Grzegorz Plebanek

Independent families in measure algebras

grzes@math.uni.wroc.pl
http://www.math.uni.wroc.pl/~grzes
Definition. A family \(\{a_\xi : \xi < \kappa\} \) in a Boolean algebra \(\mathcal{A} \) is

(i) centred if \(\bigwedge_{\xi \in I} a_\xi \neq 0 \) for every finite \(I \subseteq \kappa \);

(ii) independent if \(\bigwedge_{\xi \in I} a_{\xi}^{\phi(\xi)} \neq 0 \) for every finite \(I \subseteq \kappa \) and every \(\phi : I \to \{0,1\} \).

Definition. A cardinal number \(\kappa \) is a precalibre of a Boolean algebra \(\mathcal{A} \) if for every family \(\{a_\xi : \xi < \kappa\} \subseteq \mathcal{A}^+ \) there is \(X \in [\kappa]^\kappa \) such that \(\{a_\xi : \xi \in X\} \) is centred.

Definition. A cardinal number \(\kappa \) is an independence precalibre of a Boolean algebra \(\mathcal{A} \) if for every family \(\{a_\xi : \xi < \kappa\} \) of distinct elements of \(\mathcal{A} \) there is \(X \in [\kappa]^\kappa \) such that \(\{a_\xi : \xi \in X\} \) is independent.
Definition. For a measure algebra \((\mathcal{A}, \mu)\) a cardinal number \(\kappa\) is a **measure precalibre** if in every family \(\{a_\xi : \xi < \kappa\} \subseteq \mathcal{A}\) with \(\inf_{\xi<\kappa} \mu(a_\xi) > 0\) there is a centred subfamily of size \(\kappa\).

Definition. For a measure algebra \((\mathcal{A}, \mu)\)

(i) a family \(\{a_\xi : \xi < \kappa\} \subseteq \mathcal{A}\) is **separated** if there is \(\varepsilon > 0\) such that \(\mu(a_\xi \Delta a_\eta) \geq \varepsilon\) for \(\xi \neq \eta\);

(ii) a cardinal number \(\kappa\) is a **measure independence precalibre** of \(\mathcal{A}\) if every separated family \(\{a_\xi : \xi < \kappa\} \subseteq \mathcal{A}\) contains an independent subfamily of size \(\kappa\).
Definition. κ is (\ast)–precalibre of measure algebras if for every (\mathcal{A}, μ) and $\{a_\xi : \xi < \kappa\} \subseteq \mathcal{A}$ satisfying (A) there is $X \in [\kappa]^\kappa$ such that $\{a_\xi : \xi \in X\}$ has property (P), where

<table>
<thead>
<tr>
<th>(\ast)</th>
<th>(A)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>precal.</td>
<td>$a_\xi \neq 0$</td>
<td>centred</td>
</tr>
<tr>
<td>ind. precal.</td>
<td>$a_\xi \neq a_\eta$</td>
<td>independent centred</td>
</tr>
<tr>
<td>m. precal.</td>
<td>$\mu(a_\xi) \geq \varepsilon$</td>
<td>independent centred</td>
</tr>
<tr>
<td>m. ind. precal.</td>
<td>$\mu(a_\xi \triangle a_\eta) \geq \varepsilon$</td>
<td>independent</td>
</tr>
</tbody>
</table>

Remarks.

(1) If $\text{cof}(\kappa) > \omega$ then κ is a measure precalibre iff κ is a precalibre (of measure algebras).

(2) Every measure independence precalibre of measure algebras is a measure precalibre.

(3) No $\kappa \leq c$ is independence precalibre of measure algebras.
Measure precalibres.

(1) \(\omega \) is a measure precalibre.

(2) \(\kappa < c \) may be (under MA + non CH) and may not be (under CH) a measure precalibre; Fremlin vol. 5 of Measure Theory or Džamonja & G.P. [04].

(3) Problem. (Haydon) \ Let \(\kappa_n \) be regular and precalibre of measure algebras. Is \(\kappa = \sup_{n<\omega} \kappa_n \) a measure precalibre?

(4) Problem. (Fremlin) Is it rel. consistent that every regular \(\kappa \) is a precalibre of measure algebras?

Fact. (Shelah, Argyros & Tsarpalias, Fremlin) If \(\text{cof}(\kappa) = \omega \) and \(2^\kappa = \kappa^+ \) then \(\kappa^+ \) is not a precalibre of measure algebras.
Measure independence precalibres.

(1) **Fact.** ω is a measure independence precalibre.

(2) **Theorem.** (Argyros & Tsarpalias [82]) Assume that $\kappa = \text{cof}(\kappa)$ and $\tau^\omega < \kappa$ for $\tau < \kappa$ (for instance: $\kappa = c^+$. Then κ is an independence precalibre of all ccc Boolean algebras, so in particular of all measure algebras (Haydon [77]).

(3) **Theorem.** (Shelah [99]; Džamonja & G.P. [04]) Suppose that for some θ,

$$\theta = \theta^\omega < \text{cof}(\kappa) \leq \kappa \leq 2^\theta.$$

Then κ is a measure independence precalibre. If, moreover, $\kappa > 2^c$ then κ is an independence precalibre of measure algebras.
Theorem. (Fremlin & G.P.)
For $\kappa \geq \omega_2$ TFAE

(i) κ is a measure precalibre;

(ii) κ is a measure independence precalibre.

Theorem. (Fremlin [97]) Under MA + nonCH, ω_1 is a measure independence precalibre.

Theorem. (G.P. [97]) It is rel. consistent that ω_1 is a measure precalibre but not measure independence precalibre.
About the proof.

Theorem. (Hajnal’s free set theorem) If \(\kappa \geq \omega_2 \) and \(J : \kappa \rightarrow [\kappa]^{\leq \omega} \) is a set mapping such that \(\xi \notin J_\xi \) for every \(\xi < \kappa \) then there is \(X \in [\kappa]^\kappa \) such that \(\eta \notin J_\xi \) for all \(\eta, \xi \in X \).

(1) **Lemma.** Let \(\kappa \geq \omega_2 \) have uncountable cofinality. If \(\{s_\xi : \xi < \kappa\} \subseteq [\kappa]^{< \omega} \) is a pairwise disjoint family, \(\{J_\xi : \xi < \kappa\} \subseteq [\kappa]^{\leq \omega} \) are such that \(s_\xi \cap J_\xi = \emptyset \) for every \(\xi < \kappa \) then there is \(X \subseteq \kappa \) of cardinality \(\kappa \) such that \(s_\xi \cap J_\eta = \emptyset \) whenever \(\xi, \eta \in X \).

(2) **Lemma.** Let \(B \subseteq \{0, 1\}^\kappa \) be a measurable set and \(X \subseteq \kappa \) be such that \(B^* \notin \mathcal{A}[X] \). Then there are a finite set \(s \subseteq \kappa \setminus X \), a countable set \(J \subseteq \kappa \setminus s \), nonempty clopen sets \(C(0), C(1) \sim s \), a set \(Z \sim J \) with \(\lambda(Z) > 0 \) such that \(Z \cap C(i) \subseteq B^i \) for \(i = 0, 1 \).
Consider a separated family \(\{ B_\xi : \xi < \kappa \} \) of subsets of \(\{0, 1\}^\kappa \). Let \(B_\xi \sim I_\xi, I_\xi \in [\kappa]^\omega \). We can assume that

\[
B_\xi \not\in \mathcal{A}[X_\xi], \quad \text{where} \quad X_\xi = \bigcup_{\eta < \xi} J_\eta.
\]

Apply Lemma 2 to every \(B_\xi \not\in \mathcal{A}[X_\xi] \): there are pairwise disjoint finite sets \(s_\xi \) in \(\kappa \), nonempty clopen sets \(C_\xi(0), C_\xi(1) \sim s_\xi \), and sets \(Z_\xi \) of positive measure, where every \(Z_\xi \sim J_\xi \subseteq \kappa \setminus s_\xi \).

We can assume that
\[
J_\xi \cap s_\eta = \emptyset \text{ for all } \xi, \eta;
\]
\(\{ Z_\xi : \xi < \kappa \} \) is centred in \(\mathcal{A} \).

For any finite set \(a \subseteq \kappa \) and \(\varphi : a \to \{0, 1\} \)

\[
\lambda(\bigcap_{\xi \in a} B_\xi^{\varphi(\xi)}) \geq \lambda(\bigcap_{\xi \in a} Z_\xi \cap C_\xi(\varphi(\xi))) = \lambda(\bigcap_{\xi \in a} Z_\xi) \cdot \prod_{\xi \in a} \lambda(C_\xi(\varphi(\xi))) > 0.
\]
Haydon’s property. Say that κ has Haydon’s property if every compact space K that carries a Radon measures of Maharam type κ can be continuously mapped onto $[0,1]^\kappa$.

Theorem. (G.P. [97] + Haydon + Fremlin) For $\kappa \geq \omega_2$, TFAE

(a) κ has Haydon’s property;

(b) κ is a measure precalibre.

(c) κ is a measure independence precalibre.

Theorem. (Fremlin [97]) Under MA $+$ non CH, ω_1 has Haydon’s property and (therefore) is a measure independence precalibre.
Theorem. (G.P. [97]) Let \mathcal{N} be the null ideal of the measure on $\{0, 1\}^{\omega_1}$. Suppose that $\text{cov}(\mathcal{N}) > \omega_1$ but there is a family $\{N_\xi : \xi < \omega_1\} \subseteq \mathcal{N}$ such that $\bigcup_{\xi < \omega_1} N_\xi$ meets every perfect set in $\{0, 1\}^{\omega_1}$. Then ω_1 is a measure precalibre but does not have Haydon’s property and (therefore) is not a measure independence precalibre.

Theorem. (Kunen & van Mill [95] for (b) \to (a); G.P. [95] for (a) \to (b)) TFAE

(a) ω_1 is a measure precalibre;

(b) every Radon measure on a first–countable (compact) space is of countable type.

Problem. Can we replace in (b) “first–countable” by “countably tight”?
Problem. Suppose that ω_1 is a measure pre-calibre; let $\{a_\xi : \xi < \omega_1\}$ be a separated family in a measure algebra. Can we find $X \in [\omega_1]^{\omega_1}$ such that $\{a_\xi : \xi \in X\}$ is free, i.e. $\bigwedge_{\xi \in I} a_\xi \wedge \bigwedge_{\xi \in J} a_\xi^C \neq 0$ for every finite $I, J \subseteq X$ with $\max I < \min J$?