# The complemented subspace problem for $C(K)$-spaces 

## Grzegorz Plebanek

University of Wrocław
IWOTA, September 2022

## The complemented subspace problem

A subspace $Y$ of a Banach space $X$ is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.

## The complemented subspace problem

A subspace $Y$ of a Banach space $X$ is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$. Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$ ) mapping $X$ onto $Y$.

## The complemented subspace problem

A subspace $Y$ of a Banach space $X$ is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$. Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$ ) mapping $X$ onto $Y$.

## Definition.

Say that a Banach space $X$ is a $\mathscr{C}$-space if it is isomorphic to $C(K)$, the space of continuous functions on a compact space $K$.

## The complemented subspace problem

A subspace $Y$ of a Banach space $X$ is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.
Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$ ) mapping $X$ onto $Y$.

## Definition.

Say that a Banach space $X$ is a $\mathscr{C}$-space if it is isomorphic to $C(K)$, the space of continuous functions on a compact space $K$.

## Problem.

Suppose that $X$ is a complemented subspace of a $\mathscr{C}$-space; must $X$ be a $\mathscr{C}$-space?

## The complemented subspace problem

A subspace $Y$ of a Banach space $X$ is complemented if there is a closed subspace $Z \subseteq X$ such that $X=Y \oplus Z$.
Equivalently, there is a projection $P: X \rightarrow X$ (a bounded linear operator such that $P \circ P=P$ ) mapping $X$ onto $Y$.

## Definition.

Say that a Banach space $X$ is a $\mathscr{C}$-space if it is isomorphic to $C(K)$, the space of continuous functions on a compact space $K$.

## Problem.

Suppose that $X$ is a complemented subspace of a $\mathscr{C}$-space; must $X$ be a $\mathscr{C}$-space?

## Rosenthal [1972]

Suppose that $X$ is a complemented subspace of $C[0,1]$ and $X^{*}$ is not separable. Then $X \simeq C[0,1]$.

The complemented subspace problem: No!

If $\theta: L \rightarrow K$ is a continuous surjection between compact spaces then $\theta^{\circ}$ is the corresponding isometric embedding
$\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$.

## The complemented subspace problem: No!

If $\theta: L \rightarrow K$ is a continuous surjection between compact spaces then $\theta^{\circ}$ is the corresponding isometric embedding
$\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$.

## Salguero-Alarcón \& P. [2022]

There are two separable scattered compacta $K$ and $L$ and a continuous surjection $\theta: L \rightarrow K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space $X$ is not a $\mathscr{C}$-space.

## Compacta from almost disjoint families

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that $\mathscr{A}$ is infinite and consists of infinite sets.

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that $\mathscr{A}$ is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in $\omega$ are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that $\mathscr{A}$ is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in $\omega$ are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that $\mathscr{A}$ is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in $\omega$ are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that $\mathscr{A}$ is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in $\omega$ are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

## Remark

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that $\mathscr{A}$ is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in $\omega$ are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

## Remark

$K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by $\mathscr{A}$ and finite sets.

## Compacta from almost disjoint families

(1) Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
(2) We assume that $\mathscr{A}$ is infinite and consists of infinite sets.
(3) Write $\Psi_{\mathscr{A}}$ for $\omega \cup \mathscr{A}$ and define a topology on $\Psi_{\mathscr{A}}$ by declaring that points in $\omega$ are isolated while basic neighbourhoods of $A \in \Psi_{\mathscr{A}}$ are of the form $\{A\} \cup A \backslash I$, with $I \subseteq \omega$ finite.
(9) Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup\{\infty\}$, the one-point compactification.

## Remark

$K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by $\mathscr{A}$ and finite sets.

There is a lot of research done on the interplay between combinatorial properties of $\mathscr{A}$ and topology of $\Psi_{\mathscr{A}}\left(\right.$ or $\left.K_{\mathscr{A}}\right)$, see Hrušák [2014].

## Banach spaces from almost disjoint families

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of $\ell_{\infty}$ spanned by $\chi_{B}$, $B \in \mathscr{A} \cup$ fin $\cup \omega$.


## Banach spaces from almost disjoint families

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of $\ell_{\infty}$ spanned by $\chi_{B}$, $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.
- $C\left(K_{\mathscr{A}}\right)$ spaces were considered already by Johnson \& Lindenstrauss [1974].


## Banach spaces from almost disjoint families

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of $\ell_{\infty}$ spanned by $\chi_{B}$, $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.
- $C\left(K_{\mathscr{A}}\right)$ spaces were considered already by Johnson \& Lindenstrauss [1974].
- They also introduced another type of spaces defined by $\mathscr{A}$ denoted $J L_{2}(\mathscr{A})$, see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].


## Banach spaces from almost disjoint families

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of $\ell_{\infty}$ spanned by $\chi_{B}$, $B \in \mathscr{A} \cup$ fin $\cup \omega$.
- $C\left(K_{\mathscr{A}}\right)$ spaces were considered already by Johnson \& Lindenstrauss [1974].
- They also introduced another type of spaces defined by $\mathscr{A}$ denoted $J L_{2}(\mathscr{A})$, see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].
- Marciszewski [1989]: $C\left(K_{\mathscr{A}}\right)$ and $C\left(K_{\mathscr{A}}{ }^{\prime}\right)$ are not isomorphic if $\mathscr{A}$ and $\mathscr{A}^{\prime}$ have really different Borel complexity.


## Banach spaces from almost disjoint families

- $C\left(K_{\mathscr{A}}\right)$ may be seen as the subspace of $\ell_{\infty}$ spanned by $\chi_{B}$, $B \in \mathscr{A} \cup$ fin $\cup \omega$.
- $C\left(K_{\mathscr{A}}\right)$ spaces were considered already by Johnson \& Lindenstrauss [1974].
- They also introduced another type of spaces defined by $\mathscr{A}$ denoted $J L_{2}(\mathscr{A})$, see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].
- Marciszewski [1989]: $C\left(K_{\mathscr{A}}\right)$ and $C\left(K_{\mathscr{A}}{ }^{\prime}\right)$ are not isomorphic if $\mathscr{A}$ and $\mathscr{A}^{\prime}$ have really different Borel complexity.
- Marciszewski \& Pol [2009]: If $\mathscr{A}$ and $\mathscr{A}^{\prime}$ are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C\left(K_{\mathscr{A}}\right) \not 千 C\left(K_{\mathscr{A}}\right)$.


## Banach spaces from almost disjoint families 2

## Banach spaces from almost disjoint families 2

- There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=\mathbf{c}$.


## Banach spaces from almost disjoint families 2

- There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=\mathbf{c}$.
- Marciszewski \& P. [2018]: Under $\operatorname{MA}\left(\omega_{1}\right)$, if $|\mathscr{A}|=\omega_{1}$ then every short exact sequence $0 \rightarrow c_{0} \rightarrow X \rightarrow C\left(K_{\mathscr{A}}\right) \rightarrow 0$ is trivial.


## Banach spaces from almost disjoint families 2

- There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=\mathbf{c}$.
- Marciszewski \& P. [2018]: Under $\mathrm{MA}\left(\omega_{1}\right)$, if $|\mathscr{A}|=\omega_{1}$ then every short exact sequence $0 \rightarrow c_{0} \rightarrow X \rightarrow C\left(K_{\mathscr{A}}\right) \rightarrow 0$ is trivial.
- Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA $\left(\omega_{1}\right)$, $C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}^{\prime}}\right)$ whenever AD families $\mathscr{A}, \mathscr{A}^{\prime}$ satisfy $|\mathscr{A}|=\left|\mathscr{A}^{\prime}\right|=\omega_{1}$.


## Banach spaces from almost disjoint families 2

- There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=\mathfrak{c}$.
- Marciszewski \& P. [2018]: Under $\mathrm{MA}\left(\omega_{1}\right)$, if $|\mathscr{A}|=\omega_{1}$ then every short exact sequence $0 \rightarrow c_{0} \rightarrow X \rightarrow C\left(K_{\mathscr{A}}\right) \rightarrow 0$ is trivial.
- Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA $\left(\omega_{1}\right)$, $C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}^{\prime}}\right)$ whenever AD families $\mathscr{A}, \mathscr{A}^{\prime}$ satisfy $|\mathscr{A}|=\left|\mathscr{A}^{\prime}\right|=\omega_{1}$.
- Koszmider [2005] under MA, Koszmider \& Laustsen [2021]: There is an uncountable AD family $\mathscr{A}$ such that (in particular)


## Banach spaces from almost disjoint families 2

- There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=c$.
- Marciszewski \& P. [2018]: Under $\mathrm{MA}\left(\omega_{1}\right)$, if $|\mathscr{A}|=\omega_{1}$ then every short exact sequence $0 \rightarrow c_{0} \rightarrow X \rightarrow C\left(K_{\mathscr{A}}\right) \rightarrow 0$ is trivial.
- Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA $\left(\omega_{1}\right)$, $C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}^{\prime}}\right)$ whenever AD families $\mathscr{A}, \mathscr{A}^{\prime}$ satisfy $|\mathscr{A}|=\left|\mathscr{A}^{\prime}\right|=\omega_{1}$.
- Koszmider [2005] under MA, Koszmider \& Laustsen [2021]: There is an uncountable AD family $\mathscr{A}$ such that (in particular)
- Every operator $T: C\left(K_{\mathscr{A}}\right) \rightarrow C\left(K_{\mathscr{A}}\right)$ is of the form $T=c \cdot I+S$, where the range of $S$ is separable;


## Banach spaces from almost disjoint families 2

- There are $2^{\mathfrak{c}}$ pairwise nonisomorphic Banach spaces of the form $C\left(K_{\mathscr{A}}\right),|\mathscr{A}|=c$.
- Marciszewski \& P. [2018]: Under $\mathrm{MA}\left(\omega_{1}\right)$, if $|\mathscr{A}|=\omega_{1}$ then every short exact sequence $0 \rightarrow c_{0} \rightarrow X \rightarrow C\left(K_{\mathscr{A}}\right) \rightarrow 0$ is trivial.
- Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA $\left(\omega_{1}\right)$, $C\left(K_{\mathscr{A}}\right) \simeq C\left(K_{\mathscr{A}^{\prime}}\right)$ whenever AD families $\mathscr{A}, \mathscr{A}^{\prime}$ satisfy $|\mathscr{A}|=\left|\mathscr{A}^{\prime}\right|=\omega_{1}$.
- Koszmider [2005] under MA, Koszmider \& Laustsen [2021]: There is an uncountable AD family $\mathscr{A}$ such that (in particular)
- Every operator $T: C\left(K_{\mathscr{A}}\right) \rightarrow C\left(K_{\mathscr{A}}\right)$ is of the form $T=c \cdot I+S$, where the range of $S$ is separable;
- $C\left(K_{\mathscr{A}}\right) \simeq c_{0} \oplus C\left(K_{\mathscr{A}}\right)$ is essentially the unique decomposition into a direct sum of infinitely dimensional summands.

Recall that $\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$ for $\theta: L \rightarrow K$.

Recall that $\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$ for $\theta: L \rightarrow K$.

- Petczyński: Suppose that $\varphi_{x}$ is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \rightarrow \varphi_{x} \in C(L)^{*}$ is weak* continuous. Then $C(L)=\theta^{\circ}[C(K)] \oplus X$ because $T f(x)=\int_{L} f \mathrm{~d} \varphi_{x}$ defines $T: C(L) \rightarrow C(K)$ and $P f=(T f) \circ \theta$ is a projection.

Recall that $\theta^{\circ}: C(K) \rightarrow C(L)$ given by $\theta^{\circ}(g)=g \circ \theta$ for $\theta: L \rightarrow K$.

- Petczyński: Suppose that $\varphi_{x}$ is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \rightarrow \varphi_{x} \in C(L)^{*}$ is weak* continuous. Then $C(L)=\theta^{\circ}[C(K)] \oplus X$ because $T f(x)=\int_{L} f \mathrm{~d} \varphi_{x}$ defines $T: C(L) \rightarrow C(K)$ and $P f=(T f) \circ \theta$ is a projection.
- If $X$ is a $\mathscr{C}$-space then the ball in $X^{*}$ contains a closed set $F$ such that $X \ni x \rightarrow x \mid F \in C(F)$ is an isomorphism.


## Shape of our construction

Shape of our construction


The framework

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$.

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$.
Define
(1) an almost disjoint family $\mathscr{A}$ of cylinders and let $\mathfrak{B}_{1}$ be the algebra of subsets of $\Delta$ generated by $\mathscr{A}$ and all the sticks $S_{n}$;

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family $\mathscr{A}$ of cylinders and let $\mathfrak{B}_{1}$ be the algebra of subsets of $\Delta$ generated by $\mathscr{A}$ and all the sticks $S_{n}$;
(2) split every $A \in \mathscr{A}$ into $B_{A}^{0}, B_{A}^{1}$ and let $\mathfrak{B}_{2}$ be the algebra of subsets of $\Delta$ generated by all $B_{A}^{0}, B_{A}^{1}$ and finite subsets;

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family $\mathscr{A}$ of cylinders and let $\mathfrak{B}_{1}$ be the algebra of subsets of $\Delta$ generated by $\mathscr{A}$ and all the sticks $S_{n}$;
(2) split every $A \in \mathscr{A}$ into $B_{A}^{0}, B_{A}^{1}$ and let $\mathfrak{B}_{2}$ be the algebra of subsets of $\Delta$ generated by all $B_{A}^{0}, B_{A}^{1}$ and finite subsets;
(3) be sure that $\lim _{n \in A_{0}} \varphi_{n}\left(B_{A}^{0}\right)=1 / 2$ for every $A \in \mathscr{A}$, $A=\left(A_{0} \times \omega\right) \cap \Delta ;$

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family $\mathscr{A}$ of cylinders and let $\mathfrak{B}_{1}$ be the algebra of subsets of $\Delta$ generated by $\mathscr{A}$ and all the sticks $S_{n}$;
(2) split every $A \in \mathscr{A}$ into $B_{A}^{0}, B_{A}^{1}$ and let $\mathfrak{B}_{2}$ be the algebra of subsets of $\Delta$ generated by all $B_{A}^{0}, B_{A}^{1}$ and finite subsets;
(3) be sure that $\lim _{n \in A_{0}} \varphi_{n}\left(B_{A}^{0}\right)=1 / 2$ for every $A \in \mathscr{A}$, $A=\left(A_{0} \times \omega\right) \cap \Delta$;
(9) Put $K=\operatorname{ult}\left(\mathfrak{B}_{1}\right), L=\operatorname{ult}\left(\mathfrak{B}_{2}\right) ; \theta: L \rightarrow K$ is the obvious surjection.

We work in

$$
\Delta=\left\{(n, k) \in \omega^{2}: k \leq n\right\},
$$

and consider the sticks $S_{n}=\{(n, k): k \leq n\}$ and the measures $\varphi_{n}=\frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n, k)}$.
By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define
(1) an almost disjoint family $\mathscr{A}$ of cylinders and let $\mathfrak{B}_{1}$ be the algebra of subsets of $\Delta$ generated by $\mathscr{A}$ and all the sticks $S_{n}$;
(2) split every $A \in \mathscr{A}$ into $B_{A}^{0}, B_{A}^{1}$ and let $\mathfrak{B}_{2}$ be the algebra of subsets of $\Delta$ generated by all $B_{A}^{0}, B_{A}^{1}$ and finite subsets;
(3) be sure that $\lim _{n \in A_{0}} \varphi_{n}\left(B_{A}^{0}\right)=1 / 2$ for every $A \in \mathscr{A}$, $A=\left(A_{0} \times \omega\right) \cap \Delta$;
(9) Put $K=\operatorname{ult}\left(\mathfrak{B}_{1}\right), L=\operatorname{ult}\left(\mathfrak{B}_{2}\right) ; \theta: L \rightarrow K$ is the obvious surjection.
(5) Property (3) enables us to define a projection from $C(L)$ onto $\theta^{\circ}[C(K)]$ so $C(L)=\theta^{\circ}[C(K)] \oplus X$.

