Flows in networks minimizing cost

We now think that $V = \{1, 2, \dots, n\}$.

The network. Given a directed graph G = (V, A) together with

- a function $V \ni i \to b_i \in \mathbb{R}$ defining an external supply; we assume $\sum_i b_i = 0$;
- a function $c: A \to \mathbb{R}_+$, c_{ij} is the cost in the arc $(i, j) \in A$

Definition. A flow $f = (f(i,j))_{(i,j)\in A}$ is **feasible** if

- (i) $0 \le f(i,j)$ for every arc $(i,j) \in A$;
- (ii) $\sum_{j \in \text{In}(i)} f(j, i) + b_i = \sum_{j \in \text{Out}(i)} f(i, j)$ for every vertex i.

General problem. Minimize

$$\sum_{(i,j)\in A} c_{ij} f(i,j),$$

over all feasible flows.

Adapt the general simplex method to network flows

Theorem. Every feasible flow that is a BFS flows through some spanning tree of the graph.

Theorem. Every spanning tree of the graph define a basic solution (feasible or not).

Reducing the costs

Theorem. If $p:V\to\mathbb{R}$ is any function and we reduce the costs by the formula

$$\overline{c_{ij}} = c_{ij} - (p_i - p_j),$$

then we get an equivalent problem.

Proof.

$$\sum_{(i,j)\in A} \overline{c_{ij}} f(i,j) - \sum_{(i,j)\in A} c_{ij} f(i,j) = -\sum_{(i,j)\in A} (p_i - p_j) f(i,j) =$$

$$= -\sum_{i} p_i \sum_{j\in \text{Out}(i)} f(i,j) + \sum_{j} p_j \sum_{i\in \text{In}(j)} f(i,j) =$$

$$= -\sum_{i} p_i \sum_{j\in \text{Out}(i)} f(i,j) + \sum_{i} p_i \sum_{j\in \text{In}(i)} f(j,i) = \sum_{i} p_i b_i.$$

Theorem. If f is a feasible flow connected with some spanning tree T then there are p_i such that the reduced costs $\overline{c_{ij}} = c_{ij} - (p_i - p_j)$ is zero for every arc (i, j) from that tree.

Changing BFS.

Suppose that f is a feasible flow on some spanning tree T. We have reduced the costs and have $\overline{c_{ij}} < 0$ for some edge (i, j) outside T.

Adding (i, j) to the edges of T we get a unique cycle C. Let B denote te arcs in that cycle that are 'backward'; $F = C \setminus B$.

If $B = \emptyset$ then the optimal costs is $-\infty$.

Otherwise, we take $\theta = \min\{f(e) : e \in B\}$ and modify the flow:

$$\widehat{f}(x,y) = \begin{cases} f(x,y) + \theta & \text{when } (x,y) \in F \\ f(x,y) - \theta & \text{when } (x,y) \in B \\ f(x,y) & \text{otherwise} \end{cases}$$

Summary

Simplex for network flows.

- (1) Find some spanning tree and the unique flows through that tree. Assume it is feasible.
- (2) Reduce the costs; if they are nonnegative then the flows is optimal.
- (3) Otherwise, modify the flow incorporating 'negative' edge to the tree.; GoTo (2).

Duality

We now think that $V = \{1, 2, ..., n\}$. Consider a problem (D)

$$\max \sum_{i \leq n} b_i y_i$$
 subject to

$$y_i - y_j \leqslant c_{ij}$$
 for all $(i, j) \in A$.

Theorem (weak duality). If y is a feasible solution of (D) then

$$b \cdot y = \sum_{i \in V} b_i y_i \leqslant \sum_{(i,j) \in A} c_{ij} f(i,j),$$

for every feasible flow f.

Proof.

$$\begin{split} &\sum_{(i,j)\in A} c_{ij} f(i,j) \geqslant \sum_{(i,j)\in A} (y_i - y_j) f(i,j) = \\ &= \sum_{(i,j)\in A} y_i f(i,j) - \sum_{(i,j)\in A} y_j f(i,j) = \\ &= \sum_i y_i \sum_{j\in \operatorname{Out}(i)} f(i,j) - \sum_j y_j \sum_{i\in \operatorname{In}(j)} f(i,j) = \\ &= \sum_i y_i \sum_{j\in \operatorname{Out}(i)} f(i,j) - \sum_i y_i \sum_{j\in \operatorname{In}(i)} f(j,i) = \\ &= \sum_i y_j \left(\sum_{j\in \operatorname{Out}(i)} f(i,j) - \sum_{j\in \operatorname{In}(i)} f(i,j) \right) = \sum_i y_i b_i. \end{split}$$

Complementarity. If we find feasible f and y such that

$$c_{ij}f(i,j) = (y_i - y_j)f(i,j)$$
 for every $(i,j) \in A$,

then f and y are optimal.

Approach to the dual problem

$$\max \sum_{i \leq n} b_i y_i \quad \text{subject to}$$
$$y_i - y_j \leqslant c_{ij} \text{ for all } (i, j) \in A.$$

Observe that: y = 0 is a feasible solution and for every feasible y, y + a is feasible too.

Jargon. An arc (i, j) is **saturated** (with respect to y) if $c_{ij} = y_i - y_j$. A set $S \subseteq V$ is **balanced** if threre is no saturated arc leaving S.

Lemma. If y is feasible, S is balanced then $y^* = y + \theta \chi_S$ is also feasible, where $\theta = \min\{(c_{ij} - (y_i - y_j)) : (i, j) \in A, i \in S, j \notin S\} > 0.$

Outline of the algorithm for the dual problem

When y^* is better: If and only if

$$\sum_{i \in V} b_i y_i^* - \sum_{i \in V} b_i y_i = \theta \sum_{i \in S} b_i > 0.$$

Idea

- (1) Start from some feasible y.
- (2) Look for balanced $S \subseteq V$ such that $\sum_{i \in S} b_i > 0$. If there are no such S then STOP y is optimal.
- (3) Change y to y^* and repeat.

Primar-dual algorithm

Outline

- (1) Start from some y feasible for the dual problem.
- (2) Use FF to check how much can flow from the source vertices V^+ to target vertices V^- through the graph consisting only of saturated arcs.
- (3) If the volume of the flow is equal to $\sum_{i \in V^+} b_i$ then STOP (we have an optomal flow).
- (4) Otherwise LA finds a balanced S with $\sum_{i \in S} b_i$ while checking that the flow is maximal.
- (5) Change y to $y^* = y + \theta \chi_S$; GoTo (2).