G. Plebanek Measures on topological spaces (En los tiempos del cólera)

8. Weak convergence in \mathbb{R}

Weak convergence of measures on the real line is of course of basic interest - it appears in the central limit theorem. This lecture is not going to repeat what you know or will learn during courses in probability. We only mention a strong analytic technique of analyzing weak convergence of measures.

For a given $\mu \in P(\mathbb{R})$, its characteristic function $\widehat{\mu}$ is a function $\mathbb{R} \rightarrow \mathbb{C}$ defined as

$$
\widehat{\mu}(t)=\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \mu(x)
$$

Here $e^{i t x}=\cos (t x)+i \sin (t x) \in \mathbb{C}$. Outside probability, $\widehat{\mu}$ is rather called the Fourier transform of μ (with minus in the exponent).

Seeing this for the first time one can ask: 'Why I am supposed to integrate complexvalued functions?'. There are two reasons; the first is that this is actually not complicated - one can always integrate separately the real and the imaginary part. The complex form, however, is much more convenient for analytic manipulations. The second reason is that $\widehat{\mu}$ carries all the information about the measure μ. Once we know $\widehat{\mu}(n)$ for integer values of n then we know all the integrals $\int_{\mathbb{R}} \cos (n x) \mathrm{d} \mu(x)$ and $\int_{\mathbb{R}} \sin (n x) \mathrm{d} \mu(x)$. Consequently, we know the measure μ, that is we know $\int_{\mathbb{R}} g(x) \mathrm{d} \mu(x)$ for every $g \in C_{b}(\mathbb{R})$; see the problem list.

Note first that $\widehat{\mu}$ is a continuous function for every $\mu \in P(\mathbb{R})$, for if $t_{k} \rightarrow t$ then, by the Lebesgue dominated convergence theorem, $\widehat{\mu}\left(t_{k}\right) \rightarrow \widehat{\mu}(t)$.

Lemma 8.1. Let $g=\widehat{\mu}$ for some $\mu \in P(\mathbb{R})$. Then for every $u>0$ we have

$$
\frac{1}{u} \int_{-u}^{u}(1-g(t) \mathrm{d} t \geq \mu(\{x:|x| \geq 2 / u\})
$$

Proof. By the definition of a characteristic function (and obvious changes),

$$
\frac{1}{u} \int_{-u}^{u}(1-g(t)) \mathrm{d} t=2-\frac{1}{u} \int_{-u}^{u}\left(\int_{\mathbb{R}} e^{i t x} \mathrm{~d} \mu(x)\right) \mathrm{d} t=
$$

changing the iterated integrals via Fubini,

$$
=2-\frac{1}{u} \int_{\mathbb{R}}\left(\int_{-u}^{u} e^{i t x} \mathrm{~d} t\right) \mathrm{d} \mu(x)=
$$

we calculate the inner inegral $1 / u \int_{-u}^{u} e^{i t x} \mathrm{~d} t=2 \sin (u x) /(u x)$; now it is clear that everything is real; we get

$$
=2-\int_{\mathbb{R}} 2 \frac{\sin u x}{u x} \mathrm{~d} \mu(x)=2 \int_{\mathbb{R}}\left(1-\frac{\sin u x}{u x}\right) \mathrm{d} \mu(x) \geq
$$

and, since we now integrate a nonnegative function,

$$
\geq 2 \int_{\{x:|u x| \geq 2\}}\left(1-\frac{\sin u x}{u x}\right) \mathrm{d} \mu(x) \geq 2 \cdot \frac{1}{2} \cdot \mu(\{x:|x| \geq 2 / u\})
$$

finito!
Lemma 8.2. Let $g_{n}=\widehat{\mu_{n}}$ for some $\mu_{n} \in P(\mathbb{R})$. If g_{n} converge pointwise to a function g that is continuous at 0 then the family $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is uniformly tight.

Proof. Fix $\varepsilon>0$. Note that $g_{n}(0)=1$ (by the definition of a characteristic function) for every n so $g(0)=1$. As g is continuous at 0 , there is $u>0$ such that $|g(x)-1| \leq \varepsilon / 4$ for $|x|<u$. Then

$$
\frac{1}{u} \int_{-u}^{u}|1-g(t)| \mathrm{d} t \leq(1 / u) \cdot(2 u) \cdot \varepsilon / 4=\varepsilon / 2 .
$$

Using the Lebesgue dominated convergence theorem we have

$$
\frac{1}{u} \int_{-u}^{u}\left|1-g_{n}(t)\right| \mathrm{d} t \leq \varepsilon,
$$

for large n, say that it happens whenever $n>n_{0}$.
Now by Lemma 8.1, we have

$$
\mu_{n}([-2 / u, 2 / u]) \geq 1-\varepsilon \text { for } n>n_{0} .
$$

Note that there is $\theta>2 / u$ such that $\mu_{n}[-\theta, \theta] \geq 1-\varepsilon$ for $n=1,2, \ldots, n_{0}$. Then $\mu_{n}[-\theta, \theta] \geq$ $1-\varepsilon$ for every n, and this is what we wanted.

Theorem 8.3. For $\mu_{n}, \mu \in P(\mathbb{R})$ TFAE
(i) $\mu_{n} \longrightarrow \mu$;
(ii) $\lim _{n} \widehat{\mu_{n}}(t)=\widehat{\mu}(t)$ for every $t \in \mathbb{R}$.

Proof. (i) \rightarrow (ii) follows from the very definition of weak convergence, since the functions sin, cos are bounded and continuous.
(ii) $\rightarrow(i)$ follows from Lemma 8.2 and Prokhorov's theorem: the set $\left\{\mu_{n}: n \in \mathbb{N}\right\}$ is relatively compact so every subsequence has a further subsequence that is converging in $P(\mathbb{R})$. But for every cluster point ν of that set of measures we have $\widehat{\nu}=\widehat{\mu}$ which means $\nu=\mu$, so the whole sequence must converge to μ.

Those characteristic functions can be defined and successfully used for measures on Euclidean spaces: for $\mu \in P\left(\mathbb{R}^{d}\right)$ we define $\widehat{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ by

$$
\widehat{\mu}(t)=\int_{\mathbb{R}^{d}} e^{i\langle t, x\rangle} \mathrm{d} \mu(x),
$$

where $\langle t, x\rangle=\sum_{k=1}^{d} t_{k} x_{k}$ is the scalar products.
9. There is (essentially) one measure - Intro on Boolean algebras

At this point one might quote Monty Python:
And now for something completely different ${ }^{1}$
After seeing whole spaces of measures it is good to realize that all nonatomic probability measures we discussed so far are incarnations of the Lebesgue measure on $[0,1]$. The fact

[^0]that the Haar measure on $2^{\mathbb{N}}$ can be transferred to λ was mention in L2/P10. The following holds for measures on nice spaces.

Theorem 9.1. If X, Y are Polish spaces and $\mu \in P(X), \nu \in P(Y)$ are nonatomic then there is a Borel isomorphism $f: X \rightarrow Y$ such that $f[\mu]=\nu$ (and $\mu=f^{-1}[\nu]$).

This will be partially discussed on the next problem list. We shall outline below a more general phenomenon related to Boolean algebras.

Let us recall (or introduce) the concept of a Boolean algebra \mathfrak{A}, or more formally, $\left\langle\mathfrak{A}, \vee, \wedge,{ }^{c} 0,1\right\rangle$. Here \mathfrak{A} is a set containing two distinct elements 0,1 , equipped with two binary operations \vee, \wedge, and an unary operation ${ }^{c}$ with the intention that those behave exactly as the usual set-theoretic operation \cup, \cap applied to subsets of some space $X ;{ }^{c}$ corresponds to the complement in $X, 0=\emptyset, 1=X$. It is not important to examine a really long list of axioms of a Boolean algebra - it is enough to understand that those axioms guarantee that every true formula, such as

$$
(A \cup B) \cap C=(A \cap C) \cup(B \cap C) \quad \text { or } \quad A \cup(X \backslash A)=X
$$

has its Boolean equivalent; here

$$
(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c) \quad \text { or } \quad a \vee a^{c}=1
$$

Note, however, that the above refers only to finite operations! In a Boolean algebra \mathfrak{A} we can define a partial order \leq mimicking inclusion:

$$
a \leq b \Longleftrightarrow a \vee b=b \Longleftrightarrow a \wedge b=a
$$

Given any family of sets \mathcal{A} we can form the set $S=\bigcup \mathcal{A}$ (at least if we assume the usual axioms of set theory). Note that the union S can be defined as the smallest set containing every $A \in \mathcal{A}$. In a Boolean algebra \mathfrak{A}, given any family $B \subseteq \mathfrak{A}$, we say that $s=\bigvee B$ or $s=\sup B$ if $s \in \mathfrak{A}$ is the least upper bound of B (i.e. $b \leq s$ for $b \in B$ and whenever $b \leq s^{\prime}$ for every $b \in B$ then $s \leq s^{\prime}$. If every nonempty ${ }^{2} B \subseteq \mathfrak{A}$ has the least upper bound then the algebra \mathfrak{A} is said to be complete. In a complete algebra every nonempty $B \subseteq \mathfrak{A}$ has the greatest lower bound (defined in a similar manner), and this follows easily once we realize that $a \leq b$ is equivalent to $b^{c} \leq a^{c}$.

Example 9.2. A trivial example is any algebra \mathcal{A} of subsets of some X (an algebra of sets is by definition closed under all finite set-theoretic operations). We can take $\mathcal{A}=\{\emptyset, X\}$ or $\mathcal{P}(X)$ in the extremal cases. As it was mentioned, \emptyset plays the role of 0 and X is 1 . Note that $\mathcal{P}(X)$ forms a complete Boolean algebra but if, for instance, \mathcal{A} is the algebra of finite or co-finite subsets of \mathbb{R} then \mathcal{A} is not complete; for exmple, the family $\{\{x\}: x \in[0,1]\}$ does not have the least upper bound in \mathcal{A}.

Example 9.3. The most important examples of Boolean algebras are defined in the following way. Take any algebra of sets $\mathcal{A} \subseteq \mathcal{P}(X)$ and choose some ideal $\mathcal{I} \subseteq \mathcal{A}$. Here by an ideal we mean a family such that $\emptyset \in \mathcal{I}, X \notin \mathcal{I}$, if $A, B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$ and if $A \in \mathcal{I}$ then $B \in \mathcal{I}$ for every $B \in \mathcal{A}$ such that $B \subseteq A$.

[^1]Then we define the quotient algebra $\mathfrak{A}=\mathcal{A} / \mathcal{I}$ of equivalence classes A / \mathcal{I} of the equivalence relation

$$
A \sim B \Longleftrightarrow A \triangle B \in \mathcal{I}
$$

This means that we identify the sets from \mathcal{A} that differ by a set from the fixed ideal. We define the operations in a natural way:

$$
A / \mathcal{I} \vee B / \mathcal{I}=(A \cup B) / \mathcal{I}, \quad A / \mathcal{I} \wedge B / \mathcal{I}=(A \cap B) / \mathcal{I}, \quad(A / \mathcal{I})^{c}=(X \backslash A) / \mathcal{I}
$$

and so on. Please check on some examples that those operations are well-defined and satisfy typical axioms.

The simplest example of that type: take the whole of $\mathcal{P}(\mathbb{N})$ and divide it by the ideal \mathcal{I} of all finite subsets of \mathbb{N}. To see that such a Boolean algebra is quite tricky see the problem list.

Example 9.4. Finally, our main hero: take any probability measure space (X, Σ, μ) and $\mathcal{N}=\{A \in \Sigma: \mu(A)=0\}$. Note that \mathcal{N} is an ideal in th eabove sense; actually \mathcal{N} is a σ-ideal, i.e. it is closed under countable unions.

The Boolean algebra $\mathfrak{A}=\Sigma / \mathcal{N}$ is called the measure algebra of μ. Here we finally do what we always wanted: To ignore the sets of measure zero. This object is in fact quite familiar; note that \mathfrak{A} may be seen as the family of $\{0,1\}$-'functions' from $L_{1}(\mu)$.

The measure algebra of some measure has a number of additional structures; we mention below the first one.

Theorem 9.5. Let $\mathfrak{A}=\Sigma / \mathcal{N}$ be the measure algebra built from some probability measure space (X, Σ, μ) where \mathcal{N} is the σ-ideal of sets of measure zero.
(a) The algebra \mathfrak{A} is σ-complete, that is every countable set $B \subseteq \mathfrak{A}$ has the least upper bound.
(b) The formula $\mu^{\prime}(A / \mathcal{N})=\mu(A)$ defines a function $\mu^{\prime}: \mathfrak{A} \rightarrow[0,1]$.
(c) μ^{\prime} is countably additive in this sense, that if $a_{n} \in \mathfrak{A}$ and $a_{n} \wedge a_{k}=0$ for $n \neq k$ then

$$
\mu^{\prime}\left(\bigvee_{n=1}^{\infty} a_{n}\right)=\sum_{n=1}^{\infty} \mu^{\prime}\left(a_{n}\right)
$$

(d) the measure μ^{\prime} satisfies the equivalence $\mu^{\prime}(a)=0$ if and only if $a=0$.
(e) The algebra \mathfrak{A} is complete.

Proof. It is routine to check that if $A_{n} \in \Sigma$ and $a_{n}=A_{n} / \mathcal{N}$ then $\bigvee_{n} a_{n}$ is simply $\bigcup_{n} A_{n} / \mathcal{N}$.
To check (b), note that if $A_{1} / \mathcal{N}=A_{2} / \mathcal{N}$ then $A_{1} \triangle A_{2} \in \mathcal{N}$ which means that $\mu\left(A_{1} \triangle\right.$ $\left.A_{2}\right)=0$ so $\mu\left(A_{1}\right)=\mu\left(A_{2}\right)$. This shows that μ^{\prime} is well-defined.
(c) and (d) are easy exercises.
Perhaps (e) is a bit suprising; in Σ we may not be able to form an uncountable union. However, in the measure algebra we can. Take any (possibly uncountable) $B \subseteq \mathfrak{A}$. Using (a) we can define

$$
r=\sup \left\{\mu^{\prime}\left(\bigvee B_{0}\right): B_{0} \subseteq B, \text { and } B_{0} \text { countable }\right\}
$$

Note that this supremum is attained, there is a countable $B_{0} \subseteq B$ such that $r=\mu^{\prime}\left(\bigvee B_{0}\right)$. It remains to check that $x=\bigvee B_{0}$ is the least upper bound for the whole family B. But for $a \in B$ we must have $a \leq x$ because, otherwise $a \backslash x \neq 0$ which implies (by (d)) $\mu^{\prime}(a \backslash x)>0$ and

$$
\mu^{\prime}(a \vee x)=\mu^{\prime}(a \backslash x)+\mu^{\prime}(x)>\mu(x)=r
$$

a contradiction.

[^0]: ${ }^{1}$ https://www. youtube.com/watch?v=AB1pT1q1GqI\&t=1919s in case the quotation foes not ring a bell.

[^1]: ${ }^{2}$ for $B=\emptyset$ we seem to have $\sup B=0, \inf B=1$

