8. Weak convergence in \mathbb{R}

Weak convergence of measures on the real line is of course of basic interest — it appears in the central limit theorem. This lecture is not going to repeat what you know or will learn during courses in probability. We only mention a strong analytic technique of analyzing weak convergence of measures.

For a given $\mu \in P(\mathbb{R})$, its characteristic function $\widehat{\mu}$ is a function $\mathbb{R} \to \mathbb{C}$ defined as

$$\widehat{\mu}(t) = \int_{\mathbb{R}} e^{itx} d\mu(x).$$

Here $e^{itx} = \cos(tx) + i\sin(tx) \in \mathbb{C}$. Outside probability, $\hat{\mu}$ is rather called the Fourier transform of μ (with minus in the exponent).

Seeing this for the first time one can ask: 'Why I am supposed to integrate complexvalued functions?'. There are two reasons; the first is that this is actually not complicated — one can always integrate separately the real and the imaginary part. The complex form, however, is much more convenient for analytic manipulations. The second reason is that $\hat{\mu}$ carries all the information about the measure μ . Once we know $\hat{\mu}(n)$ for integer values of n then we know all the integrals $\int_{\mathbb{R}} \cos(nx) d\mu(x)$ and $\int_{\mathbb{R}} \sin(nx) d\mu(x)$. Consequently, we know the measure μ , that is we know $\int_{\mathbb{R}} g(x) d\mu(x)$ for every $g \in C_b(\mathbb{R})$; see the problem list.

Note first that $\widehat{\mu}$ is a continuous function for every $\mu \in P(\mathbb{R})$, for if $t_k \to t$ then, by the Lebesgue dominated convergence theorem, $\widehat{\mu}(t_k) \to \widehat{\mu}(t)$.

Lemma 8.1. Let $g = \hat{\mu}$ for some $\mu \in P(\mathbb{R})$. Then for every u > 0 we have

$$\frac{1}{u} \int_{-u}^{u} (1 - g(t) \, \mathrm{d}t \ge \mu \left(\{ x : |x| \ge 2/u \} \right)$$

Proof. By the definition of a characteristic function (and obvious changes),

$$\frac{1}{u} \int_{-u}^{u} (1 - g(t)) \, \mathrm{d}t = 2 - \frac{1}{u} \int_{-u}^{u} \left(\int_{\mathbb{R}} e^{itx} \, \mathrm{d}\mu(x) \right) \, \mathrm{d}t =$$

changing the iterated integrals via Fubini,

$$= 2 - \frac{1}{u} \int_{\mathbb{R}} \left(\int_{-u}^{u} e^{itx} \, \mathrm{d}t \right) \, \mathrm{d}\mu(x) =$$

we calculate the inner inegral $1/u \int_{-u}^{u} e^{itx} dt = 2\sin(ux)/(ux)$; now it is clear that everything is real; we get

$$= 2 - \int_{\mathbb{R}} 2 \frac{\sin ux}{ux} d\mu(x) = 2 \int_{\mathbb{R}} \left(1 - \frac{\sin ux}{ux} \right) d\mu(x) \ge$$

and, since we now integrate a nonnegative function,

$$\geq 2 \int_{\{x:|ux|\geq 2\}} \left(1 - \frac{\sin ux}{ux}\right) d\mu(x) \geq 2 \cdot \frac{1}{2} \cdot \mu(\{x:|x|\geq 2/u\}),$$

finito!

Lemma 8.2. Let $g_n = \widehat{\mu_n}$ for some $\mu_n \in P(\mathbb{R})$. If g_n converge pointwise to a function g that is continuous at 0 then the family $\{\mu_n : n \in \mathbb{N}\}$ is uniformly tight.

Proof. Fix $\varepsilon > 0$. Note that $g_n(0) = 1$ (by the definition of a characteristic function) for every n so g(0) = 1. As g is continuous at 0, there is u > 0 such that $|g(x) - 1| \le \varepsilon/4$ for |x| < u. Then

$$\frac{1}{u} \int_{-u}^{u} |1 - g(t)| \, \mathrm{d}t \le (1/u) \cdot (2u) \cdot \varepsilon/4 = \varepsilon/2.$$

Using the Lebesgue dominated convergence theorem we have

$$\frac{1}{u} \int_{-u}^{u} |1 - g_n(t)| \, \mathrm{d}t \le \varepsilon,$$

for large n, say that it happens whenever $n > n_0$.

Now by Lemma 8.1, we have

$$\mu_n\left(\left[-2/u, 2/u\right]\right) \ge 1 - \varepsilon \text{ for } n > n_0.$$

Note that there is $\theta > 2/u$ such that $\mu_n[-\theta, \theta] \ge 1-\varepsilon$ for $n = 1, 2, ..., n_0$. Then $\mu_n[-\theta, \theta] \ge 1-\varepsilon$ for every n, and this is what we wanted.

Theorem 8.3. For $\mu_n, \mu \in P(\mathbb{R})$ TFAE

(i)
$$\mu_n \longrightarrow \mu;$$

(ii) $\lim_n \widehat{\mu}_n(t) = \widehat{\mu}(t)$ for every $t \in \mathbb{R}$.

Proof. $(i) \rightarrow (ii)$ follows from the very definition of weak convergence, since the functions sin, cos are bounded and continuous.

 $(ii) \to (i)$ follows from Lemma 8.2 and Prokhorov's theorem: the set $\{\mu_n : n \in \mathbb{N}\}$ is relatively compact so every subsequence has a further subsequence that is converging in $P(\mathbb{R})$. But for every cluster point ν of that set of measures we have $\hat{\nu} = \hat{\mu}$ which means $\nu = \mu$, so the whole sequence must converge to μ .

Those characteristic functions can be defined and successfully used for measures on Euclidean spaces: for $\mu \in P(\mathbb{R}^d)$ we define $\widehat{\mu} : \mathbb{R}^d \to \mathbb{C}$ by

$$\widehat{\mu}(t) = \int_{\mathbb{R}^d} e^{i\langle t,x\rangle} \,\mathrm{d}\mu(x),$$

where $\langle t, x \rangle = \sum_{k=1}^{d} t_k x_k$ is the scalar products.

9. There is (essentially) one measure — Intro on Boolean Algebras

At this point one might quote Monty Python: And now for something completely different 1

After seeing whole spaces of measures it is good to realize that all nonatomic probability measures we discussed so far are incarnations of the Lebesgue measure on [0, 1]. The fact

¹https://www.youtube.com/watch?v=AB1pT1q1GqI&t=1919s in case the quotation foes not ring a bell.

that the Haar measure on $2^{\mathbb{N}}$ can be transferred to λ was mention in L2/P10. The following holds for measures on nice spaces.

Theorem 9.1. If X, Y are Polish spaces and $\mu \in P(X)$, $\nu \in P(Y)$ are nonatomic then there is a Borel isomorphism $f: X \to Y$ such that $f[\mu] = \nu$ (and $\mu = f^{-1}[\nu]$).

This will be partially discussed on the next problem list. We shall outline below a more general phenomenon related to Boolean algebras.

Let us recall (or introduce) the concept of a Boolean algebra \mathfrak{A} , or more formally, $\langle \mathfrak{A}, \lor, \land, ^{c} 0, 1 \rangle$. Here \mathfrak{A} is a set containing two distinct elements 0, 1, equipped with two binary operations \lor, \land , and an unary operation c with the intention that those behave exactly as the usual set-theoretic operation \cup, \cap applied to subsets of some space X; c corresponds to the complement in X, $0 = \emptyset$, 1 = X. It is not important to examine a really long list of axioms of a Boolean algebra — it is enough to understand that those axioms guarantee that every true formula, such as

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ or $A \cup (X \setminus A) = X$,

has its Boolean equivalent; here

$$(a \lor b) \land c = (a \land c) \lor (b \land c) \quad \text{or} \quad a \lor a^c = 1.$$

Note, however, that the above refers only to **finite** operations! In a Boolean algebra \mathfrak{A} we can define a partial order \leq mimicking inclusion:

 $a \leq b \iff a \lor b = b \iff a \land b = a.$

Given any family of sets \mathcal{A} we can form the set $S = \bigcup \mathcal{A}$ (at least if we assume the usual axioms of set theory). Note that the union S can be defined as the smallest set containing every $A \in \mathcal{A}$. In a Boolean algebra \mathfrak{A} , given any family $B \subseteq \mathfrak{A}$, we say that $s = \bigvee B$ or $s = \sup B$ if $s \in \mathfrak{A}$ is the least upper bound of B (i.e. $b \leq s$ for $b \in B$ and whenever $b \leq s'$ for every $b \in B$ then $s \leq s'$. If every nonempty² $B \subseteq \mathfrak{A}$ has the least upper bound then the algebra \mathfrak{A} is said to be *complete*. In a complete algebra every nonempty $B \subseteq \mathfrak{A}$ has the greatest lower bound (defined in a similar manner), and this follows easily once we realize that $a \leq b$ is equivalent to $b^c \leq a^c$.

Example 9.2. A trivial example is any algebra \mathcal{A} of subsets of some X (an algebra of sets is by definition closed under all finite set-theoretic operations). We can take $\mathcal{A} = \{\emptyset, X\}$ or $\mathcal{P}(X)$ in the extremal cases. As it was mentioned, \emptyset plays the role of 0 and X is 1. Note that $\mathcal{P}(X)$ forms a complete Boolean algebra but if, for instance, \mathcal{A} is the algebra of finite or co-finite subsets of \mathbb{R} then \mathcal{A} is not complete; for exmple, the family $\{\{x\} : x \in [0, 1]\}$ does not have the least upper bound in \mathcal{A} .

Example 9.3. The most important examples of Boolean algebras are defined in the following way. Take any algebra of sets $\mathcal{A} \subseteq \mathcal{P}(X)$ and choose some ideal $\mathcal{I} \subseteq \mathcal{A}$. Here by an ideal we mean a family such that $\emptyset \in \mathcal{I}, X \notin \mathcal{I}$, if $A, B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$ and if $A \in \mathcal{I}$ then $B \in \mathcal{I}$ for every $B \in \mathcal{A}$ such that $B \subseteq A$.

²for $B = \emptyset$ we seem to have sup B = 0, inf B = 1

Then we define the quotient algebra $\mathfrak{A} = \mathcal{A}/\mathcal{I}$ of equivalence classes A/\mathcal{I} of the equivalence relation

$$A \sim B \iff A \bigtriangleup B \in \mathcal{I}.$$

This means that we identify the sets from \mathcal{A} that differ by a set from the fixed ideal. We define the operations in a natural way:

$$A/\mathcal{I} \vee B/\mathcal{I} = (A \cup B)/\mathcal{I}, \quad A/\mathcal{I} \wedge B/\mathcal{I} = (A \cap B)/\mathcal{I}, \quad (A/\mathcal{I})^c = (X \setminus A)/\mathcal{I},$$

and so on. Please check on some examples that those operations are well-defined and satisfy typical axioms.

The simplest example of that type: take the whole of $\mathcal{P}(\mathbb{N})$ and divide it by the ideal \mathcal{I} of all finite subsets of \mathbb{N} . To see that such a Boolean algebra is quite tricky see the problem list.

Example 9.4. Finally, our main hero: take any probability measure space (X, Σ, μ) and $\mathcal{N} = \{A \in \Sigma : \mu(A) = 0\}$. Note that \mathcal{N} is an ideal in the above sense; actually \mathcal{N} is a σ -ideal, i.e. it is closed under countable unions.

The Boolean algebra $\mathfrak{A} = \Sigma/\mathcal{N}$ is called **the measure algebra** of μ . Here we finally do what we always wanted: To ignore the sets of measure zero. This object is in fact quite familiar; note that \mathfrak{A} may be seen as the family of $\{0, 1\}$ -'functions' from $L_1(\mu)$.

The measure algebra of some measure has a number of additional structures; we mention below the first one.

Theorem 9.5. Let $\mathfrak{A} = \Sigma/\mathcal{N}$ be the measure algebra built from some probability measure space (X, Σ, μ) where \mathcal{N} is the σ -ideal of sets of measure zero.

- (a) The algebra \mathfrak{A} is σ -complete, that is every countable set $B \subseteq \mathfrak{A}$ has the least upper bound.
- (b) The formula $\mu'(A/\mathcal{N}) = \mu(A)$ defines a function $\mu' : \mathfrak{A} \to [0,1]$.
- (c) μ' is countably additive in this sense, that if $a_n \in \mathfrak{A}$ and $a_n \wedge a_k = 0$ for $n \neq k$ then

$$\mu'\left(\bigvee_{n=1}^{\infty}a_n\right) = \sum_{n=1}^{\infty}\mu'(a_n)$$

- (d) the measure μ' satisfies the equivalence $\mu'(a) = 0$ if and only if a = 0.
- (e) The algebra \mathfrak{A} is complete.

Proof. It is routine to check that if $A_n \in \Sigma$ and $a_n = A_n/\mathcal{N}$ then $\bigvee_n a_n$ is simply $\bigcup_n A_n/\mathcal{N}$. To check (b), note that if $A_1/\mathcal{N} = A_2/\mathcal{N}$ then $A_1 \bigtriangleup A_2 \in \mathcal{N}$ which means that $\mu(A_1 \bigtriangleup A_2) = 0$ so $\mu(A_1) = \mu(A_2)$. This shows that μ' is well-defined.

(c) and (d) are easy exercises.

Perhaps (e) is a bit suprising; in Σ we may not be able to form an uncountable union. However, in the measure algebra we can. Take any (possibly uncountable) $B \subseteq \mathfrak{A}$. Using (a) we can define

$$r = \sup\{\mu'(\bigvee B_0) : B_0 \subseteq B, \text{ and } B_0 \text{ countable}\}.$$

Note that this supremum is attained, there is a countable $B_0 \subseteq B$ such that $r = \mu'(\bigvee B_0)$. It remains to check that $x = \bigvee B_0$ is the least upper bound for the whole family B. But for $a \in B$ we must have $a \leq x$ because, otherwise $a \setminus x \neq 0$ which implies (by (d)) $\mu'(a \setminus x) > 0$ and

$$\mu'(a \lor x) = \mu'(a \setminus x) + \mu'(x) > \mu(x) = r,$$

a contradiction.