for every µ ∈M .

Theorem 7.11 (Prokhorov). Let X be any separable metrizable space and let M ⊆ P (X).

(a) If M is uniformly tight then M is relatively compact.

(b) If X is Polish and M is relatively compact then M is uniformly tight.

Proof. For (a) we again embed X into the Hilbert cube and write K for the closure of X

in [0, 1]N. Take µn ∈ P (X); since P (K) is compact, there is a converging subsequence to

some µ ∈ P (K). We only need to check that, in fact, µ ∈ P (X) and for this we need

uniform tightness. For ε > 0 there is compact L ⊆ X such that µn(L) > 1− ε for every n.

The crucial point: Since L is compact, it is closed in K, so µ(L) ≥ lim supn µn(L) ≥ 1− ε
by Theorem 6.5(ii). In particular, µ(X) ≥ 1 − ε for every ε > 0. We get µ(X) = 1, as

required.

Recall again that every measure on a Polish space is tight, see Theorem 4.4; we shall

augment its proof to check (b). Below I copy the previous argument and mark the additional

think that we need.

Take a compatible complete metric ρ on X; we write B(x, r) for the open ball {y ∈ X : ρ(x, y) < r}. Let D ⊆ X be a

countable dense set

Fix ε > 0; for every n we have X =
⋃

d∈D B(d, 1/n) (as D is dense). Hence there is a finite In ⊆ D such that

µ(
⋃

d∈In

B(d, 1/n)) > 1− ε/2n.

for every µ ∈M . Put

Fn =
⋃

d∈In

B(d, 1/n),

and let K =
⋂

n Fn. We have µ(X \ Fn) ≤ ε/2n, so

µ(X \K) ≤
∑
n

ε/2n = ε.

It remains to check that K is compact. This follows from the fact that K is a closed set in a complete metric space (X, ρ),

and K is totally bounded (for every δ > 0, K has a finite δ-net). This is clear in view of the very definition of K.

Hence we need to verify that for any open cover X =
⋃
k Vk there is p ∈ N such that

writing Up =
⋃p
k=1 Vk we have µ(Up) > 1− ε for every µ ∈M .

Suppose otherwise, that there is ε > 0 such that for every p there is µp ∈ M with

µp(Up) ≤ 1 − ε. Since M is relatively compact, passing to a subsequence, we can assume

that µp −→ µ ∈ P (X). We get µ(Up) ≤ 1 − ε (Theorem 6.5 again) for every p. But this

means that µ(X) = limp µ(Up) ≤ 1− ε, a contradiction. �

Part (b) of Prokhorov’s theorem fails badly without Polishness, even for countable do-

mains. By a clever result due to David Preiss, there is a relatively compact set M ⊆ P (Q)

with is not uniformly tight.2

2see Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 109–116


	7. Topology in the spaces of measures

