G. PLEBANEK *Measures on topological spaces* NO. 5

Below X, Y, \ldots always denote separable metrizable spaces.

- 1. For completeness, the diagonal principle used in Theorem 7.7 says that if h_n is a uniformly bounded (say by 1) sequence of functions on a countable set D the there is $N \subseteq \mathbb{N}$ such that $(h_n(d))_{n \in \mathbb{N}}$ converges for every $d \in D$. Recall the usual diagonal proof or use a nonprincipal ultrafilter \mathcal{U} : define $h(d) = \lim_{n \to \mathcal{U}} h_n(d)$. Then h lies in the closure of $\{h_n : n \in \mathbb{N}\}$ in $[-1, 1]^D$, and....
- **2.** Note that if K is compact and metrizable then P(K) is a continuous image of $P(2^{\mathbb{N}})$ so to prove that P(K) is compact it suffices to check compactness of $P(2^{\mathbb{N}})$. Here the Riesz representation theorem is much simpler.
- **3.** Prove that convergence of measures is productive: If $\mu_n, \mu \in P(X)$ and $\nu_n, \nu \in P(Y)$ then $\mu_n \otimes \nu_n \longrightarrow \mu \otimes \nu$ if and only if $\mu_n \longrightarrow \mu$ and $\nu_n \longrightarrow \nu$
- 4. Let $\mu_n, \mu \in P(X)$ be absolutely continuous with respect to $\lambda \in P(X)$ and have densities (Radon-Nikodym derivatives) g_n and g, respectively.

Check that if $\lim_n g_n = g \lambda$ -almost everywhere then $\mu_n \longrightarrow \mu$; however, the inverse implication does not hold in general.

- 5. A sequence of $f_n : \Omega \longrightarrow \mathbb{R}$ of measurable functions (random variables) on some probability measure space (Ω, ν) is said to be convergent *in distribution* if $f_n[\nu] \in P(\mathbb{R})$ converge weakly. Check that if $f_n \longrightarrow f$ in probability then $f_n \longrightarrow f$ in distribution, but not conversely.
- **6.** Let $Y \subseteq X$; then we may think that P(Y) is a subset of P(X). Check that P(Y) is a subspace of P(X), i.e., the original topology on P(Y) agrees with the one inherited from P(X).

This may be compared with the fact that $C_b(Y)$ is, in general, **not** a subspace of $C_b(X)$.

- 7. Give a simple direct argument for the fact that if the sequence of $\mu_n \in P(\mathbb{R}^d)$ is converging then the family $\{\mu_n : n \in \mathbb{N}\}$ is uniformly tight.
- 8. Prove that a sequence $\mu_n \in P(\mathbb{R}^{\mathbb{N}})$ converges to μ if and only if $\pi_k[\mu_n] \longrightarrow \pi_k[\mu]$ for every k. Here $\pi_k : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^k$ denotes the projection onto the first k coordinates.
- **9.** A sequence of $x_n \in X$ is said to be uniformly distributed with respect to $\mu \in P(X)$, if $1/n \sum_{k=1}^n \delta_{x_k} \longrightarrow \mu$.

Construct a uniformly distributed sequence in [0, 1] with respect to the Lebesgue measure on [0, 1].

10. For a given $\theta \in \mathbb{R} \setminus \mathbb{Q}$, set $x_n = n \cdot \theta - [n \cdot \theta]$. Try to prove that (x_n) is uniformly distributed. with respect to the Lebesgue measure on [0, 1].

HINT. An 'elementary' proof may be found in Billingsley, *Probability and measure* (25.1 in Polish 1987 edition). For an 'educated proof' test the convergence on (complex-valued) trygonometric polynomials $w_k(t) = \exp(2\pi i k t)$, and use the next item.

11. For $\mu_n, \mu \in P([0,1]), \mu_n \longrightarrow \mu$ if and only if $\lim_n \int_0^1 w_k \, d\mu_n = \int_0^1 w_k \, d\mu$ for every integer k (those trygonometric polynomials are defined above). This (Weyl's criterion) may be derived from the Stone-Weierstrass theorem.