What isomorphisms between $C(K)$ spaces cannot forget

Grzegorz Plebanek (Univ. of Wrocław)
Paseky nad Jizerou 2008
Stable properties

Let \mathcal{P} be a class of compact spaces. Say that \mathcal{P} is stable if for every $K \in \mathcal{P}$ and every compact L,

$$C(K) \simeq C(L) \Rightarrow L \in \mathcal{P}.$$

Here $C(K) \simeq C(L)$ denotes that Banach spaces $C(K)$, $C(L)$ are isomorphic as Banach spaces (of continuous functions with the supremum norm).
Examples of stable classes/properties

- **Metrizable spaces**
 \(K \) is metrizable iff \(C(K) \) is separable.

- **Eberlein compacta**
 \(K \) is Eberlein compact iff \(C(K) \) is WCG.

- **ccc spaces**
 \(K \) is ccc iff \(C(K) \) does not contain \(c_0(\omega_1) \), Rosenthal [1969].

- **Spaces with a strictly positive measure**
 \(K \) carries a strictly positive measure iff \(C(K)^* \) contains weak compact total subset, again Rosenthal, cf. Todorcevic [2000].

- **Rosenthal compacta**
 See below.
Unstable properties

- Separability is not a stable property:

\[C(\beta\omega) = l_\infty \simeq L_\infty[0,1] = C(S), \]

\[S = \text{the Stone space of the measure algebra of } \lambda \text{ on } [0,1]. \]

- By Miljutin’s theorem, \(C(2^\omega) \simeq C[0,1] \simeq C[0,1]^2 \): connectedness and dimension are not stable.
Notation

- \(C(K)^* = M(K); \)
- \(P(K) \subseteq M(K); \, M_1(K) \subseteq M(K); \)
- \(t \in K, \, \delta_t \in P(K) \) is the Dirac measure.

If \(T : C(K) \to C(L) \) then \(T^* : M(L) \to M(K), \) where for \(\nu \in M(L), \, T^* \nu \) is defined by \(T^* \nu(f) = \nu(Tf). \)
Notation

- $C(K)^* = M(K)$;
- $P(K) \subseteq M(K); \ M_1(K) \subseteq M(K)$;
- $t \in K, \delta_t \in P(K)$ is the Dirac measure.

If $T : C(K) \to C(L)$ then $T^* : M(L) \to M(K)$, where for $\nu \in M(L)$, $T^*\nu$ is defined by $T^*\nu(f) = \nu(Tf)$.

Stability and spaces of measures

If $T : C(K) \to C(L)$ is an isomorphism then $T^* : M(L) \to M(K)$, T^* sends $\{\delta_t : t \in L\} = L$ to a bounded subset of $M(K)$.

Conclusion. A class \mathcal{P} is stable provided

1. $K \in \mathcal{P}, L = \overline{L} \subseteq K \Rightarrow L \in \mathcal{P}$,
2. $K \in \mathcal{P} \Rightarrow M_1(K) \in \mathcal{P}$.

Example. Rosenthal compact spaces, see Godefroy [1980]
Corson compacta and first–countable spaces

K is Corson compact if for some κ

$$K \hookrightarrow \{x \in \mathbb{R}^\kappa : |\{\alpha : x_\alpha \neq 0\}| \leq \omega\}.$$

REMARKS.

- Under CH, there are “pathological” first–countable Corson compacta K (Haydon, Kunen, Talagrand . . .).
- There is such K of size c with $|P(K)| = 2^c$, Fremlin & GP [2003].
- Under MA + non CH, Corson compacta behave properly.
- Consistently, $M_1(K)$ is first–countable if (and only if) K is first–countable, GP [2000].
- Under MA + non CH, first–countability is still unclear.
Sometimes stable

- Under MA + non CH, if K is Corson compact then $M_1(K)$ is Corson compact, see AMN [1988] and then Corson compacta form a stable class.
- Consistently, first-countability is stable GP [2000].
- For $\kappa \geq \omega$, $\mathcal{P}_\kappa =$ the class of spaces admitting surjection onto $[0,1]^{\kappa}$. Then \mathcal{P}_ω is stable; for every κ, it is consistent that \mathcal{P}_κ is stable, Fremlin [1997], GP [1997].
Sometimes stable

- Under MA + non CH, if K is Corson compact then $M_1(K)$ is Corson compact, see AMN [1988] and then Corson compacta form a stable class.
- Consistently, first–countability is stable GP [2000].
- For $\kappa \geq \omega$, $\mathcal{P}_\kappa = \text{the class of spaces admitting surjection onto } [0, 1]^\kappa$. Then \mathcal{P}_ω is stable; for every κ, it is consistent that \mathcal{P}_κ is stable, Fremlin [1997], GP [1997].

Problems

Assume CH. Show that

1. Corson compactness not stable,
2. first–countability not stable,
3. the class \mathcal{P}_{ω_1} is not stable.
Upper bound

If K is either Corson compact or first–countable then $C(K)$ has the Mazur property, i.e. every weak* sequentially continuous φ on $M(K)$ is defined by some element of $C(K)$, GP [1993]. In particular, for any L with $C(L) \simeq C(K)$, $C(L)$ cannot contain l_∞ or $C[0, \omega_1]$.
Upper bound

If K is either Corson compact or first–countable then $C(K)$ has the Mazur property, i.e. every weak* sequentially continuous φ on $M(K)$ is defined by some element of $C(K)$, GP [1993]. In particular, for any L with $C(L) \cong C(K)$, $C(L)$ cannot contain l_∞ or $C[0, \omega_1]$

Some results

Under CH,

1. there is first–countable Corson compact K, and a surjection $T : C(K) \to l_\infty$; in particular, $\beta\omega \hookrightarrow M_1(K)$;
2. there is first–countable Corson compact K, $L = \beta\omega \oplus L'$ and $T : C(K) \to C(L)$ which is 1–1 and has a dense image.
More than a conjecture

Under CH, the class of Corson compact spaces is **not** stable:

*There is a first–countable Corson compact K, and a compact L containing the split interval, such that $C(L) \cong C(K)$.***