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The complemented subspace problem

A subspace Y of a Banach space X is complemented if there is a
closed subspace Z ⊆ X such that X = Y ⊕Z .
Equivalently, there is a projection P : X → X (a bounded linear
operator such that P ◦P = P) mapping X onto Y .

Definition.

Say that a Banach space X is a C -space if it is isomorphic to
C (K ), the space of continuous functions on a compact space K .

Problem.

Suppose that X is a complemented subspace of a C -space; must
X be a C -space?

Rosenthal [1972]

Suppose that X is a complemented subspace of C [0,1] and X ∗ is
not separable. Then X ≃ C [0,1].
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The complemented subspace problem: No!

If θ : L→ K is a continuous surjection between compact spaces
then θ ◦ is the corresponding isometric embedding
θ ◦ : C (K ) → C (L) given by θ ◦(g) = g ◦θ .

Salguero-Alarcón & P. [2022]

There are two separable scattered compacta K and L and a
continuous surjection θ : L→ K such that C (L) ≃ θ ◦[C (K )]⊕X
and the Banach space X is not a C -space.
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Compacta from almost disjoint families

1 Let A ⊆ P(ω) be an almost disjoint family, that is A∩B is
finite for different A,B ∈ A .

2 We assume that A is infinite and consists of infinite sets.

3 Write ΨA for ω ∪A and define a topology on ΨA by
declaring that points in ω are isolated while basic
neighbourhoods of A ∈ ΨA are of the form {A}∪A\ I , with
I ⊆ ω finite.

4 Write KA for ΨA ∪{∞}, the one-point compactification.

Remark

KA may be seen as the Stone space of all ultrafilters on the
algebra generated by A and finite sets.

There is a lot of research done on the interplay between
combinatorial properties of A and topology of ΨA (or KA ), see
Hrušák [2014].
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Banach spaces from almost disjoint families

C (KA ) may be seen as the subspace of ℓ∞ spanned by χB ,
B ∈ A ∪fin∪ω.

C (KA ) spaces were considered already by Johnson &
Lindenstrauss [1974].

They also introduced another type of spaces defined by A
denoted JL2(A ), see e.g. Avilés, Mart́ınez Cervantes and
Rodŕıguez [2018].

Marciszewski [1989]: C (KA ) and C (KA ′) are not
isomorphic if A and A ′ have really different Borel complexity.

Marciszewski & Pol [2009]: If A and A ′ are AD families
of branches of 2<ω and ω<ω , respectively, then
C (KA ) ̸≃ C (KA ′).
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Banach spaces from almost disjoint families 2

There are 2c pairwise nonisomorphic Banach spaces of the
form C (KA ), |A | = c.

Marciszewski & P. [2018]: Under MA(ω1), if |A | = ω1

then every short exact sequence 0 → c0 → X → C (KA ) → 0 is
trivial.

Cabello Sanchez, Castillo, Marciszewski,
Salguero-Alarcón and P. [2020]: Under MA(ω1),
C (KA ) ≃ C (KA ′) whenever AD families A ,A ′ satisfy
|A | = |A ′| = ω1.

Koszmider [2005] under MA, Koszmider & Laustsen
[2021]: There is an uncountable AD family A such that (in
particular)

Every operator T : C (KA ) → C (KA ) is of the form
T = c · I +S , where the range of S is separable;
C (KA ) ≃ c0⊕C (KA ) is essentially the unique decomposition
into a direct sum of infinitely dimensional summands.
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Two basic observations

Recall that θ ◦ : C (K ) → C (L) given by θ ◦(g) = g ◦θ for θ : L→K .

Pe lczyński: Suppose that ϕx is a probability measure on
θ−1(x), x ∈ K and K ∋ x → ϕx ∈ C (L)∗ is weak∗ continuous.
Then C (L) = θ ◦[C (K )]⊕X because Tf (x) =

∫
L f dϕx defines

T : C (L) → C (K ) and Pf = (Tf )◦θ is a projection.

If X is a C -space then the ball in X ∗ contains a closed set F
such that X ∋ x → x |F ∈ C (F ) is an isomorphism.
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The framework

We work in
∆ = {(n,k) ∈ ω

2 : k ≤ n},

and consider the sticks Sn = {(n,k) : k ≤ n} and the measures
ϕn = 1

n+1 ·∑k≤n δ(n,k).
By a cylinder C ⊆ ∆ we mean a set of the form (A×ω)∩∆.
Define

1 an almost disjoint family A of cylinders and let B1 be the
algebra of subsets of ∆ generated by A and all the sticks Sn;

2 split every A ∈ A into B0
A,B

1
A and let B2 be the algebra of

subsets of ∆ generated by all B0
A,B

1
A and finite subsets;

3 be sure that limn∈A0 ϕn(B0
A) = 1/2 for every A ∈ A ,

A = (A0×ω)∩∆;

4 Put K = ult(B1), L = ult(B2); θ : L→ K is the obvious
surjection.

5 Property (3) enables us to define a projection from C (L) onto
θ ◦[C (K )] so C (L) = θ ◦[C (K )]⊕X .
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