10. Measure algebras

As we have seen, given a measure space (X, Σ, μ) , we can form the algebra $\mathfrak{A} = \Sigma/\mathcal{N}$, where \mathcal{N} is the ideal of sets of measure zero. Then we can transfer μ to a σ -additive measure on \mathfrak{A} — that will be denoted by the same letter μ . The measure algebra (\mathfrak{A}, μ) may be seen as a metric space:

Theorem 10.1. If (\mathfrak{A}, μ) is a measure algebra then $d_{\mu}(a, b) = \mu(a \bigtriangleup b)$ defines a metric on \mathfrak{A} and the metric space (\mathfrak{A}, d_{μ}) is complete.

Proof. The axioms of a metric follow by easy calculations. For instance, if $a, b, c \in \mathfrak{A}$ then

$$a \triangle c \le (a \triangle b) \lor (b \triangle c)$$
, so $d_{\mu}(a,c) \le d_{\mu}(a,b) + d_{\mu}(b,c)$.

Take a sequence of $a_n \in \mathfrak{A}$ which is a Cauchy sequence, i.e. $\mu(a_n \triangle a_k) \to 0$ as $n, k \to \infty$. Then we can find a sequence k_n of natural numbers such that $\mu(a_{k_n} \triangle a_{k_{n+1}}) \leq 1/2^n$. Since algebra \mathfrak{A} is complete we can define (the upper limit)

$$a = \bigwedge_{i} \bigvee_{k \ge i} a_{n_k} \in \mathfrak{A}$$

One can check that a is the desired limit, that is $\mu(a_n \triangle a) \rightarrow 0$. This is an exercise!

Alternatively, this argument is a part of the proof of Riesz's theorem (a sequence of functions that is Cauchy in measure converges in measure). Indeed, if we take $A_n \in \Sigma$ such that $A_n/\mathcal{N} = a_n$ then $\mu(A_n \triangle A_k) \to 0$ (which means that the sequence of χ_{A_n} is Cauchy in measure), so it has a subsequence converging pointwise to a function that is $\{0, 1\}$ -almost everywhere etc.

Every measure algebra (\mathfrak{A}, μ) has its Boolean structure and is, on the other hand, a metric space. Those two structures are compatible:

Theorem 10.2. In a measure algebra (\mathfrak{A}, μ) the Boolean operations are continuous.

Proof. Suppose that $a_n \to a$, i.e. $\mu(a_n \bigtriangleup a) \to 0$ and suppose that $b_n \to b$. Then $a_n \lor b_n \to a \lor b$ since

$$\mu((a_n \vee b_n) \bigtriangleup (a \vee b)) \le \mu(a_n \bigtriangleup a) + \mu(b_n \bigtriangleup b) \to 0.$$

By a similar argument $a_n \wedge b_n \to a \wedge b$, $a_n^c \to a^c$.

Recall that the measure space (X, Σ, μ) (or the measure μ itself) is said to be separable if $L_1(\mu)$ is separable, and this is equivalent to saying that there is a countable family $\mathcal{A} \subseteq \Sigma$ such that

 $\inf\{\mu(A \bigtriangleup B) : A \in \mathcal{A}\} = 0,$

for every $B \in \Sigma$ (see Lemma 4.7 and Theorem 4.8). With this definition we can state the following.

Corollary 10.3. The measure algebra \mathfrak{A} of a separable measure μ is separable as a metric space (\mathfrak{A}, d_{μ}) . In particular, the measure algebra of $\mu \in P(X)$, where X is a separable metrizable space, is a Polish space.

We can now specify the brave statement there is (essentially) only one measure. Given a measure μ , we denote by $\mathcal{N}(\mu)$ the ideal of sets of μ -measure zero.

Theorem 10.4. Suppose that (X, Σ, μ) be a probability measure space that is nonatomic and separable. Then the measure algebra $\mathfrak{A} = \Sigma/\mathcal{N}(\mu)$ is isomorphic to the measure algebra $\mathfrak{B} = Bor[0,1]/\mathcal{N}(\lambda)$ of the Lebesgue measure. In fact, there is an isomorphism $h : \mathfrak{A} \to \mathfrak{B}$ such that $\mu(a) = \lambda(h(a))$ for every $a \in \mathfrak{A}$.

Here by an isomorphism $h: \mathfrak{A} \to \mathfrak{B}$ of Boolean algebras we mean a bijection preserving Boolean operations in an obvious manner (e.g. $h(a \lor b) = h(a) \lor h(b)$). We shall prove Theorem 10.4 below, after some preparations. The theorem is actually an elementary version of the Maharam structure theorem, stating that, in a sense, for every cardinal number κ , there is only one measure algebra of density κ .

We say that $a \in \mathfrak{A}$ is an atom of \mathfrak{A} if $a \neq 0$ and for every nonzero $b \in \mathfrak{A}$, if $b \leq a$ then b = a.

Lemma 10.5. If \mathfrak{A}_0 is a finite Boolean algebra then there are pairwise disjoint atoms $a_1, \ldots, a_k \in \mathfrak{A}_0$ (for some k), such that $a_1 \vee \ldots \vee a_k = 1$. Consequently, every $b \in \mathfrak{A}_0$ is of the form $b = \bigvee_{i \in I} a_i$ for some $I \subseteq \{1, 2, \ldots, k\}$.

If $h(a_i)$, $i \leq k$, are atoms of another finite Boolean algebra \mathfrak{B}_0 and $\bigvee_{i\leq k} h(a_i) = 1$ the h extends to a Boolean homomorphism $\mathfrak{A}_0 \to \mathfrak{B}_0$.

Proof. Exercise.

Lemma 10.6. Keeping the notation of 10.4, let \mathfrak{A}_0 be a finite subalgebra of \mathfrak{A} and let $h: \mathfrak{A}_0 \to \mathfrak{B}_0 \subseteq \mathfrak{B}$ be an isomorphism such that

(*) $\mu(a) = \lambda(h(a) \text{ for every } a \in \mathfrak{A}_0.$

Then for every $x \in \mathfrak{A}$ there is an extension of h to an isomorphism $h_1 : \mathfrak{A}_1 \to \mathfrak{B}_1$, where \mathfrak{A}_1 is a subalgebra of \mathfrak{A} generated by $\mathfrak{A}_0 \cup \{x\}$ such that (*) is still satisfied.

Proof. By Lemma 10.5, every $b \in \mathfrak{A}_0$ is a finite union of atoms a_1, \ldots, a_k of \mathfrak{A}_0 . Take $x \in \mathfrak{A}$ and note that the algebra \mathfrak{A}_1 will have atoms of the form $x \wedge a_i$, $a_i \setminus x$ (some may be excluded as being 0). To define h_1 properly we need to set the values of $h_1(a_i \wedge x)$ and $h_1(a_i \setminus x)$.

In a nontrivial case we have $a_i \wedge x, a_i \setminus x \neq 0$. We use the Darboux property of nonatomic measures. We have $h(a_i) \in \mathfrak{B}$, which is the measure algebra of a nonatomic measure so there is $y_i \in \mathfrak{B}$ such that $y_i \leq h(a_i)$ and $\lambda(y_i) = \mu(a_i \wedge x)$. We define $h_1(a_i \wedge x) = y_i$ and $h_1(a_i \setminus x) = h(a_i) \setminus y_i$. Note that (*) is preserved.

Once h_1 is defined on atoms of \mathfrak{A}_1 so that (*) is satisfied for atoms, we let \mathfrak{B}_1 be the algebra generated by $\mathfrak{B}_0 \cup \{y_i : i \leq k\}$. We extend h_1 to $h_1 : \mathfrak{A}_1 \to \mathfrak{B}_1$ using Lemma 10.5.

Lemma 10.7. In the setting of 10.4, there are countable subalgebras $\widetilde{\mathfrak{A}} \subseteq \mathfrak{A}$ and $\widetilde{\mathfrak{B}} \subseteq \mathfrak{B}$ such that

- (i) $\widetilde{\mathfrak{A}} \subseteq \mathfrak{A}$ and $\widetilde{\mathfrak{B}} \subseteq \mathfrak{B}$ are dense in the metrics d_{μ} and d_{λ} , respectively;
- (ii) there is an isomorphism $\widetilde{h}: \widetilde{\mathfrak{A}} \to \widetilde{\mathfrak{B}}$ preserving the measure (so that (*) is granted for $a \in \widetilde{\mathfrak{A}}$).

Proof. This is the classical zig-zag argument. Make a list of $x_n \in \mathfrak{A}$ and $y_n \in \mathfrak{B}$ forming countable dense subsets of the corresponding algebras. Start with the trivial isomorphism $h_0: \mathfrak{A}_0 \to \mathfrak{B}_0$, where $\mathfrak{A}_0 = \{0, 1\}$.

At the odd step n we have $h_{n-1}: \mathfrak{A}_{n-1} \to \mathfrak{B}_{n_1}$; add x_n to \mathfrak{A}_{n-1} and define an extension $h_n: \mathfrak{A}_n \to \mathfrak{B}_n$ by means of Lemma 10.6.

At the even step n repeat the above to the inverse isomorphism $h_{n-1}^{-1} : \mathfrak{B}_{n-1} \to \mathfrak{A}_{n-1}$, adding y_n this time.

Finally, put $\widetilde{\mathfrak{A}} = \bigcup_n \mathfrak{A}_n$, $\widetilde{\mathfrak{B}} = \bigcup_n \mathfrak{B}_n$ define $\widetilde{h} : \widetilde{\mathfrak{A}} \to \widetilde{\mathfrak{B}}$ as the unique common extension of h_n 's.

For the final stroke we need to recall the following general fact.

Lemma 10.8. Suppose that (X, ρ_1) and (Y, ρ_1) are complete metric spaces. If $\tilde{g} : \tilde{X} \to \tilde{Y}$ is an isometry between dense subspaces $\tilde{X} \subseteq X$, $\tilde{Y} \subseteq Y$ then \tilde{h} extends uniquely to an isometry $g : X \to Y$.

Proof. We simply define $g(x) = \lim_{n \to \infty} \tilde{g}(x_n)$ whenever $x_n \to x$. It is easy to check that the definition is correct. For instance, since $x_n \to x$ then x_n 's form a Cauchy sequence. Hence $\hat{g}(x_n)$ also form a cauchy sequence (as \tilde{g} is an isometry); Y is complete so the limit exists.

Proof. (of Theorem 10.4) This follows from Lemma 10.7 and Lemma 10.8. We only need to check that the extension of an isomorphism is again an isomorphism. But this is a consequence of the continuity of Boolean operations, see Theorem 10.2 \Box

Corollary 10.9. If (X, Σ, μ) and (Y, Θ, ν) are two nonatomic separable probability measure spaces then the Banach spaces $L_1(\mu)$ and $L_1(\nu)$ are linearly isometric.

In particular, $L_1(\mu)$ is isometric to $L_1(\nu)$ whenever the measures $\mu \in P(X)$ and $\nu \in P(Y)$ are nonatomic, and the spaces X, Y are separable and metrizable.

Proof. We know that $\mathfrak{A} = \Sigma/\mathcal{N}(\mu)$ and $\mathfrak{B} = \Theta/\mathcal{N}(\nu)$ are isomorphic Boolean algebras so we may fix an isomorphism $h : \mathfrak{A} \to \mathfrak{B}$ preserving the measure.

To define an isometry $I : L_1(\mu) \to L_1(\nu)$ we first consider simple function. If $A \in \Sigma$ then $\chi_A \in L_1(\mu)$ (this is how we think) but formally this is rather 'the characteristic function of' $A/\mathcal{N}(\mu)$, that is an element of $L_1(\mu)$. To follow our former informal custom we can define $I(\chi_A) = \chi_B$, where $B \in \Theta$ is such that $h(A/\mathcal{N}(\mu)) = B/\mathcal{N}(\nu)$. At this level, I preserves the norms since $\|\chi_A\|_1 = \mu(A)$ for $A \in \Sigma$.

This enables us to define I on the subspace of simple functions in $L_1(\mu)$, by the formula

$$I\left(\sum_{k\leq n} t_k \cdot \chi_{A_k}\right) = \sum_{k\leq n} t_k \cdot \chi_{B_k}$$

where B_k satisfy $h(A_k/\mathcal{N}(\mu) = B_k/\mathcal{N}(\lambda)$. It requires some work to check that the definition is correct but...let us skip it:-) The proof is very similar to that checking that the integral is well-defined on simple functions.

The fact that I preserves the L_1 -norms follow from the fact that if we consider a simple function $f = \sum_{k \leq n} t_k \cdot \chi_{A_k}$ where A_k 's are pairwise disjoint then $||f||_1 = \sum_{k \leq n} |t_k| \mu(A_k)$.

Finally we use Lemma 10.8 again, applying it to I defined on a dense subspace of simple functions.

In particular, $L_1[0, 1]$ is the same as $L_1[0, 1]^2$ which does not look that obvious. The above Corollary is sometimes useful: For instance, we may use the fact that $L_1[0, 1]$ is isometric to $L_1(2^{\mathbb{N}})$ to conclude that in $L_1[0, 1]$ there is a sequence of independent random variables of zero mean since such a sequence obviously exists in the other space: take $g_n : 2^{\mathbb{N}} \to \{-1.1\}$ defined by $g_n(x) = (-1)^{x(n)}$.

Let us finally remark that Corollary 10.9 can be proved for L_p -spaces by an analogous argument.