
G. Plebanek Measures on topological spaces (en los tiempos del cólera)

10. Measure algebras

As we have seen, given a measure space (X,Σ, µ), we can form the algebra A = Σ/N ,

where N is the ideal of sets of measure zero. Then we can transfer µ to a σ-additive

measure on A — that will be denoted by the same letter µ. The measure algebra (A, µ)

may be seen as a metric space:

Theorem 10.1. If (A, µ) is a measure algebra then dµ(a, b) = µ(a4 b) defines a metric

on A and the metric space (A, dµ) is complete.

Proof. The axioms of a metric follow by easy calculations. For instance, if a, b, c ∈ A then

a4 c ≤ (a4 b) ∨ (b4 c), so dµ(a, c) ≤ dµ(a, b) + dµ(b, c).

Take a sequence of an ∈ A which is a Cauchy sequence, i.e. µ(an4ak)→ 0 as n, k →∞.

Then we can find a sequence kn of natural numbers such that µ(akn4akn+1) ≤ 1/2n. Since

algebra A is complete we can define (the upper limit)

a =
∧
i

∨
k≥i

ank
∈ A.

One can check that a is the desired limit, that is µ(an4 a)→ 0. This is an exercise!

Alternatively, this argument is a part of the proof of Riesz’s theorem (a sequence of

functions that is Cauchy in measure converges in measure). Indeed, if we take An ∈ Σ such

that An/N = an then µ(An4Ak)→ 0 (which means that the sequence of χAn is Cauchy in

measure), so it has a subsequence converging pointwise to a function that is {0, 1}-almost

everywhere etc. �

Every measure algebra (A, µ) has its Boolean structure and is, on the other hand, a

metric space. Those two structures are compatible:

Theorem 10.2. In a measure algebra (A, µ) the Boolean operations are continuous.

Proof. Suppose that an → a, i.e. µ(an4 a)→ 0 and suppose that bn → b. Then an ∨ bn →
a ∨ b since

µ((an ∨ bn)4 (a ∨ b)) ≤ µ(an4 a) + µ(bn4 b)→ 0.

By a similar argument an ∧ bn → a ∧ b , acn → ac. �

Recall that the measure space (X,Σ, µ) (or the measure µ itself) is said to be separable if

L1(µ) is separable, and this is equivalent to saying that there is a countable family A ⊆ Σ

such that

inf{µ(A4B) : A ∈ A} = 0,

for every B ∈ Σ (see Lemma 4.7 and Theorem 4.8). With this definition we can state the

following.
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Corollary 10.3. The measure algebra A of a separable measure µ is separable as a metric

space (A, dµ). In particular, the measure algebra of µ ∈ P (X), where X is a separable

metrizable space, is a Polish space.

We can now specify the brave statement there is (essentially) only one measure. Given

a measure µ, we denote by N (µ) the ideal of sets of µ-measure zero.

Theorem 10.4. Suppose that (X,Σ, µ) be a probability measure space that is nonatomic

and separable. Then the measure algebra A = Σ/N (µ) is isomorphic to the measure algebra

B = Bor[0, 1]/N (λ) of the Lebesgue measure. In fact, there is an isomorphism h : A→ B

such that µ(a) = λ(h(a)) for every a ∈ A.

Here by an isomorphism h : A→ B of Boolean algebras we mean a bijection preserving

Boolean operations in an obvious manner (e.g h(a ∨ b) = h(a) ∨ h(b)). We shall prove

Theorem 10.4 below, after some preparations. The theorem is actually an elementary

version of the Maharam structure theorem, stating that, in a sense, for every cardinal

number κ, there is only one measure algebra of density κ.

We say that a ∈ A is an atom of A if a 6= 0 and for every nonzero b ∈ A, if b ≤ a then

b = a.

Lemma 10.5. If A0 is a finite Boolean algebra then there are pairwise disjoint atoms

a1, . . . , ak ∈ A0 (for some k), such that a1 ∨ . . . ∨ ak = 1. Consequently, every b ∈ A0 is of

the form b =
∨
i∈I ai for some I ⊆ {1, 2, . . . , k}.

If h(ai), i ≤ k, are atoms of another finite Boolean algebra B0 and
∨
i≤k h(ai) = 1 the h

extends to a Boolean homomorphism A0 → B0.

Proof. Exercise. �

Lemma 10.6. Keeping the notation of 10.4, let A0 be a finite subalgebra of A and let

h : A0 → B0 ⊆ B be an isomorphism such that

(∗) µ(a) = λ(h(a) for every a ∈ A0.

Then for every x ∈ A there is an extension of h to an isomorphism h1 : A1 → B1, where

A1 is a subalgebra of A generated by A0 ∪ {x} such that (*) is still satisfied.

Proof. By Lemma 10.5, every b ∈ A0 is a finite union of atoms a1, . . . , ak of A0. Take

x ∈ A and note that the algebra A1 will have atoms of the form x ∧ ai, ai \ x (some may

be excluded as being 0). To define h1 properly we need to set the values of h1(ai ∧ x) and

h1(ai \ x).

In a nontrivial case we have ai∧x, ai\x 6= 0. We use the Darboux property of nonatomic

measures. We have h(ai) ∈ B, which is the measure algebra of a nonatomic measure so

there is yi ∈ B such that yi ≤ h(ai) and λ(yi) = µ(ai ∧ x). We define h1(ai ∧ x) = yi and

h1(ai \ x) = h(ai) \ yi. Note that (*) is preserved.

Once h1 is defined on atoms of A1 so that (*) is satisfied for atoms, we let B1 be the

algebra generated by B0 ∪ {yi : i ≤ k}. We extend h1 to h1 : A1 → B1 using Lemma

10.5. �
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Lemma 10.7. In the setting of 10.4, there are countable subalgebras Ã ⊆ A and B̃ ⊆ B

such that

(i) Ã ⊆ A and B̃ ⊆ B are dense in the metrics dµ and dλ, respectively;

(ii) there is an isomorphism h̃ : Ã→ B̃ preserving the measure (so that (*) is granted for

a ∈ Ã).

Proof. This is the classical zig-zag argument. Make a list of xn ∈ A and yn ∈ B forming

countable dense subsets of the corresponding algebras. Start with the trivial isomorphism

h0 : A0 → B0, where A0 = {0, 1}.
At the odd step n we have hn−1 : An−1 → Bn1 ; add xn to An−1 and define an extension

hn : An → Bn by means of Lemma 10.6.

At the even step n repeat the above to the inverse isomorphism h−1n−1 : Bn−1 → An−1,

adding yn this time.

Finally, put Ã =
⋃
nAn, B̃ =

⋃
nBn define h̃ : Ã→ B̃ as the unique common extension

of hn’s. �

For the final stroke we need to recall the following general fact.

Lemma 10.8. Suppose that (X, ρ1) and (Y, ρ1) are complete metric spaces. If g̃ : X̃ → Ỹ

is an isometry between dense subspaces X̃ ⊆ X, Ỹ ⊆ Y then h̃ extends uniquely to an

isometry g : X → Y .

Proof. We simply define g(x) = limn g̃(xn) whenever xn → x. It is easy to check that

the definition is correct. For instance, since xn → x then xn’s form a Cauchy sequence.

Hence ĝ(xn) also form a cauchy sequence (as g̃ is an isometry); Y is complete so the limit

exists. �

Proof. (of Theorem 10.4) This follows from Lemma 10.7 and Lemma 10.8. We only need

to check that the extension of an isomorphism is again an isomorphism. But this is a

consequence of the continuity of Boolean operations, see Theorem 10.2 �

Corollary 10.9. If (X,Σ, µ) and (Y,Θ, ν) are two nonatomic separable probability measure

spaces then the Banach spaces L1(µ) and L1(ν) are linearly isometric.

In particular, L1(µ) is isometric to L1(ν) whenever the measures µ ∈ P (X) and ν ∈ P (Y )

are nonatomic, and the spaces X, Y are separable and metrizable.

Proof. We know that A = Σ/N (µ) and B = Θ/N (ν) are isomorphic Boolean algebras so

we may fix an isomorphism h : A→ B preserving the measure.

To define an isometry I : L1(µ)→ L1(ν) we first consider simple function. If A ∈ Σ then

χA ∈ L1(µ) (this is how we think) but formally this is rather ‘the characteristic function of’

A/N (µ), that is an element of L1(µ). To follow our former informal custom we can define

I(χA) = χB, where B ∈ Θ is such that h(A/N (µ)) = B/N (ν). At this level, I preserves

the norms since ‖χA‖1 = µ(A) for A ∈ Σ.

This enables us to define I on the subspace of simple functions in L1(µ), by the formlua

I

(∑
k≤n

tk · χAk

)
=
∑
k≤n

tk · χBk
,
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where Bk satisfy h(Ak/N (µ) = Bk/N (λ). It requires some work to check that the definition

is correct but. . . let us skip it:-) The proof is very similar to that checking that the integral

is well-defined on simple functions.

The fact that I preserves the L1-norms follow from the fact that if we consider a simple

function f =
∑

k≤n tk · χAk
where Ak’s are pairwise disjoint then ‖f‖1 =

∑
k≤n |tk|µ(Ak).

Finally we use Lemma 10.8 again, applying it to I defined on a dense subspace of simple

functions. �

In particular, L1[0, 1] is the same as L1[0, 1]2 which does not look that obvious. The above

Corollary is sometimes useful: For instance, we may use the fact that L1[0, 1] is isometric to

L1(2
N) to conclude that in L1[0, 1] there is a sequence of independent random variables of

zero mean since such a sequence obviously exists in the other space: take gn : 2N → {−1.1}
defined by gn(x) = (−1)x(n).

Let us finally remark that Corollary 10.9 can be proved for Lp-spaces by an analogous

argument.
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