G. PLEBANEK

Suplement on ℓ_{∞}/c_0

- 1. Note that there is a one-to-one correspondence between nonprincipal ultrafilters on $\mathcal{P}(\omega)$ and ultrafilters on $\mathcal{P}(\omega)$ /fin. Then note that $\mathrm{ult}(\mathcal{P}(\omega)/\mathrm{fin})$ may be identified with $\beta \omega \setminus \omega$.
- 2. Recall that ℓ_{∞} is isometric to $C(\beta\omega)$. Check that ℓ_{∞}/c_0 is isometric to $C(\beta\omega\setminus\omega)$. If $f \in \ell_{\infty}$ then we can define the required isometry by $T(f/c_0) = f^{\beta}|(\beta\omega\setminus\omega)|$ (here f^{β} is the unique extension of f to a continuous function).

Suplement on separability of C(K)

3. If K is metrizable and compact then the Banach space C(K) is separable: We can assume that $K \subseteq [0,1]^{\omega}$ so it remains to check that $C[0,1]^{\omega}$ is separable. Let \mathcal{F} be a family of all projections $\pi_n : [0,1]^{\omega} \to [0,1]$ and let \mathcal{F}' be the family of all finite products of functions from \mathcal{F} . Check that all the linear combinations of functions from \mathcal{F}' form the equired countable dense set.

Around the Banach-Stone theorem

- 4. The theorem says that of C(K) and C(L) are **isometric** then K and L are homeomorphic. This can be proved as follows:
 - (a) Every extreme point in the dual ball $B_{C(K)^*}$ of signed measures of norm ≤ 1 is of the form $\pm \delta_x$ for some $x \in K$.
 - (b) if $T: C(K) \to C(L)$ is an isometry then the dual operator $T^*: C(L)^* \to C(K)^*$ is an isometry so it sends extreme points of the ball to extreme points.
- 5. The Gelfand-Kolmogorov theorem says that if there is an isomorphism $T: C(K) \to C(L)$ such that $T(f \cdot g) = T(f) \cdot T(g)$ for $f, g \in C(K)$ then K and L are homeomorphic. This may be proved as follows:
 - (a) Let $\mathcal{I} = \{f \in C(K) : f(x_0) = 0\}$ where $x_0 \in K$. Then \mathcal{I} satisfies $f, g \in \mathcal{I} \Rightarrow f + g \in \mathcal{I}$ and $f \in \mathcal{I}, g \in C(K) \Rightarrow f \cdot g \in \mathcal{I}$; we say that \mathcal{I} is an ideal in the ring C(K).
 - (b) Every ideal in C(K) which is maximal among all proper ideals is of the form described above. HINT: if we suppose that there is $f_x \in \mathcal{I}$, $f_x(x) \neq 0$ for every $x \in K$ then, using compactness, we can show that $1_K \in \mathcal{I}$ so $\mathcal{I} = C(K)$.
 - (c) Now every T preserving multiplication sends maximal ideals in C(K) to maximal ideals in C(L).

EXTENSION OPERATORS

6. For closed $F \subseteq K$, a bounded operator $T : C(F) \to C(K)$ is an extension operator if Tg|F = g for every $g \in C(F)$. Note that if such an operator exists then $C(K) \simeq C(F) \oplus X$ where X is 2-complemented in C(K). How to define X?

7. Prove that if K is a separable compact space and $F \subseteq K$ is its closed subspace that does not satisfy *ccc* then there is no extension operator $C(F) \to C(K)$.

In particular, there is no extension operator $C(\beta \omega \setminus \omega) \to C(\beta \omega)$.

Around Miljutin's theorem

- 8. Check that in any Banach space X, every two hyperplanes (= subspaces of codimension 1) are isomorphic.
- **9.** Note that for every infinite metrizable K, C(K) comtains a copy of c_0 which is then complemented by Sobczyk's theorem. Conclude that C(K+1) is isomorphic to C(K); here K + 1 denotes K with one isolated point added.
- 10. The above implies that for a compact metrizable K the space C(K) si isomorphic to any its hyperplane.
- 11. Prove directly that $C[0,1] \simeq C[0,1] \oplus C[0,1]$. HINT: $C[0,1] \simeq \{f \in C[0,1] : f(1/2) = 0\}.$
- 12. Try to prove that if $\theta: 2^{\omega} \to [0,1]$ is the canonical surjection, that is

$$\theta(x) = \sum_{n=0}^{\infty} x(n)/2^{n+1},$$

then the subspace $\{g \circ \theta : g \in C[0,1]\}$ of $C(2^{\omega})$ is not complemented.