The complemented subspace problem for C(K)-spaces

Grzegorz Plebanek

University of Wrocław

IWOTA, September 2022

イロン イロン イヨン イヨン 三日

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$.

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P : X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y.

イロト イヨト イヨト イヨト ヨー わらの

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P: X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y.

Definition.

Say that a Banach space X is a \mathscr{C} -space if it is isomorphic to C(K), the space of continuous functions on a compact space K.

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P : X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y.

Definition.

Say that a Banach space X is a C-space if it is isomorphic to C(K), the space of continuous functions on a compact space K.

Problem.

Suppose that X is a complemented subspace of a \mathscr{C} -space; must X be a \mathscr{C} -space?

A subspace Y of a Banach space X is complemented if there is a closed subspace $Z \subseteq X$ such that $X = Y \oplus Z$. Equivalently, there is a projection $P : X \to X$ (a bounded linear operator such that $P \circ P = P$) mapping X onto Y.

Definition.

Say that a Banach space X is a C-space if it is isomorphic to C(K), the space of continuous functions on a compact space K.

Problem.

Suppose that X is a complemented subspace of a \mathscr{C} -space; must X be a \mathscr{C} -space?

Rosenthal [1972]

Suppose that X is a complemented subspace of C[0,1] and X^{*} is not separable. Then $X \simeq C[0,1]$.

If $\theta: L \to K$ is a continuous surjection between compact spaces then θ° is the corresponding isometric embedding $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$. If $\theta: L \to K$ is a continuous surjection between compact spaces then θ° is the corresponding isometric embedding $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$.

Salguero-Alarcón & P. [2022]

There are two separable scattered compacta K and L and a continuous surjection $\theta: L \to K$ such that $C(L) \simeq \theta^{\circ}[C(K)] \oplus X$ and the Banach space X is not a \mathscr{C} -space.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆○ ♥

• Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.

• Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.

2 We assume that \mathscr{A} is infinite and consists of infinite sets.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_𝖉 for ω∪𝒴 and define a topology on Ψ_𝒴 by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_𝒴 are of the form {A}∪A \ I, with I ⊆ ω finite.

イロト イロト イヨト イヨト ヨー わへの

9 Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_𝖉 for ω∪𝒴 and define a topology on Ψ_𝒴 by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_𝒴 are of the form {A}∪A \ I, with I ⊆ ω finite.

イロト イロト イヨト イヨト ヨー わへの

9 Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.

イロト イロト イヨト イヨト ヨー わへの

9 Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

Remark

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.
- **9** Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

Remark

 $K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by \mathscr{A} and finite sets.

- Let $\mathscr{A} \subseteq \mathscr{P}(\omega)$ be an almost disjoint family, that is $A \cap B$ is finite for different $A, B \in \mathscr{A}$.
- **2** We assume that \mathscr{A} is infinite and consists of infinite sets.
- Write Ψ_A for ω∪A and define a topology on Ψ_A by declaring that points in ω are isolated while basic neighbourhoods of A ∈ Ψ_A are of the form {A}∪A \ I, with I ⊆ ω finite.
- Write $K_{\mathscr{A}}$ for $\Psi_{\mathscr{A}} \cup \{\infty\}$, the one-point compactification.

Remark

 $K_{\mathscr{A}}$ may be seen as the Stone space of all ultrafilters on the algebra generated by \mathscr{A} and finite sets.

There is a lot of research done on the interplay between combinatorial properties of \mathscr{A} and topology of $\Psi_{\mathscr{A}}$ (or $K_{\mathscr{A}}$), see **Hrušák** [2014].

・ロ・・日・・田・・日・ のへの

• $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.

• $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.

 C(K_𝖉) spaces were considered already by Johnson & Lindenstrauss [1974].

- $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.
- C(K_𝖉) spaces were considered already by Johnson & Lindenstrauss [1974].
- They also introduced another type of spaces defined by A denoted JL₂(A), see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].

- $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.
- C(K_𝖉) spaces were considered already by Johnson & Lindenstrauss [1974].
- They also introduced another type of spaces defined by A denoted JL₂(A), see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].
- Marciszewski [1989]: C(K_A) and C(K_{A'}) are not isomorphic if A and A' have really different Borel complexity.

- $C(K_{\mathscr{A}})$ may be seen as the subspace of ℓ_{∞} spanned by χ_B , $B \in \mathscr{A} \cup \operatorname{fin} \cup \omega$.
- C(K_𝖉) spaces were considered already by Johnson & Lindenstrauss [1974].
- They also introduced another type of spaces defined by A denoted JL₂(A), see e.g. Avilés, Martínez Cervantes and Rodríguez [2018].
- Marciszewski [1989]: C(K_A) and C(K_{A'}) are not isomorphic if A and A' have really different Borel complexity.
- Marciszewski & Pol [2009]: If \mathscr{A} and \mathscr{A}' are AD families of branches of $2^{<\omega}$ and $\omega^{<\omega}$, respectively, then $C(\mathcal{K}_{\mathscr{A}}) \not\simeq C(\mathcal{K}_{\mathscr{A}'})$.

・ロ・・日・・田・・日・ シック・

There are 2^c pairwise nonisomorphic Banach spaces of the form C(K_𝖉), |𝒴| = c.

- There are 2^c pairwise nonisomorphic Banach spaces of the form C(K_𝖉), |𝒴| = c.
- Marciszewski & P. [2018]: Under MA(ω_1), if $|\mathscr{A}| = \omega_1$ then every short exact sequence $0 \to c_0 \to X \to C(K_{\mathscr{A}}) \to 0$ is trivial.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

- There are 2^c pairwise nonisomorphic Banach spaces of the form C(K_𝖉), |𝒴| = c.
- Marciszewski & P. [2018]: Under MA(ω_1), if $|\mathscr{A}| = \omega_1$ then every short exact sequence $0 \to c_0 \to X \to C(\mathcal{K}_{\mathscr{A}}) \to 0$ is trivial.

イロト イヨト イヨト イヨト ヨー わらの

• Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA(ω_1), $C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$ whenever AD families $\mathscr{A}, \mathscr{A}'$ satisfy $|\mathscr{A}| = |\mathscr{A}'| = \omega_1$.

- There are 2^c pairwise nonisomorphic Banach spaces of the form C(K_𝖉), |𝒴| = c.
- Marciszewski & P. [2018]: Under MA(ω_1), if $|\mathscr{A}| = \omega_1$ then every short exact sequence $0 \to c_0 \to X \to C(K_{\mathscr{A}}) \to 0$ is trivial.
- Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA(ω_1), $C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$ whenever AD families $\mathscr{A}, \mathscr{A}'$ satisfy $|\mathscr{A}| = |\mathscr{A}'| = \omega_1$.
- Koszmider [2005] under MA, Koszmider & Laustsen [2021]: There is an uncountable AD family \mathscr{A} such that (in particular)

- There are 2^c pairwise nonisomorphic Banach spaces of the form C(K_𝖉), |𝒴| = c.
- Marciszewski & P. [2018]: Under MA(ω_1), if $|\mathscr{A}| = \omega_1$ then every short exact sequence $0 \to c_0 \to X \to C(\mathcal{K}_{\mathscr{A}}) \to 0$ is trivial.
- Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA(ω_1), $C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$ whenever AD families $\mathscr{A}, \mathscr{A}'$ satisfy $|\mathscr{A}| = |\mathscr{A}'| = \omega_1$.
- Koszmider [2005] under MA, Koszmider & Laustsen [2021]: There is an uncountable AD family \mathscr{A} such that (in particular)
 - Every operator $T : C(K_{\mathscr{A}}) \to C(K_{\mathscr{A}})$ is of the form $T = c \cdot I + S$, where the range of S is separable;

- There are 2^c pairwise nonisomorphic Banach spaces of the form C(K_𝖉), |𝒴| = c.
- Marciszewski & P. [2018]: Under MA(ω_1), if $|\mathscr{A}| = \omega_1$ then every short exact sequence $0 \to c_0 \to X \to C(K_{\mathscr{A}}) \to 0$ is trivial.
- Cabello Sanchez, Castillo, Marciszewski, Salguero-Alarcón and P. [2020]: Under MA(ω_1), $C(K_{\mathscr{A}}) \simeq C(K_{\mathscr{A}'})$ whenever AD families $\mathscr{A}, \mathscr{A}'$ satisfy $|\mathscr{A}| = |\mathscr{A}'| = \omega_1$.
- Koszmider [2005] under MA, Koszmider & Laustsen [2021]: There is an uncountable AD family \mathscr{A} such that (in particular)
 - Every operator $T : C(K_{\mathscr{A}}) \to C(K_{\mathscr{A}})$ is of the form $T = c \cdot I + S$, where the range of S is separable;
 - C(K_A) ≃ c₀ ⊕ C(K_A) is essentially the unique decomposition into a direct sum of infinitely dimensional summands.

Two basic observations

・ロト・日本・モー・モー ショー ショー

Recall that $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$ for $\theta: L \to K$.

・ロト・日本・ヨト・ヨー シック

Recall that $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$ for $\theta: L \to K$.

• **Pełczyński:** Suppose that φ_x is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \to \varphi_x \in C(L)^*$ is weak* continuous. Then $C(L) = \theta^{\circ}[C(K)] \oplus X$ because $Tf(x) = \int_L f \, d\varphi_x$ defines $T : C(L) \to C(K)$ and $Pf = (Tf) \circ \theta$ is a projection. Recall that $\theta^{\circ}: C(K) \to C(L)$ given by $\theta^{\circ}(g) = g \circ \theta$ for $\theta: L \to K$.

- **Pełczyński:** Suppose that φ_x is a probability measure on $\theta^{-1}(x), x \in K$ and $K \ni x \to \varphi_x \in C(L)^*$ is weak* continuous. Then $C(L) = \theta^{\circ}[C(K)] \oplus X$ because $Tf(x) = \int_L f \, d\varphi_x$ defines $T : C(L) \to C(K)$ and $Pf = (Tf) \circ \theta$ is a projection.
- If X is a *C*-space then the ball in X^{*} contains a closed set F such that X ∋ x → x|F ∈ C(F) is an isomorphism.

Shape of our construction

Shape of our construction

► Ξ • • •

・ロ・・日・・日・・日・ のへぐ

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

and consider the sticks $S_n = \{(n,k) : k \le n\}$ and the measures $\varphi_n = \frac{1}{n+1} \cdot \sum_{k \le n} \delta_{(n,k)}$.

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

and consider the sticks $S_n = \{(n,k) : k \leq n\}$ and the measures $\varphi_n = \frac{1}{n+1} \cdot \sum_{k \leq n} \delta_{(n,k)}$. By a cylinder $C \subseteq \Delta$ we mean a set of the form $(A \times \omega) \cap \Delta$. Define

• an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_1 be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_n ;

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family A of cylinders and let B₁ be the algebra of subsets of Δ generated by A and all the sticks S_n;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family A of cylinders and let B₁ be the algebra of subsets of Δ generated by A and all the sticks S_n;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;
- Solution be sure that lim_{n∈A0} $φ_n(B_A^0) = 1/2$ for every A ∈ A, A = (A₀ × ω) ∩ Δ;

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family A of cylinders and let B₁ be the algebra of subsets of Δ generated by A and all the sticks S_n;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;
- Solution be sure that lim_{n∈A0} $φ_n(B_A^0) = 1/2$ for every A ∈ A, A = (A₀ × ω) ∩ Δ;
- Put $K = ult(\mathfrak{B}_1)$, $L = ult(\mathfrak{B}_2)$; $\theta : L \to K$ is the obvious surjection.

We work in

$$\Delta = \{ (n,k) \in \omega^2 : k \le n \},\$$

- an almost disjoint family \mathscr{A} of cylinders and let \mathfrak{B}_1 be the algebra of subsets of Δ generated by \mathscr{A} and all the sticks S_n ;
- Split every A ∈ A into B⁰_A, B¹_A and let B⁰₂ be the algebra of subsets of ∆ generated by all B⁰_A, B¹_A and finite subsets;
- Solution be sure that lim_{n∈A0} $φ_n(B^0_A) = 1/2$ for every A ∈ A, A = (A₀ × ω) ∩ Δ;
- Put $K = ult(\mathfrak{B}_1)$, $L = ult(\mathfrak{B}_2)$; $\theta : L \to K$ is the obvious surjection.
- Property (3) enables us to define a projection from C(L) onto θ°[C(K)] so C(L) = θ°[C(K)] ⊕ X.