G. Plebanek

Complemented subspaces

- 1. Note that for every Banach space X, X^* is complemented in X^{***} . HINT: Consider $X^{\perp} = \{x^{***} : x^{***} | X \equiv 0\}.$
- **2.** Let K be a compact space containing a convergent sequence of distinct $t_n \in K$. Prove that C(K) contains a complemented copy of c_0 .

HINT: Such a copy is spanned by a sequence of norm-one functions $g_n \in C(K)$ such that $g_n \cdot g_k = 0$ for $n \neq k$.

3. Prove that if $T: X \to \ell_1$ is a surjective operator then X contains a complemented copy of ℓ_1 as follows. Pick $x_n \in X$ such that $Tx_n = e_n \in \ell_1$ so that $||x_n|| \leq C$ for some C > 0. Then $S: \ell_1 \to X$ defined by $Se_n = x_n$ is a bounded operator and TS is the identity. Consider the operator ST.

Conjugate operators

- **4.** Recall that if $T: X \to Y$ is an embedding then $T^*: Y^* \to X^*$ is surjective. Check that if T is only one-to-one then $T^*[Y^*]$ is weak^{*} dense in X^* .
- 5. Let $g: K \to L$ be a continuous surjection between compact spaces.
 - (i) Check that $T: C(L) \to C(K), Tf = f \circ g$ is an isometric embedding.
 - (ii) Check that $T^*: C(K)^* \to C(L)^*$ is then $T^*\mu = g[\mu]$ (where $g[\mu]$ is the image measure).
 - (iii) Conclude that for every $\nu \in C(L)^*$ there is $\mu \in C(K)^*$ such that $g[\mu] = \nu$.

ℓ_1 -SEQUENCES

- 6. We say that a bounded sequence $(x_n)_n$ in a Banach space X is an ℓ_1 -sequence (or that it is equivalent to the standard basis of ℓ_1) if there is $\theta > 0$ such that $\|\sum_{i \leq n} c_i \cdot x_i\| \ge \theta \sum_{i \leq n} |c_i|$ for any scalars c_i and every n. Check that the following are ℓ_1 sequences:
 - (i) norm-one $f_n \in L_1[0,1]$ such that $f_n \cdot f_k = 0$ for $n \neq k$.
 - (ii) projections $\pi_n \in C(2^{\omega})$.
 - (iii) $f_n(t) = \cos(2\pi nt) \in C[0, 1].$

(WEAK) BANACH-SAKS PROPERTY

- 7. A Banach space X has the Banach-Saks Property (Weak Banach-Saks Property) if every bounded sequence in X (weakly converging sequence, respectively) has a subsequence $(x_n)_n$ with norm-converging averages $1/n \cdot (x_1 + \ldots x_n)$. Prove that
 - (i) c_0 and ℓ_1 have WBSP;
 - (ii) ℓ_1 does not have BSP.

What about ℓ_p for p > 1?

- 8. Schreier's family. Let S be a family of those finite sets $S \subseteq \mathbb{N}$ for which $|S| \leq \min S$. Note the following properties of S:
 - (i) every finite $A \subseteq \mathbb{N}$ contains $S \in \mathcal{S}$ such that $|S| \ge (1/2) \cdot |A|$;
 - (ii) there is no infinite \mathcal{S} -homogeneous set X.

Remark: It is an open problem if there is a family S on an uncountable set satisfying (i) and (ii).

9. Let K be a subspace of $2^{\mathbb{N}}$ consisting of χ_S where $S \in \mathcal{S}$ for the Shreier family \mathcal{S} . Check that K is countable and compact.

Prove that C(K) does not have the Weak Banach-Saks property.

HINT: Consider projections $\pi_n : 2^{\mathbb{N}} \to 2$ restricted to K.

10. Note that, by Mazur's theorem, a weakly convergent sequence in a Banach space must have *some* convex combinations converging in norm.

Rosenthal ℓ_1 -theorem

11. Prove that every Banach space X having the Banach-Saks property is reflexive.

HINT: X cannot contain ℓ_1 so every bounded sequence in X has a subsequence that is weakly Cauchy. What happens if additionally $1/n(x_1 + \ldots + x_n)$ converge in norm?

12. Prove that if infinite dimensional X has the Schur property (i.e. every weakly convergent sequence converges in norm) then X ontains ℓ_1 .