HYPER-STONEAN ENVELOPES OF COMPACT SPACES

H. GARTH DALES AND GRZEGORZ PLEBANEK

ABSTRACT. Let K be a compact space, and denote by K its hyper-Stonean envelope.
We discuss the class of spaces K with the property that K is homeomorphic to f, the
hyper-Stonean envelope of the closed unit interval I. Certainly each uncountable, compact,
metrizable space K belongs to this class. We describe several further classes of compact
spaces K for which K=1LI fact, K =1 if and only if the Banach spaces M (K) snd
M (T) of measures on K and I are isometrically isomorphic.

1. INTRODUCTION

Let K be a non-empty, locally compact (Hausdorff) space. Then Cy(K') denotes the commu-
tative C*-algebra of all complex-valued, continuous functions on K that vanish at infinity;
in particular, Cy(K) is a Banach algebra. For every Banach algebra A, the bidual space A”
has two products, denoted by O and <, with respect to which A” is a Banach algebra and
such that the natural embedding of A into A” identifies A as a closed subalgebra of (A”,O)
and (A”,<); these two products are called the first and second Arens products on A", fol-
lowing [1]. The Banach algebra A is Arens regular if the two products O and < coincide
on A”; when A is commutative, this occurs if and only if (A”, O) is also commutative. For
the basic theory of these products, see [4, §2.6] or [5, §3.2].

In fact, each C*-algebra A is Arens regular [4, Theorem 3.2.36]; indeed the bidual (A", O)
is a von Neumann algebra, called the enveloping von Neumann algebra of A. Thus the bidual
C(K)" of a commutative C*-algebra C(K) is itself a commutative C*-algebra, and so, by
the Gel’fand—Naimark theorem, has the form C' (I? ) for a compact space K: this space K
is the hyper-Stonean envelope of K [5, Definition 5.4.2]. This approach gives an abstract
realization of the space K.

For example, the hyper-Stonean envelope of the space N is the Stone-Cech compactifi-
cation BN of N. On the other hand, let us take K to be the closed unit interval I = [0, 1].
Then I is a ‘much bigger’ space than SN.

There are several ways of ‘constructing’ K given in the text [5]. A topological character-
ization of the space I is given in [5, Theorem 6.5.4], and it is shown in [5, Theorem 6.5.6]
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that the cardinality of Tis 22°: the cardinality of various other subsets of T is determined
in [5, §6.6].

It is not hard to see that I is equal to the space K for any uncountable, compact,
metrizable space K; as we shall see, this follows from the fact that M(K) and M(I) are
isometrically 1somorphlc as Banach spaces [5, Corollary 4.6.7]. However there are compact
space K such that K = ]I but such that K is not metrizable, and so ‘other spaces’ than
uncountable, compact, metrizable spaces have the same hyper-Stonean envelope as I. One
example of such a space is given in [5, Example 6.3.1]; it is the ‘two-arrows space’.

The purpose of this note is to give a number of other examples of compact spaces K
such that K is homeomorphic to I.

2. MEASURES

The cardinality of a set S is denoted by |S|; the cardinality of the continuum is ¢; the
continuum hypothesis is termed ‘CH’ and Martin’s axiom is ‘MA’.

The dual of a Banach space F is denoted by E’, and its bidual is E”. Let E and F
be Banach spaces. The space of bounded linear operators from E into F'is B(FE, F'). We
write £ ~ F' when E and F' are isomorphic (and so there is a bijection in B(E, F)) and
E = F when E and F' are isometrically isomorphic (and so there is an isometric bijection
in B(E, F)).

Let K be a non-empty, compact space. Then we denote by M (K) the Banach space of
all complex-valued, regular Borel measures on K, as in [5, §4.1], so that ||u|| = || (K) for
p € M(K). Thus the dual Banach space of C(K) is identified isometrically with M (K), and
M (K) is an isometric predual of C'(K N) Now suppose that K and L are compact spaces.
Then C(K) is isometrically isomorphic to C' (L) if and only if K and L are homeomorphic [5,
Theorem 6.1.4], and so K and L are homeomorphic whenever M (K) = M(L). On the other
hand, in the case where, for a compact space X, the space C'(X) is isometrically a dual space
(i.e., C(X) is a von Neumann algebra), C'(X) has a unique isometric predual, identified
with the space N(X) of normal measures on X [5, Theorem 6.4.2], and so M (K) = M (L)
when K and L are homeomorphic to each other. Thus two compact spaces K and L have
the same hyper-Stonean envelope if and only if M (K) = M(L).

Let K be a non-empty, compact space. As in [5], we denote by My(K) and M.(K),
the closed linear subspaces of M (K) consisting of the discrete and continuous measures,
respectively, so that M(K) = Mu(K) ® M.(K); we write P(K) for the set of probability
measures in M (K), and then set Py(K) = P(K)N My(K) and P.(K) = P(K) N M.(K).
Indeed, take a measure p € M(K). Then p € P.(K) if and only if u(K) = ||p|| = 1 and
p({z}) =0 (x € K). In fact, we have P.(K) = {0} if and only if the space K is scattered,
in the sense that each non-empty subset A of K contains a point that is isolated in A [17].
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Further, P.(K) # {0} if and only if there is a continuous surjection from K onto I (see [25,
8.5.4 and 19.7.6]), in which case |P.(K)| > ¢. Lebesgue measure on I is denoted by m, so
that m € P.(I).

Suppose that K and L are compact spaces such that C(K) ~ C(L). It seems to be unclear
whether this always implies that M (K) = M (L); see §4. It does follow that |K| = |L| when
C(K) ~ C(L) [5, Corollary 6.1.6], and so My(K) = My(L) in this case.

Let p € P(K). As usual, L' (K, 11) denotes the Banach space of all measurable functions
on K such that || f||; = [ |f| du < oo, where we identify equivalent functions f and g such
that || f — g||; = 0. The continuous measure p has countable Maharam type if the Banach
space L'(K, ) is separable; otherwise, p has uncountable Maharam type. When p has
countable Maharam type, von Neumann’s isomorphism theorem [5, Corollary 4.4.13] shows
that L'(K, u) = LY(I, m). In general, the Maharam type of a continuous measure y € P(K)
is defined as the density of the Banach space L'(K, u); the measure is homogeneous if it
has the same Maharam type when restricted to any subset of K of positive measure. Let
p € P.(K) be a homogeneous measure of type . Then, by the Maharam theorem, L' (K, p)
is isometrically isomorphic to L*(I*,m,), where x is an infinite cardinal and m, is the usual
product measure on the Tikhonov cube I%; see Lacey [16, §14] and Fremlin [8, 531].

For a non-empty set T', we denote by ¢1(T) the Banach space of all functions on T such
that >, | f(t)| < oo, with the usual £'-norm.

The following definition of measure separable spaces was given by Lacey [16, p. 175]; see
also Dzamonja and Kunen [6] for a clear account and some examples.

Definition 2.1. The class of non-empty, compact spaces K such that each u € P(K) has
countable Maharam type is denoted by (MS).

It is not difficult to check that the class (MS) contains all metrizable and all scattered
compact spaces, and that this class is closed under continuous images and countable prod-
ucts. We shall give more examples of spaces from the class (MS) below.

Let K be a non-empty, compact space. A family F of measures in P(K) is singular if
i L v whenever yu,v € F and u # v [5, Definition 4.6.1]. Each singular family of measures is
contained in a maximal (with respect to inclusion) singular family of measures [5, §4.6]. For
example, it is shown in [5, Corollary 5.2.8] that, for each uncountable, compact, metrizable
space K, every maximal singular family in P(K) that contains all the point masses consists
of ¢ point masses and ¢ continuous measures, and this implies that |P(K)| = |P.(K)| = ¢.

We shall use some standard remarks about Banach lattices.

Let E and F be Banach lattices. An operator T' € B(E, F') is disjointness-preserving if
|Tz| L |Ty| in F whenever |z| L |y| in F'. Now take an operator T' € B(E, F') that is order-
bounded and disjointness-preserving. By [20, Theorem 3.1.4], the modulus |T'| of T" exists,
and |T| : E — F is a Banach-lattice homomorphism. In the case where 7" is an isometric
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isomorphism, |7T'| is also an isometric isomorphism. When E and F' are AL-spaces, every
bounded operator from E to F' is regular, and hence order-bounded.

Let K be a compact space. Then C'(K) and M (K) are (complex) Banach lattices in the
usual way; see [5], for example. Indeed, M (K) is an AL-space. By Kakutani’s representation
theorem for AL-spaces (see [20, Theorem 2.7.1] or [25, §26.3], for example),

M(K) = UMK p) p € F}
where F is a maximal singular family in P(K') and the sum is an £!-sum; cf. also [12, 13, 16].

Such a Kakutani decomposition yields Theorem 2.3, below. However we first give a (known)

proposition.

o~

Proposition 2.2. Let K and L be non-empty, compact spaces, and suppose that M (K)
M(L). Then there is an isometric Banach-lattice isomorphism from M (K) onto M(L).

Proof. Note that M (K) and M (L) are AL-spaces as Banach lattices and that every linear
isometry from M (K') onto M (L) is disjointness-preserving [5, Corollary 4.2.6], and so this
follows from the above remarks. O

The above proposition also follows from Maharam’s theorem; see Theorem 4.2, below.

Theorem 2.3. Let K be a non-empty, compact space. Then the following are equivalent:
(a) M(K) = M(I);

The implications (b) = (a) = (d) are trivial, and (a) = (b) by Proposition 2.2; the equiv-
alence of (a) and (c) has been noted above; the implication (f) = (e) above is essentially
proved by Lacey [16]; see Theorem 5 on page 175.

To prove the remainder of Theorem 2.3, we first recall the following fact (see, e.g., [14,
Lemma 7.2(ii)]).

Lemma 2.4. Let {X, : v € '} be a family of Banach spaces, and let X = @ . X be its
0Y-sum. For each weakly compact set L C X and each € > 0, there is a finite set I C T’
such that

Z lzs]l <& (z=(zy), €L).

~eI'\I O
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Lemma 2.5. Let x be an infinite cardinal. Then the space L'(I*,m,) does not embed
isomorphically into an £*-sum of spaces of density < k.

Proof. Recall that the subset B of L'(I*,m,) consisting of the functions g with ||g|l. <1
is weakly compact. Let m¢ : I" — I be the projection onto the {th coordinate, regarded as
an element of L'(I",m,). Then, by elementary calculations, |7 — m,||; = 1/3 whenever
§ 71

Suppose that T : L*(I*, m,) — @wer
a Banach space. Then the set T'[B] is weakly compact, and so there exists ¢ > 0 such that

X, is an isomorphic embedding, where each X, is

| T (7e) =T (m,)|| > c for every € # n. Applying Lemma 2.4 with € = ¢/2, we obtain a finite
set I C I' such that the norm of the projection of T'(m¢) — T'(m,) onto . ., X, is at least
¢/2 whenever £ # 7. We conclude that the density of X, is at least s for some v € I, and
this gives the result. O

Proof. (of Theorem 2.3.)
(a) = (e) This follows by using a maximal singular family in P(K) of the form mentioned

above.

(e) = (f) Since K satisfies (e), the space K belongs to (MS) by Lemma 2.5. Moreover
(e) clearly implies that |P(K)| = |P.(K)| = ¢.

(f) = (a) This follows directly from Kakutani’s decomposition theorem and the fact that
L' (K, p) is isometric to L*(I,m) when p € P.(K) has countable Maharam type.

(d) = (a) We shall establish this implication in Corollary 4.4, below. 0

Let K be an uncountable, compact, metrizable space. Then K satisfies clause (e) of the
above theorem, and hence it satisfies all the other clauses; cf. [4, Corollary 4.6.7].

We note that it is shown in [9] that, under some mild set-theoretic axioms, there is a
compact space K and a maximal singular family in P(K) of cardinality strictly greater
than |K|. In particular, under Martin’s axiom, MA, one can construct such a space K
with |K| = ¢ and such that there is a maximal singular family in P(K) of cardinality 2°.
However, it is not clear whether there is a compact space K in the class (MS) such that
|K| =cand |P(K)| > ¢, and so it is conceivable that the conditions in Theorem 2.3 are also
equivalent to the condition that K is a non-scattered space in the class (MS) and |K| = ¢.

We now give some further examples of compact spaces in the class (MS).

(1) Let K be a compact space, and take u € P(K). Then p is countably-determined if
there is a countable family F of closed subsets of K such that

pw(U) =sup{u(F): FCU, FeF}
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for each open subset U of K. It is clear that a countably-determined measure is of
countable Maharam type.

Compact spaces K such that each p € K is countably-determined form the class
C discussed by Mercourakis in [19]. The class C is contained in the class (MS); it
includes all scattered compact spaces, all totally ordered compact spaces, and all
Eberlein compact spaces (a compact space is Eberlein if it is homeomorphic to a
subset of a Banach space with the weak topology). The class C is closed under
countable products, continuous images, and closed subspaces.

It is easy to check that there is a separable, closed subspace L of K such that
u(L) = 1 whenever u € P(K) is countably-determined. In fact, every countably-
determined p € P(K) admits a p-uniformly distributed sequence (z,,), that is, a
sequence whose means converge to p in the weak-* topology of P(K), in the sense
that

Jingo%zjf(xi)z/[(fdu (f € C(K));

see [19, Corollary 2.8].

There are consistent examples of compact spaces that are in (MS), but that are
outside the class C; see Example 3.5 below, and see [3] for a further discussion. It
seems to be an open question whether such an example can be constructed in the
usual set theory.

A compact space is Rosenthal compact if it is homeomorphic to a subspace of By (X),
the space of functions of the first Baire class (see [5, Definition 3.3.6]) on a complete,
separable, metric space X. It follows that | K| < ¢ for every Rosenthal compact space
K.

Every compact, metrizable space is Rosenthal compact, but there are separable,
non-metrizable Rosenthal compact spaces such as the ‘two-arrows’ space, and there
are non-separable examples. It follows from the very definition that no space of
cardinality > ¢ is Rosenthal compact, so there are Eberlein compacta that are
not Rosenthal compact. On the other hand, the ‘two-arrows’ space is not Eberlein
compact since it is separable, but not metrizable.

Suppose that K and L are compact spaces such that K is Rosenthal compact
and C'(K) ~ C(L). Then L is also Rosenthal compact [10, Proposition 11].

It is shown in [26] that each Rosenthal compact space belongs to the class (MS);
some history of this result is given in [18]. It is an open problem whether every
Rosenthal compact space is in the class C; see [18] for a partial positive solution.

Let K be a compact space, and consider P(K) equipped with the relative weak-
* topology, o(M(K),C(K)). It is an open problem whether K must be in (MS)
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whenever P(K) has countable tightness. Recall that a topological space X has
countable tightness if, for every A C X and x € A, there is a countable set B C A
such that € B. This problem and its connections with other properties of C'(K)
spaces are discussed in [23], where the following is proved: if P(K x K') has countable
tightness, then K is in (MS). This result is a generalization of the fact that the class
(MS) contains all Rosenthal compacta.

(4) A compact space is Corson compact if it is homeomorphic to a subspace of
{reR": {a<k:z, #0} <w}

for some cardinal k. Every Eberlein compact space is Corson compact. It is not
difficult to check from the very definition that every separable Corson compact is
metrizable. Hence every separable, non-metrizable Rosenthal compact space is not
Corson compact. It is shown in [2] that, under MA+ —CH, all Corson compact
spaces belong to the class (MS). There are examples constructed under CH (or

weaker axioms) of Corson compact spaces that are not in (MS); see Example 3.5,
below, and Haydon [12].

(5) It is shown by Fremlin in [7] that, in the theory ZFC + MA+ —CH, all compact
spaces that cannot be mapped onto I*! are in the class (MS). Since no Corson
compact space can be mapped onto !, Fremlin’s result is not provable within the
usual set theory. Fremlin’s theorem is related to the so-called Haydon problem that
originates in [11]; see [22] for a short survey.

3. HYPER-STONEAN ENVELOPES

We shall now use Theorem 2.3 to show that the hyper-Stonean envelopes K of various

compact space K are equal to 1.

Theorem 3.1. Let K be a non-empty, Rosenthal compact space of cardinality c.

(i) Suppose that K is scattered. Then K = B 14, the Stone-Cech compactification of a
discrete space of cardinality c.

(ii) Suppose that K is not scattered. Then K=1

Proof. By remark (2), above, the space K belongs to the class (MS).

(i) Since K is scattered, every u € P(K) is purely atomic, and so M (K) is isometric to
(YN K) = ('(1,). Hence C'(K)" is isometrically isomorphic to £1(I;) = (>°(I;) = C(81y).

(ii) Since K is not scattered, there is a continuous surjection from K onto I and |P.(K)| >
¢. A theorem of Godefroy [10, Proposition 7] shows that P(K) is also a Rosenthal compact
space with respect to the relative weak-x topology, and so |P(K)| < ¢. Thus |P(K)| =
|P.(K)| = ¢, and so the result follows from Theorem 2.3. 0
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Theorem 3.2. Let K be a non-empty, compact space in the class C such that K is not
scattered and |K| = c¢. Then K =1.

Proof. We again have |P.(K)| > ¢ since K is not scattered. On the other hand, by
Mercourakis’ theorem mentioned above, every P(K) has a p-uniformly distributed se-
quence. Since |K| = ¢, there are only ¢ sequences in K, and therefore |P(K)| < ¢. Thus
|P(K)| = |P.(K)| = ¢, and the result again follows from Theorem 2.3. 0

Using the remarks in §2, Theorem 3.2 immediately yields the following consequences.

Corollary 3.3. Let K be a non-empty, compact space such that K is not scattered and
|K| = c. Suppose that, further:

(i) K is a linearly ordered topological space; or
(ii) K is Eberlein compact; or
(iii) K is Corson compact and MA+ —CH holds.
Then K = L. O

Part (ii) of the above theorem was already effectively given by Rosenthal in his classic,
foundational paper [24]; see [24, Proposition 5.5].

Theorem 3.4. Let K be a non-empty, first-countable compact space that is not scattered.
Then it is relatively consistent with ZFC that K = 1.

Proof. 1t is proved in [21] that it is relatively consistent with ZFC that each first-countable,
compact space belongs to the class (MS) and also that P(K) is a first-countable, compact
space with respect to its weak-x topology. Since each first-countable space has cardinality
at most ¢, it follows immediately that |P(K)| = |P.(K)| = ¢, and so the result again follows
from Theorem 2.3. O

Using the construction from [9] one can show that, under CH, there is a first-countable
compact space K of cardinality ¢ such that |P(K)| = 2, and so Theorem 3.4 is not provable
in the usual set theory.

Example 3.5. Assuming CH, Haydon [12] and Kunen [15] constructed two compact spaces
K and H such that:
(i) K and H are first-countable Corson compact spaces of topological weight c;

(ii) K carries a strictly positive normal measure p; of countable Maharam type, and H

carries a strictly positive normal measure py of uncountable Maharam type;
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(iii) if K is either K or H and v € P(K) is such that v is singular with respect to the
corresponding measure pq of s, then v has a metrizable support.

Recall that the main objective of Kunen’s construction was to obtain under CH a compact
L—space (that is, a space that is hereditarily Lindel6f, but non-separable), while the main
purpose of Haydon’s construction was to give a new type of a dual L-space.

Let us note that Kunen’s space K is in the class (MS). Indeed, for each v € P(K), write
v =V 4+ V", where /' is absolutely continuous with respect to u; and v is its singular
part. Then clearly v/ has countable Maharam type, and this is also true of the measure
V" because it is concentrated on a metrizable subspace. For the same reason, we conclude
that |P(K)| = |P,(K)| = ¢, and hence that M(K) 2 M(I) and K = I. Note also that the
measure j is not countably determined since 1 does not have a separable support (recall
that a separable Corson compact space is necessarily metrizable).

For Haydon’s space H, we have |P(H)| = |P.(H)| = ¢ for the same reason; however, H is
not in the class (MS), and so it follows from Theorem 2.3 that M (H) 2 M (I). 0

4. ISOMETRIC AND ISOMORPHIC TYPES OF M (K') SPACES

In this section we consider when the fact that two spaces of the form M (K) are isomorphic
implies that they are isometrically isomorphic (and hence that there is an isometric Banach-

lattice isomorphism between them). More explicitly, we raise the following problem.

Problem 4.1. Let K and L be two non-empty, compact spaces.
(i) Is it true that M (K) = M (L) whenever M(K) ~ M(L) and also |K| = |L|?
(ii) Does C(K) ~ C(L) imply that M(K) = M(L)?
(iii) Do either of questions (i) or (ii) have a positive answer under the additional assump-
tion that |K| = |L| = ¢?

Let us recall that C'(K) ~ C(L) implies that |K| = |L|, see [5, Corollary 6.1.6]. We shall
mention below an example showing that the assumption that M(K) ~ M (L) alone need
not imply that |K| = |L|; see Example 4.7.

In this section, we shall try to analyze question (iii) of Problem 4.1; it is naturally
related to the problem that we are studying. We follow here some considerations presented
by Haydon in [13].

Consider two Banach spaces each of which can be expressed as an ¢!-direct sum of spaces
of the form L'(u). Haydon [13, page 22] gave an example of a pair of such spaces that are
mutually isomorphic, but are not isometrically isomorphic. However Haydon’s spaces are
not of the form M (K).

Let K be a non-empty, compact space. When we wish to decompose M(K) as an ¢1-
direct sum of spaces of the form L!(u), we can do so by using a maximal family F in P(K)
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of mutually singular homogeneous measures. Note, in particular, that u,v € P(K) are
mutually singular whenever they are homogeneous and have different Maharam types. It
follows that M (K) is isometrically isomorphic to an ¢!-direct sum of ¢!(K,) and spaces of
the form L'(I*,m,) (here k is an infinite cardinal number), where each summand appears
T.(K) many times. In other words, we define 7,(K) as the (minimal) cardinality of a
maximal family in P(K) of mutually singular homogeneous measures of type . To have
7. (K) well-defined, we suppose that 7, (K) is either 0 (no measures of type k) or 1, or else
T.(K) is uncountable. Indeed, a countable family of mutually singular measures can be
replaced by a single measure.

We note that 7,,(K) > 0 for every n < x whenever 7,,(K) > 0; see, e.g., [8, 531E(f)]. It is
not difficult to check that a compact space K cannot carry a measure of type exceeding the
topological weight w(K') of K. Since w(K) < |K|, we have 7,(K) = 0 whenever £ > |K].
Moreover, always |P(K)| < 2*) and so, in particular, 7,.(K) < 2/¥I for every cardinal
number k.

The following theorem is essentially implicitly mentioned by Haydon on page 22 of [13].

Theorem 4.2. Let K and L be two non-empty, compact spaces. Then the following are
equivalent:

(a) there is an isometric Banach-lattice isomorphism between M(K) and M(L);
(b) the Banach spaces M(K) and M(L) are isometrically isomorphic;
(¢) |K|=1|L| and 7.(K) = 7.(L) for every infinite cardinal number k.

Proof. The implication (a) = (b) is obvious, and the implication (c¢) = (a) follows from the
fact that (c) implies that M (K) and M (L) have literally the same Kakutani decompositions.
To prove that (b) = (c), consider a linear isometry 7" from M (K) onto M(L). Then
T(P.(K)) = P.(L) and T(P4(K)) = P4(L) (by [5, Corollary 4.2.8]), and so |K| = |L|.
Recall also that T L Tv when pu,v € M(K) and p L v because L v is equivalent to
the metric condition ||u+ v|| = ||u — v| = ||u]| + ||v||, see [5, Proposition 4.2.5].
Next note that for u, v € M(K), the measure v is absolutely continuous with respect to
, written v < p, if and only if:

for every vy € M(K), we have vy = 0 whenever v; L v — vy and vy L p.

Using the above remark, we conclude that u < v implies that T'u << T .

Now it follows that, for a fixed y € P.(K), the operator T maps L'(K, u1) into L'(L, Tu);
hence the Maharam type of T'u is bigger than or equal to the type of u. Repeating this
argument for 7!, we conclude that T" preserves the Maharam type of continuous measures.
Note that a measure p € P(K) is homogeneous of type « if and only if every v € P(K)
satisfying v < p has type x; hence T is homogeneous whenever p is homogeneous.
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Finally, given an infinite cardinal number £ and a maximal family

{pe : £ < Tu(K)}
of mutually singular measures from P(K), where every i, is homogeneous of type &, then
{T'pe : £ < 7,(K)} witnesses the fact that 7,(L) = 7, (K). 0

We shall now consider two non-empty, compact spaces K and L such that M(K) ~
M(L).

Lemma 4.3. Let K and L be two non-empty, compact spaces such that M(K) ~ M(L),
and suppose that K carries a homogeneous measure of Maharam type k. Then L also carries

a homogeneous measure of Maharam type k.

Proof. Tt follows from the assumptions that L!(I*,m,) embeds isomorphically into M (L).
Hence, by Lemma 2.4, L carries a homogeneous measure of type > . By [8, 531E(f)], there
is such a v € P(L) of type k.. 0

It is a consequence of Lemma 4.3 that the Kakutani decompositions of the two spaces
M(K) and M (L) have the same summands whenever M (K) ~ M(L) and |K| = |L[; it is
unclear, however, whether these summands must appear with the same multiplicity, which
would imply that M (K) = M(L).

We have, however, the following particular case related to Theorem 2.3; it was already
noted by Rosenthal; see [24], Remark on page 244.

Corollary 4.4. For every compact space K, M(K) ~ M(I) if and only if M(K) = M(I).

Proof. Suppose that M (K) ~ M(I). Then 7,(K) = 0 for every uncountable x by Lemma
4.3. Moreover, 7,(K) = ¢ since K is not scattered. Finally, || = ¢ since M (K) has density
¢. Thus M(K) = M(L). 0

The above corollary gives the implication (d) = (a) of Theorem 2.3.

Assume now that ¢ = w; and that 2° = wy (a consequence of the generalized continuum
hypothesis), and let us consider any compact space K of cardinality ¢. Then the structure
of the space M(K) is fully determined by the values of the two cardinal numbers 7, (K)
and 7, (K). The basic problem is:

Problem 4.5. Is it true that 7, (K) < 7,(K)?

Even if the answer to this problem is positive, we have quite a number of possibilities:

(1) 7,(K) = 0, so that 7, (K) = 0. Since K is scattered, the space M (K) is isometric to
(1(K).
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(2) 7,(K) = w; and 7, (K) = 0. This case is described in Theorem 2.3.

(3) 7.(K) = wy and 7, (K) = 1. This is the case for Haydon’s space H that was mentioned
in Example 3.5; the space M (H) is isometrically isomorphic to the sum of M (I) and
LT my,, ).

(4) 7,(K) = 7,,(K) = wy. This is the case for K being the one-point compactification of
wy disjoint copies of H, for example.

(5) 7w(K) = 7,,(K) = wy. This is the case for the space K given in Theorem 4.6 below.

(6) 7,(K) = wy and 7, (K) € {0,1,w;}. We do not know any examples of spaces K that
satisfy any of these three possibilities

The following theorem follows immediately from a result from [9] and its modification
that is presented in the appendix below.

Theorem 4.6. Under CH, there is a compact space K of cardinality ¢ such that 7,(K) =
T, (K) = 25

Proof. By [9, Theorem 3A], there is a compact space K of cardinality ¢ with 7,,(K;) = 2°.
Theorem A.3, below, gives a compact space Ky of cardinality ¢ with 7, (Ky) = 2°. Take K
to be the topological disjoint union of K; and K5. Then K has the required properties. O

Example 4.7. Under CH, there are two compact sets K and L such that M(K) ~ M(L),
but such that M(K) 2 M(L).

Proof. Let K be the space from Theorem 4.6. Take a discrete set X of cardinality 2° and its
one-point compactification X = X U{xo}, where o € K. Then L = K U X is a compact
space.

We see that M(K) 2 M (L) simply because |K| # |L]|.

On the other hand, M(K) ~ M(L), which can be demonstrated as follows. Note that
M(K) and M (L) can be written as ¢!-sums:

M(K) = (K)o @ L'1,m) o Z;
£<2e
M(L) =" (L) e @ LI m) o Z;
g<2c
because every continuous measure on L is concentrated on K (here Z represents all the
remaining summands).

It is therefore not difficult to check that M(K) may be seen as a complemented sub-
space of M (L) and that M (L) is isomorphic to a complemented subspace of M (K'). Hence
M(K) ~ M(L) by the Petczynski decomposition method described in [5, Theorem 2.4.9],
n [13], 2A and the example on page 22, and in many other places. 0
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Finally, let us suppose that Problem 4.5 has a negative solution and that CH holds: take
a compact space L of cardinality ¢ such that 7,(L) = w; and 7, (L) = w,, and take a space
K as in Theorem 4.6, so that 7,(K) = we and 7,,(K) = wy. Then M(K) ~ M(L); this
may be checked by an argument analogous to that of Example 4.7.

On the other hand, it follows from Theorem 4.2 that M (K) is not isometrically isomor-
phic to M(L) for these two spaces K and L, Thus our special hypothesis would give a
counter-example to Problem 4.1, clause (i).

APPENDIX A. A COMPACT SPACE WITH A LARGE FAMILY OF MEASURES

Theorem A.3, given below, is a modification of the main result from [9]. We shall use here
the classical Stone duality between Boolean algebras and compact zero-dimensional spaces.
Given a Boolean algebra 2, its Stone space (consisting of all the ultrafilters on ) is denoted
by St(2(). Suppose that K is a compact, zero-dimensional space. Then clop(K) denotes the
algebra of clopen subsets of K. Recall that the Stone duality is defined by

A>a—acclop(StA)), a={FecSt(A):ac F};

see [5, Theorem 1.7.2], for example.

A family G is said to generate a Boolean algebra 2l whenever 2l is the smallest Boolean
subalgebra of 2( containing G. Recall also that G is centred if \ Gy # 0 for any finite subset
go of G.

Lemma A.1. Suppose that a Boolean algebra A is generated by a family G C A which
contains no uncountable, centred subfamily. Then the space St() is Corson compact and
K| <[G]“.

Proof. Define a map f : St(2) — 29, where f(F)(G) = 1if G € F and f(F)(G) = 0
otherwise. Then f is continuous. Moreover, f is injective since G generates 2. Since every
ultrafilter on 2 contains at most countably many generators from G, the set f[St(2()] is

contained in the space ¥(29), consisting of elements of 29 with countable support. Clearly,
the cardinality of ¥(29) is bounded by |G|“. 0

Remarks A.2. (i) Let u be a finitely-additive probability measure on a Boolean algebra
2. Then p can be transferred to the set function zz on clop(St(2()) by the formula

(@) = p(a) (a € A). In turn g extends uniquely to a Radon measure on St(2) (which
will be still denoted by f1).

(ii) Suppose, further, that G C 2 is such an uncountable family and that u(a Ab) > ¢
for some ¢ > 0 whenever a,b € G are distinct. Then the Maharam type of 1 is
uncountable.
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(iii) Suppose that v is another finitely-additive probability measure on 21 and that, for
every € > 0, there is a € 2 such that p(a) < ¢ and v(a) > 1 —e. Then g and U are
mutually singular on St(2l).

Theorem A.3. Assume that I can be covered by wy, Lebesque-null sets. Then there is a
compact space K of cardinality ¢ such that K carries 2“'-many mutually singular Radon

measures of uncountable type.

Proof. Take a family {N¢ : { < wi } such that m(Ng) = 0 for every § < wy and [J,_,,, Ne = L.
We may suppose that N¢ C N, whenever £ < n < w;.
We consider the Cantor cube 24 = {0, 1}*'. For each { < w; and i = 0,1, we set

Ci={z €2 :z¢ = i}.

Given £ < wy, we choose closed sets Fyj, C I\ N¢ with lim, m(F¢ ;) = 1, and we define a
Boolean algebra 2l of subsets of I x 2“* x 2“1 to be the one generated by the family G of
all the sets

Gyl = Fep x Cix C
where £ < wq, k € N, and i,5 € {0,1}. We shall check that K = St(2l) is our desired space.

Note that the family {Frp : € < wi, K € N} of closed sets contains no uncountable,
centred family because it contains no uncountable subfamily with non-empty intersection.
Indeed, for every ¢ € I, there is {, such that ¢ € N¢ for every & > &, and, consequently,
t ¢ Fey for each £ > ¢, and k € N. It follows that G contains no uncountable, centred
family either. Hence the space K is Corson compact and |K| = w{’ = ¢ by Lemma A.1.

Let A\ be the usual product measure on the space 2“'. For x € 2!, we write J, for the
corresponding Dirac measure. To every z € 2! we associate the measure pu, on 2 that is
the restriction of the product measure m ® d, ® A to 2.

Fix some x € 2¢'. For each { < n < wy, taking ¢ = z¢ and j = z,, we see that

G AGH D (FepNFyi) x (CiNCY) x (CEACY),
so that
oz (ngk AN qu,k) Z m(F&k N ka) . )\(Cgo A Cr?) = m(F&k N ka) . (1/4) — 1/4

as k — 0o. Using Remark A.2(ii), we conclude that f, has uncountable type.
Consider now z,y € 2“' with  # y, and choose £ < w; with z¢ # ye. Suppose, for
instance, that ¢ = 0 and y¢ = 1. Then

1o (GEL) = (1/2) -m(Fer)  for  j=0,1,

so that the set A = Gg’o U Gg’,j satisfies the conditions that 1i,(A) = m(F¢y) while
vy(A) = 0. Hence i, and g, are singular by Remark A.2(iii). 0
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Let us note that essentially the same argument shows that there is a compact space K of
cardinality ¢ carrying 2" mutually singular Radon measures of Maharam type x whenever
x < ¢ is a cardinal number such that I is a union of an increasing family {N¢ : £ < x} of
Lebesgue null sets.
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