1. The Ford-Bellman algorithm. Consider a directed graph $G=(V, A), V=\{1,2, \ldots, n\}$ with given lengths of arcs $c_{i j}$. Recall that the shortest path from any vertex i to a fixed destination $n \in V$ can be detected once we know the table of shortest distances d_{i} from i to n. This can be done using (already discussed) Dijkstra's algorithm; however, it works if $c_{i j} \geqslant 0$ for every $(i, j) \in A$.
Sometimes we want to consider also negative lengths (imagine that $c_{i j}$ is a price for the bus ticket from i to j and you have been promised to get double reimbursement for some travels). This can be done using the Ford-Bellman algorithm based on the following.
Let $d_{i}(t)$ denotes the length of the shortest path from i to n using at most t arcs. Note that $d_{n}(t)=0$ for every t (we are already there); we put $d_{i}(t)=\infty$ if there are no path joining i and n by at most t arcs (in particular, $d_{i}(0)=\infty$ for $i \neq n$).
The main point is that

$$
d_{i}(t+1)=\min _{k \in \operatorname{Out}(i)}\left(c_{i k}+d_{k}(t)\right) ;
$$

why? Check that this enables one to calculate the minimal distance d_{i} which is equal to $d_{i}(n-1)$. Note that this works even if some 'distances' are negative; we, however, need to assume that there are no cycles in the graph consisting of arcs of negative length.
2. The Floyd-Warshall algorithm. Consider the problem as above. Let $d_{i j}(k)$ denotes the shortest distance from i to j that goes only through vertices $\{1,2, \ldots, k\}$ (as intermmediate points of the travel). Prove that

$$
d_{i j}(k+1)=\min \left(d_{i j}(k), d_{i, k+1}(k)+d_{k+1, j}(k)\right) .
$$

How to design an algorithm for finding $d_{i j}$?
3. Shannon switching game. The game is played on a connected (undirected) graph in which there is vertex a (=prison) an another one b (=escape). There are two players: Sheriff and Prisoner. Sheriff starts and marks one edge from the graph, say by - . Then Prisoner marks one of remaining edges, say by + . Then Sheriff marks one of the remaining edges and so on.
At the end all the edges are marked either + or - ; Prisoner wins if he can escape, that is there is a path from a to b using + edges. Otherwise, Sheriff wins.
Assume that in a graph contains two spanning trees $T(0)$ and $S(0)$ having disjoint sets of edges. Show that Prisoner has a winning strategy: when one edge gets - then he can replace $T(0)$ and $S(0)$ by two spanning trees having one common edge which is marked + . Continuing in this fashion, at the end he gets a spanning tree marked + so there is an escape.
Above we use the fact that if we incorporate a new edge to some spanning tree then we get a cycle and we can form another spanning tree by removing some old edge. It is a good idea to play first on some small example - one may try to google online implementations of the game.

