G. Plebanek MatProgOpt No 3

The simplex method

1. Consider the following problem: minimize $x_{1}+x_{2}+2 x_{3}+3 x_{4}$ subject to

$$
\begin{aligned}
3 x_{1}+x_{2}+x_{3}+x_{4} & =2, \\
2 x_{1}+x_{2}+x_{3}+2 x_{4} & =3, \\
x_{1}, x_{2}, x_{3}, x_{4} & \geqslant 0 .
\end{aligned}
$$

Find the basic solution taking columns A_{3}, A_{4} as a basis.
Find the direction $d=\left(0,1, d_{3}, d_{4}\right)$ and calculate the reduced costs.
Find θ^{*} such that $y=x+\theta^{*} d$ is another vertex and check whether y is optimal.
2. Consider the following problem: minimize $3 x_{1}+2 x_{2}$ subject to

$$
\begin{aligned}
x_{1}+x_{3} & =4, \\
x_{1}+3 x_{2} & =x_{4} \\
2 x_{1}+x_{2} & =15, \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}
\end{aligned}=10 \geqslant 0 .
$$

Find the basic solution taking columns A_{1}, A_{2}, A_{3} as a basis and check whether this solution is optimal.
3. Consider now: maximize $x_{1}+2 x_{2}$, subject to

$$
\begin{aligned}
x_{1}+3 x_{2} & \leqslant 8, \\
x_{1}+x_{2} & \leqslant 4, \\
x_{1}, x_{2} & \geqslant 0 .
\end{aligned}
$$

Reduce the problem to the standard form and find its basic feasible solutions.
4. Use (some of) the examples above to exercise how to write the full tableau for a given problem and how to iterate the algorithm.
5. Suppose that we have got the following tableau

x_{5}								
x_{6}								
x_{7}	-3	-2	9	1	6	0	0	0
	2	-8	-1	4	1	0	0	
2	1	-1	-1	3	0	1	0	
3	-2	0	1	0	0	0	1	

Perform the next iteration and derive conclusions.
6. Suppose that we have got the following tableau

$$
\begin{array}{|l|rrrrrrr|}
\hline x_{5} & -3 & c_{1} & c_{2} & 2 & 4 & 0 & 0 \\
x_{5} \\
x_{6} & 1 & u_{1} & -8 & -1 & 4 & 1 & 0 \\
0 \\
x_{7} & u_{2} & -1 & -1 & 3 & 0 & 1 & 0 \\
2 & u_{3} & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
$$

What are the conclusions in the following cases
(a) $c_{1}, c_{2} \geqslant 0$;
(b) $c_{1}<0, u_{1}=1, u_{2}=2 u_{3}=3$;
(c) $c_{1}<0, u_{2}=2, c_{2}<0$;
(d) $c_{1}<0, u_{2}=2, c_{2}>0$;
(d) $c_{1}<0$ and $u_{1}, u_{2}, u_{3}<0$;
(e) $c_{2}<0$?
7. Explain why (while considering the tableau)
(a) if the minimal value of $\theta^{*}=\frac{x_{B(l)}}{u_{l}}$, is attained for two different indices l then the next solution is degenerate;
(b) if the pivoting column has only negative entries then the problem in question does not have optimal solutions;
(c) if we have non-degenerate basic feasible solution and some reduced cost is negative then the solution is not optimal.
8. Find examples showing that
(a) a given (degenerate) solution may be optimal even if some reduced costs are negative;
(b) there may bo no advantage of choosing a pivoting column with the least reduced cost.

9. How we reduce the costs?

We consider $\min c \cdot x$, subject to $A x=b, x \geqslant 0$, where A is a $m \times n$; we assume that those m equations are linearly independent (by the way, why?).
Let x be the basic feasible solution corresponding to columns $A_{B(1)}, \ldots, A_{B(m)}$. Let $R_{1}, R_{2}, \ldots, R_{m}$ denote the rows of the matrix A.
(a) Show that there are unique $\lambda_{1}, \ldots, \lambda_{m}$ such that the vector

$$
c-\sum_{i=1}^{m} \lambda_{i} R_{i}
$$

has zero coordinates $B(1), \ldots, B(m)$.
(b) Show that the rows of $B^{-1} A$ are linear combinations of those of A.
(c) Show that the vector \bar{c} of reduced costs is of the form

$$
c-\sum_{i=1}^{m} \mu_{i} R_{i} .
$$

(d) Finally, $\mu_{i}=\lambda_{i}$.

This explains why we use row operations to calculate the reduced costs.
10. A reflection on $-c \cdot x$ in the tableau.

Continuing the previous item, let \bar{c} be the vector of reduced costs; suppose $\bar{c}_{j}<0$ and the minimal valu of θ is

$$
\theta^{*}=\frac{x_{B(l)}}{u_{l}}
$$

here u_{l} is the l th coordinate of the vector $u=-d_{B}=B^{-1} A_{j}$. Then $y=x-\theta^{*} u$ becomes the next BFS connected with the new basis $B(1), \ldots, B(l-1), j, B(l+1), \ldots, B(m)$.
Check that we can calculate the new vector of reduced costs by the rule

$$
\text { new reduced costs }=\text { old reduceed costs }-\lambda \times \text { the } i \text { th row of } B^{-1} A
$$

where λ is chosen to change \bar{c}_{j} to zero.
Note that

$$
-c \cdot y=-c \cdot x-\lambda x_{B(l)}
$$

to see why we write $-c \cdot x$ in the tableau.
11. Consider a general problem (P) in its standard form $\min c \cdot x$ subject to $A x=b, x \geqslant 0$ where A is a $m \times n$ matrix. Suppose that (P) has some feasible solutions.
Note that we may have $\binom{n}{m}$ basic solution so to find the initial basic feasible solution may be troublesome.
Note also that we can assume that $b \geqslant 0$ and consider an auxiliary problem (AP) $\min \left(y_{1}+\ldots+y_{m}\right)$ subject to $A x+y=b$ and $x \geqslant 0, y \geqslant 0$.

Then $(x, y)=(0, b)$ is a basic feasible solution of (AP). Let $\left(x^{*}, y^{*}\right)$ be an optimal solution of (AP). Check that we have then $y^{*}=0$ and x^{*} is a basic feasible solution of (P).

