A NORMAL MEASURE ON A COMPACT CONNECTED SPACE

GRZEGORZ PLEBANEK

Abstract. We present a construction of a compact connected space which supports a normal probability measure.

1. Introduction

If K is a compact Hausdorff space then we denote by $P(K)$ the set of all probability regular Borel measures on K. We write $Z(K)$ for the family of all closed $G_δ$ subsets of K. Since every compact space is normal, $Z \in Z(K)$ if and only if Z is a zero set, i.e. $Z = f^{-1}(0)$ for some continuous function $f : K \to \mathbb{R}$.

A measure $\mu \in P(K)$ is normal if μ is order-continuous on the Banach lattice $C(K)$. Equivalently, $\mu(F) = 0$ whenever $F \subseteq K$ is a closed set with empty interior ([1], Theorem 4.6.3). A typical example of a normal measure is the natural measure defined on the Stone space of the measure algebra \mathfrak{A} of the Lebesgue measure λ on $[0,1]$. Since the algebra \mathfrak{A} is complete, its Stone space is extremely disconnected.

By a result from [2] if K is a locally connected compactum then no measure $\mu \in P(K)$ can be normal, cf. [1], Proposition 4.6.20. Dales et al. posed a problem that can be stated as follows (Question 2 in [1]).

Problem 1.1. Suppose that K is a compact and $\mu \in P(K)$ is a normal measure. Must K be disconnected?

We show below that the answer is negative, namely we prove the following result.

Theorem 1.2. There is a compact connected space L of weight \mathfrak{c} which is the support of a normal measure.

2. Preliminaries

Recall that $\mu \in P(K)$ is said to be strictly positive or fully supported by K if $\mu(U) > 0$ for every non-empty open set $U \subseteq K$.

Lemma 2.1. Let K be a compact space, and suppose that μ is a strictly positive measure on K such that $\mu(Z) = 0$ for every $Z \in Z(K)$ with empty interior. Then μ is a normal measure.

July 5, 2014. I wish to thank H. Garth Dales for the discussion concerning the subject of this note.
Proof. Assume that there is a closed set \(F \subseteq K \) with empty interior but with \(\mu(F) > 0 \). Then we derive a contradiction by the following observation.

Claim. Every closed set \(F \subseteq K \) with empty interior is contained in some \(Z \in \mathcal{Z}(K) \) with empty interior.

Indeed, consider a maximal family \(\mathcal{F} \) of continuous functions \(K \to [0,1] \) such that \(f|F = 0 \) for \(f \in \mathcal{F} \) and \(f \cdot g = 0 \) whenever \(f, g \in \mathcal{F}, f \neq g \). Then \(\mathcal{F} \) is necessarily countable because \(K \), being the support of a measure, satisfies the countable chain condition. Write \(\mathcal{F} = \{ f_n : n \in \mathbb{N} \} \) and let \(f = \sum_n 2^{-n} f_n \) and \(Z = f^{-1}(0) \). Then the function \(f \) is continuous so that \(Z \subseteq \mathcal{Z}(K) \). We have \(Z \supseteq F \) and the interior of \(Z \) must be empty by the maximality of \(\mathcal{F} \). \(\square \)

If \(f : K \to L \) is a continuous map and \(\mu \in P(K) \) then the measure \(f[\mu] \in P(L) \) is defined by \(f[\mu](B) = \mu(f^{-1}(B)) \) for every Borel set \(B \subseteq L \).

We shall consider inverse systems of compact spaces with measures of the form

\[
\langle K_\alpha, \mu_\alpha, \pi_\alpha^\beta : \beta < \alpha < \kappa \rangle,
\]

where \(\kappa \) is an ordinal number and for all \(\gamma < \beta < \alpha < \kappa \) we have

2(i) \(K_\alpha \) is a compact space and \(\mu_\alpha \in P(K_\alpha) \);
2(ii) \(\pi_\alpha^\beta : K_\alpha \to K_\beta \) is a continuous surjection;
2(iii) \(\pi_\alpha^\beta \circ \pi_\beta^\gamma = \pi_\alpha^\gamma \);
2(iv) \(\pi_\alpha^\beta[\mu_\alpha] = \mu_\beta \).

The following summarises basic facts on inverse systems satisfying 2(i)-(iv).

Theorem 2.2. Let \(K \) be the limit of the system with uniquely defined continuous surjections \(\pi_\alpha : K \to K_\alpha \) for \(\alpha < \kappa \).

(a) \(K \) is a compact space and \(K \) is connected whenever all the space \(K_\alpha \) are connected.
(b) There is the unique \(\mu \in P(K) \) such that \(\pi_\alpha[\mu] = \mu_\alpha \) for \(\alpha < \kappa \).
(c) If every \(\mu_\alpha \) is strictly positive then \(\mu \) is strictly positive.

Engelking’s *General Topology* contains the topological part of 2.2 (measure-theoretic ingredients call for a proper reference). We also use the following fact on closed \(G_\delta \) sets and inverse systems of length \(\omega_1 \).

Lemma 2.3. Let \(K \) be the limit of an inverse system \(\langle K_\alpha, \pi_\alpha^\beta : \beta < \alpha < \omega_1 \rangle \). Then for every \(Z \in \mathcal{Z}(K) \), there are \(\alpha < \omega_1 \) and \(Z_\alpha \in \mathcal{Z}(K_\alpha) \) with \(Z = \pi_\alpha^{-1}(Z_\alpha) \).

Proof. Sets of the form \(\pi_\alpha^{-1}(V) \), where \(\alpha < \kappa \) and \(V \subseteq K_\alpha \) is open, give the canonical basis of \(K \) (closed under countable unions). Therefore if \(Z \in \mathcal{Z}(K) \) then \(Z = \bigcap_n \pi_\alpha^{-1}(V_n) \) for some \(\alpha_n < \omega_1 \) and some open \(V_n \subseteq K_{\alpha_n} \). Taking \(\alpha > \sup_n \alpha_n \) we can write \(Z = \bigcap_n \pi_\alpha^{-1}(W_n) \) for some open \(W_n \subseteq K_\alpha \). Let \(Z_\alpha = \bigcap_n W_n \). Then \(Z_\alpha \) is \(G_\delta \) in \(K_\alpha, \pi_\alpha^{-1}(Z_\alpha) = Z \) and \(Z_\alpha = \pi_\alpha(Z) \) is closed. \(\square \)
3. Proof of Theorem 1.2

We first describe a basic construction which will be used repeatedly.

Lemma 3.1. Let K be a compact connected space, and let $\mu \in P(K)$ be a strictly positive measure. If $F \subseteq K$ is a closed set with $\mu(F) > 0$, then there are a compact connected space \hat{K}, a strictly positive measure $\hat{\mu} \in P(\hat{K})$ and a continuous surjection $f : \hat{K} \to K$ such that $f[\hat{\mu}] = \mu$ and $\text{int}(f^{-1}(F)) \neq \emptyset$.

Proof. Let F_0 be the support of μ restricted to F, that is

$$F_0 = F \setminus \bigcup \{U : U \text{ open and } \mu(F \cap U) = 0\}.$$

Let $\hat{K} = \{(x, t) \in K \times [0, 1] : x \in F_0 \text{ or } t = 0\}$. Then \hat{K} is clearly a compact connected space and $f(x, t) = x$ defines a continuous surjection $f : \hat{K} \to K$. Moreover, the set $f^{-1}(F)$ contains $F_0 \times [0, 1]$, a set with non-empty interior. Hence $\text{int}(f^{-1}(F)) \neq \emptyset$.

We can define $\hat{\mu} \in P(\hat{K})$ with the required property by setting

$$\hat{\mu}(B) = \mu(f(B \cap (K \setminus F) \times \{0\})) + \mu \otimes \lambda(F \times [0, 1] \cap B),$$

for Borel sets $B \subseteq \hat{K}$, where λ is the Lebesgue measure on $[0, 1]$. \hfill \square

Lemma 3.2. Let K be a compact connected space, and let $\mu \in P(K)$ be a strictly positive measure. Then there are a compact connected space $K^\#$, a strictly positive measure $\mu^\# \in P(K^\#)$ and a continuous surjection $g : K^\# \to K$ such that $g[\mu^\#] = \mu$ and $\text{int}(g^{-1}(Z)) \neq \emptyset$ for every $Z \in \mathcal{Z}(K)$ with $\mu(Z) > 0$.

Proof. Let $\{Z_\alpha : \alpha < \kappa\}$ be an enumeration of all sets $Z \in \mathcal{Z}(K)$ of positive measure. Setting $K_0 = K$, $\mu_0 = \mu$, we define inductively an inverse system $\langle K_\alpha, \mu_\alpha, \pi^\beta_\alpha : \beta < \alpha < \kappa \rangle$ satisfying 2(i)-(iv). Assume the construction for all $\alpha < \xi$.

If ξ is the limit ordinal we use Theorem 2.2 and let K_ξ be the limit of K_α, $\alpha < \kappa$, and μ_ξ be the unique measure as in 2.3.

If $\xi = \alpha + 1$ then we define K_ξ and $\mu_\xi \in P(K_\xi)$ applying Lemma 3.1 to $K = K_\alpha$, $\mu = \mu_\alpha$, $F = (\pi^0_\alpha)^{-1}(Z_\alpha)$.

Then we can define $K^\#$ and $\mu^#$ as the limit of $\langle K_\alpha, \mu_\alpha, \pi^\beta_\alpha : \beta < \alpha < \kappa \rangle$ and set $g = \pi_0 : K^\# \to K$.

Indeed, if $Z \in \mathcal{Z}(K)$ and $\mu(Z) > 0$ then $Z = Z_\alpha$ for some $\alpha < \kappa$ so the interior of the set

$$(\pi^0_\alpha)^{-1}(Z_\alpha) = (\pi^{\alpha+1}_\alpha)^{-1}((\pi^0_0)^{-1}(Z_\alpha)),$$

is nonempty by the basic construction of Lemma 3.1. It follows that $\text{int}(g^{-1}(Z_\alpha)) \neq \emptyset$, and we are done. \hfill \square

We are now ready for the proof of Theorem 1.2. Let $L_0 = [0, 1]$ and $\mu_0 = \lambda$. Using Lemma 3.2 we define an inverse system $\langle L_\alpha, \mu_\alpha, \pi^\beta_\alpha : \beta < \alpha < \omega_1 \rangle$, where $L_{\alpha+1} = (L_\alpha)^\#$.

and \(\mu_{\alpha+1} = (\mu_\alpha)^\# \). Consider the limit \(L \) of this inverse system with the limit measure \(\nu \in P(L) \).

We shall check that \(\nu \) is a normal measure using Lemma 2.1. Take \(Z \in \mathcal{Z}(L) \) with \(\nu(Z) > 0 \). It follows from Lemma 2.3 that \(Z = \pi_\alpha^{-1}(Z_\alpha) \) for some \(\alpha < \omega_1 \) and \(Z_\alpha \in \mathcal{Z}(L_\alpha) \). Then the set \((\pi_\alpha^{\alpha+1})^{-1}(Z_\alpha) \) has non-empty interior in \(L_{\alpha+1} = (L_\alpha)^\# \) and, consequently, \(\text{int}(Z) \neq \emptyset \).

Note that in a compact space \(K \) of topological weight \(w(K) \leq c \) there are at most \(c \) many closed \(G_\delta \) sets. It follows from the proof of Lemma 3.2 that \(w(K^\#) \leq c \) whenever \(w(K) \leq c \). Therefore \(w(L_\alpha) \leq c \) for every \(\alpha < \omega_1 \) and \(w(L) = c \). This finishes the proof of our main result.

Let us remark that using Lemma 3.1 and the construction from Kunen [3] one can prove the following variant of Theorem 1.2.

Theorem 3.3. Assuming the continuum hypothesis, there is a perfectly normal compact connected space \(L \) supporting a normal probability measure.

Perfect normality of \(L \) means that every closed subset of \(L \) is \(G_\delta \) so in particular the space \(L \) from Theorem 3.3 is first-countable.

References

Instytut Matematyczny, Uniwersytet Wrocławski
E-mail address: grzes@math.uni.wroc.pl