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Remark. We consider here the so called transportation problem which is a special case
of linear programming problems. The exercises below introduce the very problem as well
as explain the algorithm so they are to be studied systematically, in the right order.

Transportation Problem (TP)

Some good (water, electricity, Toyota cars. . . ) is provided at m places offering a1, . . . , am
quantity of that product, respectively. There are n recipients of that good; the recipient
number i wants to receive the quantity bi. We assume that the total demand

∑n
j=1 bj

is equal to the total supply
∑m
i=1 ai so the only problem is to plan the distribution to

minimize the cost of transportation — we are given the matrix of costs (cij), where cij
is the cost of sending the unit of the good from the ith provider to the jth recipient.
We denote by xij the quantity to be send from i to j. The problem is then

minimize
m∑
i=1

n∑
j=1

cijxij

subject to
m∑
i=1

xij = bj, j = 1, . . . , n,
n∑
j=1

xij = ai, i = 1, . . . ,m,

xij ­ 0, ∀i, j.
1. Note that TP can be written in the standard form min c · x subject to Ax = b, x ­ 0

but then the matrix A has a large size; how many rows and columns are needed?

Instead, we can visualize the whole problem by a table, as in the following example

3 7 6 4 5
2 4 3 2 2
4 3 8 5 3
3 3 2 2

Here there are 3 suppliers offering 5, 2, 3 and four recipients wanting 3, 3, 2, 2. The values
in cells denote the corresponding cost.

2. Bicycles are produced in 3 factories and sold in 4 shops. Each factory produces 1000
items per year; the shops demand 700, 1000, 800, 500, respectively. The distance from
the ith factory to the jth shop is cij = (i− j)2 + i+ 3j. Visualize the corresponding TP
as above.

Basic solutions of TP

3. Check that the equality constraints in TP are linearly dependent but there are m+n−1
independent conditions among them.

4. Let X = {xij} be a basic feasible solution of TP. Prove that there are at most m+n− 1
cells (i, j) such that xij > 0.



5. Given a basic solution X = {xij}, let B = {(i, j) : xij > 0}. Prove that B cannot contain
a cycle. Here a cycle is a sequence of different cells of the form

(i1, j1), (i1, j2), (i2, j2), . . . , (ik, jk−1), (ik, j1).

Note for chessplayers: On a chessboard, a cycle denotes a closed loop marking the moves
of the rook.

Hint: Suppose that B contains a cycle C. Consider X∗, where x∗ij = xij for (i, j) /∈ C,
and

x∗i1,j1 = xi1,j1 − δ, x∗i1,j2 = xi1,j2 + δ, x∗i2,j2 = xi2,j2 − δ, . . . ,

x∗ik,jk−1 = xik,jk−1 − δ, x∗ik,j1 = xik,j1 + δ,

for small δ. Such X∗ (considered for various δ) will show that X is not an extreme point
of the polyhedron of all solutions.

6. For X’s given below, check whether X is a basic solution (of the corresponding TP);
empty cells have value zero. Note that by saying that X is a solution we uniquely
determine parameters ai and bj.

1 2 1
3 2

4 1
3 2 1 5

1 4

1 1 1
1 1

1 1
1 1

1 1

1 1 1
1 1

1 1
1 1

1

7. Suppose that B is the set of cells in the table m × n containing more than m + n − 1
elements. Prove that B contains a cycle.

Hint: Think inductively.

8. Prove that if B is the set of m+ n− 1 cells in the table m× n and B contains no cycles
then one can construct a basic solution X of TP such that xij = 0 for cells (i, j) outside
B. (Such a solution is feasible or not.)

For that reason, a collection B of m+ n− 1 cells without a cycle is called a basis.

Hint: there must be a line (row or column) containing only one cell from B; then the
value in this cell is uniquely determined; think inductively.

Reducing costs in TP

9. Given TP as above, consider another TP∗ with a new matrix of costs c∗ where c∗ij =
cij+ui+vj for some ui, vj ∈ R. Prove that TP and TP∗ have the same optimal solutions.

10. Let B be a basis in m × n table. Prove that there are ui, vj such that cij + ui + vj = 0
whenever (i, j) ∈ B. To see the general idea, do it first for the following example (where



B consists of the cells with given values).

∗ 3 ∗ ∗ ∗ 2
∗ ∗ ∗ 1 3 ∗
2 ∗ 6 ∗ ∗ ∗
∗ ∗ ∗ 7 ∗ 5
∗ ∗ 2 ∗ 1 ∗

11. We can now formulate the test for optimality of a given solution of TP. Let X be a basic
feasible solution of TP connected with the given basis B of cells. Find uj, vj such that
the matrix of reduced costs C(B)ij = cij + ui + vj. has value zero for all the cells in B.
Prove that

Theorem. If C(B)ij ­ 0 for all i, j then X is the optimal solution of TP.

Constructing basic feasible solutions

The general scheme goes as follows (here by a line we mean either row or column).

1. From the remaining lines choose a basic cell, according to some criterion.

2. Set the value in that cell so that you will use up all the remaining demand or supply
(depending on which is smaller).

3. Eliminate that line (but only one).

4. If there is only one remaining line then fill in all the values (they are already
determined)

There are many criteria that may be used in (1) above. The simplest is the (North-West
angle method). It ignores the costs completely and goes like ths:

(i) Start for the cell (1, 1).

(ii) If (i, j) has been chosen then choose (i, j + 1) if there is still some undistributed
quantity at the row i; otherwise move to (i+ 1, j).

Other methods want to be more clever. Vogel’s approximation method:

(i) For each remaining lines calculate its penalty; this is the absolute value of the
difference between the smallest cost in the line and the next one.

(ii) Find the line with the biggest penalty. In that line choose the cell with the smallest
cost.

12. Use the following examples to see how those algorithms work.

3 7 6 4 5
2 4 3 2 2
4 3 8 5 3
3 3 2 2

3 2 1 2 3 1
5 4 3 1 1 6
0 2 3 4 5 7
3 3 3 2 3



The simplex method for TP

1. Find the initial feasible basic solution connected with the basis B of m+n− 1 cells
without cycles.

2. Calculate the reduced costs C(B)ij = cij+ui+ vj so that C(B)ij = 0 for (i, j) ∈ B.

3. If C(B)ij ­ 0 for all other cells (i, j) then the solution is optimal; STOP.

4. Otherwise choose a cell (i0, j0) with the negative reduced cost. Then B ∪ {(i0, j0)}
is a set of m+n cells so it contains a cycle C. Find the biggest δ ­ 0 such that one
can put xi0j0 = δ and change the values in C so that we get a new feasible solution
x. By maximality of δ, xrs = 0 for some cell (r, s) ∈ C and we have a new basis
B = B \ {(r, s)| ∪ {i0, j0}.

5. B := B; Goto (2).

Running the algorithm, we have to keep track of the current data as in the example below:
the basic solution (values in circles), the basis and reduced costs (values in corners):

0 2 0 0
©5 ©2 ©1 8

1 0 0 3
©4 ©9 13

0 −5 2 8
©4 4
9 4 11 1

Remark: We may come across degenerate solutions, having zero values also in some
cells from the basis. Remember that the basis should always consists of m+ n− 1 cells.
Some iterations may give δ = 0 and in such a case we do not change the solution but
the basis gets changed.

13. Perform one iteration of the example given above and check if the new solution is optimal.
Exercise using some previously given examples of TP.

14. Observe the following virtue of the algorithm: it gives integer-valued solutions whenever
ai, bj are positive integers (this is crucial if we are planning the distribution of cars).

Modifications of TP

15. Consider TP for the case where total supply is greater than total demand, that is
∑
i ai >∑

j bj:
minimize

m∑
i=1

n∑
j=1

cijxij

subject to
m∑
i=1

xij = bj, j = 1, . . . , n,
n∑
j=1

xij ¬ ai, i = 1, . . . ,m,

xij ­ 0, ∀i, j.



We can reduce such a problem to the previous form by introducing the phantom recipient
that wants to receive

∑
i ai −

∑
j bj. Note that by solving such an extended problem we

also solve the original one.

Analyse what to do in case total demand is greater than total supply.

16. Metro Water District supplies four towns Berdoo, Los Devils, San Go and Hollyglass
with water. The water comes from three rivers: Colombo, Sacron and Calorie; however,
there is no pipe connecting Calorie with Hollyglas. The costs, demand and supply are as
follows (in some units):

Berdoo Los Devils San Go Hollyglas Supply
Colombo 16 13 22 17 50
Sacron 14 13 19 15 60
Calorie 19 20 23 − 50
Min. demand 30 70 0 10
Demand 50 70 30 ∞

Here Berdoo has signed a contract for getting 30 but they are willing to get up to 50 and
so on. Check that, despite some complications, one can formulate a pure TP as follows.
Replace − by M, a parameter that is bigger than anything else. Note that Hollyglas can
get 60 at most so we can replace ∞ by 60. Then the total demand is by 50 greater than
the total supply. Introduce the river Phantom giving 50. Divide Berdoo into Berdoo 1
demanding 30 and Berdoo 2 demanding 20. Decide all the costs of the river Phantom so
that the extended problem will automatically solve the real one (playing with M and 0).


