
HYPER-STONEAN ENVELOPES OF COMPACT SPACES

H. GARTH DALES AND GRZEGORZ PLEBANEK

Abstract. Let K be a compact space, and denote by K̃ its hyper-Stonean envelope.

We discuss the class of spaces K with the property that K̃ is homeomorphic to Ĩ, the

hyper-Stonean envelope of the closed unit interval I. Certainly each uncountable, compact,

metrizable space K belongs to this class. We describe several further classes of compact

spaces K for which K̃ = Ĩ. In fact, K̃ = Ĩ if and only if the Banach spaces M(K) snd

M(I) of measures on K and I are isometrically isomorphic.

1. Introduction

Let K be a non-empty, locally compact (Hausdorff) space. Then C0(K) denotes the commu-

tative C∗-algebra of all complex-valued, continuous functions on K that vanish at infinity;

in particular, C0(K) is a Banach algebra. For every Banach algebra A, the bidual space A′′

has two products, denoted by 2 and 3, with respect to which A′′ is a Banach algebra and

such that the natural embedding of A into A′′ identifies A as a closed subalgebra of (A′′,2)

and (A′′,3); these two products are called the first and second Arens products on A′′, fol-

lowing [1]. The Banach algebra A is Arens regular if the two products 2 and 3 coincide

on A′′; when A is commutative, this occurs if and only if (A′′, 2 ) is also commutative. For

the basic theory of these products, see [4, §2.6] or [5, §3.2].

In fact, each C∗-algebra A is Arens regular [4, Theorem 3.2.36]; indeed the bidual (A′′, 2 )

is a von Neumann algebra, called the enveloping von Neumann algebra of A. Thus the bidual

C(K)′′ of a commutative C∗-algebra C(K) is itself a commutative C∗-algebra, and so, by

the Gel’fand–Naimark theorem, has the form C(K̃) for a compact space K̃; this space K̃

is the hyper-Stonean envelope of K [5, Definition 5.4.2]. This approach gives an abstract

realization of the space K̃.

For example, the hyper-Stonean envelope of the space N is the Stone–Čech compactifi-

cation β N of N. On the other hand, let us take K to be the closed unit interval I = [0, 1].

Then Ĩ is a ‘much bigger’ space than βN.

There are several ways of ‘constructing’ K̃ given in the text [5]. A topological character-

ization of the space Ĩ is given in [5, Theorem 6.5.4], and it is shown in [5, Theorem 6.5.6]
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that the cardinality of Ĩ is 22c ; the cardinality of various other subsets of Ĩ is determined

in [5, §6.6].

It is not hard to see that Ĩ is equal to the space K̃ for any uncountable, compact,

metrizable space K; as we shall see, this follows from the fact that M(K) and M(I) are

isometrically isomorphic as Banach spaces [5, Corollary 4.6.7]. However there are compact

space K such that K̃ = Ĩ, but such that K is not metrizable, and so ‘other spaces’ than

uncountable, compact, metrizable spaces have the same hyper-Stonean envelope as I. One

example of such a space is given in [5, Example 6.3.1]; it is the ‘two-arrows space’.

The purpose of this note is to give a number of other examples of compact spaces K

such that K̃ is homeomorphic to Ĩ.

2. Measures

The cardinality of a set S is denoted by |S|; the cardinality of the continuum is c; the

continuum hypothesis is termed ‘CH’ and Martin’s axiom is ‘MA’.

The dual of a Banach space E is denoted by E ′, and its bidual is E ′′. Let E and F

be Banach spaces. The space of bounded linear operators from E into F is B(E,F ). We

write E ∼ F when E and F are isomorphic (and so there is a bijection in B(E,F )) and

E ∼= F when E and F are isometrically isomorphic (and so there is an isometric bijection

in B(E,F )).

Let K be a non-empty, compact space. Then we denote by M(K) the Banach space of

all complex-valued, regular Borel measures on K, as in [5, §4.1], so that ‖µ‖ = |µ| (K) for

µ ∈M(K). Thus the dual Banach space of C(K) is identified isometrically with M(K), and

M(K) is an isometric predual of C(K̃). Now suppose that K and L are compact spaces.

Then C(K̃) is isometrically isomorphic to C(L̃) if and only if K̃ and L̃ are homeomorphic [5,

Theorem 6.1.4], and so K̃ and L̃ are homeomorphic whenever M(K) ∼= M(L). On the other

hand, in the case where, for a compact space X, the space C(X) is isometrically a dual space

(i.e., C(X) is a von Neumann algebra), C(X) has a unique isometric predual, identified

with the space N(X) of normal measures on X [5, Theorem 6.4.2], and so M(K) ∼= M(L)

when K̃ and L̃ are homeomorphic to each other. Thus two compact spaces K and L have

the same hyper-Stonean envelope if and only if M(K) ∼= M(L).

Let K be a non-empty, compact space. As in [5], we denote by Md(K) and Mc(K),

the closed linear subspaces of M(K) consisting of the discrete and continuous measures,

respectively, so that M(K) = Md(K) ⊕Mc(K); we write P (K) for the set of probability

measures in M(K), and then set Pd(K) = P (K) ∩Md(K) and Pc(K) = P (K) ∩Mc(K).

Indeed, take a measure µ ∈ M(K). Then µ ∈ Pc(K) if and only if µ(K) = ‖µ‖ = 1 and

µ({x}) = 0 (x ∈ K). In fact, we have Pc(K) = {0} if and only if the space K is scattered,

in the sense that each non-empty subset A of K contains a point that is isolated in A [17].
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Further, Pc(K) 6= {0} if and only if there is a continuous surjection from K onto I (see [25,

8.5.4 and 19.7.6]), in which case |Pc(K)| ≥ c. Lebesgue measure on I is denoted by m, so

that m ∈ Pc(I).
Suppose thatK and L are compact spaces such that C(K) ∼ C(L). It seems to be unclear

whether this always implies that M(K) ∼= M(L); see §4. It does follow that |K| = |L| when

C(K) ∼ C(L) [5, Corollary 6.1.6], and so Md(K) ∼= Md(L) in this case.

Let µ ∈ P (K). As usual, L1(K,µ) denotes the Banach space of all measurable functions

on K such that ‖f‖1 =
∫
K
|f | dµ <∞, where we identify equivalent functions f and g such

that ‖f − g‖1 = 0. The continuous measure µ has countable Maharam type if the Banach

space L1(K,µ) is separable; otherwise, µ has uncountable Maharam type. When µ has

countable Maharam type, von Neumann’s isomorphism theorem [5, Corollary 4.4.13] shows

that L1(K,µ) ∼= L1(I,m). In general, the Maharam type of a continuous measure µ ∈ P (K)

is defined as the density of the Banach space L1(K,µ); the measure is homogeneous if it

has the same Maharam type when restricted to any subset of K of positive measure. Let

µ ∈ Pc(K) be a homogeneous measure of type κ. Then, by the Maharam theorem, L1(K,µ)

is isometrically isomorphic to L1(Iκ,mκ), where κ is an infinite cardinal and mκ is the usual

product measure on the Tikhonov cube Iκ; see Lacey [16, §14] and Fremlin [8, 531].

For a non-empty set T , we denote by ` 1(T ) the Banach space of all functions on T such

that
∑

t∈T |f(t)| <∞, with the usual ` 1-norm.

The following definition of measure separable spaces was given by Lacey [16, p. 175]; see

also Džamonja and Kunen [6] for a clear account and some examples.

Definition 2.1. The class of non-empty, compact spaces K such that each µ ∈ P (K) has

countable Maharam type is denoted by (MS).

It is not difficult to check that the class (MS) contains all metrizable and all scattered

compact spaces, and that this class is closed under continuous images and countable prod-

ucts. We shall give more examples of spaces from the class (MS) below.

Let K be a non-empty, compact space. A family F of measures in P (K) is singular if

µ ⊥ ν whenever µ, ν ∈ F and µ 6= ν [5, Definition 4.6.1]. Each singular family of measures is

contained in a maximal (with respect to inclusion) singular family of measures [5, §4.6]. For

example, it is shown in [5, Corollary 5.2.8] that, for each uncountable, compact, metrizable

space K, every maximal singular family in P (K) that contains all the point masses consists

of c point masses and c continuous measures, and this implies that |P (K)| = |Pc(K)| = c.

We shall use some standard remarks about Banach lattices.

Let E and F be Banach lattices. An operator T ∈ B(E,F ) is disjointness-preserving if

|Tx| ⊥ |Ty| in F whenever |x| ⊥ |y| in F . Now take an operator T ∈ B(E,F ) that is order-

bounded and disjointness-preserving. By [20, Theorem 3.1.4], the modulus |T | of T exists,

and |T | : E → F is a Banach-lattice homomorphism. In the case where T is an isometric
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isomorphism, |T | is also an isometric isomorphism. When E and F are AL-spaces, every

bounded operator from E to F is regular, and hence order-bounded.

Let K be a compact space. Then C(K) and M(K) are (complex) Banach lattices in the

usual way; see [5], for example. Indeed, M(K) is an AL-space. By Kakutani’s representation

theorem for AL-spaces (see [20, Theorem 2.7.1] or [25, §26.3], for example),

M(K) =
⊕
{L1(K,µ) : µ ∈ F} ,

where F is a maximal singular family in P (K) and the sum is an ` 1-sum; cf. also [12, 13, 16].

Such a Kakutani decomposition yields Theorem 2.3, below. However we first give a (known)

proposition.

Proposition 2.2. Let K and L be non-empty, compact spaces, and suppose that M(K) ∼=
M(L). Then there is an isometric Banach-lattice isomorphism from M(K) onto M(L).

Proof. Note that M(K) and M(L) are AL-spaces as Banach lattices and that every linear

isometry from M(K) onto M(L) is disjointness-preserving [5, Corollary 4.2.6], and so this

follows from the above remarks.

The above proposition also follows from Maharam’s theorem; see Theorem 4.2, below.
2.1

Theorem 2.3. Let K be a non-empty, compact space. Then the following are equivalent:

(a) M(K) ∼= M(I);

(b) there is an isometric Banach-lattice isomorphism from M(K) onto M(I);

(c) K̃ = Ĩ;
(d) M(K) ∼M(I);

(e) M(K) is isometric to the ` 1-sum of ` 1(I) and of c-many copies of L1(I,m);

(f) K is in the class (MS) and |P (K)| = |Pc(K)| = c.

The implications (b)⇒ (a)⇒ (d) are trivial, and (a)⇒ (b) by Proposition 2.2; the equiv-

alence of (a) and (c) has been noted above; the implication (f) ⇒ (e) above is essentially

proved by Lacey [16]; see Theorem 5 on page 175.

To prove the remainder of Theorem 2.3, we first recall the following fact (see, e.g., [14,

Lemma 7.2(ii)]).
2.15

Lemma 2.4. Let {Xγ : γ ∈ Γ} be a family of Banach spaces, and let X =
⊕

γ∈ΓXγ be its

` 1-sum. For each weakly compact set L ⊂ X and each ε > 0, there is a finite set I ⊂ Γ

such that ∑
γ∈Γ\I

‖xγ‖ < ε (x = (xγ)γ ∈ L) .
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2.2

Lemma 2.5. Let κ be an infinite cardinal. Then the space L1(Iκ,mκ) does not embed

isomorphically into an ` 1-sum of spaces of density < κ.

Proof. Recall that the subset B of L1(Iκ,mκ) consisting of the functions g with ‖g‖∞ ≤ 1

is weakly compact. Let πξ : Iκ → I be the projection onto the ξth coordinate, regarded as

an element of L1(Iκ,mκ). Then, by elementary calculations, ‖πξ − πη‖1 = 1/3 whenever

ξ 6= η.

Suppose that T : L1(Iκ,mκ)→
⊕

γ∈ΓXγ is an isomorphic embedding, where each Xγ is

a Banach space. Then the set T [B] is weakly compact, and so there exists c > 0 such that

‖T (πξ)−T (πη)‖ ≥ c for every ξ 6= η. Applying Lemma 2.4 with ε = c/2, we obtain a finite

set I ⊂ Γ such that the norm of the projection of T (πξ)− T (πη) onto
⊕

γ∈I Xγ is at least

c/2 whenever ξ 6= η. We conclude that the density of Xγ is at least κ for some γ ∈ I, and

this gives the result.

Proof. (of Theorem 2.3.)

(a)⇒ (e) This follows by using a maximal singular family in P (K) of the form mentioned

above.

(e) ⇒ (f) Since K satisfies (e), the space K belongs to (MS) by Lemma 2.5. Moreover

(e) clearly implies that |P (K)| = |Pc(K)| = c.

(f)⇒ (a) This follows directly from Kakutani’s decomposition theorem and the fact that

L1(K,µ) is isometric to L1(I,m) when µ ∈ Pc(K) has countable Maharam type.

(d) ⇒ (a) We shall establish this implication in Corollary 4.4, below.

Let K be an uncountable, compact, metrizable space. Then K satisfies clause (e) of the

above theorem, and hence it satisfies all the other clauses; cf. [4, Corollary 4.6.7].

We note that it is shown in [9] that, under some mild set-theoretic axioms, there is a

compact space K and a maximal singular family in P (K) of cardinality strictly greater

than |K|. In particular, under Martin’s axiom, MA, one can construct such a space K

with |K| = c and such that there is a maximal singular family in P (K) of cardinality 2c.

However, it is not clear whether there is a compact space K in the class (MS) such that

|K| = c and |P (K)| > c, and so it is conceivable that the conditions in Theorem 2.3 are also

equivalent to the condition that K is a non-scattered space in the class (MS) and |K| = c.

We now give some further examples of compact spaces in the class (MS).

(1) Let K be a compact space, and take µ ∈ P (K). Then µ is countably-determined if

there is a countable family F of closed subsets of K such that

µ(U) = sup{µ(F ) : F ⊂ U, F ∈ F}
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for each open subset U of K. It is clear that a countably-determined measure is of

countable Maharam type.

Compact spaces K such that each µ ∈ K is countably-determined form the class

C discussed by Mercourakis in [19]. The class C is contained in the class (MS); it

includes all scattered compact spaces, all totally ordered compact spaces, and all

Eberlein compact spaces (a compact space is Eberlein if it is homeomorphic to a

subset of a Banach space with the weak topology). The class C is closed under

countable products, continuous images, and closed subspaces.

It is easy to check that there is a separable, closed subspace L of K such that

µ(L) = 1 whenever µ ∈ P (K) is countably-determined. In fact, every countably-

determined µ ∈ P (K) admits a µ-uniformly distributed sequence (xn), that is, a

sequence whose means converge to µ in the weak-∗ topology of P (K), in the sense

that

lim
n→∞

1

n

n∑
i=1

f(xi) =

∫
K

f dµ (f ∈ C(K)) ;

see [19, Corollary 2.8].

There are consistent examples of compact spaces that are in (MS), but that are

outside the class C; see Example 3.5 below, and see [3] for a further discussion. It

seems to be an open question whether such an example can be constructed in the

usual set theory.

(2) A compact space is Rosenthal compact if it is homeomorphic to a subspace of B1(X),

the space of functions of the first Baire class (see [5, Definition 3.3.6]) on a complete,

separable, metric space X. It follows that |K| ≤ c for every Rosenthal compact space

K.

Every compact, metrizable space is Rosenthal compact, but there are separable,

non-metrizable Rosenthal compact spaces such as the ‘two-arrows’ space, and there

are non-separable examples. It follows from the very definition that no space of

cardinality > c is Rosenthal compact, so there are Eberlein compacta that are

not Rosenthal compact. On the other hand, the ‘two-arrows’ space is not Eberlein

compact since it is separable, but not metrizable.

Suppose that K and L are compact spaces such that K is Rosenthal compact

and C(K) ∼ C(L). Then L is also Rosenthal compact [10, Proposition 11].

It is shown in [26] that each Rosenthal compact space belongs to the class (MS);

some history of this result is given in [18]. It is an open problem whether every

Rosenthal compact space is in the class C; see [18] for a partial positive solution.

(3) Let K be a compact space, and consider P (K) equipped with the relative weak-

∗ topology, σ(M(K), C(K)). It is an open problem whether K must be in (MS)
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whenever P (K) has countable tightness. Recall that a topological space X has

countable tightness if, for every A ⊂ X and x ∈ A, there is a countable set B ⊂ A

such that x ∈ B. This problem and its connections with other properties of C(K)

spaces are discussed in [23], where the following is proved: if P (K×K) has countable

tightness, then K is in (MS). This result is a generalization of the fact that the class

(MS) contains all Rosenthal compacta.

(4) A compact space is Corson compact if it is homeomorphic to a subspace of

{x ∈ Rκ : |{α < κ : xα 6= 0}| ≤ ω}

for some cardinal κ. Every Eberlein compact space is Corson compact. It is not

difficult to check from the very definition that every separable Corson compact is

metrizable. Hence every separable, non-metrizable Rosenthal compact space is not

Corson compact. It is shown in [2] that, under MA+ ¬CH, all Corson compact

spaces belong to the class (MS). There are examples constructed under CH (or

weaker axioms) of Corson compact spaces that are not in (MS); see Example 3.5,

below, and Haydon [12].

(5) It is shown by Fremlin in [7] that, in the theory ZFC + MA+ ¬CH, all compact

spaces that cannot be mapped onto Iω1 are in the class (MS). Since no Corson

compact space can be mapped onto Iω1 , Fremlin’s result is not provable within the

usual set theory. Fremlin’s theorem is related to the so-called Haydon problem that

originates in [11]; see [22] for a short survey.

3. Hyper-Stonean envelopes

We shall now use Theorem 2.3 to show that the hyper-Stonean envelopes K̃ of various

compact space K are equal to Ĩ.

Theorem 3.1. Let K be a non-empty, Rosenthal compact space of cardinality c.

(i) Suppose that K is scattered. Then K̃ = β Id, the Stone–Čech compactification of a

discrete space of cardinality c.

(ii) Suppose that K is not scattered. Then K̃ = Ĩ.

Proof. By remark (2), above, the space K belongs to the class (MS).

(i) Since K is scattered, every µ ∈ P (K) is purely atomic, and so M(K) is isometric to

` 1(K) ∼= ` 1(Id). Hence C(K)′′ is isometrically isomorphic to ` 1(Id)′ ∼= `∞(Id) ∼= C(β Id).
(ii) Since K is not scattered, there is a continuous surjection from K onto I and |Pc(K)| ≥

c. A theorem of Godefroy [10, Proposition 7] shows that P (K) is also a Rosenthal compact

space with respect to the relative weak-∗ topology, and so |P (K)| ≤ c. Thus |P (K)| =

|Pc(K)| = c, and so the result follows from Theorem 2.3.
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Theorem 3.2. Let K be a non-empty, compact space in the class C such that K is not

scattered and |K| = c. Then K̃ = Ĩ.

Proof. We again have |Pc(K)| ≥ c since K is not scattered. On the other hand, by

Mercourakis’ theorem mentioned above, every P (K) has a µ-uniformly distributed se-

quence. Since |K| = c, there are only c sequences in K, and therefore |P (K)| ≤ c. Thus

|P (K)| = |Pc(K)| = c, and the result again follows from Theorem 2.3.

Using the remarks in §2, Theorem 3.2 immediately yields the following consequences.

Corollary 3.3. Let K be a non-empty, compact space such that K is not scattered and

|K| = c. Suppose that, further:

(i) K is a linearly ordered topological space; or

(ii) K is Eberlein compact; or

(iii) K is Corson compact and MA+ ¬CH holds.

Then K̃ = Ĩ.

Part (ii) of the above theorem was already effectively given by Rosenthal in his classic,

foundational paper [24]; see [24, Proposition 5.5].

Theorem 3.4. Let K be a non-empty, first-countable compact space that is not scattered.

Then it is relatively consistent with ZFC that K̃ = Ĩ.

Proof. It is proved in [21] that it is relatively consistent with ZFC that each first-countable,

compact space belongs to the class (MS) and also that P (K) is a first-countable, compact

space with respect to its weak-∗ topology. Since each first-countable space has cardinality

at most c, it follows immediately that |P (K)| = |Pc(K)| = c, and so the result again follows

from Theorem 2.3.

Using the construction from [9] one can show that, under CH, there is a first-countable

compact space K of cardinality c such that |P (K)| = 2c, and so Theorem 3.4 is not provable

in the usual set theory.

Example 3.5. Assuming CH, Haydon [12] and Kunen [15] constructed two compact spaces

K and H such that:

(i) K and H are first-countable Corson compact spaces of topological weight c;

(ii) K carries a strictly positive normal measure µ1 of countable Maharam type, and H
carries a strictly positive normal measure µ2 of uncountable Maharam type;
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(iii) if K is either K or H and ν ∈ P (K) is such that ν is singular with respect to the

corresponding measure µ1 of µ2, then ν has a metrizable support.

Recall that the main objective of Kunen’s construction was to obtain under CH a compact

L−space (that is, a space that is hereditarily Lindelöf, but non-separable), while the main

purpose of Haydon’s construction was to give a new type of a dual L-space.

Let us note that Kunen’s space K is in the class (MS). Indeed, for each ν ∈ P (K), write

ν = ν ′ + ν ′′, where ν ′ is absolutely continuous with respect to µ1 and ν ′′ is its singular

part. Then clearly ν ′ has countable Maharam type, and this is also true of the measure

ν ′′ because it is concentrated on a metrizable subspace. For the same reason, we conclude

that |P (K)| = |Pc(K)| = c, and hence that M(K) ∼= M(I) and K̃ = Ĩ. Note also that the

measure µ1 is not countably determined since µ1 does not have a separable support (recall

that a separable Corson compact space is necessarily metrizable).

For Haydon’s space H, we have |P (H)| = |Pc(H)| = c for the same reason; however, H is

not in the class (MS), and so it follows from Theorem 2.3 that M(H) 6∼= M(I).

4. Isometric and isomorphic types of M(K) spaces

In this section we consider when the fact that two spaces of the form M(K) are isomorphic

implies that they are isometrically isomorphic (and hence that there is an isometric Banach-

lattice isomorphism between them). More explicitly, we raise the following problem.

Problem 4.1. Let K and L be two non-empty, compact spaces.

(i) Is it true that M(K) ∼= M(L) whenever M(K) ∼M(L) and also |K| = |L|?
(ii) Does C(K) ∼ C(L) imply that M(K) ∼= M(L)?

(iii) Do either of questions (i) or (ii) have a positive answer under the additional assump-

tion that |K| = |L| = c?

Let us recall that C(K) ∼ C(L) implies that |K| = |L|, see [5, Corollary 6.1.6]. We shall

mention below an example showing that the assumption that M(K) ∼ M(L) alone need

not imply that |K| = |L|; see Example 4.7.

In this section, we shall try to analyze question (iii) of Problem 4.1; it is naturally

related to the problem that we are studying. We follow here some considerations presented

by Haydon in [13].

Consider two Banach spaces each of which can be expressed as an ` 1-direct sum of spaces

of the form L1(µ). Haydon [13, page 22] gave an example of a pair of such spaces that are

mutually isomorphic, but are not isometrically isomorphic. However Haydon’s spaces are

not of the form M(K).

Let K be a non-empty, compact space. When we wish to decompose M(K) as an ` 1-

direct sum of spaces of the form L1(µ), we can do so by using a maximal family F in P (K)
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of mutually singular homogeneous measures. Note, in particular, that µ, ν ∈ P (K) are

mutually singular whenever they are homogeneous and have different Maharam types. It

follows that M(K) is isometrically isomorphic to an ` 1-direct sum of ` 1(Kd) and spaces of

the form L1(Iκ,mκ) (here κ is an infinite cardinal number), where each summand appears

τκ(K) many times. In other words, we define τκ(K) as the (minimal) cardinality of a

maximal family in P (K) of mutually singular homogeneous measures of type κ. To have

τκ(K) well-defined, we suppose that τκ(K) is either 0 (no measures of type κ) or 1, or else

τκ(K) is uncountable. Indeed, a countable family of mutually singular measures can be

replaced by a single measure.

We note that τη(K) > 0 for every η < κ whenever τκ(K) > 0; see, e.g., [8, 531E(f)]. It is

not difficult to check that a compact space K cannot carry a measure of type exceeding the

topological weight w(K) of K. Since w(K) ≤ |K|, we have τκ(K) = 0 whenever κ > |K|.
Moreover, always |P (K)| ≤ 2w(K), and so, in particular, τκ(K) ≤ 2|K| for every cardinal

number κ.

The following theorem is essentially implicitly mentioned by Haydon on page 22 of [13].

Theorem 4.2. Let K and L be two non-empty, compact spaces. Then the following are

equivalent:

(a) there is an isometric Banach-lattice isomorphism between M(K) and M(L);

(b) the Banach spaces M(K) and M(L) are isometrically isomorphic;

(c) |K| = |L| and τκ(K) = τκ(L) for every infinite cardinal number κ.

Proof. The implication (a)⇒ (b) is obvious, and the implication (c)⇒ (a) follows from the

fact that (c) implies thatM(K) andM(L) have literally the same Kakutani decompositions.

To prove that (b) ⇒ (c), consider a linear isometry T from M(K) onto M(L). Then

T (Pc(K)) = Pc(L) and T (Pd(K)) = Pd(L) (by [5, Corollary 4.2.8]), and so |K| = |L|.
Recall also that Tµ ⊥ Tν when µ, ν ∈ M(K) and µ ⊥ ν because µ ⊥ ν is equivalent to

the metric condition ‖µ+ ν‖ = ‖µ− ν‖ = ‖µ‖+ ‖ν‖, see [5, Proposition 4.2.5].

Next note that for µ, ν ∈M(K), the measure ν is absolutely continuous with respect to

µ, written ν � µ, if and only if:

for every ν1 ∈M(K), we have ν1 = 0 whenever ν1 ⊥ ν − ν1 and ν1 ⊥ µ.

Using the above remark, we conclude that µ� ν implies that Tµ� Tµ.

Now it follows that, for a fixed µ ∈ Pc(K), the operator T maps L1(K,µ) into L1(L, Tµ);

hence the Maharam type of Tµ is bigger than or equal to the type of µ. Repeating this

argument for T−1, we conclude that T preserves the Maharam type of continuous measures.

Note that a measure µ ∈ P (K) is homogeneous of type κ if and only if every ν ∈ P (K)

satisfying ν � µ has type κ; hence Tµ is homogeneous whenever µ is homogeneous.
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Finally, given an infinite cardinal number κ and a maximal family

{µξ : ξ < τκ(K)}

of mutually singular measures from P (K), where every µξ is homogeneous of type κ, then

{Tµξ : ξ < τκ(K)} witnesses the fact that τκ(L) = τκ(K).

We shall now consider two non-empty, compact spaces K and L such that M(K) ∼
M(L).

Lemma 4.3. Let K and L be two non-empty, compact spaces such that M(K) ∼ M(L),

and suppose that K carries a homogeneous measure of Maharam type κ. Then L also carries

a homogeneous measure of Maharam type κ.

Proof. It follows from the assumptions that L1(Iκ,mκ) embeds isomorphically into M(L).

Hence, by Lemma 2.4, L carries a homogeneous measure of type ≥ κ. By [8, 531E(f)], there

is such a ν ∈ P (L) of type κ..

It is a consequence of Lemma 4.3 that the Kakutani decompositions of the two spaces

M(K) and M(L) have the same summands whenever M(K) ∼ M(L) and |K| = |L|; it is

unclear, however, whether these summands must appear with the same multiplicity, which

would imply that M(K) ∼= M(L).

We have, however, the following particular case related to Theorem 2.3; it was already

noted by Rosenthal; see [24], Remark on page 244.

Corollary 4.4. For every compact space K, M(K) ∼M(I) if and only if M(K) ∼= M(I).

Proof. Suppose that M(K) ∼ M(I). Then τκ(K) = 0 for every uncountable κ by Lemma

4.3. Moreover, τω(K) = c since K is not scattered. Finally, |K| = c since M(K) has density

c. Thus M(K) ∼= M(I).

The above corollary gives the implication (d) ⇒ (a) of Theorem 2.3.

Assume now that c = ω1 and that 2c = ω2 (a consequence of the generalized continuum

hypothesis), and let us consider any compact space K of cardinality c. Then the structure

of the space M(K) is fully determined by the values of the two cardinal numbers τω(K)

and τω1(K). The basic problem is:

Problem 4.5. Is it true that τω1(K) ≤ τω(K)?

Even if the answer to this problem is positive, we have quite a number of possibilities:

(1) τω(K) = 0, so that τω1(K) = 0. Since K is scattered, the space M(K) is isometric to

` 1(K).
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(2) τω(K) = ω1 and τω1(K) = 0. This case is described in Theorem 2.3.

(3) τω(K) = ω1 and τω1(K) = 1. This is the case for Haydon’s space H that was mentioned

in Example 3.5; the space M(H) is isometrically isomorphic to the sum of M(I) and

L1(Iω1 ,mω1).

(4) τω(K) = τω1(K) = ω1. This is the case for K being the one-point compactification of

ω1 disjoint copies of H, for example.

(5) τω(K) = τω1(K) = ω2. This is the case for the space K given in Theorem 4.6 below.

(6) τω(K) = ω2 and τω1(K) ∈ {0, 1, ω1}. We do not know any examples of spaces K that

satisfy any of these three possibilities

The following theorem follows immediately from a result from [9] and its modification

that is presented in the appendix below.

Theorem 4.6. Under CH, there is a compact space K of cardinality c such that τω(K) =

τω1(K) = 2c.

Proof. By [9, Theorem 3A], there is a compact space K1 of cardinality c with τω(K1) = 2c.

Theorem A.3, below, gives a compact space K2 of cardinality c with τω1(K2) = 2c. Take K

to be the topological disjoint union of K1 and K2. Then K has the required properties.

Example 4.7. Under CH, there are two compact sets K and L such that M(K) ∼M(L),

but such that M(K) 6∼= M(L).

Proof. Let K be the space from Theorem 4.6. Take a discrete set X of cardinality 2c and its

one-point compactification αX = X ∪ {x0}, where x0 ∈ K. Then L = K ∪X is a compact

space.

We see that M(K) 6∼= M(L) simply because |K| 6= |L|.
On the other hand, M(K) ∼ M(L), which can be demonstrated as follows. Note that

M(K) and M(L) can be written as ` 1-sums:

M(K) = ` 1(K)⊕
⊕
ξ<2c

L1(I,m)⊕ Z;

M(L) = ` 1(L)⊕
⊕
ξ<2c

L1(I,m)⊕ Z;

because every continuous measure on L is concentrated on K (here Z represents all the

remaining summands).

It is therefore not difficult to check that M(K) may be seen as a complemented sub-

space of M(L) and that M(L) is isomorphic to a complemented subspace of M(K). Hence

M(K) ∼ M(L) by the Pe lczyński decomposition method described in [5, Theorem 2.4.9],

in [13], 2A and the example on page 22, and in many other places.
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Finally, let us suppose that Problem 4.5 has a negative solution and that CH holds: take

a compact space L of cardinality c such that τω(L) = ω1 and τω1(L) = ω2, and take a space

K as in Theorem 4.6, so that τω(K) = ω2 and τω1(K) = ω2. Then M(K) ∼ M(L); this

may be checked by an argument analogous to that of Example 4.7.

On the other hand, it follows from Theorem 4.2 that M(K) is not isometrically isomor-

phic to M(L) for these two spaces K and L, Thus our special hypothesis would give a

counter-example to Problem 4.1, clause (i).

Appendix A. A compact space with a large family of measures

Theorem A.3, given below, is a modification of the main result from [9]. We shall use here

the classical Stone duality between Boolean algebras and compact zero-dimensional spaces.

Given a Boolean algebra A, its Stone space (consisting of all the ultrafilters on A) is denoted

by St(A). Suppose that K is a compact, zero-dimensional space. Then clop(K) denotes the

algebra of clopen subsets of K. Recall that the Stone duality is defined by

A 3 a→ â ∈ clop(St(A)), â = {F ∈ St(A) : a ∈ F};

see [5, Theorem 1.7.2], for example.

A family G is said to generate a Boolean algebra A whenever A is the smallest Boolean

subalgebra of A containing G. Recall also that G is centred if
∧
G0 6= 0 for any finite subset

G0 of G.

Lemma A.1. Suppose that a Boolean algebra A is generated by a family G ⊂ A which

contains no uncountable, centred subfamily. Then the space St(A) is Corson compact and

|K| ≤ |G|ω.

Proof. Define a map f : St(A) → 2G, where f(F)(G) = 1 if G ∈ F and f(F)(G) = 0

otherwise. Then f is continuous. Moreover, f is injective since G generates A. Since every

ultrafilter on A contains at most countably many generators from G, the set f [St(A)] is

contained in the space Σ(2G), consisting of elements of 2G with countable support. Clearly,

the cardinality of Σ(2G) is bounded by |G|ω.

Remarks A.2. (i) Let µ be a finitely-additive probability measure on a Boolean algebra

A. Then µ can be transferred to the set function µ̂ on clop(St(A)) by the formula

µ̂(â) = µ(a) (a ∈ A). In turn µ̂ extends uniquely to a Radon measure on St(A) (which

will be still denoted by µ̂).

(ii) Suppose, further, that G ⊂ A is such an uncountable family and that µ(a4 b) ≥ ε

for some ε > 0 whenever a, b ∈ G are distinct. Then the Maharam type of µ̂ is

uncountable.
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(iii) Suppose that ν is another finitely-additive probability measure on A and that, for

every ε > 0, there is a ∈ A such that µ(a) < ε and ν(a) > 1 − ε. Then µ̂ and ν̂ are

mutually singular on St(A).

Theorem A.3. Assume that I can be covered by ω1 Lebesgue-null sets. Then there is a

compact space K of cardinality c such that K carries 2ω1-many mutually singular Radon

measures of uncountable type.

Proof. Take a family {Nξ : ξ < ω1} such that m(Nξ) = 0 for every ξ < ω1 and
⋃
ξ<ω1

Nξ = I.
We may suppose that Nξ ⊂ Nη whenever ξ < η < ω1.

We consider the Cantor cube 2ω1 = {0, 1}ω1 . For each ξ < ω1 and i = 0, 1, we set

Ci
ξ = {x ∈ 2ω1 : xξ = i}.

Given ξ < ω1, we choose closed sets Fξ,k ⊂ I \Nξ with limkm(Fξ,k) = 1, and we define a

Boolean algebra A of subsets of I × 2ω1 × 2ω1 to be the one generated by the family G of

all the sets

Gi,j
ξ,k = Fξ,k × Ci

ξ × C
j
ξ ,

where ξ < ω1, k ∈ N, and i, j ∈ {0, 1}. We shall check that K = St(A) is our desired space.

Note that the family {Fξ,k : ξ < ω1, k ∈ N} of closed sets contains no uncountable,

centred family because it contains no uncountable subfamily with non-empty intersection.

Indeed, for every t ∈ I, there is ξ0 such that t ∈ Nξ for every ξ ≥ ξ0 and, consequently,

t /∈ Fξ,k for each ξ ≥ ξ0 and k ∈ N. It follows that G contains no uncountable, centred

family either. Hence the space K is Corson compact and |K| = ω ω
1 = c by Lemma A.1.

Let λ be the usual product measure on the space 2ω1 . For x ∈ 2ω1 , we write δx for the

corresponding Dirac measure. To every x ∈ 2ω1 we associate the measure µx on A that is

the restriction of the product measure m⊗ δx ⊗ λ to A.

Fix some x ∈ 2ω1 . For each ξ < η < ω1, taking i = xξ and j = xη, we see that

G i,0
ξ,k 4G j,0

η,k ⊃
(
Fξ,k ∩ Fη,k

)
×
(
C i
ξ ∩ C j

η

)
×
(
C 0
ξ 4 C 0

η

)
,

so that

µx
(
Gξ,k 4G j

η,k

)
≥ m

(
Fξ,k ∩ Fη,k

)
· λ
(
C 0
ξ 4 C 0

η

)
= m

(
Fξ,k ∩ Fη,k

)
· (1/4)→ 1/4

as k →∞. Using Remark A.2(ii), we conclude that µ̂x has uncountable type.

Consider now x, y ∈ 2ω1 with x 6= y, and choose ξ < ω1 with xξ 6= yξ. Suppose, for

instance, that xξ = 0 and yξ = 1. Then

µx
(
G 0,j
ξ,k

)
= (1/2) ·m

(
Fξ,k

)
for j = 0, 1 ,

so that the set A = G 0,0
ξ,k ∪ G

0,1
ξ,k satisfies the conditions that µx(A) = m

(
Fξ,k

)
while

νy(A) = 0. Hence µ̂x and µ̂y are singular by Remark A.2(iii).
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Let us note that essentially the same argument shows that there is a compact space K of

cardinality c carrying 2κ mutually singular Radon measures of Maharam type κ whenever

κ ≤ c is a cardinal number such that I is a union of an increasing family {Nξ : ξ < κ} of

Lebesgue null sets.
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