BOOLEAN ALGEBRAS AND STONE SPACES

Recall that for a Boolean algebra \mathfrak{A} , its Stone space $\operatorname{ult}(\mathfrak{A})$ consists of all utrafilters on \mathfrak{A} and the sets $\hat{a} = \{\mathcal{U} : a \in \mathcal{U}\}$, where $a \in \mathfrak{A}$, form a base for the compact Hausdorff topology on $\operatorname{ult}(\mathfrak{A})$.

- 1. Show that in the algebra $\mathfrak{A} = \mathcal{P}(\omega)/\text{fin}$
 - (i) there is *c*-many pairwise disjoint nonzero elements;
 - (ii) if $a_n \neq 0$ and $a_1 \ge a_2 \ge \ldots$ then there is $b \neq 0$ such that $b \le a_n$ for every n.
 - (iii) if $a_1 \ge a_2 \ge \ldots \ge b_2 \ge b_1$ then there is x such that $b_n \le x \le a_n$ for every n.
- **2.** Recall that $ult(\mathcal{P}(\omega))$ is denoted by $\beta\omega$. Note that we may think that $\omega \subseteq \beta\omega$ since every principal ultrafilter $\{A \subseteq \omega : n \in A\}$ may be identified with n.

Check that a nonprincipial ultrafilter \mathcal{U} may be seen as an ultrafilter on $\mathcal{P}(\omega)/\text{fin}$ so $\text{ult}(\mathcal{P}(\omega)/\text{fin})$ is then $\beta \omega \setminus \omega$.

- 3. Check that the compact space $\beta \omega$ contains no nontrivial converging sequence.
- 4. If you like Banach algebras: note that every multiplicative functional on ℓ_{∞} corresponds to some ultrafilter on ω .
- 5. Let $\mathfrak{B} = Bor[0,1]/\mathcal{N}$ be the measure algebra; here $\mathcal{N} = \{A \in Bor : \lambda(A) = 0\}$. Prove that \mathfrak{B} is complete (while Bor[0,1] is only σ -complete).

HINT: For any $\{b_t : t \in T\} \subseteq \mathfrak{B}, b_t = B_t/\mathcal{N}$, there is a countable $T_0 \subseteq T$ such that $\bigcup_{t \in T_0} B_t$ has the maximal possible measure.

6. Prove that the Stone space of the measure algebra is not separable

EXTREMALLY DISCONNECTED SPACES

7. A topological space K is extremally disconnected if the set \overline{U} is open for every open $U \subseteq K$ (no misprints here:-).

Check that K is extremally disconnected if and only if $\overline{U} \cap \overline{V} = \emptyset$ for every disjoint open $U, V \subseteq K$.

8. Prove that the Stone space $ult(\mathfrak{A})$ is extremally disconnected if and only if the algebra \mathfrak{A} is complete.

HINT: If $U \subseteq ult(\mathfrak{A})$ is open then $U = \bigcup_t \hat{a}_t$ for some $a_t \in \mathfrak{A}$; check that if $a = \bigvee_t a_t$ exists in \mathfrak{A} then $\overline{U} = \hat{a}$.

EXTENDING FUNCTIONS

9. Prove that for any ultrafilter \mathcal{U} on ω and any sequence x_n in a compact space K there is the unique limit $x = \lim_{n \to \mathcal{U}} x_n \in K$ such that $\{n \in \omega : x_n \in V\} \in \mathcal{U}$ for every open neighbourhood $V \ni x$.

HINT: Otherwise, every $x \in K$ has a bad neighbourhood V_x and...

- **10.** Check that for any $f : \omega \to K$, if K is compact then $f^{\beta}(\mathcal{U}) = \lim_{n \to \mathcal{U}} f(n)$ defines an extension of f to a continuous function $f^{\beta} : \beta \omega \to K$.
- **11.** In the case of bounded $f, g : \omega \to \mathbb{R}$, check that

$$\lim_{n \to \mathcal{U}} \left(f(n) + g(n) \right) = \lim_{n \to \mathcal{U}} f(n) + \lim_{n \to \mathcal{U}} g(n);$$

in other words $(f+g)^{\beta} = f^{\beta} + g^{\beta}$.

12. Note that it follows from (10) that every separable compact space is a continuous image of $\beta\omega$. In particular, $|\beta\omega| = 2^{\mathfrak{c}}$.

HINT: The cube $\{0,1\}^{\mathbb{R}}$ is separable: think of characteristic functions of finite unions of intervals with rational endpoints.

13. A remark: the notation β refers to the so called maximal compactification. For instance, if $\gamma \omega$ is any compactification of ω (a compact space containing ω as a dense subset) then there is a continuous surjection $\beta \omega \rightarrow \gamma \omega$ which is constant on ω (see above).