Some unique Boolean Algebras

1. An algebra \mathfrak{A} is nonatomic if every nonzero element can be split into two nonzero elements. Note that the algebra \mathfrak{C} of clopen subsets of 2^{ω} is countable and nonatomic and, clearly, $\operatorname{ult}(\mathfrak{C})$ is 2^{ω} .

Prove that every countable nonatomic Boolean algebra is isomorphic to \mathfrak{C} .

2. Let \mathfrak{B} be the measure algebra of the Lebesgue measure λ on [0, 1]. Note that \mathfrak{B} is separable in the metric $(a, b) \to \lambda(a \bigtriangleup b)$. Recall that the compact space $ult(\mathfrak{B})$ is not separable:-)

Prove that this (Frechet-Nikodym) metric is complete.

HINT: Use the Riesz theorem, stating that a sequence of functions that is Cauchy in measure has a subsequence converging almost everywhere. Alternatively, take $a_n \in \mathfrak{B}$ such that $\lambda(a_n \Delta a_{n+1}) \leq 1/2^n$ and check that the sequence of a_n converges to to its upper limit.

3. Prove the following (Baby Maharam Theorem);

If (X, Σ, μ) is a nonatomic probability measure space and its measure algebra \mathfrak{A} is separable in the Frechet-Nikodem metric then there is an isomorphism $\varphi : \mathfrak{A} \to \mathfrak{B}$ (\mathfrak{B} as above) such that $\lambda(\varphi(a)) = \mu(a)$ for $a \in \mathfrak{A}$.

HINT: Define finite algebras $\mathfrak{A}_n \subseteq \mathfrak{A}, \mathfrak{B}_n \subseteq \mathfrak{B}$ and partial (consistent) isomorphisms $\varphi_n : \mathfrak{A}_n \to \mathfrak{B}_n$ such that $\mathfrak{A}' = \bigcup_n \mathfrak{A}_n$ is metrically dense in \mathfrak{A} and $\mathfrak{B}' = \bigcup_n \mathfrak{B}_n$ is metrically dense in \mathfrak{B} . Then note that the isomorphism $\mathfrak{A}' \to \mathfrak{B}'$ extends uniquely to $\mathfrak{A} \to \mathfrak{B}$ because it is an isometry.

Measures on ω

4. Recall that $M(\mathcal{P}(\omega))$ is the space of all finitely additive signed measures on $\mathcal{P}(\omega)$ that have bounded variation. Recall also that μ has a bounded variation if and only if $\mu = \mu^+ - \mu^-$ where μ^+, μ^- are finite nonnegative measures.

Check that $M(\mathcal{P}(\omega))$ is a Banach space with the norm $\|\mu\| = |\mu|(\omega)$.

Note that every $\mu \in M(\mathcal{P}(\omega))$ has a unique decomposition $\mu = \mu_1 + \mu_2$ where μ is countably additive and μ_2 vanishes on finite sets. Moreover, $\|\mu\| = \|\mu_1\| + \|\mu_2\|$.

It follows that ℓ_1 is a complemented subspace of $(\ell_{\infty})^*$.

5. Let \mathcal{U} be a nonprincipial ultrafilter on ω . Then

$$\mu(A) = \lim_{n \to \mathcal{U}} \frac{|A \cap n|}{n}$$

defines an extension of the asymptotic density to an element of $M(\mathcal{P}(\omega))$ and $\mu \in \ell_{\infty}^* \setminus \ell_1$.

Check that μ is, moreover, translation invariant (so it witnesses that the additive group \mathbb{Z} is amenable).

DUNFORD-PETTIS PROPERTY (DPP)

6. A Banach space X has DPP if for every weakly null sequence $(x_n)_n$ and every weakly null sequence $(x_n^*)_n$ in X^* we have $\lim_n x_n^*(x_n) = 0$.

Check that c_0 and ℓ_1 have DPP for 'obvious' reasons.

- **7.** Note that if X^* has DPP then so does X.
- 8. Not that if X has DPP and Y is a complemented subspace of X then Y also has DPP.
- **9.** Prove that no reflexive infinitely dimensional space X has DPP. HINT: Define $x_n \in B_X$ and $x_n^* \in X^*$ such that $x_n^*(x_n) = 1$ and $x_n^*(x_i) = 0$ for i < n.