- 1. Check that the family of sets $A \subseteq \prod_{t \in T} X_t$ depending on countably many coordinates is a σ -algebra.
- **2.** Check that if a subset A of the product $\prod_{t \in T} X_t$ of topological spaces depends on coordinates in $I \subseteq T$ then so does \overline{A} .
- **3.** Let X be a topological space; \mathcal{Z}_X denotes the family of zero sets (those of the form $g^{-1}(0)$ for a continuous function $g: X \to \mathbb{R}$).

Check that \mathcal{Z}_X is a lattice of sets and, moreover, it is closed under taking countable intersections.

Dually, the family of cozero sets is a lattice closed under finite intersection and countable unions.

4. The product space $2^{\mathfrak{c}} = \{0, 1\}^{\mathfrak{c}}$ is separable. To check this, replace \mathfrak{c} by [0, 1], and consider elements of $2^{[0,1]}$ of the form χ_J , where $J \subseteq [0,1]$ is a finite union of intervals with rational endpoints.

REMARK. A similar argument can be applied to show that every *c*-fold product of separable spaces is separable (Marczewski's theorem).

5. A family of sets \mathcal{F} is said to be a Δ -system if there is (a root) R, such that $F \cap F' = R$ for any pair of distinct $F, F' \in \mathcal{F}$.

Prove the Δ -system lemma: If \mathcal{F} is an uncountable family of finite sets then \mathcal{F} contains an uncountable \mathcal{F}_0 that is a Δ system.

HINT: Assume that |F| = n for every $F \in \mathcal{F}$ and apply induction on n.

6. Prove that an arbitrary product $\prod_{t \in T} X_t$ of separable metrizable spaces X_t is *ccc*.

HINT: Consider uncountably many basic open sets V_{γ} depending on finite sets $I_{\gamma} \subseteq T$; apply the Δ -system lemma to I_{γ} 's.

7. Let ν be the usual product measure on $2^T (1/2 - 1/2 \text{ on each axis})$, where T is uncountable. Let X be the set of those $x \in 2^T$ for which $\{t \in T : x(t) = 1\}$ is countable.

Prove that X is not measurable, more precisely, $\nu_*(X) = 0$ i $\nu^*(X) = 1$.

- 8. Denote by ν_{κ} the usual product measure on 2^{κ} and let \mathfrak{A}_{κ} be the measure algebra of ν_{κ} .
 - (a) Note that, by Kakutani's theorem, \mathfrak{A}_{κ} can be seen as $Bor(2^{\kappa})$ mod zero sets.
 - (b) Check that $|\mathfrak{A}_{\kappa}| = \mathfrak{c}$ for $\omega \leq \kappa \leq \mathfrak{c}$.
 - (c) Prove that the Boolean algebras \mathfrak{A}_{κ} are pairwise nonisomorphic for different cardinal numbers κ .

HINT: The density of \mathfrak{A}_{κ} (in the metric $\rho(a, b) = \nu_{\kappa}(a \bigtriangleup b)$) equals κ .

REMARK. So, finally, there are more measures but they are obtained by forming products of the only one that is separable. *The Maharam structure theorem for measure algebras* states that, essentially, there are no more examples.

- 9. Let S = (0, 1) be the Sorgenfrey line, that is the topology on (0, 1) is generated by the base of sets of the form [a, b), $0 < a < b \leq 1$. Check that Bor(S) = Bor((0, 1)). Hence the Lebesgue measure is a Borel measure on S. Check that λ is not tight since every compact subset of S is countable.
- **10.** Prove that $Bor(S) \otimes Bor(S) \neq Bor(S \times S)$ for the space S from the previous problem. HINT: $S \times S$ contains a discrete subspace of size \mathfrak{c} .
- 11. Let K and L be compact spaces and let μ and ν be closed regular Borel measures on them. Prove that $\mu \otimes \nu$ (defined on $Bor(K) \otimes Bor(L)$) extends to a Borel measure on $K \times L$.

HINT: Use the extension theorem from the lecture. Note that $\mu \otimes \nu$ is regular with respect to the lattice generated by $A \times B$ with A, B closed.

REMARK. A bigger challenge is to check that if λ is the Borel extension of $\mu \otimes \nu$ then λ still satisfies the Fubini formula

$$\lambda(B) = \int_{K} \nu(B_x) \, \mathrm{d}\mu(x),$$

for all Borel sets $B \subseteq K \times L$.

12. Let $X = \prod_{t \in T} X_t$ be an arbitrary product of Polish spaces. Suppose that for every finite $I \subseteq T$ we are given a probability Borel measure μ_I on $X_I = \prod_{t \in I} X_t$. Suppose that the family of those μ_I is consistent in the sense that μ_I is the image of μ_J under the projection $X_J \to X_I$ whenever $I \subseteq J$.

The Kolmogorov theorem (on consistent distributions) states that there is a unique μ on Baire(X) such that $\pi_I[\mu] = \mu_I$ for every finite I. Can you figure out a proof?

HINT: One can define μ on the algebra \mathcal{A} of sets depending on a finite number of coordinates in an obvious way. Check that μ is \mathcal{L} -regular on \mathcal{A} , where \mathcal{L} is a lattice generated by 'finite dimensional rectangles with compact sides'; then use Lemma 19.3.