G. Plebanek

MatProgOpt

The simplex method

1. Consider the following problem: minimize $x_1 + x_2 + 2x_3 + 3x_4$ subject to

Find the basic solution taking columns A_3, A_4 as a basis.

Find the direction $d = (0, 1, d_3, d_4)$ and calculate the reduced costs.

Find θ^* such that $y = x + \theta^* d$ is another vertex and check whether y is optimal.

2. Consider the following problem: minimize $3x_1 + 2x_2$ subject to

x_1			+	x_3				=	4,
x_1	+	$3x_2$		—	x_4			=	15,
$2x_1$	+	x_2				_	x_5	=	10
				x_1, x_2	x_2, x_3	$_{3}, x_{4}$	$, x_5$	\geq	0.

Find the basic solution taking columns A_1, A_2, A_3 as a basis and check whether this solution is optimal.

3. Consider now: maximize $x_1 + 2x_2$, subject to

Reduce the problem to the standard form and find its basic feasible solutions.

- 4. Use (some of) the examples above to exercise how to write the full tableau for a given problem and how to iterate the algorithm.
- 5. Suppose that we have got the following tableau

	-3	-2	9	1	6	0	0	0
x_5	1	2	-8	-1	4	1	0	0
x_6	2	1	-1	-1	3	0	1	0
x_7	3	-2	0	1	0	0	0	1

Perform the next iteration and derive conclusions.

6. Suppose that we have got the following tableau

	-3	c_1	c_2	2	4	0	0	0
x_5	1	u_1	-8	-1	4	1	0	0
x_6	2	u_2	-1	-1	3	0	1	0
x_7	2	u_3	0	1	0	0	0	1

What are the conclusions in the following cases

(a) $c_1, c_2 \ge 0;$ (b) $c_1 < 0, u_1 = 1, u_2 = 2 u_3 = 3;$ (c) $c_1 < 0, u_2 = 2, c_2 < 0;$ (d) $c_1 < 0, u_2 = 2, c_2 > 0;$ (d) $c_1 < 0$ and $u_1, u_2, u_3 < 0;$ (e) $c_2 < 0?$

7. Explain why (while considering the tableau)

- (a) if the minimal value of $\theta^* = \frac{x_{B(l)}}{u_l}$, is attained for two different indices l then the next solution is degenerate;
- (b) if the pivoting column has only negative entries then the problem in question does not have optimal solutions;
- (c) if we have non-degenerate basic feasible solution and some reduced cost is negative then the solution is not optimal.
- 8. Find examples showing that
 - (a) a given (degenerate) solution may be optimal even if some reduced costs are negative;
 - (b) there may be no advantage of choosing a pivoting column with the least reduced cost.

9. How we reduce the costs?

We consider $\min c \cdot x$, subject to Ax = b, $x \ge 0$, where A is a $m \times n$; we assume that those m equations are linearly independent (by the way, why?).

Let x be the basic feasible solution corresponding to columns $A_{B(1)}, \ldots, A_{B(m)}$. Let R_1, R_2, \ldots, R_m denote the rows of the matrix A.

(a) Show that there are unique $\lambda_1, \ldots, \lambda_m$ such that the vector

$$c - \sum_{i=1}^{m} \lambda_i R_i$$

has zero coordinates $B(1), \ldots, B(m)$.

- (b) Show that the rows of $B^{-1}A$ are linear combinations of those of A.
- (c) Show that the vector \overline{c} of reduced costs is of the form

$$c - \sum_{i=1}^{m} \mu_i R_i.$$

(d) Finally, $\mu_i = \lambda_i$.

This explains why we use row operations to calculate the reduced costs.

10. A reflection on $-c \cdot x$ in the tableau.

Continuing the previous item, let \overline{c} be the vector of reduced costs; suppose $\overline{c}_j < 0$ and the minimal valu of θ is

$$\theta^* = \frac{x_{B(l)}}{u_l};$$

here u_l is the *l*th coordinate of the vector $u = -d_B = B^{-1}A_j$. Then $y = x - \theta^* u$ becomes the next BFS connected with the new basis $B(1), \ldots, B(l-1), j, B(l+1), \ldots, B(m)$.

Check that we can calculate the new vector of reduced costs by the rule

new reduced costs = old reduced costs $-\lambda \times$ the *i*th row of $B^{-1}A$,

where λ is chosen to change \overline{c}_j to zero.

Note that

$$-c \cdot y = -c \cdot x - \lambda x_{B(l)},$$

to see why we write $-c \cdot x$ in the tableau.

11. Consider a general problem (P) in its standard form $\min c \cdot x$ subject to $Ax = b, x \ge 0$ where A is a $m \times n$ matrix. Suppose that (P) has some feasible solutions.

Note that we may have $\binom{n}{m}$ basic solution so to find the initial basic feasible solution may be troublesome.

Note also that we can assume that $b \ge 0$ and consider an auxiliary problem (AP) $\min(y_1 + \ldots + y_m)$ subject to Ax + y = b and $x \ge 0, y \ge 0$.

Then (x, y) = (0, b) is a basic feasible solution of (AP). Let (x^*, y^*) be an optimal solution of (AP). Check that we have then $y^* = 0$ and x^* is a basic feasible solution of (P).